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INTRODUCTION AND SUMMARY

Planetary astronomy - the study of planetary bodies and phenomena by astronomical remote sensing techniques -

has represented a major element of astronomy since the invention of the telescope. Most of the discoveries by

Galileo and his successors during the 17th and 18th centuries were in the field of planetary astronomy. In our own

century, astronomical observations have provided the basic data, ranging from planetary masses and orbits to the

properties of their atmospheres and surfaces, that have made possible the initial spacecraft reconnaissance of the solar

system. Even today, in an era of numerous spacecraft missions, astronomical techniques still yield much of the

information we have on the physical and chemical nature of planets, satellites, rings, comets, and asteroids.
Furthermore, astronomical techniques are providing the opportunity to expand our perspective to embrace the

discovery and study of planetary systems orbiting other stars.

The field of planetary astronomy is a subdiscipline of astronomy dealing with observations of the members of

our own solar system carded out from ground-based, airborne, and orbiting observatories. It employs many of the

same facilities and techniques that are used by other astronomers, spanning the electromagnetic spectrum and

encompassing laboratory and computational tools as well as telescopic observations. This field is strengthened by
support from two major federal agencies, the National Aeronautics and Space Administration (NASA) and the

National Science Foundation (NSF).

A number of recent discoveries highlight the continuing capability of astronomical techniques to contribute to

planetary studies. These include:

• Discovery of the ring systems of Uranus and Neptune in advance of Voyager, and continuing ability to

monitor changes in the rings and thereby study ring dynamics and planetary structure.

• Radar mapping of the topography of Venus and identification of volcanoes and rift zones that bespeak an

active geology beneath that planet's opaque clouds.
• Discovery of deuterium in the martian atmosphere and use of this isotope as a measure of loss of water

from Mars in the past.

• Discovery of numerous atmospheric constituents of Jupiter and Saturn, including organic compounds

that record the complex photochemistry in the upper atmospheres of these giant planets.
• Identification of the composition of the surfaces of the satellites of the outer planets, including water ice

(frost) on many satellites, sulfur dioxide and hydrogen sulfide on Io, and methane and nitrogen gas on
Triton.

• Determination of the radius, mass, density, and surface reflectances of Pluto and Charon, and

determination of the structure of Pluto's atmosphere.

• Identification of the wide-spread presence of black organic material on the surfaces of many satellites,

comets, and asteroids throughout the outer solar system.

• Identification of the compositions of many asteroids with well-known meteorite types (including the

discovery of iron asteroids), and determination of a compositional gradient across the asteroid belt that is

a remnant of the original compositional gradient in the solar nebula.

In this report we profile the field of planetary astronomy, identify some of the key scientific questions that can

be addressed during the decade of the 1990's, and recommend several facilities that are critically important for

answering these questions. The most important of these facilities for planetary astronomy, prioritized according to

their cost within the "space-based" and "ground-based" categories, are:
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Major Space-based:

Moderate Space-based:

1. Space Infrared Telescope Facility (SIRTF)

1. Stratospheric Observatory for Infrared Astronomy (SOFIA)
2. Search for Other Planetary Systems from Earth Orbit

Small Space-based:

Major Ground-based:

1. Orbiting Planetary Telescope/Planetenteleskop (OPT/PTEL)

1. Infi'ared-Oplimized 8-meter-Class Telescope

Moderate Ground-based:

Small Ground-based:

1. none

1. Arecibo Radar Upgrade

2. Astrometric Facility for Planet Detection

These facilities, which will complement and extend those already available to the United States astronomical research

community, will ensure U.S. leadership in astronomy into the next millennium and will enable planetary astronomy

to continue as a major component of our effort to understand the universe and its origin and evolution.

STATE OF THE PROFESSION

Planetary astronomy has contributed greatly to our current understanding of the solar system. Today, both

astronomical and spacecraft studies, together with laboratory research on meteorites and lunar and martian samples,
constitute an essential element of our quest to understand the solar system.

During the first half of the 20th century, planetary astronomy in the United States declined to the level of a
minor branch of astronomical research, but a strong resurgence in this field began in the early 1960's as NASA

initiated its program of lunar and planetary exploration by spacecraft. Not only did the need exist to learn as much as

possible about the potential targets of spacecraft missions, but NASA's exploration goals also rekindled scientific
interest in the planets. NASA, with its charter to explore the planets, took the lead in stimulating and supporting

planetary astronomy. In the 1960's, it established a grants program, supported graduate and postdoctoral students,
and funded the construction of three large telescopes for planetary work at the Universities of Arizona, Texas, and
Hawaii. In the 1970's, NASA built the 3-meter national Infrared Telescope Facility (IRTF) in Hawaii and

contributed to the development and operation of the Arecibo planetary radar facility in Puerto Rico.

These efforts together with the exciting new research opportunities stimulated a resurgence of planetary

astronomy. Today planetary studies represent _aksignificant and healthy componen t ofastronomical research, with
between 200 and 300 active planetary research astronomers in the United States_ _6_eat majority Of these

individuals draw at least partial support from federal grants; about 100 are Principal Investigators _.!.S) inNASA's

Planetary Astronomy Program, and all'out i5 mor_e-PlLs in the NSF plane_ pr_ur_._iag the 1980's, an

average of between 5 and !0 students were granted doctoraldegrees in thisfie!d e_ch year, which represents a

significant drop from the previous decade. This Panel estimates that planetfir_, astronomers now represent
approximately 15 percent of research astronomers in the U_S. and somewhat more than 25 percent of_.S, planetary

scientists (most of the remaining planetary scientists in the U.S. have backgrounds in the Earth sciences or physics.)

The primary professional society representing planetary astronomy is the Division for Planetary Science (DPS)

of the American Astronomical Society, with a membership of about 700, including nearly 100 members outside the

U.S. Typically annual DPS meetings attract 400 registrants, and approximately 300 individual papers are presented.

The U.S. planetary science community also has its own journal, Icarus, published in affiliation with the DPS.

Throughout the 1980's, the combined annual budget for NASA and NSF grants programs for planetary

astronomy averaged about $7 million (not including observatory operations). Currently, approximately half of these

research funds are expended for studies of primitive bodies such as comets and asteroids. The outer planets and their
satellites account for another 25 percent, with the balance devoted to studies of the inner solar system, instrument

development, and the search for other planetary systems.

Approximately half of the U.S. planetary astronomers are opticai/infrared0bservers, We estimate that these

observers are granted about 600 nights (6,000 hours) per year on the 15 or so U.S. telescopes with apertures of 2 m

or larger. This includes 50 percent of the time on NASA's 3-meter IRTF, more than 20 percent each on the

University of Hawaii's 2.2-meter and the University of Texas' 2.7-meter and 2.1-meter telescopes, and less
than 5 percent on each of the other telescopes in this class. During the 1980's, less than 3 percent of the time on the

major telescopes of the National Optical Astronomy Observatories was assigned to planetary work. Other planetary
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observers use the Kuiper Airborne Observatory (KAO), International Ultraviolet Explorer (IUE), Arecibo radar, or the

Very Large Array (VLA) and various millimeter and submillimeter telescopes.

In order to improve our understanding of the planetary profession, the Panel carried out a demographic survey of

members of the DPS in 1989. We found that about half the professional membership (student members were not

included) of the DPS categorize themselves as "planetary astronomers", and that this group consists of about
90 percent males and 10 percent females. Typically a planetary scientist works primarily on planetary studies; more

than 60 percent of respondents stated that they spend more than half their time on planetary research, and 40 percent

stated that they devote all of their time to this activity. Half of the respondents work for universities, 30 percent for

government labs (including JPL), and 20 percent for other organizations. About 75 percent draw a portion of their

salaries from grants ("soft" money), with more than 25 percent fully dependent on "soft" money.

The soft-money planetary scientists are about equally distributed over all age groups. A surprising number of

even the most senior people in the field draw all or most of their salary from grants. Consequently, planetary

astronomers are highly vulnerable to fluctuations in federal funding, and many scientists have preferred to leave the

field in the face of apparently arbitrary threats to their core funding. In general, these funding uncertainties have
resulted in lowered morale and have discouraged young people from entering the field of planetary astronomy.

While the numbers of planetary astronomers and their funding have generally held level or even declined in the

U.S. during the 1980's, this field has been growing elsewhere. During the past decade, planetary science has seen a

dramatic resurgence in Europe, parallel to the evolution of this field in the U.S. during the 1970's. We may

anticipate a similar growth within Japan during the 1990's. Largely as a byproduct of its own space exploration

effort, the U.S.S.R. has maintained a small but highly capable cadre of planetary scientists.

SCIENTIFIC OPPORTUNITIES FOR THE 1990's

Planetary astronomers study a wide variety of objects and phenomena, using techniques that range from
traditional telescopic studies of faint objects to laboratory studies of meteorites and cosmic dust. Generally,

however, we can divide this work into efforts to answer two fundamental questions: How did the solar system form;

and what can we learn about our own planet Earth by comparative studies of the processes on other planets? These

two major themes provide the basis for the discussion that follows.

Origin and Evolution of the Solar System

Planetary Systems in Formation: Protoplanetary Disks

It is widely believed that the formation processes that generate stars from the condensation and collapse of
interstellar material also are capable of forming planetary systems. The star formation process is discussed in some
detail in the report of the Optical/Infrared Panel in Chapter III of this volume. As reported there, recent observational
evidence points to the widespread association of disks of gas and dust orbiting young stellar objects. These disks
may be the equivalent of the solar nebula out of which our own planetary system formed some 4.5 billion years ago.

An important step toward placing the origin and evolution of the solar system in the context of other planetary
systems was the discovery by the Infrared Astronomy Satellite (IRAS) that disks persist beyond the era of star
formation and can be found orbiting some main-sequence stars. Particle disks have now been discovered around 150
main sequence stars. While we cannot yet detect planets orbiting other stars, we can begin to study the related
properties of these disks, which may be analogous to our own comet clouds, but more populous.

An important problem during the next decade will be to measure properties of the disks such as mass,
temperature and albedo distributions, as well as the carbon monoxide/dust ratios. Collisions of planetesimals in
orbit around other stars may be expected to generate extended circumstellar dust disks which may be observable in the
infrared region of the spectrum. The characterization of circumstellar dust and gas disks around main sequence stars
could provide important information on the statistics and evolution of planetary systems. The Space Infrared
Telescope Facility (SIRTF) will be an especially powerful tool for the investigation of circumstellar disks.

Completing the Invenwry of the Solar System

To understand the origin of our own solar system, it is essential to establish its limits and inventory its

contents. The decades of the '70s and '80s were spent in intensive study of the major bodies of the solar system and

have greatly enriched our knowledge of their nature. However, we still do not have a complete inventory of all of
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the bodies of the solar system, nor of the detailed characteristics of those that have been discovered. Over the past
decade, estimates of the mass of cometary material have increased by an order of magnitude, and the prevalence of

dark organic material has been established on numerous bodies throughout the system. Today we recognize that the

Trojan asteroids (orbiting the Sun at the distance of Jupiter) are as numerous as the asteroids of the main belt, a fact

that was unsuspected a few years ago. And there is much yet to be learned, even about the populations of objects in

the inner solar system.

Our direct knowledge of the contents of our solar

system stops at Pluto's orbit. Information on the
mass distribution beyond Pluto is important for

understanding both the processes which control

planetary accumulation in protoplanetary disks and
those which control the dispersal of the disks.

Furthermore, the reality of a Kuiper belt of comets

beyond Pluto, apparently required to explain the

origin of short-period comets, has not yet been

observationally established. On a completely
different scale, we have identified less than 10 percent

of the estimated population of Earth-approaching

asteroids. We are unable yet to say whether the

observed number is consistent with injection from
the 3:1 resonance in the asteroid belt or requires that

many such asteroids be extinct cometary nuclei.

Thus systematic surveys continue to be of great
value.

The technology is ripe to perform much more

thorough surveys, particularly in the outer solar

system. There have been several estimates of the
number and total mass of cometary nuclei in the

Kuiper belt, and plausible estimates of the size
distribution indicate that the number of such objects

detectable with current technology is large. The most

complete current survey is to visual magnitude

V = 22.5 covering 4.5 square degrees. An all-ecliptic

survey to red magnitude R -- 23 (and perhaps to

R = 24) is feasible. This project should be of

exlxemely high importance since the Oort cloud, if it

really exists, represents a significant mass. It also
validates the concept that comets may be true cosmo-

thermometers useful for determining conditions in the

early solar nebula. Such a survey would also place tight

Pluto out to very large distances from the Sun.

A distant analogue of our own planetary system is

shown in this coronographic photo of Beta Pic. The

star is accompanied by a flat disk of solid material
with dimensions of hundreds of AU. Advanced

infrared instruments (SIRTF, SOFIA, and large

ground-based telescopes) will greatly expand our

ability to study other planetary systems, especiarly

during their formative periods. Las Campanas image
reprinted by permission from R.J. Terri/e (JPL) and

B.A. Smith (Univ. Arizona).

constraints on the existence of any planets as large as

Remnants of Creation: Primitive Material in the Solar System

The most fundamental property of the members of the solar system, once they are discovered and their orbits

determined, is their composition. Many of the most important advances in planetary studies during the '70s and '80s
involved the identification of ices and organic materials on many objects, ranging from the moons of Mars to the

comets of the distant Oort cloud. These objects preserve relatively pristine material from the time that the solar

system formed from the primordial solar nebula. ....

Preliminary evidence suggests that the low-albedo materials covering (or comprising) comets and some asteroids

and planetary satellites consist of macromolecular carbon compounds of low volatility, similar to those materials
found in the carbonaceous meteorites. It is of primary importance to establish in detail the connection between the

low-albedo materials in the outer solar system and the carbonaceous meteorites, because the chemistry, mineralogy,
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and thermal histories of the meteorites are relatively well understood. At the same time, the connections between the

organic contents of the comets and the interstellar medium require further elucidation, as the study of pre-solar

material proceeds with samples of comets and asteroids (the meteorites and interplanetary dust particles) in the

laboratory. These studies will be carded out primarily through infrared, millimeter, and submillimeter spectroscopy,

with large aperture ground-based telescopes, supplemented by critical observations that can only be made by the

Stratospheric Observatory for Infrared Astronomy (SOFIA) from above the terrestrial water vapor, or by a cryogenic
optical system such as SIRTF in deep space.

The most primitive bodies are the comets. Our knowledge of the physical characteristics of cometary nuclei has

advanced tremendously during the past decade. We now realize that these bodies are typically irregular in shape, very

dark, and spectrally distinct from asteroids. Most are small with dimensions of only a few kilometers, but one much

larger object (Chiron) also displays comet-like behavior. Several comets have been observed to be active at
heliocentric distances greater than can be explained by a water ice model. Rotational periods are now known for a

few comets, and at least one of these (Comet Halley) may be in a complex dynamical state. Most surprisingly, it
has been learned that cometary activity is often confined to a small fraction of the total surface of the nucleus.

The chemical compositions of primitive bodies are key indicators of the processes that occurred during the

formation of our planetary system, and it is now possible to characterize these compositions by astronomical means.

Several key findings of the spacecraft missions to Comet Halley and of the extensive Earth-based observational

program demonstrate the high degree of spatial and temporal variability of the composition of gases in the coma.

The diversity of chemical species and the complexity of physical phenomena, both on the nucleus and in the coma,
require extensive simultaneous measurements using several techniques and a variety of spatial scales in order to

properly interpret individual comets and also to place individual comets in the context of the ensemble of comets. A

major challenge of the 1990's will be to understand the physical processes that have produced the observed

characteristcs. In this regard, spectrophotometric observations of dormant comets at large heliocentric distances will

be particularly valuable.

Major uncertainties in our current understanding are amenable to resolution in the next decade. For example, the

variations from one comet to another in abundance of volatiles relative to water, particularly the dominant volatiles

carbon monoxide and carbon dioxide, may be addressed with proposed orbital facilities. Similarly, the abundance of

cosmogonically significant but minor constituents such as sulfur, formaldehyde, methane and ammonia, may also be
addressed. Elemental and isotopic abundances must also be determined. Elemental abundances will allow us to

assess the completeness of our inventory of parent species, while isotopic ratios for certain molecules bear direct

cosmogonic significance. Additional new species must be sought, such as the noble gases and complex

hydrocarbons, and the heterogeneity of all species within the nucleus must be assessed.

Radar observations have yielded a wealth of new information about the physical properties of several comets and

dozens of asteroids. The first direct detection of a cometary nucleus in 1983 was followed by the discovery of large

particle clouds associated with Comets IRAS-Araki-Alcock and Halley. The radar signatures of near-Earth asteroids

are highly diverse and reveal that a number of these small objects have extremely irregular, non-convex shapes.

Radar has also been used to establish the metallic nature of a few asteroids and thus to verify less direct
compositional inferences from visible and infrared spectrophotometry. Radar refinement of orbits is important for

maintaining the accuracy of both inner-planet and asteroidal ephemerides. This capability is critically important for

newly discovered Earth-approaching asteroids, since the detection of radar echoes can guarantee the optical recovery of
asteroids on subsequent apparitions.

Many asteroids are compositionally intermediate between the primitive comets and more highly-processed

planets and satellites. Spectrophotometric studies have revealed a variety of mineralogical classes, interpreted as

representing various degrees of metamorphic and aqueous modifications of original primitive organic material. We
have established further that composition is correlated with distance from the Sun, and therefore that the current

asteroid population preserves information on the spatial variation of conditions in the solar nebula. However,

telescopic studies must be extended to smaller objects and greater distances from the Sun, and also supported by
improved laboratory and theoretical developments, before this record of the past can be interpreted with confidence.

A major opportunity for detailed study of primitive bodies will be provided by the 1996 launch of a NASA

spacecraft to explore asteroid Hamburga and Comet Kopff. After flying past the asteroid in December 1997, the

Comet Rendezvous and Asteroid Flyby (CRAF) spacecraft will match orbits with the comet, which it will study at

close range from its arrival in July 2000 until past perihelion passage in December 2002. The spacecraft results will
be enhanced and extended to other comets and asteroids through detailed Earth-based observations carried out in

parallel with the in situ measurements. A number of the new astronomical facilities being considered for the 1990's
will directly support - and benefit from - the results of the CRAF mission.
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An End-Member Planet: Pluto-Charon

As the most distant known planet, Pluto and its satellite Charon present a unique opportunity to test current
models of the formation and evolution of the solar system. Since the Pluto-Charon system has not been visited by

spacecraft (nor are there plans to do so), what we do understand about it is based

on astronomical observations from the ground, aircraft, and Earth orbit. From

these we have a crude albedo map of Pluto's surface and know that its

atmosphere contains methane, as well as a heavier gas, probably carbon
monoxide or nitrogen. We also know the bulk density of the system is

2.1 g/cm 3, which is high enough to imply that Pluto and Charon formed

separately in the solar nebula, rather than in a circum-planetary nebula with a

subsequent escape into a solar orbit.
But how did Pluto and Charon become gravitationally bound, forming a

"double planet"? Are these two bodies composed of the same materials? How

does Pluto's atmosphere change diurnally and seasonally, as its solar distance

varies from 30 to 50 AU? These questions can be answered by the traditional

techniques of planetary astronomy, but implemented with more sophisticated
detectors, instruments, and telescopes. The observations needed are: 1) far

ultraviolet spectroscopy to detect ionized molecular species in Pluto's upper

atmosphere; 2) high resolution infrared spectroscopy to determine the state of
the methane and perhaps find additional molecular lines; 3) thermal infrared

observations to constrain atmospheric and surface properties; and, 4) stellar
occultation observations for determination of Pluto's atmospheric structure.

Learning how the observed quantities change as a function of solar distance will

be a further diagnostic for inferring more about the system.

Are We Alone? Detection and Study of Other Planetary Systems

Great strides have been made in the past two decades in terms of

understanding the conditions and processes during the formation of the solar

system. These strides have come in part from continued studies of solar system

material, in part from advances in theoretical modeling of key processes thought

to have played a central role in the formation of regions around mature and

forming stars. The significance of the latter contribution is that it heralds the The appearance of Pluto
dawning of a new era in planetary science, in which the bridge between the study and its satellite, Charon,
of our solar system as an isolated phenomenon is merged with studies of other

as modeled by D. Tholen
examples of the phenomenon. It is not overstating the case to say that we will (Univ. of Hawaii) and

never fully understand the origin of our own planetary system without results M. Buie (Space Telescope

from a successful search for and characterization of other planetary systems. Science Inst.), based on
Only then will we be able to determine which, if any, of the features of the solar observations of mutual
system are proto-typical of planetary systems in general, and therefore, which occultations. Ground-
properties must emerge as general results from a theoretical framework. We will based occultation data

begin to see the development of a new discipline, that of planetary system have provided a unique

science, which will not only lead to an understanding of how our solar system opportunity to study these
was formed, but which will also provide a means to check our views of the distant worlds. Reprinted
process by which stars are born. by permission from

A star with a single planetary companion executes a reflex orbit that is a D. Tholen (Univ. Hawaii)
much smaller replica, in its projection on the sky, of the orbit of the planet and M. Buie andK. Home

itself. The dimensions of this stellar orbit are scaled down by the ratio of the (Space Telescope

planet to stellar mass. For a multiple planet system, the reflex motions of Science Inst.).
the star are independent and additive. The two measurable aspects of that stellar

reflex orbit are the apparent displacement of the star, which can be sensed by

precision astrometry, and the variation in its radial velocity, which can be
detected by high-resolution doppler spectroscopy. These techniques are complementary, and both are maturing

instrumentally to the point that their expected sensitivities in searches for other planetary systems are limited only

by systematic effects associated with the physical properties of the stars themselves.

_ iiiii¸--_i_
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The doppler spectroscopy technique measures the radial (line-of-sight) component of the star's reflex motion to a
precision of a few meters per second, using specialized spectroscopic instruments on large ground-based telescopes.
This technique works most sensitively for low-mass stars, and it is especially sensitive to planets in smaller orbits.
Doppler spectrographic surveys are under way at the University of Arizona, the University of Texas, and at the
Canada-France-Hawaii telescope at Mauna Kea, where precisions of 10 m/s have been achieved over several years.
The current state-of-the-art would permit the detection of Jupiter around the Sun at the l-sigma level, and of a jovian
planet in a smaller orbit around a star of 0.3 solar masses with much better confidence. The observers at Manna Kea
have accumulated a data base on about 20 nearby dwarf stars, and several of them show marginal evidence for
planetary or stellar companions. The primary advantages of the doppler spectroscopic technique are that it can be
implemented from the ground, and its power is explicitly independent of the distance to the star under study. In
addition, doppler spectroscopy is in many ways complementary to astrometric searches, which are most sensitive to
planets in larger orbits. The complementary nature and the cost-effectiveness of doppler spectroscopy programs
commend them as an important part of the overall effort to search for planets.

An alternative approach to searching for other planetary systems is astrometry, in which the reflex orbit of the
star is determined from precision measurements of its apparent position on the sky. Unlike doppler spectroscopy,
the detection capability of astrometry is inversely proportional to distance. However, for nearby stars, astrometric
precisions of 10 microarcsec should be achievable from Earth orbit, and this level of precision is sufficient to detect
planets with masses comparable to that of Uranus, in orbits with radii comparable to that of Jupiter around any star
within 30 LY of the sun. In space, either direct telescopes or interferometer systems can be designed to achieve the
required level of precision.

Comparative Planetology: Understanding Planetary Processes

Not all of planetary astronomy is focused on questions of the origin and evolution of the solar system. The
major planets, and even many smaller objects, retain little memory of their beginnings. Instead, these objects have
been subject to a long history of thermal and chemical modification, enhanced by random impacts and other external
influences. To understand these planetary histories, and the conditions that determine planetary environments today,
we must address the current state of the members of the solar system. Much of the current effort is also directed
toward the dynamical processes that we see at work on other planets. As we develop a better knowledge of these
processes, we can enhance our understanding of the forces that shape planetary evolution, and we may also develop a
deeper understanding of our own planet Earth.

The following sections describe a number of opportunities to advance our understanding of planetary processes
during the decade of the 1990's. Many of these focus on dynamic and time-variable phenomena. Most such studies
require Earth-based astronomical studies, often spanning a considerable time base. Even when a spacecraft encounter
has yielded a much more detailed study of a target at one particular epoch, these Earth-based studies must be made to
relate the spacecraft data to events on the longer time scales characteristic of planetary seasonal changes or the
11-year solar cycle.

Dynamics of Planetary Atmospheres

The Voyager encounters with Jupiter, Saturn, Uranus, and Neptune have revealed great diversity in the dynamics
and circulation patterns of the atmospheres of the giant planets. The winds vary greatly with latitude in a pattern
that is unique to each planet. Saturn's winds, for example, are almost entirely eastward relative to the rotation of the
magnetic field, while those of Neptune within 60 degrees of the equator flow westward. On Jupiter, the banded
appearance of the atmosphere shows that planetary rotation plays the dominant role in global circulation, with rising
air in the white zones and descending air in the dark belts, but this relationship is not valid for Saturn. Uranus
shows essentially no atmospheric banded structure. Jupiter and Neptune, both of which have internal heat sources,

each exhibit a gigantic storm system (the Great Red Spot and Great Dark Spot, respectively) at the same southern
latitude and of comparable size relative to the planet's dimensions.

The depth of penetration of the zonal winds into the atmospheres of the giant planets and the energy source that
drives those winds are unknown. Eddy activity on spatial scales that are below the resolution of Earth-based

telescopes have only been glimpsed during the Voyager flybys and are poorly understood. Thus, our understanding
of the coupling of the atmospheres to the motions of the interiors of the giant planets is very weak.
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Many more observations with high spatial resolution and a time base comparable to that of the known seasonal

and non-periodic changes are required to decipher the dynamics of the atmosphere of Jupiter and the other giant

planets. At a resolution of 0.1 arcsec, Jupiter and Saturn can be studied on appropriate spatial scales. Unfortunately,
there is little to be seen on Uranus, and Neptune is so distant that another order of magnitude in spatial resolution is

probably required to monitor seasonal variations effectively. Much higher spatial resolution can be achieved near the
10 Ixbar levels with stellar occultations, which can probe the structure of these atmospheres with a spatial resolution

of a few kilometers.

The wind patterns on Mars and Venus are not yet completely known nor understood. What is the circulation

pattern in Venus' mesosphere? The underlying cloud layers show strong retrograde winds, while the thermosphere is

expected to have a day-to-night wind pattern. Planetary-scale winds on Mars have never been observed, due to the

absence of large stable cloud features in the atmosphere. The unknown winds on both planets can be observed by

doppler spectroscopy utilizing rotational translations of the carbon monoxide line at millimeter wavelengths.

Planetary Rings and Ring Dynamics

Observations of occultations of stars by solar objects will continue to be a major tool of planetary science.

Apart from in situ measurements, there exists no other method for directly probing refractivity and optical depth.
Occultation observations yield spatial resolutions on

the order of a few kilometer (submilliarcseconds in

the outer solar system), while constraining

positional models to even higher precision, by one-
to-two orders of magnitude. Such precision rivals

or even exceeds many measurements from

spacecraft, and is ultimately attributable to our

precise knowledge of the position and rotation of the
Earth. Occultation data can be continuously

accumulated over a temporal baseline exceeding

decades, which leads to continuous refinement of

ring precession rates and related variables, which in

turn provide precise geophysical measurements of

quantifies related to planetary interior structure.

The Neptune system presents a challenge to

ground-based planetary astronomy over the next
decade. The rings of Neptune are currently

accessible to ground-based observation only via

stellar occultation, and only the denser portions, or
condensations, can be detected reliably. With the

Voyager encounter data, we have a few sparse

observations spread over an eight-year period. The

orbital periods and radii of the condensations are so

poorly known that predictions of their orbital phases
over a decade-long baseline are subject to uncertainty

of 10 degrees or more. No viable theoretical model

for the condensations currently exists. Basic
information about eccentricities, inclinations,

precession rates, widths, and optical depths can be
obtained from stellar occultations, but will require

concerted worldwide campaigns and accurate

predictions. Such a data set will provide
fundamental constraints on ring theories, and may

also yield accurate data on the interior structure of

Neptune.
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Discovery photometric data for the rings of Uranus,

obtained by James Elliot (MIT) and colleagues from the

Kuiper Airborne Observatory flying above the Indian

ocean. The symmetry of the two traces demonstrates
that the occultations are due to nearly circular rings

and not to individual satellites. KAO data rep#nted by

permission from J. E/Hot (M/T).

The Neptune system presents a challenge to

ground-based planetary astronomy over the next decade. The rings of Neptune are currently accessible to ground-
based observation only via stellar occultation, and only the denser portions, or condensations, can be detected
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reliably. With the Voyager encounter data, we have a few sparse observations spread over an eight-year period. The
orbital periods and radii of the condensations are so poorly known that predictions of their orbital phases over a
decade-long baseline are subject to uncertainty of 10 degrees or more. No viable theoretical model for the
condensations currently exists. Basic information about eccentricities, inclinations, precession rates, widths, and
optical depths can be obtained from stellar occultations, but will require concerted worldwide campaigns and accurate
predictions. Such a data set will provide fundamental constraints on ring theories, and may also yield accurate data
on the interior structure of Neptune.

Other ring systems amenable to study at high spatial resolution afforded by the stellar occultation techniques are
those of Uranus and Saturn. A highly sophisticated model for the orbits of the nine "classical" uranian rings has
already been achieved by combining occultation observations obtained over the past 13 years. Even more precision
with which to test dynamical theories of this system is available through continuing observations, as the aspect of
Uranus changes from a polar to an equitorial view.

Until recently, Saturn's rings had not been studied with Earth-based occultation observations because of the
prohibitively bright background of the rings themselves. However, occultation by Saturn's rings have begun being
observed from the ground with new infrared techniques. Also, observations will be possible with the Hubble Space
Telescope (HST), SIRTF, and SOFIA when they become operational. These data will yield immediate improvement
in the precision of determinations of Saturn's gravity zonal harmonics, some first order information on the shape of
the inner edges of the A, B, and C rings, and completely new information on the more opaque portions of the B ring.

Composition and Structure of the Atmospheres of Giant Planets

We are still learning much about the trace constituents of the atmospheres of the giant planets. Many important
planetary molecular lines occur at wavelengths inaccessible from the ground, such as the 4 to 8 lam region. Studies
from the KAO have revealed the presence of water, phosphine, carbon monoxide, germane, ethane, and arsine on
Jupiter. The higher sensitivity provided by SOFIA's large aperture and higher flight altitude will permit numerous
investigations not attempted from the KAO, such as high resolution spectroscopy of Uranus.

At radio wavelengths (millimeter to centimeter) one typically probes into and below the cloud layers. The main
opacity is provided by gaseous ammonia. Observations at different wavelengths probe different depths, and hence
provide information on the altitude distribution of the ammonia gas. High resolution images give information on
the spatial distribution of this gas. Since ammonia is the primary constituent of the cloud layers composed of
ammonia ice and solid ammonium hydrosulfide, radio observations provide direct information on these two cloud
layers. The information can be tied in with atmospheric composition and thus planetary formations, as well as with
cloud physics and dynamics.

Currently, excellent images at centimeter wavelengths can be obtained with the VLA. It would be worthwhile,
however, to put more effort over the next decade into software to enable deconvolution techniques such that the
images can be corrected for rotational smearing (images have integration times of at least a few hours), which would
allow detection of longitudinal features in addition to the latitudinal structure.

At millimeter wavelengths, radio interferometry can image the giant planets on arcsecond scales and yield
information on the ammonia gas and on trace constituents such as carbon monoxide, hydrogen sulfide, hydrogen
cyanide, and phosphine at relatively deep levels of the atmosphere. Such observations imply that these constituents,
if present, are brought up from deep levels in the atmosphere, as opposed to being formed at high altitudes or
introduced from outside the atmosphere.

Volcanoes of lo

Jupiter's satellite Io is one of the most remarkable objects in the solar system. Its high level of volcanism,
discovered by the Voyager spacecraft in 1979, is readily detectable from Earth, and observations made nearly a decade
before the Voyager flyby can be interpreted in retrospect in terms of heat flow from volcanic hot spots. During the
15 years between Voyager and the arrival of the Galileo spacecraft at Jupiter, astronomical observations have
permitted continuous monitoring of volcanic activity, and this ability to extend the time base of spacecraft data will
continue into the future.

The volcanoes on Io channel the release of internal heat through a limited number of vents or hot spots that are
observable from Earth in the thermal infrared region of the spectrum. The emission spectrum of the thermal regions
is clearly apparent during eclipses, but even when not eclipsed the hot spots are detected, and with spatial resolutions
of 0.1 to 0.3 arcsec individual volcanoes can be identified and studied in detail. Such studies have revealed the
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locations, sizes, and temperatures of the main hot spots, as well as estimates of the total heat flow. One interesting

discovery is that about 50 percent of the total heat flow from Io is focused in one volcanic region, called Loki, which
has been active for at least two decades. However, there are indications of variations in the temperature, area, and

perhaps exact location of Loki on time scales as short as a few weeks.
The infrared spectrum of Io shows many bands diagnostic of the ices that lie on its surface. Sulfur dioxide

(including several isotopes), hydrogen sulfide a,_nd water ice have been found, but several other absorption bands are

as yet unidentified. The ices on It's surface are presumably emplaced locally by the active volcanoes, but they are

largely unstable because of the temperature and the radiation environment. Sublimation and recondensation
redistribute the materials on the surface, perhaps in patterns corresponding to their volatility. The compositions of

It's ices are a reflection of the chemistry of the volcanoes, and they are spatially and temporally variable.

Spectroscopy of Io with higher spectral resolution and expanded spatial and time resolution will be valuable in the

continued study of the volcanism on this satellite.
Ground-based observations of Jupiter's magnetosphere are obtained regularly. In fact, the presence of Jupiter's

magnetosphere, its strength, tilt anglel and offset from center were determined from ground-based observations well

before the spacecraft encounters. Radiation at decimetric wavelengths is synchotron radiation, emitted by high

energy electrons near Jupiter's magnetic equatorial plane. The emission is a smooth function of central meridian

longitude. Emission at decametric wavelengths is cyclotron radiation, emitted by electrons at or near their high
latitude mirror-points. The emission appears in bursts, and is very irregular in character. The decametric emission is

strongly modulated by Jupiter's central meridian longitude and the phase of Io in its orbit. More ground-based
observations, with parallel modeling and theoretical investigations, are needed to add to the present knowledge of a

number of unexplained effects such as a perplexing variety of types of bursts, polarization effects, and the presence of
correlations with Io in some components and the lack of it in others. Long term monitoring is important to

establish and investigate periodicities, to correlate the emissions with the solar wind or other solar phenomena, and
to watch for effects that might reveal a non-periodic change in the jovian magnetic field structure or in its rotational

period.

Mineralogy of the Martian Surface

Many studies of the surface of Mars can be carried out from the Earth. The 2 to 6 Ixm range is ideally suited for

characterization of a variety of volatile-bearing minerals such as hydrates, hydroxides, water ice, carbon dioxide ice,

carbonates, and sulfates. Some important features in this spectral range are accessible from the ground, while others

require an airborne telescope. During the better oppositions the largest vol_noes are on the order of 1 arcsec in size,

and polar caps are somewhat larger. Spectroscopy with comparable spatial resolution should isolate characteristic

mineralogy, and permit geologic interpretation of the regional internal and surface processes which have been active

throughout the planet's history.
Examination of photographs of the surface of Mars leads to the inescapable conclusion that there once must

have been large quantities of fluid on the surface. Yet no obvious fluid sources are apparent today. Water vapor has
been detected in the atmosphere of Mars and has been shown to be variable. The source of the water vapor is

thought to be a permafrost trapped under the polarcarbon dioxide ice caps. In support of the current Presidential and
NASA initiative toward Mars, it is critical to continue to monitor the quantity of water vapor on Mars in order to

quantify the atmospheric water cycle and to understand the seasonal cycles of the atmosphere.

High-Precision Dynamical Studies

We are used to thinking of many astrophysical measurements as being not very precise, i.e. as carrying no more

than two or so significant figures. These are the type of measurements which are of most interest when we are in

the discovery mode, when the mere existence of a phenomenon is in question. Much, but not all, of the work of

ground-based planetary astronomy has been in thismode. But detailed comparison of theory and observation to
several significant figures has also led to an elegant and profound syntheses. The planet Neptune was discovered in

this fashion, and even in the twentieth century the careful analysis of orbits and spins has led to the discovery of

subtle resonances. Most recently, careful and precise measurements of the mutual eclipses and occultations of the

Pluto-Charon system has produced determinations of the sizes and orbital parameters to many significant figures.

Some examples of the precise measurements which are of interest follow: 1) The orbits of the Galilean

satellites of Jupiter are evolving under the influence of tidal dissipation and exchange of angular momentum with

Jupiter. Determination of the evolution of these orbits is possible, in principle, with high-precision observations of
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orbital phases over long temporal baselines. Some observations of this type may not be fully exploitable for many
generations, but should be made now; 2) the shape parameters (both gravitational and geometrical) of planets are
influenced by their spin states and by internal dynamics. It is feasible to measure these parameters to the level of a
few kilometers in some cases, and over a period of years to build up a data base for detailed study of interior
structure, as has been done for the Earth; and, 3) the jovian magnetic field, unlike the fields of the other giant
planets, can be readily observed from the Earth, and its rotation period can be determined to a fraction of a second.
According to dynamo theory, the geometry of the jovian field should be evolving, and one would expect to obtain
information about such evolution if the current level of precision of observations were maintained for about a

century.

CRITICAL TECHNOLOGY DEVELOPMENTS

The continuing success of planetary astronomy, even in the era of space missions, can to a large degree be
attributed to technological advances in instruments, telescopes, and data reduction methods. New technology
facilitates observations that have been previously impossible from Earth, and these open up new areas of scientific
investigation. A recent example is the imaging of the Io volcanoes from the IRTF at 0.3 arcsec resolution. With
this capability we can now watch new volcanoes emerging and old ones becoming dormant.

Obtaining these volcano images became possible just recently with the incorporation of an infrared array into a
new instrument (the Proto Cam) at the IRTF and a better understanding of the seeing (degree of atmospheric
interference) at Mauna Kea, which shows that images as small as 0.2 arcsec can be obtained in the near infrared

region of the spectrum. A further bonus of this wavelength region is that the jovian planets have deep methane
absorption bands, so that most, if not all, of the small satellites discovered by Voyager can now be studied from
Earth.

Future technical advances will have similar impacts, since we are now in the midst of rapidly improving
capabilities in several critical areas, including: 1) improvements to telescopes and the image quality that can be
obtained from them; 2) increases in array detector size to cover an expanded wavelength region with lower
background noise; 3) improvements to computer technology that are providing dramatic increases in speed, high
capacity data storage, and worldwide network capabilities that will be needed to cope with the array data;
and, 4) development of new, high-level software languages, some of which work with symbolic, as well as numeric
input (such as IRAF, IDL, and Mathematica), thus dramatically reducing the time needed to develop and implement
new methods for modeling and data analysis.

In the past decade planetary astronomy experienced a revolution brought on by the common use of the charge
coupled device (CCD) as a detector. This device has had a particularly large impact on comet observations, which
make full use of all four advantages that the CCD has over a photographic plate: 1)higher quantum

efficiency; 2) larger dynamic range; 3) lower background noise; and, 4) output data already in digital form. At
present, however, the greater number of pixels on a photographic plate still makes it the preferred detector for some
survey programs, such as searches for new comets and Earth-approaching asteroids. This advantage will disappear as
2048 x 2048 arrays become available. Although infrared arrays are smaller (256 x 256 at present), they may have
even greater impact on planetary astronomy than the optical CCD because of lower background fluxes from the
jovian planets and the superior image quality in this spectral region.

As a result of these technological advances, we can expect not only higher quality data in the 1990's from Earth-
based telescopes but the development of more efficient ways for planetary astronomers to work. The interconnection
of the community and observatories through a common computer network will make it easier to share supported
software. Another advantage of the ubiquitous computer network will be the facilitation of remote observing and
data access. After an observing program has been set up and the observing techniques established, the program can
be carried out by a local observer or through control of the telescope and instrument from a remote location. This
will reduce travel time and costs and allow sharing nights between observing programs. The flexibility gained by
remote observing could also be used to increase the effectiveness of certain observing programs.

Looking to the late 1990's and beyond, fundamental advances in the study of asteroids and other small solar
system objects will be possible with the development of ground-based interferometers. Systems under development
by several groups are expected to yield images of stellar sources with milliarcsecond resolution within a decade.
Applications to solar system objects, with their lower surface brightness and irregular contours, may be more
difficult, and they are expected to require both advanced adaptive optics and interferometer systems with extensive
coverage of the U-V plane. However, eventually we hope to obtain asteroid images from the ground with resolution
of a few kilometers throughout the main belt.
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The extension of interferometric imaging to long baselines in space offers even more dramatic capability.
A 10-kilometer baseline interferometer on the Moon could achieve resolution of a few tens of meters for the main

belt asteroids. Such an instrument would also be expected to have astrometric accuracy of about 10 nanoarcseconds,

opening a much larger volume of space to astrometric searches for extra-solar planets.

PROPOSED PROJECTS AND FACILITIES

The following are brief descriptions of the major new projects proposed for the 1990's that hold the greatest

promise for new discoveries and deeper insight in planetary astronomy. They appear here prioritized according to

their cost within the "space-based" and "ground-based" categories.

SIRTF: The Space Infrared Telescope Facility

SIRTF is a 1-meter class cryogenic telescope, designed to operate for five years in high Earth orbit (altitude

approximately 100,000 kin). SIRTF is the infrared component of NASA's family of Great Observatories, and it is
currently planned for launch in the late i990's. It will be operated as a facility for the entire scientific community,

with over 80 percent of the observing time available to general observers. SIRTF's three instruments will provide

images and spectra from 2 _m to beyond 700 _tm, using an optical system which will provide diffraction-limited

images at wavelengths longer than 3 _tm over a 7-arcmin field of view. Using current infrared detector arrays,
SIRTF will be natural background limited, and on a per-pixel or per-resolution element basis, it will be 1,000 to

10,000 times as sensitive as IRAS. SIR'IF will be the first mission to combine the intrinsic sensitivity of a

cryogenically-cooled telescope with the tremendous imaging and spectroscopic power of large-format detector arrays:

SIRTF will expand upon the important discoveries by IRAS of the disks and shells of particulate matter

orbiting nearby stars. SIRTF will make detailed imaging studies of the most prominent disks to determine their

shape and orientation, and to search for the dust-depleted inner regions predicted by models which may suggest the
presence of planets close to the stars. Low resolution spectroscopy will be diagnostic of the composition of the dust

in these systems, while high resolution spectra will trace gaseous constituents. SIRTF can detect less prominent

dust systems around literally thousands of stars and determine how the prevalence and properties of such disks depend

on the mass, luminosity, age, and other characteristics of the stars. These dust disks are spatially extended and thus

demand the low background of a cryogenic telescope. SIR'IF is the ideal platform for such studies, which can
revolutionize cosmogony by extending the study of planetary system formation beyond the boundaries of our solar

system. :_ : :: : :

The reconnaissance of the outer solar system accomplished by the Pioneer and Voyager spacecraft and the survey
work of IRAS have reveaiednew aspects of the Sun's family that require further detailed study. Just as SIRTF can

study material in the outer regions of other solar systems, it will extend the studies of our own solar system to the

most distant planets and beyond. SIRTF will obtain spectra of comets, asteroids, and planetary satellites in the

infrared region, where diagnostic molecular bands reveal the chemistry of these varied objects. The ices that

condensed in the collapsing solar nebula further than 5 AU from the Sun and that are now locked in the comets and

satellites carry the chemical history of the nebula in the zones where the outer planets formed. The chemistry of

carbon, oxygen, and nitrogen in the solar nebula and in the protoplanetary clouds can be read in the spectral

signatures of the comets and the relatively undisturbed planetary satellites. Organic solids and other forms of carbon,

preserved from the interstellar medium and incorporated into the comets and asteroids, can be explored through their
infrared spectral signatures in objects too faint and cold to be observed from ground-based telescopes. Infrared auroras

on the giant planets will be observed spectroscopically, while spectra of the volcanically active Io will reveal the

ever-changing surface and atmosphere. Far-infrared spectra of Pluto, Chiron, and Triton will, for the first time, give
definitive information on the atmospheres and surface ices of these small and remote bodies. Dust from pulveriz_

asteroids found by IRAS will be explored in hlgla'res0iution thermal infrared images to dete_ine the sources and

ages of specific asteroid collisions. SIRTF can also search for the hypothesized Kuiper belt, thought to represent a

reservoir of comets beyond the orbit of Pluto. If this belt is as rich as is required by some recent dynamical

estimates, one or two Kuiper belt comets should appear in a single SIRTF image taken in the zodiacal plane at

100 I.tm; these faint objects can readily be identified by their gradual motion relative to the galactic background.
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SIRTF is the fourth and final of NASA's orbital Great Observatories, and as such it is the highest priority major

new project of the Astrophysics Division. Assigned to JPL for implementation, it will receive a Phase B study in

1992. In the strategic plan of the NASA Office of Space Science and Applications, SIR'IF is scheduled as a

proposed FY93 new start, with launch anticipated for about 1998.

SOFIA: The Stratospheric Observatory for Infrared Astronomy

SOFIA will be an airborne observatory designed to address fundamental questions in galactic and extragalactic

astronomy and in the origin and evolution of the solar system. Operating at altitudes from 12.5 to 14 km, SOFIA

will provide routine access to wavelengths between 0.3 gm and 1.6 ram. Its 2.5-meter-diameter telescope will

produce images ranging from roughly 4 arcsec at visible wavelengths down to about 1.5 arcsec in the near infrared

region of the spectrum, and following the diffraction limit for wavelengths beyond about 10 I.tm. The planned

schedule of 120 8-hour flights per year would support approximately 15 focal plane instruments and 40 P.I. teams

annually. Many of these teams would involve one or more graduate students. The instruments would include

photometers, polarimeters, and spectrometers developed and maintained largely by the interested P.I. teams.

SOFIA's 20-year lifetime will provide a foundation of research, instrument development, and training of young

scientists, bridging the gap between IRAS and SIRTF.

SOFIA will permit exciting new studies of the

mineralogy of the martian surface. The 2 to 6 gm

range is ideally suited for characterization of a variety
of volatile-bearing minerals such as hydrates,

hydroxides, water ice, carbon dioxide ice, carbonates,

and sulfates. A number of important features in this

spectral range are accessible from an airborne

telescope. Spectroscopy from SOFIA should isolate

characteristic mineralogy and permit geologic

interpretation of the regional internal and surface

processes which have been active throughout the

planet's history.
Occultations of stars provide a powerful tool for

the study of planetary atmospheres and rings. The

altitudes of a planetary atmosphere probed by an Earth-

based stellar occultation lie in the gap between

spacecraft radio occultations and ultraviolet stellar and
solar occultations. A series of stellar occultations by

a planetary ring system can provide exceedingly

precise orbital data, leading to an understanding of the

age and evolution of the rings and to the internal

structure of the planet through the harmonics of its

gravitational field. SOFIA will readily accommodate
the specialized instrumentation required for

occultations, typically high time resolution,

multispectral imaging systems. For example, the

quality of an occultation observation is enhanced
by working in wavelength bands where the planet is

relatively dark. In the case of Saturn for example,
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6.2 gm, a wavelength accessible from SOFIA but not from the ground, is an intensity minimum for both the disk

and the rings. SOFIA will be a primary facility for observation of stellar occultations by Pluto, Triton, and Titan

by virtue of its large aperture and mobility. Events involving these interesting objects will commonly involve faint
stars, and will have uncertain predictions until a few days before the event occurs. Thus its sensitivity, mobility,

scheduling flexibility, and insensitivity to weather assure SOFIA a unique role in the observation of occultations.

Spectroscopic studies of comets will make use of the spectral access available to a stratospheric telescope. The

discovery of water vapor in Comet Halley from the KAO clearly demonstrated the value of airborne observations of
comets. Ground-based measurements of Halley revealed organic material (the C-H stretch feature), but important
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C-O, C-C, and C-N stretch bands of these species lie between 5 and 8 Ism. Moreover, important cometary parent
molecules have strong rotational transitions at submillimeter wavelengths. Radiation in these infrared and
submillimeter bands does not reach the ground but is readily accessible from 12.5 km. Gaseous constituents require
high resolution (roughly 1 km/sec) to c]]_:iSmqnate between telluric and cometary features, to separate vibration-
rotation lines in a band, and to permit kinematic analyses of cometary line profiles. SOFIA will be able to study a
number of short period comets, observing their solid-state spectral features (such as olivine and water ice) as well as
their gaseous features. _ _--........ --_ .... _

SOFIA will retain the major features Of the_Kuiper Airborne Observatp_ry__thathave made the airborne astronomy
program so successful, including flexibility of operations and broad access to investigators and their students.
Particularly important are the opportunities off er_ed to young scienl_sts.who can accomplish complete
astronomicalinvestigations - from instrument concept and construction, through publication of results - within the
time available to a graduate student or post-doctoral researcher. SOFIA will help bridge the gap between ground-
based and space-based astronomy in the educational sense, as well as in its access to the electromagnetic spectrum.
Extrapolating from experience with the KAO, one can project that SOFIA. over its 20 year lifetime, will generate
nearly 100 Ph.D.s and involve participation by individuals from more than 150 institutions, about 70 percent of
which will be universities.

SOFIA will be a joint project under U.S. leadership with the Federal-Republic of Germany supplying a major

part of the telescope system, supporting the operations at roughly the 20 percent level, and participating in the flight
program at a similar level. NASA and the German Sc]ehceMinistry completed Phase B studies of the project in
1989 and are currently continuing technology studies at a lower level. If approved for development in NASA's FY92

budget, SOFIA will be flying in the fall of 1996.

Search for Other Planetary Systems from Earth Orbit

The search for, and study of, other planetary systems can be a centerpiece of astronomy for the 1990's. Current
ground-based studies using doppler spectroscopy and astrometry have the capability to detect Jupiter-mass planets
orbiting the nearest stars. An improved astrometric telescope at an excellent site (discussed below, on page 17) could
expand the search domain and extend to planets with the mass of Saturn. In addition, NASA's Search for
Extraterrestrial Intelligence (SETI) project will begin operation in 1992, providing a radically different possibility for
the discovery of other planets. If plane_ Systems are as prevaient asmany astronomers believe, it seems likely
that one or more of these surveys will achieve a positive result during the first half of the decade of the 1990's.

The discovery of one or more planets of jovian mass will be an important milestone, but it does not end the
search for other planetary systems. The goal of a scientific survey must include the characterization of other
planetary systems. To achieve this goal, we must use a search technique that is sensitive to smaller planets, at least
down to the 10-Earth-mass level represented by Uranus, Neptune, and the refractory cores of Jupiter and Saturn.
Further, we must anticipate that multiple-planet systems will be discovered, and that we will wish to determine the
orbits and masses of these objects from their superimposed gravitational effects, The only technique capable of
acfiieving the required accuracy is astrometry carried out at the 10-microarcsecond level for a period of a decade or
more. Further, astrometry at the 10-microarcsecond level can provide definitive negative results in the search for
other planetary systems; that is, failure to find any planets with such a search will challenge current ideas of the star
and planet formation processes, and would therefore lead to a profound re-evaluation of current astrophysical thinking
in these areas. - ....

To achieve 10-microarcsecond precision, we must place an astrometric telescope beyond the Earth's atmosphere.
in the long run, such surveys may best be carried out by Jilteree_eters on the surface of the Moon, ancFsuch
systems should be carefully studied during the 1990's. However, it is also possible to pursue these goals with a free-
flying astrometric observatory that could be launched and begin operation late in this decade. One example of the
latter is the Astrometric Telescope Facility (ATF), a system capable, in principle, of relative astrometric
measurements accurate to the severalmicroarcsecond level.

In addition to astrometry, which is an indirect method of detecting other planetary systems, there will be a need

for systems capable of directly detecting other systems, or at least providing very high spatial and spectral resolution
of disks which are likely precursors to planetary systems. In the region immediately adjacent to any bright point
source lies a previously unexplored part of the universe. It is in this region that knowledge of the existence, origin,
and formation of planetary systems lies hidden, masked by the scattered and diffracted light halo of the central source
which blinds the optical system. The Astrometric Imaging Telescope (A/T) is a 1.5- to 2-meter-aperture orbital
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telescope which has unique capabilities to overcome this blinding light source and which combines direct imaging
and astrometry to discover and characterize planetary and protoplanetary systems.

The astrometric function is implemented by a relatively wide field (20 arcmin) astrometric instrument, the
Multichannel Astrometric Photometer (MAP). The imaging function combines a newly developed, highly efficient

coronagraph (working against diffracted light) with a super-smooth optical system (working against scattered light)
to form the Circumstellar Imaging Instrument (CII).

The imaging capability of the AIT is a powerful adjunct to all indirect methods. By design, it is extremely
sensitive to circumstellar material such as zodiacal dust distributions or protoplanetary disks. Moreover, in the case

of multiple planets, the image formation recorded from each planet is spatially distinct and detectability is not a
function of the number of planets. In other words, all planets in a given system that are above the detectability
threshold for that system are detected independently of one another within the same images. Even when no
detections occur, upper limits can be placed on the absence of planets larger than a given diameter at a given orbital
radius. This kind of information can be expected to help resolve any ambiguous indirect signals.

The high efficiency coronagraph and the super-smooth optical system of the AIT combine to produce a reduction
of the light halo around a bright star by three orders of magnitude. Taking into account relative aperture sizes and
optical figures, this amounts to a hundred-fold improvement in background level over comparable levels in the
Hubble Space Telescope. This dramatic reduction in background is necessary to image extra-solar jovian planets, but
it also implies that we will be able to do much more than learn that there is some nebulous region surrounding a
given star; we will be able to image fine detail in that region and directly observe subtle features which would
otherwise totally exhaust the dynamic range capabilities of typical imaging systems.

The AIT has been recommended to NASA's Solar System Exploration Division and is currently under study

(Phase A) at JPL. If supported either through science funding for Space Station Freedom or as a free-flying
spacecraft, it could begin operations before the end of the 1990's.

The Orbiting Planetary Telescope (OPTIPTEL)

The Orbiting Planetary Telescope/Planetenteleskop (OPT/PTEL) is a free flying 1-meter diffraction-limited
telescope in high Earth orbit (.geosynchronous). It is designed for an anticipated lifetime of 5 years and optimized for
spectroscopic and high-resolution imaging of solar system objects. OPT/PTEL offers the following capabilities:

• Wide spectral coverage (115 to 5000 nm) free of atmospheric absorption.
• Fully multiplexed spectroscopy and imaging.
• Multiplexed ultraviolet-visible-infrared spectroscopic channels.
• Wide field of view (10 arcmin).

• On-target guidance and tracking to 2-0.02 arcsec.
• Operation at small solar elongation angles.
• 17 hour/day operation above 40,000 km.

The long lifetime of OPT/PTEL will allow investigation of time-variable solar system phenomena and their
response to changing input conditions (e.g. variable Extreme Ultraviolet (EUV) flux, changing heliocentric distance,
climate, and/or episodic volcanism.) Applied to studies of Mars it should provide insight into the origin and
development of global dust storms and could play an enabling role in the human exploration of Mars. The ability of
OPT/PTEL to provide near-simultaneous measurements in widely separated spectral regions should allow it to
provide data that will clarify the complex physical inter-relationships that occur in phenomena like the Jupiter-
magnetosphere-torus-Io system, the Venus cloud-deck, and in active cometary atmospheres. It could be used to
extend and clarify measurements made by orbiting or flyby planetary spacecraft by providing the measurements that
define the large-scale context of in situ studies. For example, ultraviolet spectroscopy of comet Kopff will directly
support the in situ spacecraft exploration of this comet in the first decade of the next century. It could also be
employed to study the long-term evolution of phenomena in planetary atmospheres (e.g. outer planet atmospheric
circulations), and on planetary surfaces (e.g. martian polar caps). Finally it will allow further geochemical mapping
of the lunar and martian surfaces as well as a survey of the unexplored hemisphere of Mercury.

During its nominal lifetime the telescope would provide some 12,000 hours of prime observing time
(equivalent, after taking into account typical weather factors and atmospheric seeing, to 17 years worth of prime-time
(dark) observations on a ground-based telescope.) In its operation phase the project is conceived to operate in a mode
similar to the highly successful IUE mission, but with the addition of a fully distributed data system that will allow
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fine targeting and data acquisition from the observers' home institution. It will provide rapid access to space for

planetary scientists and therefore more frequent opportunities for novel solar system investigations in spectral

regions unavailable from the ground.
OPT/PTEL is conceived as an international project between the Federal Republic of Germany, the United States,

and, possibly, the European Space Agency. The United States' contribution would be the provision of the

ultraviolet-visible-infrared spectrographic package, associated foreoptics, and detector cooling systems. The mission

therefore provides opportunities to hardware development groups at U.S. universities and private institutions while

maintaining a substantial role for a NASA center. NASA's Solar System Exploration Division has recently formed
a Science Working Group to work with European partners in completing a Phase A study for the OPT/FrEL, which

could be proposed for new start funding in 1994 and launchedin 1998.

Infrared-Optimized 8-meter-Class Telescope

Astronomy in the U.S. is presently in a vigorous period of

telescope construction; there are at least 11 projects under way or being

planned for new ground-based telescopes in the 3- to 10-meter class.

One of the current premier infrared telescopes in the world is the
3-meter IRTF on Mauna Kea, constructed and operated by the Solar

System Exploration Division at NASA. Half of the time on the
IRTF isdevoted to solar system studies, and this instrument has

supported a significant fraction of all ground-based planetary astronomy

during the 1980's. Now, however, it is opportune to take advantage of

new technologies to construct a much larger infrared-optimized
telescope in the 8-meter class. Such a facility would be an enormous

improvement over any currently existing telescope, and it would

provide the focus for much ground-based research in planetary

astronomy and solar system formation.

Although several other 8-meter optical/infrared telescopes are

planned or under construction, none of these is optimized for the
infrared region of the spectrum. On an infrared-optimized telescope the

mirror coating would be of the lowest emissivity possible (either gold

or silver); however, such coatings are detrimental to the

ultraviolet/optical performance of the telescope and would not be used

on a general purpose telescope. Second, the infrared secondary mirror

would be very small, producing a central obscuration of about

0.25 percent. Third, the secondary structure of the telescope would be

of low emissivity. Fourth, the mirrors would be protected from dust,

cleaned, and re-coated frequently to maintain the low emissivity of the
mirrors. Finally, the telescope must incorporate active optics to ensure

diffraction-limited resolution at near-infrared wavelengths. Coupled

Resolved IRTF infrared Image of

Jupiter's satellite Io. This image at

a wavelength of 3 micrometers
shows both reflected solar radiation

from the full disk and bright thermal
emission from the active volcanic

hot spot called Loki. Resolution of

the image is about 0.3 arcsec.

Reprinted by permission from
J.R. Spencer (Univ. Hawaii).

with state-of-the-art infrared instrumentation, this telescope would be the premier infrared telescope in the world.

Significant studies that could be undertaken with this telescope include:

• Studies of the disks of young stars. With the 30 to 70 milliarcsec spatial resolution that is possible

with diffraction-limited imaging at 1 to 2.2 lam, it is possible to obtain imaging at 5 to 10 AU on the
nearest molecular clouds.

• Imaging of small bodies near bright planets. With an 8-meter telescope and advanced infrared imaging
techniques, virtually all of the satellites discovered by Voyager could be routinely observed from Earth.

• Sensitivity to detection of faint planetary objects. A very deep survey of the composition, size,

rotational periods, and density distribution of primitive objects could be undertaken with an 8-meter

telescope.

• High spectral resolution observations. An 8-meter telescope provides sufficient aperture to carry out

high spectral-resolution observations efficiently.



PLANETARY ASTRONOMY X-] 7

• Stellar occultation observations. With an 8-meter infrared telescope, the frequency of potentially

observable occultation events becomes great enough that events can be chosen on the basis of systematic

physical studies of atmospheres and ring systems.
• Detecting hot young super-planets, larger than Jupiter, around stars out to a distance of several hundred

light years.

This telescope will also provide important support to NASA's CRAF mission, which will reach Comet Kopff

in July 2000. It should be able to detect thermal radiation from the comet nucleus (nominally a few kilometer in
diameter), near aphelion, therebypermitting a determination of its diameter in time to aid planning of spacecraft

observing sequences. Additional observations of other Jupiter-family comets will help in extending results from this

mission to a broader population of perhaps similar objects.
Studies of infrared-optimized telescopes are currently underway. One option is to optimize for infrared work one

or more of the two 8-meter telescopes planned to be constructed by the National Optical Astronomy Observatories

with support from the NSF. An alternative is to consider an 8-meter-class telescope as a possible replacement for

the NASA-supported 3-meter infrared telescope (IRTF) built on Mauna Kea in the 1970's.

Arecibo Radar Facility Upgrade

Radar observations have yielded a wealth of new information about the physical properties of satellites, comets,

asteroids, and the surfaces of the terrestrial planets. The most powerful radar facility in the world is the Arecibo

radio-radar telescope in Puerto Rico, which is part of the National Astronomy and Ionosphere Center, operated by

Cornell University under contract with the NSF. The instrument consists of a 305-meter-diameter fixed reflector, the
surface of which is a section of a 265-meter-radius sphere. Movable line feeds suspended from a triangular platform

some 130 m above the reflector correct for spherical aberration and can be aimed toward various positions on the

reflector, enabling the telescope to point up to 20 degrees from the zenith. NASA support in the mid-1970's made

possible the installation of the 2380-megahertz (13-centimeter) radar system, and annual support from NASA since

then has proven essential to the continued operation of this unique facility. As a national center, Arecibo is

accessible to the entire scientific community.

A recent proposal to NASA and the NSF for upgrading the Arecibo telescope calls for: 1) constructing a

ground screen around the periphery of the dish; 2) replacing the higher frequency line feeds with a much more

efficient Gregorian sub-reflector configuration; 3) doubling the output power of the 13-centimeter transmitter; and,
4) installing a f'me-guidance pointing system. These upgrades will increase the instrument's average radar sensitivity

by a factor of 20, more than doubling its range and reducing by nearly an order of magnitude the diameter of the

smallest object detectable at any given distance. The quality, in terms of signal-to-noise ratio and/or spatial

resolution, of all measurements performed routinely today would jump by more than an order of magnitude.

The impact of an upgraded Arecibo on planetary science will be fundamental and far-reaching, especially for
studies of small bodies and planetary satellites. During its first decade of operation, the instrument will provide high

resolution images of about 30 near-Earth asteroids and 100 main belt asteroids. Currently, Arecibo can barely skim

the inner edge of the main asteroid belt, but an upgraded instrument will have access to asteroids throughout the belt.

Short-period comets, which generally lie at the edge of the current detectability window, will become easy targets,

letting us determine their nuclear characteristics and check for the presence of large-particle clouds. The asteroid

flyby target of NASA's CRAF mission (Hamburga) will be accessible during its November 1993 apparition, when

radar data can improve the orbit determination. A better orbit for Hamburga will be essential for ensuring maximum

return from the 1997 spacecraft flyby, which otherwise will risk losing many of its close-up photographs due to

pointing uncertainties. Similarly, asteroid Maja, targeted for a Cassini flyby in 1997, will be accessible to the

upgraded Arecibo facility in February 1994.
Radar investigations of natural satellites will reap enormous benefits, especially for Io and Titan, whose near-

surface physical properties and centimeter to kilometer structural properties will be readily discernible. The regoliths

of the icy Galilean satellites could be probed to depths of 100 m or more and studied on a global scale, and the

subsurfaces of Phobos and Deimos could be compared in detail. Iapetus will be detectable, and radar measurements

could elucidate near-surface morphology and the disparate hemispheres of this unusual object.

Most elements of the Arecibo upgrade have been approved by NASA and the NSF. Barring unforeseen

difficulties, the new capability should be fully in place by 1994.
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Astrometric Telescope for Planet Detection

Doppler spectroscopy, which can be used to measure extremely small motions of stars in response to unseen
orbiting companions, is a powerful technique for the detection of other planetary systems. The level of precision

already achieved (10 m/s) opens an important segment of the phase space that might be occupied by other planetary

systems; namely, those consisting of compact planetary systems accompanying low-mass stars. Present doppler
spectroscopic observing programs, if extended to a sample of 100 or more G and K dwarfs and continued for a decade,

should provide a definitive determination of whether such stars have compact planetary systems that include objects

of jovian mass. Such a study constitutes an essential part of _e systematicsearch for other p_lanetary systems.

Arecibo radar images of the Earth-approaching asteroid 1989PB. The object, which is only about 400 m long, is

resolved to show what appears to be a contact binary. The upgraded Arecibo radar will be able to reach

hundreds of asteroids with this resolution. Arecibo data, courtesy of S.J. Ostro (JPL).

Astrometric searches for other planetary systems complement those carried out by doppler spectroscopy, in that

they are more sensitive to extended rather than compact planetary systems. Current ground-based astrometry, at a

precision of 2 to 4 milliarcsec, is capable of detecting a jovian-mass planet only for the nearest few dozen stars, and

only if the stellar mass is less than about 0.3 solar masses. Thus, our own planetary system remains below the
current detection threshold. However, the gains in astrometric precision that can be achieved with a dedicated modem

astrometric telescope at a site with excellent seeing should permit studies with precision as good as 500 microarcsec,
thereby bringing a wider variety of potential planetary systems within range.

Ground-based astrometry, with a dedicated telescope at an excellent site, will effectively complement the doppler

spectroscopic method and will bring within our reach another significant segment of planetary system phase space.

Such a telescope will be capable of detecting the reflex astrometric motion of G and K dwarf stars produced by

planets of jovian or saturnian masses in orbits with radii greater than about 4 AU. The periods for such orbital

motion are typically in the range of 5 to 10 years, so an extended survey is required. At least 100 stars are within

range of such an astrometric telescope with modest aperture (1 to 2 m). An additional task for an astrometric

telescope that would be important for planetary astronomy is its use for the accurate prediction of stellar occultations

by bodies subtending small angular diameters, such as Triton, Charon, and Pluto.

The construction of a modem ground-based astrometric telescope is a next step in the search for other planetary

systems. Such an instrument has been proposed to the NSF for construction on Mauna Kea. It should provide
important fundamental data (e.g. proper motion, parallax) for stars and it will serve as a test bed for future

astrometric instruments in space, as well as offering a good prospect of discovering one or more other planetary

systems. Beginning the search now from the ground is both timely and prudent. The results promise to be

exciting, and the experience will be invaluable as a precursor to the more advanced orbital facilities to follow, such

as the system described above, on page 14.
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RECOMMENDATIONS

Projects and Facilities: Prioritized Panel Recommendations

The Planetary Astronomy Panel finds that all of the projects and facilities discussed above are of the highest
scientific merit. Each of them can be implemented during the 1990's (although not in all cases be fully operational
before the end of the decade), and each will be of immense benefit to astronomers in addressing the exciting scientific
challenges outlined in this report. We have categorized each of these in terms of cost and present the following
recommendations, prioritized within each cost category. No effort has been made to prioritize one category against
another, however.

Major Space-based:

Moderate Space-based:

Small Space-based:

Major Ground-based:

1. Space Infrared Telescope Facility (SIRTF)

1. Stratospheric Observatory for Infrared Astronomy (SOFIA)
2. Search for Other Planetary Systems from Earth Orbit

1. Orbiting Planetary Telescope/Planetenteleskop (OPT/PTEL)

1. Infrared-Optimized 8-meter-Class Telescope

Moderate Ground-based: l. none

Small Ground-based: 1. Arecibo Radar Upgrade
2. Astrometric Facility for Planet Detection

Additional Recommendations

Research Support. Good science is a highly individualistic process that requires the participation of many
researchers. Programs of individual research grants should be strengthened, and for these small grants the
administrative system should impose a minimum of management or control beyond what is necessary to assure
reasonable accountability. It is essential that inflationary erosion of the NASA and NSF grants programs be reversed
and that funding levels permit new investigators to join the ranks of planetary astronomers.

Instrumentation. Progress in development of astronomical detectors and instrumentation, exemplified during the
past decade by the CCD and 2-dimensional infrared arrays, has greatly increased the power of existing telescopes and
has opened the way for spectacular advances during the 1990's. Many of the instruments built for the general
support of astronomical research are also appropriate to planetary research. But planetary astronomy also has special
requirements, for example in the need to study faint objects close to bright ones. It is important that funding be
available to construct instruments optimized for planetary observations, if the promise of new observing facilities is
to be realized.

Access to Telescopes. Planetary research often places unusual demands upon telescopes and scheduling
committees. Many planetary events of high interest, such as occultations or the observations of newly discovered
comets and asteroids, either make very specific requirement on time or are not predictable long in advance, or both.
Some observations require the coordinated efforts of many telescopes working in concert. Observatory Directors and
telescope scheduling committees are encouraged to consider these special needs and to retain sufficient flexibility to
schedule planetary observations in spite of their sometimes complex requirements.

Telescope Support. Planetary astronomy has profited greatly from the construction and operation of ground-
based facilities for planetary research, such as the IRTF in Hawaii or the planetary radar system at Arecibo. We
commend NASA for its special efforts to recognize the unique needs of planetary astronomy, and we encourage the
agency to continue to play a leading roll in the development of future facilities for planetary astronomy.

Surveys. Many important problems in planetary astronomy require a search for new objects (e.g. comets and
Earth-approaching asteroids) or the systematic observations of properties (such as spectra or thermal emission) of
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large numbers of known objects. A variety of survey programs are therefore of great potential interest to planetary
astronomers. However, these surveys must be designed so as not to exclude moving or variable targets. It is

important that planetary astronomers participate in planning future survey programs, and that these programs be

operated in such a way that important data on planetary sources are not discarded.

Interferometry. Although this report has not identified high-priority new interferometric facilities for the 1990's,
we endorse continuing research in this field. Specifically, we support upgrades of the existing millimeter arrays in

California (Hat Creek and Owens Valley), which have many research applications in planetary astronomy.

Interferometry at many wavelengths_s likely to be a central element of astronomical activity in the 2000's, and we

must lay the ground work in this decade if the promise of these facilities is to be achieved in the next.

Laboratory Studies. The interpretation of data on solar system bodies frequently requires the acquisition and

study of new laboratory data. The physical and chemical conditions in cometary comae, in planetary atmospheres,
and on planetary surfaces are often outside the range normally studied by chemists, and new laboratory studies at the

relevant temperatures, pressures, and radiation environment are needed. Major progress in understanding the

chemistry of the interstellar medium, particularly its ice and organic content, is currently being achieved; many of

these studies are directly related to the chemistry of the early solar system and those bodies which formed in it. In
addition, the chemical and mineralogical evolution of the comets, planets, and asteroids can be deciphered with

adequate laboratory data and simulations.

Access to Data. Astronomical data, often obtained with public funding, lose much of their potential value if not

archived and made available to other investigators. Along with an archive, there is need for a catalog of the archive.

We encourage efforts to apply new technology and establish uniform standards so that archiving of astronomical data
can become routine before the end of the 1990's. In the case of planetary data, such an archive can be made available

to the general community through the existing NASA-supported network of Planetary Data Centers.

Balance between NASA and the NSF. Planetary astronomy has profited by support from both agencies in

the past, and we look forward to continuing this relationship in the future. However, we encourage the two agencies
to work more closely together in coordinating their programs. The cost effective use of limited public research funds

requires that NASA and the NSF complement, but do not duplicate, each others' programs.
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