L=
View metadata, citation and similar papers at core.ac.uk brought to you by:: CORE

provided by NASA Technical Reports Server
s T

% 0.9

» -
Ada Issues in Implementing ART-Ada
(MASA-CR-188541) Ada ISSULS IN IMPLEMENTING N?1-32538
— ART-Ada (Research Inst. for Advanced
Computcr Scionce) 18 p CsCL 098
i _ Unclas
i . G3/61 0045431
= — Inference Corporation -
- November 1990
L
Cooperative Agreement NCC 9-16
) - o Research Activity No. SE.19 - -
NASA Johnson Space Center
|
Research Institute for Computing and Information Systems
) T — University of Houston - Clear Lake

https://core.ac.uk/display/42816221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and locglruidirgslyi to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershlp with JSCto Jomﬂy define and manage an mtegrated program of research

in advanced data p proc%smg technology needed for JSC’s main missions, including

" by the two institutions to conduct the research.

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperatlve Agreement NCC 9-16, computing and educatlonal facnlmes are shared

The mission of RICIS is to conduct, coordinate and dlssemmate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Apphed Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake cstablishes relationships with other universities and research organizatiors,
having common research interests, to provide additional sources of expertise fo
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

i i

Vi

bl)

0.

'
lal

.
P

L .

e

LI

N
Wil ok

e

i

Ada Issues in Implementing ART-Ada

(T o

e

{ITEE

iy

0l

i

(I .

i

0

I B

i I

1l 140

Preface

(=

(1

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC
= through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and
the University of Houston-Clear Lake. The NASA technical monitor for this activity was
Robert T. Savely, of the Software Technology Branch, Information Technology Division,
Information Systems Directorate, NASA/JSC.

% The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
g implied, of NASA or the United States Government.

4

i

Lime

g

L

m

Ada Issues in Irﬁplementing ART-Ada’

(it

<. Daniel Lee

{r:

Inference Corporation
550 North Continental Boulevard
El Segundo. California 90243
Email: lee@inference.com

|

i)

¢

Abstract

[RAI]

Due to the Ada mandate of such government agencies as DoD, NASA and FAA. interest
in deploying expert systems in Ada has increased. Recently, several Ada-based expert
system tools have been developed. According to a recent benchmark report. these tools
do not perform as well as similar tools written in C. While poorly implemented Ada
compilers also contribute to the poor benchmark result, some fundamental problems of
the Ada language itself have been uncovered. In this paper, we describe Ada language
issues encountered during the development of ART-Ada, an expert system tool for Ada
deployment. ART-Ada is being used to implement several prototype expert svstems ¢ ¢
the Space Station Freedom and the U.S. Air Force.

l!

{1I0R

e

dm

1. Introduction

As the government mandate to standardize on Ada as the language for software
development is being actively enforced by government agencies, including DoD, NASA
and FAA, interest in making expert systems technology readily available in Ada en-
vironments has increased. An example project that exhibits the need for expert systems
in Ada is NASA's Space Station Freedom. Another large-scale application of Ada-based
expert systems is the Pilot's Associate (PA) project for military combat aircraft Hugh
88).

g

¢

|
i

Bl

Recently, several Ada-based expert system tools are developed to address this need of
government agencies. Since some of these tools were originally implemented in C, they
are based on the same algorithm as that of C-based tools. According to a benchmark,
Ada-based tools do not perform as well as C-based ones. While poorly implemented

iy

|
i

(m

. o , .
This paper wiil appear in the proceedings of third Annual NASA Ada User's Symposium. Houston.
..... Texas, November 1990.

- : - ORIGINAL PAGE IS
OF POOR QUALMTY

Ada compilers also contribute to rhe poor bencimark result. some fundani-n: -
problems of the Ada language itself huve Leen nncovered,

[rhis paper. we describe Ada lanynage ssues enecunrered during the development v

ART-Ada. an expert system tool Ior Ada deploviment Lee & Allen 391, Lee & Allen
90a;. [Lee & Allen 90b}l. ART-Ada allows applications of a C-based expert svstem toc)
called ART-IM to be deploved in various Ada environments. While ART-IM's inference
engine was reimplemented in Ada. ART-IN's front-end (its parser/analyzer and zraphi-
cal user interface) was reused as the ART-Ada development environment. The ART-I\!
kernel was enhanced to generate Ada source code that would be used to initialize A
data structures equivalent to ART-IM's internal C data structures, and also to interface
with user-written Ada code. Once the development is complete. the applicaticn is
aut.o’matically converted to Ada source code. [t is tlxenAcompiled and linked with the
Ada runtime kernel, which is an Ada-based inference engine. The overview of ART-
Ada is depicted in figure 1-1. ART-Ada is being used to implement several prototvpe
expert systems for the Space Station Freedom and the U.S. Air Force.

door N

Ada -

Packages

. Application 'Executable

/ D.f,.",";,:,‘,’,:m PPads COmAﬁ:ﬂo Application
Environment Package ptation

System
Application
Knowledge
Base T
ART-Ada
Runtime
Kernel

Figure 1-1: Overview of ART-Ada ' - T

While Ada compilers are improving, they still have not reached the maturity of C
compilers. In fact, because of numerous bugs found in the Ada compilers used for this
project, we could not make some of the obvious performance optimizations that could
have made ART-Ada faster and smaller. It has also been observed that both the speed

ORIGINAL PAGE IS
OF POOR QuALITY

(VA |

Qi

| I I i .‘l”
] L [} R | i

(L
Rl

mii

il

and size of ART-Ada vary up to 30 depending on which Ada compiler is used. A\
recent paper discusses the kev technical issnes involved in producing high-guality Ao
i compilers ‘Ganapathi 391, As Ada compiler techinolozy alvances. ART-Ada's perfior-
manee will improve.

{

[n addition to the compiler problems, we also discovered ~one fundamental issues with
the Ada language itself that also affected the performance of ART-Ada. Various Ada
language issues are being studied by the Ada 9N Project team. We believe that the
issnes discussed in this paper should also be considered for the Ada 9N standard. In
fact. they have been presented to several members of the Ada 9X Project in a mesting
held in Washington, D.C. in March. 1990.

o
i

(BN

(o

2. Compiler Problems

{1

Several reports from Ada compiler vendors indicate that some Ada programs might
run faster than the equivalent C programs. Contrary to these claims, our Ada im-
plementation is slower and larger than the C implementation. Although we believe the
main reason is the restrictive nature of the Ada language itself. Ada compiler bugs also
contribute to the poor performance. We used the Verdix Ada compiler on a Sun
workstation and the DEC Ada compiler on a VAXstation running the VMS operating
system.

i

lmm

fim

o The bit-level representation clause or the pragma pack can be used to reduce
the size of data structures. For example, a boolean field in a record, which
is normally a byte, can be reduced to a single bit. These features did not
work in one of the compilers we used: an illegal instruction error occurred
when the single-bit boolean field was referenced. This is probably a bug in
the code generator. Due to this bug, no attempt was made to reduce the
size of ART-Ada by using these features.

g

L

¢ In ART-Ada, we reuse several Booch components [Booch 87]. These
software components are used to implement data structures (e.g. linked lists
and strings) and other utilities (e.g. quick sort). Most Booch components are
implemented as generic packages using object-oriented design methodology.
This means that a large number of subprograms are provided in each generic
package, which may be instantiated multiple times. Unfortunately, one of
the compilers does not support a feature called selective linking --- a linker
= feature that makes it possible to include only those subprograms actually
used in the program. The underlying mechanism used by the compiler is the
Unix linker (1d), which does not support selective linking. As a result, when-
ever a generic package is instantiated and included using the with statement,
all subprograms in the package are always included in the executable image
regardless of their actual usage. This increases the size of the executable im-

(e 4

\E

il

IR

ORIGINAL PAGE g
OF POOR QuALITY

[\

age.

L [l

e We could not use an opnmlze[in nne of the compilers hecause it zenerated -
bal rude. ' ;
3. Dynamic Memory Allocation =
Due to the dyvnamic nature of expert systems. it is necessarv to allocars memary -
dynamically at runtime in ART-Ada. In Ada. new is used to allocate memory and =
unchecked _deallocation is used to deallocate it. Our experiment shows that the
average overhead of new in the Verdix compiler is about eighteen bhytes, i.e. everyv time _
new is called. an extra eighteen bytes are wasted. This result is cbrained by using a e
program that allocates the same data structure multiple times using new and measuring -
its process size with the Unix command "ps aux”. We repeated the same experiment -
using several data structures of different size. According to Verdix. new eventually calls
malloc. We tried similar experiments using the Sun C compiler. The average overhead :
of malloc was about eight bytes, which was significantly smaller than that of Ada. It is =
not clear why it is necessary to add extra ten bytes to every malloc. The only infor-
mation needed to call free is the size of the memory, which can be obtained from the _
data type used to instantiate the generic procedure unchecked _deallocation. The ex- nd
ceptions are unconstrained arrays and variant records whose size can varv. For these _
data types. it would be necessary to add four bytes to store the size information. The —
actual measurement results are summarized in Tables [-1 and [-2 in Appendix [. Units -
in these tables are bytes. The C and Ada program used are shown in the Appendix II =
o [- i -
The real problem with this overhead is that in ART-Ada new is called very frequently
to allocate relatively small blocks while in ART-IM (Inference’s C-based expert system =
tool), malloc is called only to allocate large blocks (e.g. 100 Kbytes). In order to achieve =
maXimum time and space efficiency, ART-IM has been optimized in ways that are not B
portable to Ada. For example, the type cast feature of the C language has been used =
both to optimize data structures and to implement an internal memory manager. ART- il
IM's memory manager | ‘maintains its own free lists and handles all allocation and deal- =
location requests from the ART-IM kernel; it allocates large blocks of memory from the %

system, and then fulfills individual (relatively small) requests for storage from the large
blocks. As storage is released, it is added to internally maintained free lists; the blocks -

themselves are never released back to t,he system. There are several advantages to this %
approach:
o The free space is managed in a common pool by 2 single facility and is avail- =
able for allocation of arbitrary data types by using the tvpe cast capability
in C. .
=

e The overhead of this 'approach consists of a fixed overhead and a very small

i

| ; OZIGINAL PAGE |15
| | OF FOCR QUALITY

incremental overhead for each large block. The fixed overhead is | Nhvre.

Internally. all small blocks treed from ART-IM are maintained in free ijsts.
) There are 236 free lists. each of which holds memory blocks with iifterent
o sizes. All blocks in a free list are of the same size. The head of these linke:!
-

lists consumes 4 hyvtes. Therefore, the total overhead to maintain :hese

linkerl fists is onlyv | INbytes. The subsequent items in these linked lists store

the next pointer within the small block itself, which results in absclutelv no

overhead. \When a large block {e.g. 100 Kbytes) is allocated from the operat-

ing svstem. it is maintained in a linked list. Each item in this linked list

— consumes 12 bytes. and therefore the overhead is only 12 bytes per every 100
[Chytes. which is negligible.

1]

e [t is faster than using system routines for small requests.

boy

X

The success of ART-IM's use of type casting relies on other features of the C language
definition: there is a direct correspondence between addresses and pointer types: the
mapping between data types, including structures and arrays, is well defined and
straightforward. Ada does provide a facility for converting between data types. al-
though this feature has intentionally been made difficult to use. In order to convert
from one data type to another. the generic function unchecked _conversion must be in-
stantiated for each conversion required. The implementation of a type cast capability
in Ada is insufficient to implement the ART-IM features described above, however. No
correspondence is guaranteed between the type SYSTEM.ADDRESS and Ada access
types. Indeed, on some implementations the underlying representation is different for
addresses and access types. The constraint checking requirements of Ada require that
the representation of many objects include descriptor information. The format of these
descriptors is not defined by the language. Hence, it is impossible to implement the
ART-IM style memory manager in Ada using unchecked _ conversion.

{un

NHIE

L

[

e

i

(o

Another related problem was how to port C code similar to the one shown below to
Ada. In this example, the & operator is used to resolve the pointer reference at compile
time through the static array initialization. C code similar to this example is used to
convert the ART-IM internal data structures into C source code.

fli

il

€It

(e am

TN

| |) ORIGINAL PAGE 1S
SO OF POOR QUALITY

LN

struct foo {

s

long =*=bar_ptr;
> =
struct bar { -
=
¥,
struct bar bari(10] = { ... }; —
_ I . -
struct foo fool[10] = { .
{#bar1(S]}, /= fool(0] points to bari[5] =*/ —
[_J
Y -
There are two problems in implementing this in Ada: -
-
e As mentioned earlier, unchecked _conversion is not as flexible as the &
operator. o
e Even if it is possible to emulate the & operator with uncheckcd conversion.
it is not possible to free these data structures using unchecked _ “deallocation -
because they are not created dynamically through new. -
As a consequence, we had to create all data structures dynamically using new. To =
resolve the pointer references, we used the following method:
. When a data structure is created, its pointer value returned by new is stored =
in a temporary pomter array :
2. When a dat.a structure has a pointer reference, the index of the temporarv =

pointer array and the data type of both referencer a,nd referencee are stored"
in a cross reference table for later processing. £

il

&
3. After all data structures are created, the cross reference table is processed. 7
The actual pointer value is fetched from the referencee pointer array and -
stored in the referencer. -
4. After all pointer references are resolved, the temporary pointer arrays and -
the cross reference table are freed.

The disadvantage of this approach is that large blocks of memory must be allocated -
and freed at runtime. The size of the cross reference table could be quite large. In fact. B
we could not use the 18-bit integer as an array index because it overflowed on a large i

-

ORIGINAL PAGE S
5 OF POOR QUALITY

mo
o

(!

test case.

The problems of dynamic memory allceation in Ada can be summarized as follows:

o The (irect use of new and wnchecked fedllcoation is the only Jyvnamic

— memory management method available in Ada. The problem with this

;_; method is that new incurs a fixed overhead associated with each call and ir

is called very frequently to allocate a relatively small block for an individual

data structure. It results in a performance penalty in size and the slower ex-

= ecution speed. This is also aggravated by the poor implementation of new in
the Ada compiler.

{

o The existing Ada features, new, unchecked _deallocation, and
unchecked _ conversion, are too restrictive and totally inadequate for a com-
plex system that requires efficient memory management. More flexible fea-
tures (perhaps in addition to the existing ones) should be provided. This is
particularly important in embedded system environments that impose a
severe restriction on the memory size.

{1

e

(B I¢

4. Other Language Issues Related to Performance

The issue of dynamic memory ma:‘n_agerﬁern;t is, we believe, by far the dominant factor
for the overhead in ART-Ada performance compared with that of ART-IM. Other
issues in the Ada language that also contributé to the overhead are summarized below:

wine
[N

LIne

o ART-IM has an interpreter (similar to a Lisp interpreter) that calls a C func-
tion using a C function pointer. To emulate ART-IM's function call
mechanism, the Ada code generator automatically generates Ada source code
for a procedure called FUNCALL that has a large case statement. This case
statement contains all the Ada subprograms that are called from an ART-
Ada application. Each subprogram is assigned with an ID aumber. To call
an Ada subprogram, the procedure FUNCALL is called with a subprogram
[D number. While it may cause maintenance problems, the use of function
pointers can provide better performance than the use of the Ada case state-
ment.

gn

(mm

eI
1L

aom

L

o Bit operations (e.g. bitwise exclusive OR, bitwise shift operations, etc.) that
may be used to implement efficient hashing algorithms are not provided in
Ada. They may be implemented in Ada but only with poor performance.

flaed

e Ada strings are stored in a-record with a length field in ART-Ada. A
generic stfing package from the Booch component library is used for internal
string storage and manipulation [Booch 87]. Since STANDARD.STRING is
used for all public interfaces, a Booch string is converted to

)

HgEE

. : ORIGINAL
6 PAGE 5
OF POOR QuALTY

g

STANDARD.STRING or vice versa. [t would be nicre etficient if rhe <tan-
dard Ada string is one with a lenzrh specitication that can he manipulare!
=asilv using a set of predefined standard string operations.

5. Portability
Although Ada is quite portable (probably more portable than CJ. Ada is not 100
portable.

e Since the development environment of ART-Ada is written mostly in C. an
Ada binding is developed to interface it with Ada. \We found it extremelv

[T

hard (if not impossible) to write portable binding code for multiple compilers
running on multiple platforms. The pragmas for importing and exporting
subprograms are not portable. The parameter passing mechanism between
Ada and C is not standardized. Because of this, a2 mechanism for string con-
version between Ada and C is not portable.

The standard syntax for most pragmas are not defined in the Ada Language
Reference Manual. Consequently, the pragma syntax often varies among dif-
ferent compilers.

No standards exist for INTEGER, FLOAT, LONG_INTEGER.
LONG _FLOAT, SMALL _INTEGER, SMALL FLOAT, etc. ART-Ada
supports 32-bit integers and 64-bit floats internallv. We had to define
INTEGER _TYPE and FLOAT _ TYPE as subtypes of whatever a compiler
defines as such. For example, in the Verdix compiler STANDARD.FLOAT
is 64-bit while in the DEC compiler STANDARD.LONG _FLOAT is.

Since the math library, which is part of the standard C language, is not part
of standard Ada, it is hard to write portable Ada code that uses math func-
tions. B

The representation clause is not portable because different Ada compilers
and hardware platforms may use a different memory boundary.

Some code is simply not portable. For example, in ART-Ada, a public func-
tion is provided to invoke the operating system commands. Obviously, the
implementation of this function is not portable among different operating
systems.

Different Ada compilers or even different versions of the same compiler often
have a different set of bugs. It may be necessary to maintain multiple ver-
sions of the same code to work around them.

ORICINAL PAGE IS
OF POOR QUALITY

-1

LI ([L nr «

e e 1 ! PR |

T

In C, conditional compilation facilitatel hv preprocessor livectives ieg =.107-

- #1f) allows maintaining a single source tile for multipie platforms. Tn Ada. o~

facility exists. and multiple files may have te Le mainrained tor nultiple piattorn s
. Since we had to maintain ART-Ada on mindriple plactorms rpossihly sn o mndriple - s
- pilers on the same hardware), we «dicl not want to maintain multipls fes, A7 firsr, we

were going to write a preprocessor in Ada ar in C. After ~om= experiments, however, wo
found the C preprocessor (cpp) on a Sun quite adequate tor preprocessing the \ia

o "
.

master file with cpp macros embedded {e.5. #if. Fendif. cte. .

— The master file includes Ada code and appropriate cpp commands for multiple pla-
forms :

- #1f VERDIX
subtype FLOAT_TYPE is FLOAT,
#endif

l i w
ik

#1f VMS
subtype FLOAT_TYPE is LONG_FLOAT,
#endif

n:

We define app as Tollows:

ey

- /11b/cpp $1 $2 $3 $4 35 $6 37 $8 $9 | grep -v *“~a*
Then, we execute the following commands:
— app -DVERDIX foo.a.master > foo.a
app -DVMS foo.a.master > foo.ada
= The first one creates a file for the Verdix compiler on a Sun, and the second, for the
- DEC Ada compiler on a VAX/VMS.

‘The problem with this is that the Ada master file is still not a compilable Ada file and
has to be preprocessed manually. We also have to maintain multiple Ada files
generated by cpp. It would be better if the preprocessor is part of the standard Ada
language so that only a single source file is maintained and processed directly by the
; Ada compiler.

= 8. Acknowledgments

-

The author wishes to acknowledge the guidance and support of Chris Culbert and Bob

i Savely of NASA Johnson Space Center, Greg Swietek of NASA Headquarters, and Cap-
tain Mark Gersh of the U.S. Air Force. Brad Allen. Mark Auburn, and Mike Stoler of

8 ORIGINAL PAGE IS
OF POOR QUALITY

[nference Corporation contributed to the project. Don Pilipovich and Mark Wrizht wiv.
were formerly with Inference Corporation also contributed to the project.

ORIGINAL PAGE IS
g OF POOR QUALITY

v e s s emio @ e

(N

v 1 BN IO IR

References

Booch 87] Booch. G.
Software Components With Ada.
- Benjamin/Cummings Publishing. 1987.

— (Ganapathi 9] Ganapathi. M.. Mendal. G.O.
_ Issues in Ada Compiler Technology.
Computer 22(2), February, 1989.

‘Hugh 88| Hugh. D.A.
The Future of Flying.
Al Ezpert 3(1), January, 1988.

iLee & Allen 89] Lee, S.D., Allen, B.P.
. Deploying Expert Systems in Ada.
= In Proceedings of the TRI-Ada Conference. ACM, October, 1989.

— [Lee & Allen 90a]
= Lee, S.D., Allen, B.P.
ART-Ada Design Project - Phase [I, Final Report.
= Technical Report, Inference Corporation, February, 1990.

(Lee & Allen 90b]
e Lee, S.D., Allen, B.P.
= ART-Ada: An Ada-Based Expert. System Tool.
In Proceedings of the Space Operations, Applications and Research
= Symposium (SOAR). NASA, June, 1990.

1

It

€

L]}

[T .

{i

T

10 ORIGINAL PAGE IS
OF POOR QUALITY

e
i

I. Memory Allocation Benchmark Results

ltem Size | ltem Count | Ideal Size | Actual Size 707\’errheé.c! Overhead Trem
3 100.000 300 KX 2496 Ix 1696 IX 16.96
16 100.000 1600 K 3312 K 1712 K 17.12 ;
24 100.000 2400 K 4128 K 1728 IX 17.28 ;‘
32 100.000 3200 K 4808 K 1608 K 16.08
3 50.000 400 K 1408 K 1008 K 20.16
16 50,000 300 K 1816 K 1016 K 20.32
24 50,000 1200 K 2224 K 1024 K 20.48
32 50,000 1600 K 2496 K 896 K 17.92
Average N/A N/A N/A N/A 18.29

Table I-1: Ovirhead of Dynamic Memory Allocation using new in Verdix Ada

[tem Size |Item Count | Ideal Size | Actual Size Overhead Overhead/Item

8 100,000 800 K 1600 K 800 K 8.0

16 100,000 1600 K 2384 K |784 K 7.84
24 100,000 2400 K 3160 K 760 K 7.60
32 100,000 3200 K 3944 K 744 K 7.44
8 50,000 400 K 818 K 416 K 8.32
16 50,000 800 K 1208 K 408 K 8.16
24 50,000 1200 K 1600 K 400 K 8.0

32 50,000 1600 K 1922 K 392 K 7.84
Average N/A N/A N/A N/A 7.9

Table I-2: Overhead of Dynamic Memory Allocation using malloc in Sun C

11

ORIGINAL. PAGE IS
OF POOR QUALITY

I IR0 1o 1

i 1 i wir e i

II. C and Ada Programs for Memory Allocation Benchmark

= #1nclude <stdio h>
main()
-~ {
int i,
- for(i=0; 1<100000, i++) {
malloc(32);
— }
i getchar(); /» measure the process size at this point =/
- }
- with TEXT_IO;
- procedure TEST_NEW is
type ELEMENT is
-~ record
FIELD1 : INTEGER; -- 4 byte
= FIELD2 : INTEGER; -- 4 byte
= FIELD3 : INTEGER; -- 4 byte
- FIELD4 : INTEGER; -- 4 byte
FIELDS : INTEGER; -- 4 byte
= FIELD6 : INTEGER; -- 4 byte
~ FIELD7 : INTEGER; -- 4 byte
FIELD8 : INTEGER; -- 4 byte
= end record;
- type ELEMENT PTR 1s access ELEMENT;
— PTR : ELEMENT_PTR;
= CHAR : CHARACTER;
begin
= for I in 1..100000 loop
- PTR := new ELEMENT;
end loop,
= TEXT_IO.GET(CHAR); -- measure the process size at this point
= end;

ORIGINAL PAGE |5
12 OF POOR QUALITY

ant

