Appendix N

N92-10053055 P.19

MPD Thruster Technology Workshop

NASA H.Q., Washington D.C.

16 May 1991

543536

IRS Presentation

E. Messerschmid

Electric Propulsion and Plasma Wind Tunnel								
ÎRS	Activities at the IRS							
Activity /	MPD (Selffield)	Arcjet			Reentry (Material-Tests)		Missions. Trajectories	
Power Level Isp [km/s] Thrust [N] Propellant	100 kW-1 MW 10 - 20 5 - 20 Ar.N ₂ .H ₂ .NH ₃	1 kW 5 - 6 0.1 NH ₃ , H ₂ N ₂ -H ₂	< 20 kW < 10 > 1 N ₂ -H ₂ , H ₂	< 100 kW 10 - 15 > 10 NH ₃ . H ₂	h ₍₁₎ < 10	^A J/kg		
Theories	Flowfield Stability Arc- Attachment Erosion	Constrictor Flow Heat Transport					Traject Optimizat.	
Diagnostics	Emission Spectroscopy, el. Probes, Fabry-Perot Interferometry, Mechan. Probes. Mass Spectroscopy, Optical Temparature Measurement							
Status	Water Cooled Laboratory Devices	Radiation Cooled Lab. Model	Water Cooled Devices	Water Cooled Devices	PWK1 - IRS Operat. since 1987	PWK2 - IRS Operative	in Work	
Contractors	USAF DFG BMFT	DARA		NASA (IST)	ESA / CNES. AMD-BA, AS, SEP, DO. MBB. MAN, DLR	DARA SFB ESA, FGE		

ÎRS **IRS Facilities** High DC Power Supply: Power: ≤ 6 MW Current: ≤ 48 kA Ripple: $\leq 1 \%$ Vacuum System: Four Stage Pump System: 1) 3 MTP 50.000 m³/h roots pumps I Alcatel 120.000 m3/h roots pump 2) 1 MTP 50.000 m³/h roots pump 3) Emultiple slide valve type pump RV 500 4) Rotary vane pump BA 600 Total suction power: >200,000 m³/h at 10 Pa Tank pressure can be set Vacuum tanks: 8 tanks connected to vacuum system 6 for plasma accelerator development 2 plasma wind tunnels 2 independent test stands for smaller thrusters or basic experiments

ÎRS	History of MPD Activities at IRS
1976	Begin of Building-Up of IRS Propulsion Laboratory
1982-1991	Cooperation Grants "Basic Processes of Plasma Propulsion" from AFOSR (analytical and numerical).
1982-1991	Cooperation Grants with interruptions "MPD Thruster Development" from AFRPL, AFOSR. 1987-1988 financed by the SDIO over ONR (experimental and numerical).
1989-1991	"MPD Thruster Instabilities", contract by the German Research Organisation DFG (theoretical studies).
1990-1993	"Plasma Instabilities in MPD Thrusters", contract by the German Ministry of Research BMFT (numerical and experimental; together with MAN).

ÎRS	History of Thermal Arcjet Activities at IRS
1986-1990	"Arcjet Flow Analysis", contract by ESA/ESTEC (analytical and numerical).
1987-1990	"1 N Arcjet", sub-contract by ESA/ESTEC (experimental), main-contractor BPD, Italy.
1989-1991	"High Power Arcjet", Cooperation Grant by NASA (IST) (experimental and numerical studies).
1990-1993	"A 1 kW Hydrazine Arcjet", contract by the German Aerospace Agency DARA (together with MBB).

:

- 1.) Higher onset $(\frac{l^2}{m})$ than with nozzle type thrusters
 - ⇒ higher specific impulse possible.
- 2.) Efficiency with continuous thruster not yet measured. (Thrust balance in construction.)

3.) Lower voltage levels than with nozzle type thrusters.

4.) High current issues:

- a) heat loads to anode (~1)
- b) heat loads to cathode: can be solved by cathode geometrical configuration.

5.) High power limits:

vacuum system (high power ⇒ high massflow rates) (Not so important with selffield MPD)

DAMAGED CATHODE OF THRUSTER ZT1

SCHEVE OF THRUSTER ZT1

ORIGINAL PAGE IS OF POOR QUALITY

N-14

TYPICAL STRUCTURE OF AREA I (MELTED ZONE)

DETAIL OF THE VOID

