
Research Institute for Advanced Computer Science
NASA Ames Research Center

Modeling Reality

Peter J. Denning

27 Nov 1990

RIACS Technical Report TR-90.49

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-189881)

(Research Inst.

Science) 13 p

k

MOOELING REALITY

for Advanced Computer
CSCL O9B

N92-10307

Unclas
G3/61 0041081

https://ntrs.nasa.gov/search.jsp?R=19920001089 2020-03-17T14:47:27+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42816025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


.m, ir

f



Modeling Reality

Peter J. Denning

27 Nov 1990

RIACS Technical Report TR-90.49

NASA Cooperative Agreement Number NCC 2-387





Modeling Reality

Peter J. Denning

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report TR-90.49
27 Nov 1990

Although powerful computers have allowed complex physical and manmade hardware systems to be
modelled successfully, we have encountered persistent problems with the reliably of computer
models for systems involving human learning, human action, and human organizations. This is not
misfortune: unlike physical and manmade sytems, human systems do not operate under a fixed set of
laws -- the rules governing the actions allowable in the system can be changed without warning at
any moment and can evolve over time. That the governing laws are inherently unpredictable raises
serious questions about the reliability of models when applied to human situations. In these domains,
computers are better used, not for prediction and planning, but for aiding humans. Examples are
systems that help humans speculate about possible futures, offer advice about possible actions in a
domain, systems that gather information from the networks, and systems that track and support
work flows in organizations.

This is a prewint of the column The Science of Computing for
American Scientist 78, No. 6 (November-Dex.ember 1990).
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Why don't we have a complete plan for reforms? In order to play chess, one

must know the rules ... how to move the various pieces on the board. But it is

not possible to know the situation on the chessboard after the 15th or 25th

move.

-- Vaclav Klaus, Finance Minister, Czechoslovakia

Each day, new scientists, managers, executives, and government leaders express

concern about the safety and reliability of complex computer systems. As such systems

take charge of everything from phone calls to flights, we are all exposed to a growing

danger of man-made disasters.

Important among complex computer systems are computer models used for

simulations and predictions of phenomena in areas ranging from physics to hardware

engineering to socio-economic systems. Computer models have become an area of

concern unto themselves. Their misuse could lead governments to adopt disastrous

policies in dealing with such subjects as global warming and global economic stability.

The proliferation of computer models supporting divergent points of view--for example,

computer simulations supporting conflicting theories of global warming or nuclear

winter--can easily mislead the lay public. Models whose results depend on assumptions

about human behavior are the most likely to produce controversial results.

In early November 1990 the Association for Computing Machinery (ACM) brought

together leading scientists, business executives, and government officials to discuss

public-policy questions surrounding computer models. I will summarize the main points

about modeling made by the principal speakers at that meeting.
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Modeling Expertise

Knowledge-based systems (KBSs) are important examples of computer models. A

KBS is supposed to reproduce the decisions of an expert in a domain. KBSs have come

under firebecause tomany observersthe majorityof them have fallenshortof the

promise of competent performance (3).

John Kunz attributespartof theproblem toa design-and-testingprocess taken from

software engineering,a process thatbeginswith a formal specificationof the system's

behavior and ends with an acceptance test(9).This processcannot takeintoaccount that

the standardsforexpertperformance can shiftas a fieldchanges. Kunz argues that,to

obtainreliableK.BSs, continualtestingand improvement must be the standardapproach.

The testsmust do more than compare KBS decisionswith realsituations;they must

validatethatatalltimes the recommended actionsfulfillthepurpose of the system, that

the reasoningprocedures arevalidforthe domain, and thattherecommended actionsare

consistentlyendorsed and assessedas competent by human experts.Kunz recommends

thatthe testsincludesimple realisticcasesas wellas cases thatapply variousstressesto

the K.BS. He recommends thatsome of the testsbe retrospective(comparing KBS

decisionswith thoseof expertsinthe past)and thatsome be prospective(measuring the

performance of the KBS againstthatof expertsinrealtime) beforethe system is

deployed in the field.

KBS's are founded on the assumption thatan expertworks from a complete theory

of the domain. Once a theoryisarticulatedas a setof rulesand storedina database,the

superior power of the computer can draw inferences much faster than the expert. That

this has not been accomplished cannot be blamed on a lack of computing power,

memory, research effort, or cooperation of experts. An explanation gaining credence is

that experts themselves do not work from complete theories, and much of their expertise

cannot be articulated in language. The advocates of neural networks claim they have

found a way to overcome the inability to articulate expertise. Neural networks mimic the

biological structure of the brain and therefore the expert's approach to gathering and

organizing information; once the networks have been trained, their advocates say, they

will be able to acquire the knowledge experts have that cannot be articulated as rules.
For this reason, neural networks have been offered as a model that differs from the

traditional approach of mathematical modeling.

At the ACM meeting Jay Forrester argued that all human decisions are taken with

respect to (possibly subconscious) mental models, and that computers should be used to

augment human mental-modeling powers (6). He is interested in models that make

predictions about the future behavior of large organizations and societies. He maintains

that human beings are notoriously inept at understanding the dynamics of systems that

contain feedback control loops. Feedback loops, which are familiar features of

mechanical systems and biological organisms, also permeate organizations and social

systems. The modeling approach Forrester calls system dynamics is aimed at giving us a

tool to aid in understanding the operation of systems for which we have only a static

description. He claims that many organizati0ns canbe Successfully modeled because the

members of the organization follow policies that are either explicit or are part of their

habitual behavior; hence they can be stated as precise static ruIes that can be embodied as

interacting functions in the model. Forrester has a good deal of optimism that socio-

economic systems can ultimately be modeled and that system dynamics is a powerful
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general approach.

Limits of Modeling

Smart Dreyfus, a long-time advocate of modeling and critic of expert systems, is

concerned that we understand the limits of modeling so that our claims about models can

be well grounded (4). He argues that in most socio-economic domains, neither

conventional mathematical modeling (including rule-based artificial intelligence) nor

neural-network modeling are as trustworthy as the judgments of impartial, experienced

experts. He calls the actions of experts in a domain a form of "skillful coping," about
which there are four extant theories: 1) Expert behavior is an unconscious application of

a conventional model. 2) It is uninterpretable neuronal and biochemical activity. 3) It is

a process of recalling memories that match the current situation. 4) It is uninterpretable

brain activity evolved from a domain theory learned during an initial formal encounter

with the domain through some teacher.

Dreyfus says that Forrester bases system dynamics on the first theory, whereas

Dreyfus himself finds the fourth theory much more credible and consistent with evidence

about skillful coping. He concludes that computers that provide facts and suggest

decisions can improve the judgment of experienced people. In the hands of

inexperienced people, however, such computers may actually degrade coping skill.

Education that equates expertise with models can inhibit the development of good

judgment.

Steve Kline draws a sharp distinction between physical systems and systems that

include human beings (8). He uses a simple complexity index to demonstrate the

qualitative differences between these two kinds of systems. His measure counts the

number of variables, parameters and feedback loops in the system being modeled.

Physical systems modeled by differential equations (e.g., fluid flows) have low model

complexity (on the order of 101 ) and may have high computational complexity.

Hardware systems (e.g., airplanes and computer networks) have moderate model

complexity (on the order of 10 6) and moderate to high computational compexity. But

models for "human systems"--brains, personalities, organizations, economies and

societies--all have extremely high model compexity (on the order of 1013 and beyond).

In Kline's analysis physical systems and hardware systems have three

characteristics that lead to low model complexity: they operate under invariant rules,

their parts are context-independent, and they are not self-observing. In contrast, human

systems have changing rules and are context-dependent and self-observing. The key

distinguishing factor is that major jumps in complexity arise when the "rules of the

game" (the governing laws) can change or evolve unpredictably. This has important

implications for models of human systems. They must be created by ongoing

development rather than prior analysis. They cannot be used reliably for prediction;

instead they must supplement and augment, but not replace, human judgment. Kline

ends up questioning the "science-based" approach to modeling these systems, an

approach rooted in the Newtonian (mechanistic) tradition, which assumes that all of the

universe is governed by fixed laws.
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Eleanor Wynn continues the skepticism toward computer models of human

activities by questioning whether the perspective of information processing itself is

sufficient to understand human systems (IS). Noting the widespread agreement that we

do not know how to design complex software systems that arc dependable, she observes

that most of the discussion about software occurs within the paradigm of software

engineering that begins with a formal specification and ends with an acceptance test. She

argues that this paradigm completely misses how good designs are made because it is

context-independent and cannot take into account the perspectives of users. She calls

attention to the Scandinavian paradigm of user-centered design, which has already

yielded consistently effective designs. A new paradigm for design will not be easy to

establish, she says, because it is closely related to the ideology of "scientific

management", which regards jobs as optimized formal descriptions of responsibilities,

human beings as resources that do jobs, and competitors as belligerent organizations.

Description, Computation, Prediction

These authors share the conclusions that models involving human behavior are

unavoidably complex, that such models may not work except in limited cases, and that

even then they will be made to work by ongoing development rather than by prior

analysis. They suggest that one's trust in the reliability of such models depends on one's

assumptions about how biological organisms and societies learn and act. But they

diverge on this claim: Models can produce greater understanding of complex human

phenomena, lead us to wise decisions and guide us to effective actions. Forrester is

op_stic about this claim. Kunz implicitly accepts it in the domain of knowledge-based

systems. But Dreyfus, Wynn, and Kline express serious doubts. The divergence of

views on this important question is at the heart of the question of computer modeling of
human realities.

In what follows Ioffermy own analysisof thisclaim,and Isuggest ways that

computers can assistus effectivelyinthe domain of human actions.

What isa model? We usuallyunderstand a model tobe a symbolic representation

of a setof objects,theirrelationshipsand theirallowablemotions (]4). We use models

in threeprincipalways:

Description. We sometimes use a model to describehow a system works. The

formalityof the descriptionsharpens understanding;thedescriptioncan be shared

with othersto achieve a shared understanding.Examples arca blueprint,a scale

model of a railroad,theequationsof motion of a planet,the scientificmethod, and

the software-designprocess.

Computation. Wc sometimes use a model to guidc,toreproduce or tocalculate

actioninthe domain. Examples arc followingdirectionsfrom an incmal guidance

system (guiding),a flightsimulator(reproducing)or computing a mcasurcmcnt

(calculating).

Prediction_ We sometimes use a model to predict the future state of a system with

tolerable certainty. Examples are models that predict the lift of a wing in flight, the
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position of a star, or the future state of the weather or the world economy. A model

is useful for prediction only if the future state can be calculated much more rapidly

than in real time and its users agree that the assumptions about parameter values and

governing laws will hold at the future time.

These three aspects are hierarchical in the sense that prediction relies on a model to

compute a future state given future values of parameters, and computation relies on a

precise description of the allowable motions of a system.

Models are of universal interest because of our unavoidable concern to anticipate

and prepare for future action, and because they make the world seem simpler and more

understandable. Description, computation and prediction are three ways in which we

accomplish this. The case of a map illustrates. We can use a map to achieve an

understanding of the layout of a city and to discuss possible tours with others

(description). We can use a map to navigate through the city to a destination

(computation). Or we can use a map to estimate how long it will take to reach a

destination (prediction). And the aphorism, "The map is not the territory," reminds us

not to confuse models with reality.

Reliability and Complexity

What is reliability in modeling? A model is reliable if we find that it recurrently

agrees with phenomena in the domain modeled. A model with many parameters is

unlikely to be judged reliable because it is infeasible to explore the parameter space

completely during testing and because the model's calculations may be sensitive to small

changes in an unknown few of the parameters. A model is also unlikely to be judged

reliable if we have not found a set of variables sufficient to describe the phenomenon of

interest.

The more sophisticated predictive models provide indicators of the certainty of the

prediction. These measures take the form of confidence intervals associated with

numerical values or probabilities associated with states. If not interpreted properly, these

measures can give a false sense of security about the reliability of the model--everyone

has had experiences in which we were certain of an outcome that never happened. Some

modelers say that these measures allow comparisons: a model with smaller confidence

intervals than another would be judged as the more powerful. It is important to ask

whether the model does significantly better than random guesses. Even if it does, it need

not be reliable because the uncertainty in its predictions may be too great.

The assessment of reliability is important in science and technology, where we seek

to exploit recurrent phenomena. There are, however, important situations in which

reliability is not an appropriate standard for assessment of a model. Forrester's system

dynamics, for example, is a form of modeling aimed at supporting human beings in

grounding their speculations about the fate of systems in which the actors follow

unchanging rules.

What is complexity? Complexity is an assessment we make about our capacity to

accurately describe, compute or predict phenomena in a domain. This assessment is
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related to the number of variables, parameters and loops that exist in a system: for the

greater those numbers, the greater our uncertainty about how the system works and the
lower our capacity to describe, simulate or predict it accurately.

Note that chaotic behavior in the sense recently understood as "mathematical chaos"
is not judged as complex by this standard (5). Such behavior can be described by simple
equations, and its future trajectory can be calculated by iteration. These mathematical

tools and powerful computers now allow us to calculate in excellent detail phenomena
that we used to call complex--examples include cloud formation, leaf structure and
turbulence. Present computers are not fast enough for prediction--for example, recent

joint studies of turbulence by investiagtors at Stanford and the NASA Ames Research
Center took six months of time on a Cray Y-MP supereomputer for each case. On the
other hand, chaotic functions do not necessarily provide reliable models because the
future states can sometimes be very sensitive to the initial condition, about which there is

often great uncertainty.

It is worth noting that we can make separate assessments of complexity about a
model and about the domain modeled. This is because the model is itself a system that

has variables, parameters and loops. It is possible to offer a simple model for a complex
domain, although we would be surprised if the model were reliable in this case. It is

common to see complex models for simple domains. Our ideal is a simple model that
reliably and rapidly reproduces the selected phenomena of the domain.

Meta-modeling

In an effort to understand where the complexity of models originates and how

approximations arise, some modelers have modeled the modeling process itself.
Agrawal's book is an example (1). If you will permit me some light mathematics, I can
show you how the modeling process itself introduces complexities that are often
overlooked.

One can regard the construction of a model as a series of steps, each of which
wansforms a model into a simpler model by introducing a simplifying assumption. Let
us focus on one of these steps. Suppose we have a model M with parameters P and one
variable x. The model can be used to calculate a value of its variable by an algorithm

x = M (P). Suppose now we seek a faster algorithm by introducing a simplifying
assumption A that maps the values of the original parameters and variable into the new
parameters P' of M': P' = A (P ,x). The new model can now be used to calculate a value
for the variable: x - M'(P ') = M'(P ,x )). Notice that the calculation is of the form: x =

F (x). The predicted value of the variable is now the fixed point of a nonlinear function.
If the value ofx is initially unknown, an iteration must be employed to find a convergent
value, and the total computation time is not simply one application of the simpler model.

Some of the fixed points of the function may be stable and others unstable, meaning that

the final value may depend on the initial condition. Moreover, the time to convergence
becomes an issue, and there is a possibility ofchaotic behavior (in the mathematical

sense) in the iteration. This situation gets worse when several variables of the original

model participate in the simplifying assumptions.
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The conclusion is that "simplifying assumptions" can introduce rather than resolve

computational complexities, a possibility that looms larger for systems with many
variables and for models with many simplifications. This means that an assessment of

reliability may be extremely difficult to make for models that contain many simplifying

assumptions. And, as Wynn points out, it is easy for us to ignore these complexities by

pursuading ourselves that the model is real or that the simplifying assumptions are of no

consequence.

Meta-assessments

In addition to assessments of reliability and complexity, we often make a third kind

of assessment--a recta-assessment--about whether a model's complexity or degree of

reliability is "good" or "bad." I bring this up because in many discussions about

modeling complex systems, I hear a background of frustration that the systems to be
modeled, and thus the models themselves, are complex. It is "bad" that things are

complex and a challenge to our ingenuity to find a reliable and computable model

anyway. If we have such a meta-assessment, it will be extremely difficult to conclude

that some systems are not worth an attempt at modeling. For example, many people

accept that a major responsibility of government is to "plan" the economy, and thus it is

necessary to have reliable models that will allow prediction of future states of the

economy resulting from various policies, so that we can determine now which policies to

enact. We seek a scientific approach to governance. In this context the absence of a

reliable model of the world economy is "bad" and is sufficient to motivate the

expenditure of millions of dollars in pursuit of computer models of the world's economy.

We do not always judge that complexity is "bad." We live in an unimaginably

complex world of five billion people, each engaged in a network of conversations with

others. Declarations made in distant parts of this network can affect the possibilities

open to us even though we are not part of the conversation leading to the decision. (The
Iraqi takeover of Kuwait is a good recent example.) Most of us simply accept that the

world network of human conversations is highly complex and unpredictable, that the

roles of the game may be altered without warning at any time, and that the roles will

surely evolve. Our strategy in this case is not to find models whose predictions can guide

our actions; it is rather to create organizations and use their power to effect action.

Successful organizations do not rely on computer models; they develop strategies to

position themselves in the world marketplace. Entrepreneurs such as Tom Peters thrive

in this environment of complexity and uncertainty--they assess complexity as "good"

(12).

Another category of meta-assessments are those people make of the future as they

carry out their work in organizations and social systems. We call these assessments

"moods." Not only do individuals have moods, so do organizations and social units.

Organizations with good moods (high morale) generally do better than those with bad

moods, and one of the jobs of managers and executives is to generate good moods in

their organizations (12). A country can enter a depression if enough people get into a

mood of pessimism in which they hoard their money. The phenomenon of moods is very
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important to the success of organizations. Our inability to predict moods adds to the

complexities we face in making predictions about organizations and social systems.

Evolving Rules

Systems with many human participants may be so subject to changes of rules that

their future lrajectories cannot even be described as computable functions, much less

predicted. It is often difficult or impossible to determine the variables that affect the

phenomenon, even when we have many eases available for study--understanding human

personalities or the collapse of complex societies (13) are examples.

What drives us to seek models in the face of evidence that reliable computable

models may not exist? We have all been brought up in a scientific world view,

conditioned by 300 years of successful physics modeling, dating from the time of

Newton, which inclines us to believe that all the world's a mechanism, a clock that GOd

created and left ticking. We tend to interpret the historical record as a demonstration that

the world became a better place with the introduction of the rigor of science. We tend to

believe that everything, including the human brain, the human personality, and human

social systems, can in principle be modeled by a set of equations. Given enough research

we can find the equations, and given enough computer resources we can solve them

(2,11).

Our scientific tradition has a darker side. It views the world, including people, as a

collection of resources to be acquired, used, optimized and discarded when no longer
needed. It views situations, including those that involve the human condition, as

"problems" for which technological and procedural "solutions" are to be found; unable to
admit that some problems may be insoluble, this discourse labels such problems as

"intractable" but ultimately solvable given sufficient knowledge and resources. We need

to ask ourselves whether our drive to model human complexities might not be an
overextension of science, and whether our drive to use scientific models to solve world

problems might not reflect the hubris of science. We need to ask ourselves whether some

of the models of complex phenomena we seek to construct would gain us anything if we
could find them.

At bottom, a model is nothing more than an interpretation of the world. The

invention of interpretations is a fundamentally human activity that is intimately involved

with our understanding of truth. As scientists, we like to say that scientific laws and

mathematical theorems already exist awaiting discovery. But if we carefully examine the

processes of science, we find paradigms other than discovery. Roald Hoffmann says that
the creation of new substances not found in nature is the dominant activity of disciplines

such as chemistry and molecular biology (7). Bruno Latour goes farther, observing that

in practice a statement is accepted as true by a community if no one has been able to

produce evidence or an argument that persuades others to dissent (10). Science is a

process of constructing facts, and different scientific communities can construct different

systems of interpretation of the same physical phenomena. Western and Eastern

medicine, for example, are two scientifically valid systems of interpretation about disease

and human disorders; each recommends different interventions for the same symptoms
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and sees phenomena that are invisible to the other, and their interpretations are not easily

reconciled.

Productive Uses of Computers

Several conclusions emerge from the discussion above:

• As part of our modeling efforts we must come to understand the domains over

which a given model is reliable, partly reliable and unreliable. We must also
understand the situations in which models can be useful as a way of grounding

speculations about the future dynamics of systems.

• Systems whose rules can evolve or change in unpredictable ways are unlikely to

have a reliable predictive or speculative model.

• We must be careful with the output of models, being constantly skeptical that those

outputs are "facts" or are accurate descriptions of the world.

• In our technological age, it is easy to accept the claim that every phenomenon can

ultimately be modeled, given sufficient knowledge and computational resources.
There is reason to doubt this faith.

• If our mood makes us disinclined to acceptance complexity, it is easy to substitute

the model for reality and to confuse our opinions with "scientific facts" supported by
the model.

In spite of my questions and doubts, I accept that in limited domains we may be

able to find reliable predictive models of systems in which human beings participate. At

this point, however, we have no consensus on where the limits are.

If we cannot model human systems, what can we do with computers? We can use

them to augment human capacities, especially in those areas where we are limited,

notably in processing power and in memory. We can use KBSs as advisors to suggest
actions based on analysis of past situations, and let the current decision taken by the

human being become another data point for future analysis. We can use the worldwide

network of computers to gather information about what is going on in the realms of

interest to our organizations. We can use computers to help manage and track the flow of

work and information. We can confine models to domains in which their predictive

power can be used reliably, namely domains in which the rules are known in advance. In

all cases, however, we must let the computer support the decision-maker, and not let the

computer make the decisions.
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