
L

J

J

i

i
|

i

•,, .¢-.

¢./?
Ada Issues in Implementing ART-Ada

(HASA-C_- 18894 l)

AqT-Arla- (+_.+#..search

Computer Sci_nce)

AdJ ISSUES IN IMPLEMENTING

Inst. for Advanced

18 p CSCL 09B

Nqi-32838

: UncldS
i

G3/ol 0046_31

i

S. Daniel Lee

.......... Inference Corporation

l

N Ov e-m_o-er_1990 -- -

j

Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

I

NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

©©

Research Institute for Computing and Information Systems

......................... Unlversity of Houston - CTea_a_e

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

https://ntrs.nasa.gov/search.jsp?R=19910023524 2020-03-17T14:44:33+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42816221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

-4
-__at

Z

_2
I

lira

=

u

m

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space i _:
Center and]oca| _ndnstry to actively sup_ar-esearch in the computing-ahd _ 4=
information sciences. As part of this endeavor, UH-Ctear Lake proposed a Lal

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed andentered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, i 986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared _
byte two institutions to cofiduct the research_ !...... _ _

Th_m_i%no_RI_|S_to_nduct, coordinate and disseminate research on lJ

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear : -:

Lake, the mission is being implemented through interdisciplinary involvement of _J
faculty and Students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear _=

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to m

conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and : -:
research objectives to advance knowledge in the computing and information [j

sciences. Working jointly with NASA/JSC, RICIS advises on research needs, iJ
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results _:

into the cooperative goals of UH-Clear Lake and NASA/JSC. _

7 $7 :

Ada Issues in Implementing ART-Ada

w

W

H
w

m

w

m

Z

- .

w

H

m

m

J

g

m
w

m
D

m
u

I

J

m_

E

w

m

mm

J

mm

i
w

L

Preface

w

w

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

r_
E

L_

m

m_

w

w

m

w

w

alp

I

ml

i

N

lip

i

me

|

i

a_

Ada Issues in Implementing ART-Ada"

m

=,=

L_

J

<. Daniel Lee

Inference Corporation

.5.50 North Continental Boulevard

El Segundo. California .90245

Email: lee _inference.com

--4

m :

Iml

Abstract

Due to the Ada mandate of such government agencies as DoD, NASA and FA_-k. inteze_

in deploying expert systems in Ada has increased. Recently, several Ada-based expert

system tools have been developed. According to a recent benchmark report, these tools

do not perform a.s well as similar tools written in C. While poorly implemented Ada

compilers also contribute to the poor benchmark result, some fundamental problems of

the Ada language itself have been uncovered. In this paper, we describe Ada language

issues encountered during the development of ._F{T-Ada, an expert system tool f<_r -k,i:_

deployment. ART-Ada is being used to implement several prototype expert systems !: r

the Space Station Freedom and the U.S. Air Force.

1. Introduction

:k_ the government mandate to standardize on Ada as the language for software

development is being actively enforced by government agencies, including DoD, N.-kSA

and FAA, interest in making expert systems technology readily available in Ada en-

vironments has increased. An example project that exhibits the need for expert systems

in Ada is NASA's Space Station Freedom. Another large-scale application of Ada-bazed

expert systems is the Pilot's Associate (PA) project for military combat aircraft i_Hugh

88].

Recently, several Ada-based expert system tools are developed to address this need of

government agencies. Since some of these tools were originally implemented in C, they

are based on the same algorithm as that of C-based tools. According to a benchmark.

Ada-based tools do not perform as well as C-based ones. While poorly implemented

This paper will appear in the proceedings of third Annual NASA Ada User's Symposium. Houston
Texa-% November 1990.

ORIGINAL PAGE iS

OF POOR QUALITY

A,Ja uompilers also contribute to the po<)r bc.nci_m:tt'k result.

pl'oblems of the Ada language itself !_-t,. e b,-:.en ,tn,:,,:e_'e,!.

8oi11e flln,lap._-':i: ,

[I, rhis paper, we describe .-_da Ian4,t:tge iss_les +u,-,,,_lret'ed +luring the de'<elopm_t_t.

__T-A.da. :_.n expert system took fc, r A,t:_ :ieploytnent Lee £: ._.ilen SOI. [Lee & A.J[e_.

O0a]. {Lee _._cAllen 90b1. .MRT-Ada all<,ws :_.l,plic:_tic, lt,_ ut'a C-ha.seal expert system uo_.J

c:_lled .-kI:_.T-[._[to be deployed in vat'io,,s Ada environments. While A.RT-[N['s infe_'ence

engine was reimplemented in Aria. A_RT-I._['s f'ont-end (its parser/analyzet, and gl'_.phi-

cal user interface) was reused as the .MRT-Ada de'<elopment environment. The .-kRT-I.Xi

kernel was enhanced to genet'ate Ada source code that would be used to initialize A<iu

data structures equivalent to .-kRT-IN['s internal C data s_ructures, and also to intert'a,.._

with user-written Ada code. Once the ,levelopment is complete, the application i.s

automatically converted to Ada source code. It is then-compiled and linked with the

Ada runtime kernel, which is an Ada-based inference engine. The overview of ART-

Ada is depicted in figure 1-1. ART-._da is being used to implement several prototype

expert systems for the Space Station Freedom and the U.S. Air Force.

m

J

g

m

=_

J

m

i

i

I

m

h

R

=_

Figure 1-1: Overview of ART-Ada

While Ada compilers are improving, they still have not reached the maturity of C

compilers. In fact, because of numerous bugs found in the Ada compilers used for this

project, we could not make some of the obvious performance optimizations that could

have made ART-Ada faster and smaller. It has also been observed that both the speed

OF POOR QUALITY

I

I

w

w

= =

w

w ii

w

t_

w

--'--T

m

w

E

z
w

w

J.nd size of .-kRT-Ada vary tip to ;_0c7 del,en,lin_ ,_n _hi_ii -Lta eempiler i_. _#e,i. .\

:'ecent p_per discusses the key technical i:s_les il_,.,Hved in l"o<I_tcing high-q,lalit> A._{._.

,:c.mpile_'s !G_.napathi 99!. .-ks A.da cnmpile,' _erl',::ol6gy :<lv.-_nces. AB.T-.-tdas F_erf.:_t.-

_n :_r.,:e ,,_iI1 i m p rove.

[n a,:iditic_n to the compiler problems, we also ,li_c:)ve_'ed '-<_n_ f_ln<iamental iss_les ",_ith

the Aria language itself that also affected the performance of A.RT-Ada. \arious .-kd_

l_.ng,lage isstles are being studied by the .-kda OX Project [eam. _,Ve believe that the

iss,les discussed in this paper should also be considered f'c.r the Ada gX standard. [n

fact. they have been presented to several members of the .-kda .OX Project in a meetin_

held in \Vashin_ton, D.C. in March. lggO.

2. Compiler Problems

Several reports from Ada compiler vendors indicate that, some Ada programs might

run f_ter than the equivalent C programs. Contrary to these claims, our Ada im-

plementation is slower and larger than the C implementation. Although we believe the

main re-tson is the restrictive nature of the .--kda language itself. Ada compiler bugs also

contribute to the poor performance. We used the Verdix Ada compiler on a Sun

workstation _nd the DEC Ada compiler on a VA..Kstation running the _,.'N[S operatin_

system.

• The bi_-level representation clause or the pragma pack can be used to reduce

the size of data structures. For example, a boolean field in a record, which

is normally a byte, can be reduced to a single bit. These features did not

work in one of the compilers we used: an illegal instruction error occurred

when the single-bit boolean field was referenced. This is probably a bug in

the code generator. Due to this bug, no attempt was made to reduce the

size of ART-Ada by using these features.

• In Ad_.T-Ada, we reuse several Booch components [Booch 87 I. These

software components are used to implement data structures (e.g. linked lists

and strings) and other utilities (e.g. quick sort). Most Booch components are

implemented _ generic packages using object-oriented design methodology.

This means that a large number of subprograms are provided in each generic

package, which may be instantiated multiple times. Unfortunately, one of

the compilers does not support a feature called selective linking --- a linker

feature that makes it possible to include only those subprograms actually

used in the program. The underlying mechanism used by the compiler is the

Unix linker (ld), which does not support selective linking..,ks a result, when-

ever a generic package is instantiated and included using the with statement,

all subprograms in the package are always included in the executable image

regardless of their actual usage. This increases the size of the executable ira-

2 OF_IC;NAL PAGE IS
OF POOR QUAL/T'y

g

age.

• \Ve co,lid not ,_se an optimizer in qne .vf the.... ¢omp][or_ !_eca.,;.-e ir .,_-,,_,,-.:at_,'

ba, 1 code.

U

I

3. Dynamic Memory Allocation

Due to the dynamic nature of expert systems, it is necessary to allocar,+ mem,-_r-

dynamically at rundme in ART-Ada. In Ada. _zecc, is use,t to :_',Iocate men>,rv and

unchec_'ed_deallocation is used to deallocate it. Our experimen_ __hows that the

average overhead of netu in the Verdix compiler is about eighteen bytes, i.e. every time

new is called, an extra eighteen bytes are wasted. This result is o)rained I)3 using a

program that allocates the same data structure multiple times using new and rneas,_ring

its process size with the Unix command "ps aux". We repeated the same experiment

using several data structures of different size. According to Verdix. _zetc eventually calls

malloc. We tried similar experiments using the $ m C compiler. The average overhead

of malloc was about eight bytes, which was significantly smaller than tidal oi" Ada. It, is

not clear why it is necessary to add extra ten bytes to every malloc. The only infor-

mation needed to call free is the size of the memory', which can be obtained from the

data type used to instantiate the generic procedure unchecked deallocatio_. The ex-

ceptions are unconstrained arrays and variant records whose size can vary. For these

data types, it would be necessary to add four bytes to store the size information. The

actual measurement results are summarized in Tables [-t and [-2 in Appendix I. Units

in these tables are bytes. The C and Ada program used are shown in the Appendix II.

The real problem with this overhead is that in ART-Ada new is called very frequently

to allocate relatively small blocks while in .&RT-IM (Inference's C-based expert system

tool), malloc is called only to allocate large blocks (e.g. 100 Kbytes). [n order to achieve

maximum time and space efficiency, ART-IM has been optimized in ways that are not

portable to Aria. For=example, the type cast feature of the C language has been used

both to optimize data structures and to implement an internal memory manager. A.RT-

IM's memory manager-maintai_lts own i'ree lists and handles all allocation and deal-

location requests from the ART-IM kernel; it allocates large blocks of memory from the

system, and then fulfills individual (relatively small) requests for storage from the large

blocks. As storage is rele_ed, it is added to internally maintained free lists; the blocks

themselves are never released back to:the system. There are several advantages to this

appr0aei{:

• The free spaeeis-ma-naged in a common pool by a single facility and is avail-

able for allocation of arbitrary data types by using the type east capability
inC.

• The overhead Of this approach consists of a fixed overhead and a very small

3 02)GiNF_L PAGE IS
OF POOR QU/_Lrf"Y

m

m

L

=.

I

nip

!

u

_I

B
g

IN

qm

==

n

U

!

D

i

m

= :

r_

E:.

'r,w,,

=

m

m
w

m

w

E

=
m
w

u

w

w

m

incremental overhead f'or each !urge block. The fixed ove_'hea,I i_ I [x:l:_>tc_.

Internally. all small blocks ['reed ft'om .-kRT-[.X[are maintained ill fcee iist,_.

There are 256 I'ree lists, each _t_ which holds memory blocks with ,iifferent

sizes. All blocks i,_ a h'ee lint are _:f the same size. The head c,l" these liuke, l

lists ccmstlmes 4 I-,vtes. Thez'ei'ore. the tocal overhead to maintain these

linked lists is only [Kbytes. The subsequent, items in these linked lists-.-t_re

_he next pc_iute_ within the small block itself, which results in absolutely no

overhead. \\hen a!arge block (e.g. lOOt<bytes) is allocated from the operat-

ing system, it is maintained in a linked list. Each item in this [inked list

consumes 12 bytes, and therefore the overhead is only 12 bytes per every 100

[(.bytes. which is negligible.

• It is faster than ,_sing system routines for small requests.

The success of A.RT-[.X, Fs use of type ca.sting relies on other features of the C language

definition: there is a direct correspondence between addresses and pointer types: the

mapping between data types, including structures and arrays, is well defined and

straightforward. Ada does provide a facility for converting between data types, al-

though this feature has intentionally been made difficult to use. [n order to convert

from one data type to another, the generic function uncheck¢d cont'er.sion must be in-

stantiated for each conversion required. The implementation of a type cazt capability

in Ada is insufficient to implement the ART-IM features described above, however. No

correspondence is guaranteed between the type SYSTEM.ADDRESS and Ada acce_:-_

types. Indeed, on some implementations the underlying representation is different for

addresses and access types. The constraint checking requirements of Ada require that

the representation of many objects include descriptor information. The format of these

descriptors is not defined by the language. Hence, it is impossible to implement the

,_d:_.T-IM style memory manager in Ada using unchecked conversion.

Another related problem was how to port C code similar to the one shown below to

Ada. In this example, the & operator is used to resolve the pointer reference at compile

time through the static array initialization. C code similar to this example is used to

convert the ART-IM internal data structures into C source code.

w

w

J

_-v"

ORIGINAL PAGE IS

OF POOR QU/IdJTY

struct foo {

long ,bar_ptr

},

struct bar {

D

.

struct bar barl[lO] = { , }

struet foo fool[lO] = {

<_bar! [5] }, /* fool[O] points to barl[5] ,/

D

W

mm

.

There are two problems in implementing this in :ida:

.-ks mentioned earlier, uncheck'ed conversion is not as flexible as the &

operator.

Even if it is possible to emulate the & operator with unchecked conversion.

it is not possible to free these data structures using unchecked deallocation

because the}, are not created dynamically through new.

a consequence, we had to create all data structures dynamically using hey,'.,'iS To

resolve the pointer references, we used the following method:

1. When a data structure is created, its pointer value returned by new is stored

in a temporary pointer array.

2. When a data structure has a pointer reference, the index of the temporary

pointer array and the data typeof both referencer and referencee are stored

in a cross reference table for later processing.

, After all data structures are created, the cross reference table is processed.

The actual pointer value is fetched from the referencee pointer array and

stored in the referencer.

4. After all pointer references are resolved, the temporary pointer arrays and
the cross reference table are freed.

The disadvantage of this approach is that large blocks of memory must be allocated

and freed at runtime. The size of the cross reference table could be quite large. In ['act.

we could not use the 16-bit integer as an array index because it overflowed on a large

5
O,d,:.,,_,.,,,. PAGE IS
OF POOR QUALITY

u

m

l

u

g

mm

T

IIIm

l

gi

gll

Z_

m

i

m

w

w

m

__I

J

[]

test. case.

The problems of dynamic memory :_lI, c:_tion in .\da cnn I_e summarize, i _ follo_,:

The ,lirect use of new and _l,et_,cb_.rt_,leMt_..,'_Lt/_jn]s the c,ntv ,lvnanfi_:

memory management method available]n A.d:_. The problem with this
method is that nett' incurs a fixed overhead _soci:_ted with each call :_n,J.]<

is called very frequently to allocate 3. relatively small block for an individt_al

data structure. It results in a performance penalty in size and the slower ex-

ecution speed. This is also aggra',ated by the poor implementation of neu_' in

the Ada compiler.

The existing Ada features, new, unchecked_ deallocation, and

unchecked conversion, are too restrictive and totally inadequate t'or a com-

plex system that requires efficient memory management. More flexible fea-

tures (perhaps in addition to the existing ones) should be provided. This is

particularly important in embedded system environments that mpose a

severe restriction on the memory size.

4. Other Language Issues Related to Performance

The issue of dynamic memory management is, we believe, by far the dominant factor

for the overhead in ART-Ada perf0rmance:compared with that of A.RT-iM. Other

issues in the Ada language that also contribute to the overhead are summarized below:

• ._:_.T-IM has an interpreter (similar to a Lisp interpreter) that calls a C func-

tion using a C function pointer. To emulate ART-IM's function call

mechanism, the Ada code generator automatically generates Ada source code

for a procedure called FUNCALL that has a large case statement. This case

statement contains all the Ada subprograms that are called from an :-kRT-

Ada application. Each subprogram is assigned with an [D number. To call

an Ada subprogram, the procedure FUNCALL is called with a subprogram

ID number. While it may cause maintenance problems, the use of function

pointers can provide better performance than the use of the Ada case state-

ment.

Bit operations (e.g. bitwise exclusive OR, bitwise shift operations, etc.) that

may be used to implement efficient hashing algorithms are not provided in

Ada. They may be implemented in Ada but only with poor performance.

Ada strings are stored in a,-record with a length field in ART-Ada. A

generic string package from the Booch component library is used for internal

string storage and manipulation [Booch 87]. Since STANDARD.STRING is

used for all public interfaces, a Booch string is converted to

Z 6 ORIGINAL PAGE IS
OF POOR QUALlt_

m
w

<.T.-IND.-_D.STRIXG oz" vice vef':-a. [r ',_<_lII,-t be n,cre eif'icient if rho -,taa-

,lar,.l .-ida string is one with a ler_<rh spe,.'it'i,:ati_,n _hat can be manip,_iare, l

ea-:ily ,tsing a set. of predefined standard stl'in_ ope_':_ri,.>ns.

5. Portability

.-iltho,agh .-ida is quite portable (probabl.v more pol'r.al,le than C). Aria is _ot

portable.

Since the development environment of .-kRT-Ada is written mostly ia (. an

.-ida binding is developed to interface it with Ada. \Ve found it extremely

hard (if not impossible) to write portable binding code for multiple compilers

running on multiple platforms. The pragma.s for importing and exporting

subprograms are not portable. The parameter passing mechanism between

Ada and C is not standardized. Because of this. a mechanism for string con-

version between Ada and C is not portable.

The standard syntax for most pragmas are not defined in the Ada Language

Reference Manual. Consequently, the pragma syntax often varies among dif-

ferent compilers.

No standards exist for INTEGER, FLOAT, LONG INTEGER.

LONG_FLOAT, SMALL_INTEGER, SNL-U.,L_FLOAT, etc. ART-Ada

supports 32-bit integers and 64-bit floats internally. We had to define

INTEGER_T2_E and FLOAT_TYPE as subtypes of whatever a compiler

defines as such. For example, in the Verdix compiler STANDARD.FLOAT

is 64-bit while in the DEC compiler STAN-DARD.LONG FLOAT is.

Since the math library, which is part of the standard C language, is not part

of standard Ada, it is hard to write portable Ada code that uses math func-

tions.

• The representation clause is not portable because different Ada compilers

and hardware platforms may use a different memory boundary.

Some code is simply not portable. For example, in ART-Ada, a public func-

tion is provided to invoke the operating system commands. Obviously. the

implementation of this function is not portable among different operating

systems.

Different Ada compilers or even different versions of the same compiler often

have a different set of bugs. It may be necessary to maintain m'ultiple ver-

sions of the same code to work around them.

[0_)-?

O_IG_NAL PAGE !$

OF POOR QUALITY

g

m

Im

J

L
IB

m

i

mm

=

i

i

limb

m

m

I

i

=

UB

I

m

m

m

w

=

L

w

m

m

I

w

In C, conditional compilation facilit_ue,l t-,v. __';r_[.r_.,"e.-_,',r ,ti_'ectiv_. _-.=,, ---.'-iiL,-, ::::

#if) allow._ maintaining a single source file f._r m,llriple pt:_!form.-,. [u .-k.la. :L.. -: i.

facility exists, and multiple f'iles may h-_ve t.:_ I:,e m:_i_,_ain,-,l for l_,_,_l_ipie ::,',:,F:,-t_:._.

5_nce we had to maintain .%_RT-.-kda .:.n 'm_Lir_l_le pl:_tt_rm_ _i,os-_ib[x .'.[_ m,llr,,,,, :::-

pilers on the same hardware), we ,:lid not w:_nt t_ maint:_in _,_lti[,le ['ii_s. .V l i_'-r. :'...

were going to write a preprocessor in A.da ,-:,r in C'..kIter -._lu, _ experiments, h.:.',v,_v,_r.

found the C preprocessor (cpp) on a $_ln quite :vleq_l:ue for prep_',:,c'essln_ r]',,: .\!:_

ma.ster file with cpp macros embedded (e.._. #iI'. _endif'. etc.!.

The master file includes Ada code and appropriate cpp ,:omm_n,.is for multi?le [.!._.:-

forms:

_if VERD[X

sub%ype FLOATTYPE is FLOAT;

#endif

=if VMS

sub%ype FLOAT_TYPE is LONG_FLOAT;

=endlf

We define app as'follows:

/llb/cpp $I $2 $3 $4 $5 $6 $7 $8 $g I grep -v "'="

Then, we execute the following commands:

Rpp -DVERDIX foo.z.mzs%er > foo._

•pp -DVMS foo._.m_s%er > foo.ada

The t'irst one creates a file for the Verdix compiler on a Sun, and the second, for the

DEC Ada compiler on a VAX/VMS.

The problem with this is that the Ada master file is still not a compilable Ada file and

has to be preprocessed manually. We also have to maintain multiple A.da files

generated by cpp. It would be better if the preprocessor is part of the standard .-k,la

language so that only a single source file is maintained and processed directly by the

Ada compiler.

6. Acknowledgments

The author wishes to acknowledge the guidance and support of Chris Culbert and Bob

Save[y of NASA Johnson Space Center, Greg Swietek of NASA Headquarters, and Cap-

tain Mark Gersh of the U.S. Air Force. Brad Allen..Mark Auburn, and Mike Stoler of

ORIGINAL PAGE IS

OF POOR QUALITY

J

Inference C'orl_oration eoncvibuted to the project.. Don Pilipovich and .X.[ark '__igilr. u, i:,,

',vere formerly with Inference Corpora.tion also contributed to the project.
S

=

m
I

!
D

g

m
U

u

L
I

E

m

J

m

w

I

g

g

ORIGINAL PAGE IS

OF POOR QUALITY

w

w

m

w

===

W

References

iBooch ST]

IG anapathi ,__91

Booth. G.

Soft.'are Components ll.ith Ada.

Benjamin/Cummings P,Lblishing. 1087.

Ganapathi..k[.. Mendal. G.O.

[ssues in Ada Compiler Technology.

Computer 2'2('2), February, 1.980.

[Hugh 88] Hugh. D.A.

The F_ture of Flying.

.-tI Expert 3(1), January, 1988.

[Lee & Allen 89] Lee, S.D., Allen, B.P.

Deploying Expert Systems in Ada.

In Proceedings of the TRI-Ada Conference. ACM, October, 1989.

[Lee & Allen 90a]

Lee, S.D., Allen, B.P.

A.RT-Ada Design Project - Phase II, Final Report.

Technical Report, Inference Corporation, February, 1990.

[Lee & Allen 0Oh]
Lee, S.D., Allen, B.P.

ART-Ada: An Ada-Based Expert System Tool.

In Proceedings of the Space Operations, Applications and Research

Symposium (SOAR). NASA, June, 1990.

w

w

=

u

N

l0 ORIGINAL PAGE IS

OF POOR QUALITY

I. Memory Allocation Benchmark Results J

Item Size Item C'o_lnt Actual Size Overhead Overhead,"[te:u
S [00.000 2496 I(1696 [(116.96 i

16 100.000 3312 K 1712 K IT.12 i
I

24 100.000 4128 K 1728 I{ 17.28 i

100.000 4808 K L6.0832

50,000 1408 K

1608 K

1008 K

Ideal Size

80O K

1600 K

2400 K

3200 K

40O K

800 K

1200 K

1600 K

N/A

20.16

16 50,000 1816 K 1016 K 20.32

24 50,000 2224 K 1024 K 20.48

32 50,000 2496K 896K 17.92

Average N/A N/A N/A 18.29

Table I- 1: Overhead of Dynamic Memory Allocation using new in Verdix Ada

L

u

!

i

D

i

Jtl

Item Size

16

24

32

Item Count

100,000

100,000

100,000

100,000

50,000

Ideal Size

800 K

1600 K

2400 K

3200 K

400 K

Actual Size

1600K

2384K

316OK

3944K

816 K

Overhead Overhead/Item

800 K 8.0

7.84784K

760K

744K

416K

7.60

7.44

8.32

8.1616 50,000 800K 1208K 408K

24 50,000 1200K 1600K 400K 8.0

32 50,000 1600K 1922K 392K 7.84

Average N/A N/A N/A N/A 7.9

m

i

I

J

m

Table I-2: Overhead of Dynamic Memory Allocation using malloc in Sun C

11

ORIGINAL PAGE IS

OF. POOR QUALITY

r
III

I

m

I

II. C and Ada Programs for Memory Allocation Benchmark

= ,

• =

=include <stdio h>

{

int i

for(i=O; i<lO0000 i+÷) {

malloc(32)

}

getchzr() /, measure the process size at this point ./

w

w

w

a

with TEXT I0

procedure TEST_NEW is

type ELEMENT is
record

FIELDI : INTEGER;

FIELD2 : INTEGER;

FIELD3 : INTEGER;

FIELD4 : INTEGER;

FIELDS: INTEGER;

FIELD6 : INTEGER;

FIELD7 : INTEGER;

FIELD8 : INTEGER;

end record;

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

type ELEME__PTR is access ELEMENT;

PTR ' ELEMENT PTR'

CHAR CHARACTER;

begin
for I tn I..100000 loop

PTR := new ELEMENT;

end loop;
TEXT IO.GET(CRAB); -- measure the process size at this po£nt

end;

w

12
ORIGINAL PAGE IS

OF POOR QUALITY

m

i

me

mug

i

IBm

U

mum

m

=

m

