
NASA Technical Memorandum 104234

//

]. A NASA/RAE Cooperation in the
Development of a Real-Time
Knowledge-Based Autopilot

Colin Daysh, Malcolm Corbin, Geoff Butler, Eugene L. Duke,
Steven D. Belle, and Randal W. Brumbaugh

(NA_A-TM-I0421_) A NASAIRAE conPERATTON IN
THE D_VELOPMENT OF A REAL-TI_E

KNG_LEDGE-3ASEO AUTnPIL_T (NASa)]5 p
CSCL 09B

GJI62

N91-32850

W

August 1991

hl/kSA
National Aeronautics and

Space Administration

https://ntrs.nasa.gov/search.jsp?R=19910023536 2020-03-17T14:44:52+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42816213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J

__vI i
w

|
E

i

r _r

NASA Technical Memorandum 104234

A NASA/RAE Cooperation in the
Development of a Real-Time
Knowledge-Based Autopilot

Colin Daysh, Malcolm Corbin, and Geoff Butler
Royal Aerospace Establishment, Famborough, Hants, U.K.

Eugene L. Duke
Dryden Flight Research Facility, Edwards, CA

Steven D. Belle and Randal W. Brumbaugh
PRC Inc., Edwards, CA

1991

NASA
National Aeronautics and
Space Administration

Dryden Flight Research Facility
Edwards, California 93523-0273

CONTENTS

SUMMARY

NOMENCLATURE

INTRODUCTION

AN OVERVIEW OF THE KNOWLEDGE-BASED SYSTEM TOOL KITS

CLIPS Expert System Shell
Fortran Library for Expert Systems
Rule Format ..

REPRESENTATIONS OF FACTS

THE KNOWLEDGE-BASED AUTOPILOT

POSSIBLE IMPLEMENTATION USING FORTRAN LIBRARY

FOR EXPERT SYSTEMS

APPROACHES TO THE VALIDATION AND VERIFICATION

OF THE KNOWLEDGE-BASED AUTOPILOT

CONCLUSIONS

ACKNOWLEDGEMENT

REFERENCES

1

1

1

2
2
4
4

4

5

7

8

10

11

11

,.°

111

PRECEDii',,_ PAGE BLAI',!K NOT FILMED

,.¢,

SUMMARY

As part of a United States-United Kingdom cooperative aeronautical research programme, a joint

activity between the NASA Dryden Flight Research Facility and the Royal Aerospace Establishment

on knowledge-based systems has been established. This joint activity is concerned with tools and

techniques for the implementation and validation of real-time knowledge-based systems. This paper

describes the proposed next stage of this research, in which some of the problems of implementing and

validating a knowledge-based autopilot for a generic high-performance aircraft will be investigated.

AFSR

AI

an
CADRE

CLIPS

CRISP

FLEX

h

hcom

Ah

LISP

KBS

KBAP

RAE

RAV

V&V

NOMENCLATURE

airworthiness and flight safety review

artificial intelligence

normal acceleration

cooperative advanced digital research experiment

'C' Language Production System

cooperative real-time intelligent systems program(me)

Fortran Library for EXpert System development

altitude

commanded altitude

altitude error

list processing language

knowledge-based system

knowledge-based autopilot

Royal Aerospace Establishment

remotely augmented vehicle facility
verification and validation

INTRODUCTION

The research programme described in this paper will be the latest in a long-standing series of

collaborations between the Dryden Flight Research Facility in the USA and the Royal Aerospace Estab-

lishment (RAE) in the UK. Previously, the cooperative advanced digital research experiment (CADRE)

programme (ref. 1) was established in 1981 to investigate the applicability of nonlinear control tech-

niques to a fly-by-wire aircraft. Nonlinear control laws developed at RAE were successfully flight

tested on the NASA F-8 digital fly-by-wire aircraft using the remotely augmented vehicle (RAV) facil-

ity (ref. 2), in which ground-based computers are used to control a piloted aircraft remotely by way of

telemetry links.

More recently, a collaborative project on knowledge-based systems (KBS) was undertaken (ref. 3)

to investigate some of the real-time aspects of applying such techniques. Under this programme, a

prototype flight status monitor for the X-29 research aircraft, which had been designed in a non-real-

time form by NASA, was reimplemented at RAE in the Muse real-time KBS language (refs. 4, 5). This

gave a significant speed improvement over the original and, though it still fell some way short of full

real-timeoperation, considerable insights were gained into the requirements which any real-time system
would have to meet.

The proposed latest programme will go further in the investigation of real-time KBS design. Known

informally as the cooperative real-time intelligent systems program(me) (CRISP), it will investigate the

implementation and validation of a knowledge-based autopilot (KBAP). While it is recognised that

this problem is probably more appropriately tackled by conventional algorithmic techniques, the KBAP

provides a simple, well-defined yet real problem within which to explore, develop, and demonstrate

real-time KBS concepts and validation and verification techniques for mission-critical systems.

A prototype autopilot has already been implemented using the NASA-developed KBS tool CLIPS,

the C Language Production System (ref. 6). However, this implementation was shown to be fairly slow,

and hence inappropriate for a real-time flight-control application. The RAE has developed the Fortran

Library for EXpert System Development (FLEX, ref. 7), which has been demonstrated to be an order of

magnitude faster than other KBS tools on benchmark problems (ref. 8). This paper discusses the likely

best method of approaching the reimplementation of the CLIPS autopilot rules in FLEX to produce a

KBAP which runs in real time. Some preliminary performance estimates are presented in the following

paragraphs, based on work done using a generic rule set typical of the form likely to be taken by the

final KBAP system.

One of the main areas of interest in this project is to establish a route by which a system based

on KBS techniques could be validated as fit for flight. NASA Dryden engineers have considerable

experience in the validation of more conventional algorithmic avionic systems (refs. 9--I1) and are keen

to investigate ways of extending these to cover the more diffuse behaviour exhibited by a KBS. If the

work is successful, it is hoped that the KBAP would be flight tested in future phases of the project.

AN OVERVIEW OF THE KNOWLEDGE-BASED SYSTEM TOOL KITS

CLIPS Expert System Shell

CLIPS is an expert system shell with a list-processing language (LISP)-like syntax developed at

the NASA Johnson Space Flight Centre. The basic elements of CLIPS are a fact list; comprising global

memory for data, a knowledge base containing all of the rules, and an inference engine which controls
overall execution.

A programme written in CLIPS consists of rules and facts. The inference engine decides which

rules should be executed. Basically, rules fire (are executed) in much the same way that an IF THEN

statement is executed in a procedural language such as Ada. That is, the rule fire IF certain conditions

are true, and it THEN executes a set of actions. The conditions that fire the rule are facts. The rule

only fires if certain facts have been asserted (i.e., the fact exists and is true).

CLIPS has variables available in which to store values. This is a very powerful tool which enhances

the way in which rules and facts can be manipulated. Variables in CLIPS are written in the syntax of

a question mark followed by a variable name. For example

2

?X

?value

?colour

?sound

One of the most useful, and most powerful applications of variables is in pattern matching. This

is where the facts on the LHS of a rule are partially replaced by variables. For example the rule

(defrule variable-example

(blue exterior)

(?colour interior)

(assert (interior-colour ?colour)))

will be fired by the "blue exterior," and by any fact which has two fields, with the word "interior" as

its second field. It will then assert a fact that records the first field of the second fact. For example, the

rule will be fired when the following facts are asserted

(blue exterior)

(pink interior)

The rule will assert the fact (interior-colour pink).

Another useful feature of CLIPS is its ability to do calculations within rules. Expressions to be

calculated must be written in prefix form, (i.e., the expression 2 + 3 would be written (+2 3)). Again

this is where CLIPS resembles LISP. This facility can be used to assert facts, for example

(assert (answer - (+ 2 3)))

would assert the fact "'answer 5." It is possible to use variables within expressions, for example

(assert (answer =(- ?x ?y)))

This would calculate ?x - ?y, using the actual values assigned to the variables ?x and ?y, and then assert

the fact to record the answer

Control within a CLIPS program can be achieved by using facts as controls but CLIPS provides a

more direct method of control through salience. This allows assignment of priority to rules, to ensure

that the highest priority rule in a set will fire first even if others are available to fire also.

CLIPS provides several commands to help in debugging. One command allows you to continuously

watch facts being asserted and retracted. Whenever a fact is asserted or retracted, it will be displayed

as such. Assertion of the fact (new_fact) would cause the display

3

=* f- 1 (new_ fact)

If this fact was then retracted, the display would be

f-2 (new_ fact).

It is also possible to watch rules and activations on the agenda as the program is executing.

Fortran Library for Expert Systems

The FLEX is a library of Fortran 77 subroutines for developing expert system modules to interface

directly with Fortran programs. It was developed at RAE (ref. 7) and has already found application in

the field of aircraft structural design (rcf. 12).

As well as the subroutines, a separate readable knowledge base is supported, together with forward,

backward, and hypothesis-constraint inferencing. Basic explanation facilitics are also provided. The

FLEX library can be called from a higher level Fortran program to implement the inferencing procedures

required by the problem. A knowledge base in FLEX consists of a number of separate rule bases

contained within the knowledge base.

Rule Format

Rules are representedin the followingform

Rule-identifier

IF propcrty-a AND property-b

THEN property-x AND propcrty-t.

EXP=Explanations;

Disjunctive rules (i.e., rules whose antecedents contain facts linked by 'OR' functions) can also be

used, in which case an 'AND' operator takes precedence over 'OR.' In other words,

'if A and B or C and D'

means if A and B are both true, or if C and D are both true.

The negative of a property is denoted by a 'not_' (optionally '-') directly before the name (e.g.,

-mammal means not a mammal).

REPRESENTATIONS OF FACTS

The facts which correspond to particular properties are stored in an array provided by the user.

Each fact can be in one of three states; true, false, or unknown. There is no fact list as such, rather,

when the rule bases are read in by the driving Fortran program, the properties and their associated values

are stored in the aforementioned array. This is unlike a system such as CLIPS, where facts are only

4

stored in the fact list if they have been asserted. In FLEX, all the properties used in a rule base, as both

antecedents or consoquents, will be placed in the array when the rule base is read in. The fact value

associated with each property can then be set explicitly. The setting of a fact value can be considered

to be the same as asserting a fact in CLIPS, and similarly, setting a fact value to false can be considered

the same as retracting a fact.

THE KNOWLEDGE-BASED AUTOPILOT

To illustrate the proposed approach to the verification and validation of KBSs, a rule-based longi-

tudinal altitude-command autopilot example for a high-performance fighter aircraft has been designed.

The example presented represents a single axis of a three-axis (longitudinal, lateral-directional, and

velocity) controUcr. This controller is being developed and will be qualified as a mission-critical system

as part of the research into validation methodologies for operation-critical KBSs.

A simplified representation of the aircraft and control system is shown in figure 1. The objective

is to develop and to demonstrate a knowledge-based controller that produces command inputs to the

aircraft control system based on a dynamic world model obtained from instruments on the aircraft and

on a simple set of rules. While this task may not represent a suitable end application of a KBS (because

it is easily performed by conventional algorithmic control laws), it provides a simple mission-critical

application that is both easy to understand and easy to validate.

dex ,
I
I

I
I

I --
I

1.0

Control system

)

I

!

Aircraft

!

I
I
I
I
I

I

°o . I

839

Figure 1. Simplified longitudinal model of the F-15 aircraft and its control system

The control task requires the autopilot system (whether based on conventional algorithms or a

knowledge-based approach) to produce commands that cause the measured aircraft altitude (h) to be

within some specified tolerance Ah of the commanded altitude hcom. Additionally, constraints are

placed on the altitude rate and the normal acceleration an. The constraint on an is the same as a

constraint on altitude acceleration, but an represents a more easily understood and easily measured

physical quantity.

The initial requirement for this controller was that it control the aircraft in a consistent, repeatable

manner at least as well as a pilot during both the transition mode (going from one altitude to another)

5

and the altitude-hold mode (controlling the aircraft about a specified altitude). The desire was to have

it control the aircraft as well as a conventional algorithmic autopilot. An additional goal was to allow

off-condition engagement so that the controller would also be effective even without benign initial

(engagemenO conditions.

These goals and requirements are similar to those initially imposed on the altitude-hold capabilities

of the flight-test maneuver autopilot for the HiMAT vehicle (rcf. 13). The constraints and tolerances were

established as baseline figures. From this initial specification, a rule-based system was implemented

that combined numeric and symbolic methods. This initial system was tested using a detailed nonlinear

simulation model of the aircraft and its control system; the controller achieved excellent results for

some initial conditions but performed poorly for many others. This initial result was typical of that

experienced when evaluating the initial implementation of a conventional controller on a nonlinear

simulation. After several iterations of this process, a fairly detailed statement of performance capabilities

and limitations was established. This information, in essence, represents clarification of the statement of

goals and requirements and serves as the basis of a functional specification for the system. An example

of a prototype set of rules for the longitudinal altitude-hold section of the rule base is given in the

following table.

Table 1. Preliminary rules for longitudinal altitude-hold autopilot.

Performance boundary rules

Normal command rules

If altitude acceleration exceeds positive acceleration limit,

move stick forward

If altitude acceleration exceeds negative acceleration limit,

move stick aft

If predicted altitude rate exceeds positive altitude rate limit,
trim stick forward

If predicted altitude rate exceeds negative altitude rate limit,

trim stick aft

If altitude error is positive and predicted altitude rate is

negative, trim stick aft

If altitude error is negative and predicted altitude is posi-

five, trim stick forward

If predicted altitude error is positive and altitude error is

small, click stick forward

If predicted altitude error is negative and altitude error is

small, click stick aft

If predicted altitude error is positive and altitude error is

large, trim stick forward

If predicted altitude error is negative and altitude error is

large, trim stick aft

Table I. Concluded.

Definitions:

move

trim

click

large movement of stick

intermediate movement of stick

small movement of stick

POSSIBLE IMPLEMENTATION USING FORTRAN LIBRARY

FOR EXPERT SYSTEMS

The aim of this project is to reimplement an existing KBAP, supplied by NASA and written in

CLIPS, in FLEX. The reasoning behind this is that FLEX has proven to be much faster than CLIPs and

other currently available expert systems on benchmarking problems. It is hoped, therefore that a FLEX

implementation of the KBAP can be made to run in real time.

The intention is to provide exactly the same functionality as the CLIPs version. Therefore the

knowledge used in the CLIPS version has to be extracted and then rewrittten in a form that could be

used by FLEX. Thus, the FLEX implementation would not require any knowledge engineering in the

form on consulting a human expert on autopilots, since this work has already been done by NASA.

The usual method used for translating rules from one expert system language to another is to first

rewrite the rules in English, using a structured format of IF THEN constructs. Once this knowledge

has been extracted and rewritten into a FLEX knowledge base, Fortran driving code will have to be

written to utilise it. The FLEX is not a self-contained expert system like CLIPs; rather it is a set

of Fortran subroutines that utilise the decision making capabilities of expert systems. The difference

between its capability and that of CLIPs will necessitate some changes to the division of labour between

the algorithmic and knowledge-based parts of the system. In particular, FLEX does not allow arithmetic

expressions within rules, so all calculations will have to be done by the algorithmic part of the autopilot

which will assert facts for consideration by the rule base.

A preliminary investigation has been carried out on the conversion of a typical set of autopilot

rules into FLEX. This has proved to give encouraging results. The combination of the restructuring

as previously mentioned, and the greater efficiency of the FLEX inferencing procedure gave a speed

improvement well in excess of a factor of ten over the CLIPs version, using a Sun 3 processor. This

should provide ample scope for real-time operations, even if the final KBAP rules adopted prove to be

more complex than this preliminary set.

Work on implementing KBSs in conventional languages is continuing at RAE, and an Ada-based

KBS tool kit is likely to be available within the time scales of this project (ref. 14). It would be a

valuable extension of the CRISP work to investigate a reimplementation using Ada as a comparison.

7

APPROACHES TO THE VALIDATION AND VERIFICATION

OF THE KNOWLEDGE-BASED AUTOPILOT

The verification and validation pC&V) methodology used at Dryden is the same methodology

that has actually been used for all flight-critical control systems in noncommercial aeronautical flight

vehicles, including the F-18, Space Shuttle, and B-1 aircraft. This methodology uses a subset of the

V&V techniques in use or advocated within the aeronautics community. The larger issues of certification

and the validation of highly reliable, fault-tolerant systems have been of lesser concern than those of

qualifying and conducting flight validation of flight-critical systems.

The basic methodology for the V&V of conventional operation-critical systems is directly applicable
to the V&V of KBSs. In fact, if KBSs are to be used in operation-critical applications, the qualification

of these KBSs will have to be performed within the context of established procedures and will have to

address the requirements placed upon the qualification of conventional operation-critical systems.

The basis of the Dryden flight qualification and V&V methodology for embedded flight-critical

systems is the incremental verification of systems components, integration testing, configuration man-

agement, and flight validation. The design specifications are transformed into hardware and software

realizations. This transformation is not a straightforward, one-step process. The transformation of a

design specification to an implemented prototype system requires the development and testing of nu-

merous software procedures and hardware circuits, each of which is a prototype of some element in the

larger system.

The implementation of system elements or components is supported by a variety of analysis tools

and testing techniques (refs. 9, 10). The analysis tools used include failure modes and effects analysis,

independent review, static verification, independent calculations, conjectures, and suspicions. This

analysis is conducted on abstract models of the system or of the system components. Linear systems

models, aggregate system models, block diagrams, schematics, source programs, specifications, and

simulations are some of the main abstract models used. This analysis of abstract models is used to

translate requirement and design specifications into a physical realization.

Simulation testing provides a closed-loop facility wherein the system in exposed to an environment

that closely resembles the electronic and data environment in which the system must actually operate.

Simulation also provides a facility for testing that the hardware and software of the system are integrated

and operating together. Simulation is where the pilot (the system user) is first exposed to the system

and allowed to evaluate it; the realism of the simulation is determined by the operating requirements

for the flight application of the system.

The V&V methodology used for conventional, embedded operation-critical flight systems provides

an established and accepted set of procedures upon which a methodology for KBSs can be based. While

this position may be controversial in the AI community, the political and sociological realities of flight

research and testing will ultimately dictate that any methodology for the validation of KBSs at least

address the currently used methodology for conventional systems.

8

The proposed approach to the V&V of KBSs relies on the life cycle model shown in figure 2.

The life cycle model for a KBS has been a topic of considerable concern to some who have addressed

the validation of a KBS, and several models have been proposed (refs. 15-17). These models stress

the development and prototyping process in a KBS. The motivation for developing these models is

apparently to address the lack of a clear or well-defined statement of system goals and requirements

and to highlight'the prototyping process common in the development of KBSs. While the proponents

of these models would probably contend that there is a fundamental difference between the life cycle

of a KBS and a conventional system, another view is that this apparent difference is more reflective of

the maturity of KBSs rather than of anything fundamental.

Mission

requirements

I I I

I Hardware [
design

j I Hardware
System _ I productionI I

conceptual I I Idesign I t I

I Softwaredesign
Software

Preliminary I i I production
design I !

review I Ii IiCritical

Specificattont I design
review I review

Definition

--,of requirements _-Design -_Production,_ Ground test

I
Hardware]test

integration and test Flighttest

1I ,st-1verification validation

I Fight readiness
review

=I_ Flight test---_
8385

Figure 2. Dryden life cycle for research systems

Because KBSs are just emerging in operation-critical applications, there is little certainty of capa-

bilities and limitations of these systems. The prototyping that is a common feature in the development

of a KBS often represents an attempt to establish requirements for a given application. This definition

of requirements, capabilities, and limitations through prototyping is not unlike that used in conventional

systems when new techniques or applications are attempted. The difference is in the body of knowledge

and experience behind the use of conventional systems as opposed to that of KBSs. Also reflected in

this prototyping is the lack of maturity of artificial intelligence (A1) techniques in general that provides

little basis for the selection of control and knowledge representation methods.

There are several issues that are almost certain to create problems for anyone attempting to validate

operation-critical KBSs. Perhaps the most serious of these is an unwillingness to treat the current

generation of KBSs out of the context of the promises of AI. The current generation of KBSs are not,

in general, capable of learning or even modestly adaptive. These systems exhibit few nondeterministic

properties. These KBSs may be complex but they are not unpredictable. But so long as there is this

persistence in dwelling on the ultimate potential of AI systems instead of on the realities of the system

being qualified, it is unlikely that an airworthiness and flight safety review (AFSR) panel would allow

flight testing.

9

A further difficulty arises from the contention the KBSs do not always produce the correct answer.

If this is true then a KBS can only be used for tasks in which their performance can be monitored

and overridden by a human. Most operation-critical systems are required to perform without human

intervention or with only high-level supervision or control. However, a KBS that does not always

produce the optimum answer is acceptable as long as it never produces a wrong answer. This latter

point is in fact one of the main V&V issues: operation-critical systems must be shown to produce

acceptable solutions in all situations.

There are two key aspects of the proposed approach to the V&V of KBSs:

1. Development of a KBS to perform some task that is well known, well understood, and for

which conventional V&V techniques are adequate, and

2. Incrementally and simultaneously expand both the KBS and the V&V techniques to more

demanding and complex tasks.

The procedures used for verifying, qualifying, and validating conventional operation-critical flight

systems at Dryden will be applied and modified as required. Because we ultimately plan to carry these

experiments to flight using the rapid prototyping facility (ref. 2), this process will be performed under

the sponsorship of and AFSR panel and will be the KBAP previously described that is being developed

ultimately to perform aircraft maneuvers normally performed by highly trained pilots.

The research plan is to identify maneuvers of increasing difficulty and to build gradually more

complex and adaptive KBS to accomplish those maneuvers. This will include prototyping, evaluation,

and a series of initial operating capabilities that will evolve into a sequence of documented requirements

for testing against each version of the system. This approach fits well within the model of and practice

used with conventional digital systems.

CONCLUSIONS

This paper has described a proposed collaborative programme of research intended to approach the

problem of the validation and verification of mission-critical knowledge-based systems in an incremental

manner, using established procedures. The view presented in this paper is consistent with that proposed

in Gault et al., in which, "A validation methodology for ultrahigh reliability, fault-tolerant systems must

be based on a judicious combination of logical proofs, analytical modeling, and experimental testing."

This methodology must be supported by reliable validated development and test tools that lower

the cost and reduce the schedule, if the goal of validation is to be achieved for either highly reliable,

fault-tolerant systems or highly complex systems such as are envisioned for KBSs.

The work will focus on the real-time implementation of a knowledge-based autopilot, designed

by NASA using a real-time knowledge-based system tool, FLEX, written at the Royal Aerospace

Establishment. Preliminary results on a representative rule set indicate that FLEX will have more

than sufficient speed for this application. The possibility also exists of an Ada implementation at a

later stage.

10

The specific structures used within the real-time version may well influence some aspects of the

approach taken towards validation, in particular the position of the boundary between the algorithmic

and rule-based sections of the autopilot. It is hoped that, if the validation and verification work is

successful, then flight tests, using the NASA Dryden Rapid Prototyping Facility, could be undertaken.

ACKNOWLEDGEMENT

The help of Mrs. M.A. Kirby in preparing this document is gratefully acknowledged.

.

o

1

o

.

.

.

REFERENCES

Butler, G.E, M.J. Corbin, S. Mepham, J.E Stewart, and R.R.I.arson, "NASA/RAE Collaboration

on Nonlinear Control Using the F-8C Digital Fly-By-Wire Aircraft," 35th AGARD Guidance and

Control Panel Symposium, Lisbon, Portugal, Paper 21, OcL 1982.

Duke, E.L., R.W. Brumbaugh, and J.D. Disbrow, "A Rapid Prototyping Facility for Flight Research

in Advance Systems Concepts," Computer, May 1989, pp. 61-66.

Butler, G.E and E.L. Duke, "NASA/RAE Cooperation on a Knowledge Based Flight Status Monitor,"

AGARD 48th Guidance and Control Panel Symposium, Lisbon, Portugal, Paper 34, May 1989.

Reynolds, D., "MUSE: A Toolkit for Embedded Real-Time AI," Blackboard Systems, R. Englemore

and T. Morgan, editors, Addison Wesley Publisher, 1988.

Miles, J.A.H., J.W. Daniel, and D.L Mulvaney, "Real-Time Performance Comparison of a Knowledge-

Based Data Fusion System using Muse, Art and Ada," Artificial Intelligence and Defence, Ar89,

Avignon, France, May 1989, pp. 247-259.

Giarratano, J.C., "CLIPS User's Guide," Artificial Intelligence Section, Lyndon B. Johnson Space

Center, June 1988.

Butler, G.E and M.J. Corbin, "FLEX: Fortran Library for Expert Systems," RAE Working Paper

MM 273188, Dec. 1988.

11

Form Appro red

REPORT DOCUMENTATION PAGE OM8No.o7o,-o1

(latheringand _ the _ needed, line mmpllflng and revt4m'lngme oolle_lOnof imormlluon. _eno _mmenm reqwo.mg_ra_,__o_.rug..,,A,-,__._- _,,_1_,_.. "2"_efferlorl
collectionof Informtlon, IncludingIw0geltlone for mdudng thll b,_"den,to Walhlngton He_quwlm Sendole,._l_ctorme= lot ml=O_,ofmRu_..,rlum°.m_a.a_'O_on._'_ _ _"

I)_ Hlohwly, Bull0 1204, Arlington,VA 22202-4302. =,_to tM Offiol of Mamagementarabuu4get, i..apenvon¢Hooucaonr-m _ ;u_v.,.-v.,=j..,. u'.......
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1991 NASA Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A NASA/RAE Cooperation in the Development of a Real-Time

Knowledge-Based Autopilot

S. AUTHOR(S)

Colin Daysh, Malcolm Corbin, Geoff Butler, Eugene L. Duke,
Steven D. BcUe, and Randal W. Brumbaugh

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

NASA Dryden Flight Research Facility
P.O. Box 273

Edwards, California 93523-0273

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

RTOP-505-66-71

I1. PERFORMING ORGANIZATION

REPORT NUMBER

H-1727

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 104234

11. SUPPLEMENTARY NOTES

as a pa_" txesemed z the A_onics Panel Symposium m _ Po_ugal, May 1991, AGARD paper.

13-,. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 62

v

1t. ABSTRACT (Maximum 200 word#)

12b. DISTRIBUTION CODE

As pan ofaUS/UK cooperativeaeronautical research programme,ajointactivity between the NASA DrydenFlight
RescazchFacility and tic Royal AerospaceEstabtishmenton knowledge-based systemshasbeen estabtished.This
joint activity is concernedwith tools and techniquesfor the implementation andvalidation of real-time knowledge-
based systems. This paper describesthe proposednext stage of this research, in which some of the problems of

tmplernentmgandvalJdadngalmowledge-basedautopi]otforagenetichigh-pefformanc¢ aJrcra_wig beinvesdgated.

14. SUBJECT TERMS

Knowledge-based system; Knowledge-based autopilot; Cooperative real-time

intelligent systems program(me)

17. SECURITY CLASSIFICATION 1|. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

Unclassified Unclassified
i

I_N 7540.01-280-5500

10. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

A0
20. LIMITATION OF ABSTRAC

Unlimited

Standard Form 298 (Rev. 2-89)

_INI-"102

