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1 Introduction

In a previous paper [5] we have proposed several basic methods based upon the idea of employing a
Newton iteration in which the Jacobian equations are solvect approximately by a Kryiov subspace

method. Several theoretical issues raised in [5] were left unanswered. The purpose of this paper is

to fill this gap by laying down the theoretical foundation of nonlinear Krylov subspace methods and

by providing convergence results for them. In fact we will not limit ourselves to Krylov subspace

methods. Rather, we discuss inexact Newton methods based on general projection techniques.

When defining algorithms for solving nonlinear systems of equations there are two possible

options. First, one can use one of the globally convergent modifications of Newton's iteration [11].

The linear systems that arise in the course of the Newton iteration can be solved by either a direct

solver or they may be solved approximately by an iterative method. The class of methods based on

the latter approach is a particular case of inezact Newton methods and several such methods were

considered in [i, 3, 4, 5]. Newton's method is essentially a linearization procedure. The mapping

F is locally approximated by a linear function and the resulting linear equations are solved to yield

the next point. The second approach to solving nonlinear equations does not rely on ]Jnearization.

Thus, fixed point iterations are inherently nonlinear as are descent methods with accurate llne

searches. Another we11-known example is that of the nonlinear conjugate gradient iteration.

We restrict our attention here to the first approach. In particular, we use linear Krylov methods

to solve approximately the Newton equations. The Krylov methods considered are Arnoldi's Method

[24], and the Generalized Minimum Residual Method (GMRES) [25]. In general, these methods have

the virtue of requiring virtually no matrix storage, and as such have a distinct advantage over direct

methods.

To be more specific, consider finding a solution u. of the nonlinear system of equations

F(u)=O, (1.1)

where F is a nonlinear function from tt N to R N. Newton's method applied to (1.1) results in the

iteration

1. Set u0 --- an initial guess.

2. For n = 0, 1, 2,... until convergence do:

Solve J(un)Sn =-F(un), (1.2)

Set u,,+l = u_ + 6,_,

where Y(ur,) = F'(un) is the system Jacobian. For the problems under consideration, N is large,

and as a result the so-called inezact Newton methods [9] solve (1.2) only approximately.

One of the main advantages of the Krylov methods is that only the action of the Jacobian

matrix J times a vector v is required, not J explicitly. In the current setting, this action can be

well approximated by a difference quotient of the form

F(u+_rv)-F(u)
S(u)v

O"

where u is an approximation to a solution of (1.1), and a is a scalar. Here, we will address the

convergence behavior of the above algorithms when combined with a global linesearch backtracking
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strategy or model trust region approach. We should emphasize that our convergence results are not

restricted to the use of Krylov subspace methods when solving (1.2). Our theory is formulated in

terms of projection techniques wherein the approximation to the linear system (1.2) is taken from

a small dimensional subspace.

Inexact Newton algorithms have been studied by several authors in recent years, see for example

the references in [1] and the recent report [6]. Several authors have considered using Krylov methods

inside a Newton iteration in the context of systems of ordinary differential equations [3, 4, 7, 14].

Stei]aaug [27] and O'Leary [20] have used the Conjugate Gradient (CG) method in the unconstrained

optimization of a real-valued function of several variables. Nash [18, 19] has also used a Newton-CG

algorithm in unconstrained optimization. Wigton et al. [29], and more recently Kerkhoven and

Sv.ad [16] have accelerated nonlinear fixed point iterations of the form u_+l = M(un) by applying

this approach to solving the nonlinear system of equations u- M(u) = 0. Note that as was observed

by Chan and Jackson [7], the new system of equations u- M(u) = 0 can be viewed as a nonlinearly

preconditioned version of the original system of equations.

In Section 2, we review inexact Newton algorithms, and present versions of the Newton-Aruoldi

and Newton-GMtLES methods. In Section 3 we give a convergence theory for inexact Newton

methods when combined with a linesearch backtracking global strategy, and then in Section 4

we present a convergence theory for inexact Newton methods combined with model trust region

strategies. In Section 5, we discuss applications of the basic results in the previous two sections to

the Newton-Krylov methods, and then make some concluding remarks in Section 6.



2 Newton-Krylov methods

In this section we review some of the basic ideas of inezact Newton methods and Newton-KryIov

algorithms. We begin with a discussion of the relevant results from Dembo, Eisenstat and Steihaug

[9] on inexact Newton methods, and then present the two inexact Newton methods we considered

in [5], namely the Newton-Arnoldi and Newton-GMRES methods. Note that a Newton-Krylov

method is one example of an inexact Newton algorithm.

2.1 Inexact Newton methods

From [9], an inexact Newton method for (1.1) has the following general form:

1. Choose u0 an initial guess for u..

2. For n = 0, 1,... until convergence, do:

• Choose _b,E [O,I).

• Find (insome unspecifiedmanner) a vector5n satisfying

J(u,_)Sn = -F(u,_) + rn, with IIr-[I
IIf(u,)ll

< _. (2.1)

• Set un+l = un + 6n.

The residualrn representsthe amount by which 5n failsto satisfythe Newton equation (1.2).Itis

not generallyknown in advance,being the resultof some inner algorithm which produces only an

approximate solutionto (1.2)(e.g.,an iterativemethod). The forcingsequence 7/nE (0,1) isused

tocontrolthelevdofacc_acy.Also,II"[IrepresentsanynormonRN.
We willmake the followingassumptions on F:

There exists a u, E R N with F(u.) = O.
F is C 1 in a neighborhood of u..

SCu,) : f'Cu,) is nonsing_.
(2.2)

The next theorem is shown in [9]:

Theorem 2.1 Assume that F satisfies (2.2), and that TI,_< rlm,,x < t < 1. There ezists e > 0 such

that if Iluo-u, ll____, then the sequence of inezact newton iterates {u,.,} converges to u,. Moreover,

the convergence is linear in the sense that

II_+x - u.ll. <__tll_ - u.tl.,

where IIYII._ [[S(u.)ull. If in addition,
rb_ --* O, (2.3)

then the sequence {un} converges to u. superlinearly. Also, if F t is Lipschitz continuous near u,

and 7. = O(llf(u.)ll), then the convergenceis quadratic.
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In the abovetheorem,[[- ]l again represents any norm on R N.

For the case when N is large, a 6,_ satisfying the residual condition (2.1) is often obtained

by using an iterative procedure for the linear system. In [5], we considered using the Arnoldi and

GMltES algorithms for nonsymmetric linear systems to obtain 6n's satisfying the residual condition

(2.1). For the convergence theory presented in this paper, the actual method which produces a 6,,

satisfying (2.1) will be left unspecified. All that will be required is the existence of such a 6n. This

is easily guaranteed by assuming that Jn is nonsingular for all n.

2.2 Newton-Arnoldi and Newton-GMRES

At each iteration of the inexact Newton algorithm, we must obtain an approximate solution of the

linear system (1.2) which we rewrite as
J6 = -F, (2.4)

where F and its Jacobian J are evaluated at the current iterate. If 6(0) is an initial guess for the

true solution of (2.4), then letting 6 = 5(o) + z, we have the equivalent system

yz = d °), (2.5)

where r (°) : -F - J6 (°) is the initial residual. For a general N x N matrix A and vector v, define

the Krylov subpsace K(A, v, m) by

K(A,v,m) = span{v, Av,..',Am-lv}.

Let K m denote

K TM =_K(J, r (°), m).

Arnoldi's method and GMRES both find an approximate solution

6(m) = 6(0) + z (m), with z (m) E K m,

such that either

(-F- J6 ('_)) _1_K '_ (equivalently (r (°) - Jz ('n)) _L K TM)

for Arnoldi's method, or

IIF+ J6( )ll, = IIF+ S611,(= mm - S II )
SE$(0)+K,,* zEK "n

(2.6)

(2.7)

for GMRES. Note that this condition is equivalent to demanding that the residual r('_) = -F -

J6(m) be orthogonal to JK m. Here, []. ]12denotes the Euclidean norm on R N and orthogonality is

meant in the usual Euclidean sense.

The following algorithm is a nonlinear version of the Arnoldi (GMRES) algorithm, which at

every outer iteration generates an orthonormal system of vectors v_ (i = 1, 2,..., m) of the subspace

K TM and then builds the vector 6(m) that satisfies (2.6) (or (2.7) for GMRES). In both algorithms,

vl is obtained by normalizing r(°).
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Algorithm : Newton-Arnoldi (Newton-GMRES)

1. Start: Choose u0 and compute F(uo). Set n = 0. Choose a tolerance Co.

2. Arnoldi process:

• For an initial guess 5(°), form r(°) = -F - J6 (°), where F -- F(u,) and J = J(u,).

• Compute/3 = [lr(°)[12 and vl = r(°)/fl.

• For j = 1, 2,..., do:

(a) Form Jvy and orthogonalize it against the previous Vl,..., vj via

= i = 1,2,...,j,
J

(2.8)
i=1

: II j+ ll=, and

Vj+I "- _+l/hj+l,j.

(b) Compute the residual norm py = IIF+ J6(J>ll,,of the solution 6(j) that would be

obtained if we stopped at this step.

(c) If pj <_ _,_ set m = j and go to (3).

3. Form the approzimate solution:

Arnoldi: Define H,_ to be the m x m (Hessenberg) matrix whose (possibly) nonzero entries

are the coefficients hlj, 1 < i < j, 1 _< j <__m and define V,, - [vt, v2,'", v,,].

• Find the vector y,, which solves the linear system Hmy = fie1, where el = [1, 0,-.., 0] T.

• Compute 6(m) = 6(0) + z (m), where z ('_) = V,_y_,, and Un+l = un + 6(").

GMR, ES: Define/t._ to be the (rn + 1) x m (Hessenberg) matrix whose nonzero entries are

the coefficients hiy, 1 < i < j + 1, 1 <_ 3"_< m and define V,n = ['Ol,t)2," "',t_m].

• Find the vector y,,_ which minimizes [)/3et -  r yll,, where el = [1, 0,..., 0]T, over all

vectors y in K '_.

• Compute 5('_) = 5(°) + z('_) where z(m) = Vmy,,_, and u,_+l = u,_ + 5('_).

4. Stopping test: If U,+l is determined to be a good enough approximation to a root of (1.1),

then stop, else set u_ *- u,_+l , n _ n + 1, choose a new tolerance e,_, and go to (2).

Therefore, in both Arnoldi and GMRES the outer iteration is of the form u,_+l = u,, + 5(,n)

where 6('_) = 6 (0) + z('0, with

z ('_) = V,,ym,

and ym is either the solution of an m × m linear system, for A_rnoldi, or the solution of an (m + 1) × m

least squares problem for GMRES.



For simplicity, we have omitted several details of the practical implementation of the above

linear and nonlinear methods, which are discussed at length in [5], [24], [4] and [25]. For example,

the residual norm pj referred to in step 2 of the algorithms does not require the computation of
the approximate solution 6(j) at every step. Instead an inexpensive formula, which evaluates pj, is

updated at each step while the factorization of the Hessenberg matrix Hm or/_'m is updated.

An important observation that has been very useful in practice is that there is no need to

explicitly compute the Jacobian matrix J(un). This is due to the fact that the above algorithm

only requires the product of this Jacobian times a vector and this can be well approximated by the
difference formula:

F(u + av)- F(u)
J(u)v_ (2.9)

ff

In [I], Brown has given an analysis of the resulting inexact Newton/finite-difference Krylov algo-

rithms when using (2.9) to approximate J(u)v. Sul_cient conditions are given in [1] on the size

of the eels in the finite-difference versions of Arnoldi and GMB.ES which guarantee the local con-

vergence of the Newton-Krylov iteration. These results have been extended in [4] to include a

finite-difference version of the Conjugate Gradient iteration.

One final aspect worth noting is the ability to use restarting in the Iinear Krylov methods.

Typically, a maximum value of m is dictated by storage considerations. If we let rr_nax be this

value, then it is possible that m = mmax in the Arnoldi process, and yet pm is still greater than Q.

In this case, one can set 6(0) equal to 6(m) and restart the Arnoldi process, effectively restarting

the Krylov method. The convergence of such a procedure is not always guaranteed, but the idea

seems to work well in practice. We note that for lack Of a better initial guess we use 6(°) = 0 on the

first (and possibly only) pass through the Arnoldi process at each stage of the Newton iteration.

It is only when restarting that 6(°) will be nonzero. We will refer to the restarted algorithms as

Arnoldi(m) and GM-RES(m), where m is the maximum subspace dimension. As will be seen below,
it will also be important to choose the tolerance e, at each step of the Newton iteration.



3 Global convergence results for linesearch methods

We will be concerned with the convergence properties of the inexact Newton algorithms outlined in

the previous section when combined with global strategies. In this section we will analyze the global

convergence of inexact Newton algorithms when combined with Unesearch backtracking strategies.

The results given below are independent of the particular inexact Newton method used.

To begin, let f(u) -- ½1[F(u)lll. An easy calculation gives

Vf(u) = J(u)TF(u),

where J(u) = F'(u), the Jacobian matrix of F evaluated at u. Typically, convergence of a sequence

of iterates {un} is studied in terms of the scalar sequence

-=V1 T, (3.10)

where

_n _ un+l - ur, and Vfn = Vf(u,_).

When lim_--.oo e,_ = 0, the sequence u_, will converge to a solution u. under fairly mild conditions.

First, let us assume that the acute angh between &_ and the gradient Vf_, is bounded away from

a'/2, i.e., that at every step we have

cosO(Vf,,, 5.) >_ > O, (3.11)

define cos O(u, v) = _). Then from the definition of en in (3.10), the gradient Vfn(where we

will converge to zero whenever _,_ converges to zero.

We now recall the following two important results from Ortega and Rheinboldt [21], pp. 475-476.

Theorem 3.1 Let f : R N _ R be continuously differentiable on a compact subset Do C R _v

and suppose that {u_} C Do is any sequence which satisfies lim__.+_ Vf(u,) = 0. Then the set

fl = {u 6 DolV/(u) = 0} of critical points of f is not empty and,

am Ilu-  -II] = 0
n--*oo uEtl

(3.12)

In particular, if f_ consists of a single point u, then lJ.ah._._,, u_, = u, and Vf(u,) = 0.

Theorem 3.2 Let f : R" --* R be continuously differentiable on a compact subset Do C 1].17 and

suppose that the set f_ = {u E DolV f(u) = 0} of critical points off in Do is finite. Let {u,} C Do

be any sequence for which lim,,-.oo Vf(u_) = 0 and lim___,,,(u,_+l - u,) = O. Then un converges to

a certain u, in f_ and Vf(u,) = 0.

Thus, we will often attempt to establish conditions under which E,_as defined by (3.10) converges

to zero and for which (3.11) holds.

To guarantee that the current iterate will make progress towards the solution in one step of

the algorithm we must know that the inexact Newton step 5 is a descent direction for f at the

current approximation u. A descent direction p at u is one for which there exists a Ao > 0 such



that f(u + Ap) < f(u) for all )_ < A0. As is well-known, when f is differentiable this is equivalent
to the condition that

Vf(_)rp < O,

where Vf(u) = (_]?(u), • 81tu_T As noted above, Vf(u)=d(u)TF(u),andsopisadescent'', 8uN_ ]1 •

direction for f at u ff

F(u) TJ(u)p < O.

If 6 is an approximate solution of the Newton equations

J_ = -F,

with F = F(u) and J = J(u), then

FT J_ = -FT F- FT_, (3.13)

where _ - -F - J6 is the residual associated with 4. Thus, _ will be a descent direction for f at

u whenever IFT_I < FTF. In particular, if II_lJ2 < IIFII2,then _ is a descentdirection. This result

was a/so given in [5] and is restated in the following proposition.

Proposition 3.3 A su2_icient condition for p E R N to be a descent direction for f at u is that

IIF(u) + J(u)ptl2 < IIF(u)ll2. (3.14)

As was seen earlier, it is also important to be able to guarantee that the angle between the

gradient of f and the step 8, is bounded away from lr/2. The next lemma gives a lower bound for

lenl under an additional assumption on the step direction p.

Lemma 3.4 Let F : It N --* R N be continuously differentiable on R N. Let u 6 It N be given with

F(u) _ 0 and J(u) = F'(u) nonsingular. Consider p 6 R N satisfying

liE(u) + J(u)pll2 _<_llF(u)ll=,

with _ 6 (0, 1). Then

IVf(u)Tpl > 1-0
¥%yMIIVf(u)ll_ > 0, (s.15)Ilpl12 (1

where M = cond2(J(u)) and f(u) =_ ½F(u)TF(u).

Proof: For notational convenience, let F = f(u), f = f(u), Vf = Vf(u), and J = J(u) -

F'(u). Note that F # 0 implies Vf # 0. Let r be the residual associated with p so that r = F + Jp.

Then I[rll9 < r/lIFl[2 and p = -J-I(F- r). So,

vfrp = (JTF)T(-j-I(F-r))

= -FTF+ FTr.

Hence,

W fTpl IFT F -- _rr I

Ilpll_ - llJ-X(F-_)ll2
FT F - [Frrl

>
-iiJ-X(F_ 0ll,"



r/[IFH2impliesIFTr[< r/IlFl]],whichthengives

FrF -iFrrl > (1 - _)IIFII_.

IIS-ICF- 0112< IIS-1112• IIFII,+ IIJ-lrll_
< (l+,?)llS-'ll=. IIFII_. (3.1o)

Thus,
IV.frpl (1 - r/)FTF (1- ,?)IIFII_

Ilpll_ >-(1+ ,7)11j-111,.tlFt12= (1+ ,7)11S-111_

andasa result,usingthe factthat IIV/II, = IIsTFII2_ IISlI,IIFII_,weget

Iv,fTpl _> (I - r/)
IlVJlI_'IIPlI_ (1+ y)M'

where M = cond2(J). []

Condition (3.15) can also be recast as

(3.17)

(3.18)

1-7 (3.19)
cos#(Vf, p) > (1 + r})M'

At every step of the inexact Newton method, we require that a condition of the form

IIF(,,,) + S(_,,,)p,,II_< ,?,IIF(_',,)II_ (3.20)
'r/,.,< v?< 1 (3.21)

holds,and ifwe assume that the conditionnumbers Aim = cond2(J(un)) are bounded from above

by M, then (3.15)shows that

1 i - 7/ (3.22)
cos O(pn, Vf(u,_)) > M 1 + _/"

This implies that a sufficient condition to guarantee both p,_ being a descent direction and the

validity of relation (3.11) is that the residual condition (3.20)-(3.21) holds.

A simple consequence of the above lemma which will be useful in the section on trust region

techniques, is that the residual norm assumption (3.20)-(3.21) implies that the cosine Of the angle

between the gradient and the Krylov subspace is bounded from below. More specififally,

Corollary 3.5 Let F : R Iv_ R Iv be continuously differentiable on R N. Let u E R Ivbe given with

F(u) _ 0 and J(u) = F'(u) nonsingular. Consider the subspace K = span{V} where the columns

of V form an orthonormaI set of vectors, and assume that there e:cists one vector p in K satis_ing

IIF(u) + JO')PII" -< OIIFO')II_, (3.23)

with _ E (0, 1). Then

IWrV/(u)ll_ >_(l__-___llVf(_,)ll,,

where M = cond2(J(u)) and f(u) =- ½F(u)rF(u).

(3.24)

I0



Proof: Let p0 = Vyo be a vector of K that satisfies (3.23). We then have from the lemma

[V f(u)rVY°l > (ll_Ml[V f(u)l]2, (3.25)Ily0H_ -

where we have used the fact that ]lP0][2 = []Vyol[2 = Hy0H2. Using the Cauchy-Schwartz inequality,

IW(u)TV_°I > (1_--_.._ IIV/(u)ll,, (3.26)IIvTV/(u)II2 >- IlYoll_ -

which proves the result. []

3.1 Convergence of inexact Newton sequences

In this subsection we consider the case of linearly converging inexact Newton sequences. That is,

the sequence {T/n} in the inexact Newton method is only required to satisfy _/n <_ Thnax < t < 1.

SuperUnearly converging inexact Newton sequences will be examined in the following subsection.

An important condition to guarantee global convergence, is the so-called a-condition in the

Armijo and Goldstein principle [11, 21] wherein 8,, must satisfy

f(un -4-6n) < f(u,_) -k aV f(un)T_n. (3.27)

We can show the following remarkably simple result ff we require that the direction 5n solve the

linear system J(un)6 = -F(un) with a certain accuracy.

Theorem 3.6 Let f =- ½11FII_be 9iven, where F is di/yerentiabte,and a,,7 two scalars such that
0 < a < ½, 0 __ _7< 1. Assume that the iterates un are defined by u,_+t = u,_ + 5,_ where 5n satisfies

(3._7) and
IIF(u.) + J(u.)5.11_ _<_,TIIF(u.)ll_. (3.28)

_en

lim f(_r,) = O.
n--'CO0

Proof: In this proof we let J,_ - J(u,), F,_ - F(un).

expression for the gradient of f we get

From the condition (3.27) and the

f(un+l) < f(un) + av fT 6n -- f('t_) + aFT J'n6n

Writing JnSn = -Fn + rn this gives

f(_.+_)

(3.29)

< /(u.) + _F._(-F. + ,.)

= (1 - 2_).q,.,) + _Fr.,'.,

_< (1 - 2a)/(=.) + _llF.ll_ll,=ll_.

From (3.28) we have II'dl' <___IIF_II2 which yields the fonowing inequality,

f(u.+_) < (1 - 2a)l(u.) + 2a_/(u.) = [(1 - 2a) + 2a,Tl/(u.) (3.30)

Notice that the scalar in the brackets is a convex combination of 1 and 7/and is therefore always

less than one under the conditions on a and _/. The result follows immediately. []
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Notethat wehave made virtually no assumption on the function F apart from differentiability,

and so the result is very general. However, we cannot guarantee in general that one can indeed

select a vector 6,, that satisfies condition (3.27) and (3.28) at the same time, but we do know that

near a solution u, for which J(u,) is nonsingular, a sufficiently good approximation to the Newton

step will satisfy these two conditions simultaneously.

A more explicit result extending the above theorem is now shown. For this next theorem we

assume that a general backtracking strategy is used. This means that the next iterate is of the

form Un + Apn, where ion is any descent direction and A is selected by the procedure described

below. In the procedure the two parameters 0mln, 0max are sUch that 0 < 0rain _ 0max < 1, a typical

choice being 0rain = 0max = 1/2. The procedure requires another parameter e* > 0 which is used to

essentially rescale the starting step in the process in order to prevent it from from being too small

Algorithm 3.1: General Backtracking Procedure

1. Set A = max{l, e" ]Vf_u"): p'_I}.
11_112

2. If f(u_ -F Apn) <_ f(Un) + aAV f(u_)Tpn, then set An = A, and exit. Else:

3. Choose i e [0_A,/9_,A]; set A_ i. Oo to (2).

As isshown next,the sequence iswelldefinedin that under a mild conditionon the gradientof

f the procedure willdelivera nonzero An in a finitenumber of steps.Moreover, the resultingAn

can be bounded from below.

Lemma 3.7 Let f be differentiabIe and assume that its gradient is such that

[IVY(=) - VI(Y)II2 ___711= - YI[_, for all z,y e R N. (3.31)

Let a < 1 and p,_ be any descent direction. Then Algorithm 3.1 will produce an iterate un+l =

un + Anpn in a finite number of backtracking steps and An satisfies the inequality

A, llp, ll, > vf0")rP" rain{e* (1 - a)/Ymin}. (3.32)
- llp-II, ' 7

Proof: The subscript n is dropped from this proof. Using the mean value theorem we have the

equality:

f(u + Ap) =/(u) + AVy(u + 0ap)rp, (3.33)

where 0 _</9 < 1. We rewrite the above equation as

f(u q- Ap) = f(u) + AV f(u)Tp-{- A[V.f(u q- OAp)Tp -- V f(u)Tp]

"- f(_t) q-otAVf(u)Tp q- A[(1-- _)V f(u)Tp q- (V f(zLq-8Ap)Tp- V/(_t)Tp)]
= f(u) q-aAVf(u)Tp+ A[(1- a)Vf(u)rp+ AIIP-II'¢], (3.34)

where forconveniencewe have set

__=
V f(_ q- O_p)Tp- V f(u)Tp

Xtlpll,
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Note that from the assumptionswehave

P
I¢I = I(vf( ,_ + 8_p)- Vf(,o)r ,.--r_-. I _< "tOIIPlI2_< "YIIPlI_"

AIIPII2
(3.35)

If the test in step 2 is passed at the first step, then the first _ is accepted and, in this situation,

the inequality (3.32) is trivially satisfied. If the test in step 2 fails for the first step, then _ is

reduced according to the rule in step 3. Moreover, after a finite number of reductions, the term

in brackets in the right-hand-side of (3.34) will become negative and the corresponding _ will be

accepted. This will occur as soon as A7HPI[] < -(1 - a)Vf(u)Tp. The first A which is accepted

will be such that

_0== (1 - a) Vf(u)rp_[IPI[2 >

and the inequality (3.32) is again satisfied. []

We note that the usual/3 condition of Armijo and Goldstein also guarantees that a lower bound

on )_ similar to (3.32) is satisfied. Indeed, the relation (3.34) is still valid with a replaced by 8.

Moreover, the _ condition:

fCu + _p) _> f(_,) + _Vf(u)rp

implies that

(1 -/_)Vf(un)Tpn + _,_llp.ll,¢ o.

With the inequality (3.35) this immediately yields

 .llp.l12 > (1 -/3)Vf(un)Tp. (3.36)
- "fliP-112 "

Both (3.32) and (3.36) imply that the step length from u, is bounded from below with respect to

V.f(u,,)TP, / IIP,,I[,.
We emphasize the importance of the initial )_ in the procedure. There is no reason why one

should always start the process with )_ = 1 since IIP,_I]2can be arbitrarily small. As was explained

before the choice of the initial _ in step 1 is essentially equivalent to a rescaling of the vector p,.

If we always start with :k : 1 and pn happens to be very small at every step then the test in step

2 may be passed immediately and there is a danger that 5,_ becomes too small for the iterates to

make any progress towards the solution.

Note, however, that ff Pn solves the linear system Jp = -F approximately, then we may have

additional information that will ensure that IIpnll2 is bounded from below. Indeed, the following

lemma shown by Walker, [28] is just one such result.

Lemma 3.8 Suppose that J(u)p = -F(u) + r and 11"112_ ,IIF(_)II2, with o _ _ < 1. Then,

(1 - r/) Vf(u)Tp

Ilpll= I  )HI llpll (3.37)

Proofi We have

Wf(u)Tpl = IF(u)TJ(u)pl<__IlF(u)ll211J(u)llzllpl[2. (3.38)

13



Moreover,from IIF(u)ll_= lit - J(u)p[12<_vIIF(-)II2+ IIJ(V)ll_lbll2we get

IIJ(_)ll,
IIF(_)II2<___ _-_ P 5.

(3.39)

The result follows from combining (3.38) and (3.39). []

A consequence of the above lemma isthat the backtrackingprocedure willalways startwith

A = 1 in the firststepif_*issmallenough, or to be more accurate as long as

(l-w) (3.40)

This may providefor a rationalway of choosing e* since[]J(u)l]2may oftenbe roughly estimated

in the courseof the algorithm.

We can now prove the followingtheorem.

Theorem 3.9 Let f = _tIFII_satis_ the conditions of the previous Lemma and let p,_be s,zch that
IIF,,+ .lnp,_l[2< ,TIIF,,II,for all n, with '7< i. F=_ther,let each iterate be chosen by Algorithm S.1.
Then, either

lira f(un) = 0 (3.41)
n--4oo

lira llp,_ll_= oo. (3.42)

Proof: Lettingas beforer = F(u=) + J(u_)pn, and dropping the subscriptn we have

Or

vfTp ---- FT(-F + r) <_ -][FII_(1 - ,7) - -2(1 - ri)f, (3.43)

and as a result, (with u_+z = u_ + A,_pn = u + Ap)

f(u,_+z) < f(u) + AaV fTp <_ f(u) - 2Aa(1 - rl)f(u ) = f(u)[1 - 2Aa(1 - _/)]. (3.44)

From the result of the Lemma we have

V fTp

- _lbl12< _

- min{C, (i- _)om_._}
7

where we define

(3.45)

and therefore,(3.44)becomes

/(_+_)<_f(_)[i
1

V fTP] (3.46)
+ 2a_(l- T/)_j.

Denoting by t,_the quantity Vf_pn/HpnI[_ and by c the constant 2a_:(1- _/)thisrelationcan be

rewrittenas

f(ttn+l) <_ f(u,_)[1+ ct,]. (3.47)

14



Since ](un) is bounded from below and nonincreasing, it converges to a certain limit _b. If this limit

is zero the result of the theorem holds. If it is different from zero then by dividing both members

of equation (3.47) by f(un), we see that 1 + ctn which is bounded from above by 1 and from below

by a sequence converging to 1, has 1 as its limit. Equivalently, t,_ converges to 0. Going back to

the relation (3.43) which we rewrite as 2f(u,0(1-17) _< Itn[. HP-II_, we see immediately that in this

situation we must have []P,_[]2--* oo. []

We mention that Eisenstat and Walker [12] have recently established an extension to this

result. More precisely, they show that in addition to the conclusion of the above theorem, one of

the following holds:

(i) I1 ,11 = oo

(ii) The sequence u,_ has finite limit-points, and F' is singular at each of them.

(iii) The sequence un has a limit point u. such that F(u.) : O.

We can show a result that is more explicit than that of Theorem 3.9 if we make a few additional

assumptions on J(un).

Corollary 3.10 Let f =_ ½11FIllsatisfy the conditions 4 the previous Lemma and let Pn be such

that IIF, + .7(u,,)p,,[l_ <__,711F,d12/o,, each n, with 71 < 1. Further, let each iterate be chosen by

Alyorithm 3.1, and assume that J(u_) -1 ezists and its norm is bounded from above .for all n. Then

lira f(un) = 0 (3.48)
n---_ oo

Proof: From the relation (3.16), and the fact that J(u,0 -1 is bounded from above, the norm of

the vector Pn = J(u_) -1 (F(un) -r) is bounded from above. Therefore, from the previous theorem,

we must have lhnn--.oo f(u, 0 = 0. []

The following additional results do not require the use of the backtracking procedure described

in Algorithm 3.1. They are based upon the ideas presented by Dennis and $clmabel [11]. Given the

current Newton iterate u = u, and a descent direction p, we want to take a step in the direction

of p that yields an acceptable un+x. We will define a step _ = _p to be acceptable if both of the

Goldstein-Armijo [11] conditions are met, namely

f(u + )tp) _ f(u) + ot.XVf(u)Tp, (3.49)

and

f(u + Xp) _ f(u) + 13XVf(u)Tp, (3.50)

for given scalars c_,/3 satisfying 0 < c_ </3 < 1. Again, we will refer to these two conditions as the

c_- and 13-conditions, respectively. For a given descent direction p, the next result shows that there

exist points u + _p satisfying (3.49) and (3.50).

Theorem 3.11 Let f : p_N _ R be continuously differentiable on It N with f(z) >_ 0 for all

z E R N. Letu, p E It N be such that V.f(u)Tp < 0. ThenyivenO < a < t3 < 1, there ezist

)t,_ > ,_t > 0 such that u + )tp satisfies (3.49) and (3.50) for any )_ E ()_t,)t,,).

This is essentially Theorem 6.3.2, page 120, in Dennis and Schnabel [11], and so the proof is omitted.
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Theorem 3.12 Let f : R iv _ R be continuously differentiabIe on R Iv with f(z) > 0 for all

z E R N, and assume there ezists a constant 7 > 0 such that

IlVf(z)- Vf(u)ll2 _< 711z - ul12 (3.51)

for every u, z G R N. Then given any uo E R N, there ezists a sequence {u,} (n = O, 1,...) satisfying

conditions (3.49) and (3.50), and either

Vf(un)T_n < 0

or

Vf(un) = 0 and 6r* = O,

for each n > O, where 6n - Un+l - un. Furthermore, for any such sequence, either

(a) vf( ) = 0 for some n >_O, or
Vf( )T6r*

(b) Ilgr*l12 -0.

Proof: This is essentially Theorem 6.3.3 in [11] (p. 122), except that condition (3.50) is slightly

different and f is assumed to be bounded from below. For each n, if Vf(ur*) = 0, then (a) holds

and the sequence is constant from then on. If Vf(ur*) _ 0, then there exists a pr* such that

Vf(ur*)Tpr* < 0 (e.g., take Pn = -Vf(u_)). By Theorem 3.11, there exists )_r* > 0 such that

un+l = un + Ar*p, satisfies (3.49) and (3.50). Let 8r* = Ar*pr*. We must now show that if no term

of {6r*} is zero, then (b) must hold.

First, define wr* -116n112 and
Vf(un)T6r*

fir, -_"
tOrt

By (3.49) and tOial < 0 for every i, we have for any j > 0,

j-1

f(uj) - f(Uo) = E f(ur*+l)- f(un)
n---_0

j-1

<-- _ otV f(ul)T _i

i=0

j--1

= a _tOiO'i < O.

i=O

Hence, f > 0 on tt N implies that the series

OO

E tOiO'i < 00.

i=0

Thus, tOr*crn--' 0 as n -* oo. To conclude that _r* -* 0 we must use condition (3.50) whose purpose

was to guarantee that the steps do not get too small.

By the Mean Value Theorem, there exists a _ E (0, :kn) such that

f(ur*+l) - f(ur*) + Vf(ur* + _p,)T(u,+l -- u_) (3.52)
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which,usingcondition(3.50),yields,

f(_+l) -- f(un) = Vf(_r_ + _pn)T(_+l -- _.) >-- _Vf(u.)T6n •

This hnplles that

Therefore,

So,

and

[Vf(un -{- _Pn)-- Vf(u.)] T _n --> (_-- 1)Vf(un)T6n > O.

0 < (_- 1)_.o. _ _.llVf(_ + Xp.)- Vf(_)ll_

wr`>____-1---or` > 0
7

(3.53)

_r`or`_<-mo_ < 0.
7

Hence, w, or` _ 0 implies or, _ 0 as n --+ oo. []

Note that or` _ Vf(ur`)r6r`/wr` --, 0 does not imply that Vf(u,) -+ 0 as n _ oo. However,

it will as long as the angh between Vf(u,) and 6,, is bounded away from 90 °. It is possibh

to guarantee this is the case in the inexact Newton setting as was shown by Lemma 3.4. Note

also that V f,, _ 0 does not imply F(ur`) ---, 0, without some additional assumptions, e.g., as in

Corollary 3.10.

If conclusion (b) holds in Theorem 3.12 with IIF(_) + J(ur`)_r`llz _<,71]F(u,)llz for all n, where

_7E (0, 1) and if we assume that the condition numbers Mr` = cond2(J(ur`)) are uniformly bounded

from above, then (3.15) shows that or` _ 0 as n -+ oo does imply V.f(ur`) --* 0. However, the

conditions are too weak to imply that {ur`} converges.

We should also point point out that the conclusions of the above theorem hold for a sequence

generated by Algorithm 3.1.

3.2 Superlinear convergence of inexact Newton sequences

In this subsection we will require that _Tr -̀-' 0 as n _ oo. As noted in Theorem 2.1, given that

the sequence of inexact Newton iterates converges, this additional assumption on the _Tr`'s implies

that the convergence is at hast superlinear. The main result of this subsection is a modification

of a theorem obtained by Dennis and Mord [10], and shows that the global strategy based on the

above a- and/3- conditions will permit full inexact Newton steps when close to a minimizer of f,

provided that c_ < ½ and/3 > ½.

Theorem 3.13 Let F : R N --* R.Jv be twice continuously differentiable in an open convez set

D C IN, and .for .f = ½FTF assume V2f E Lip.t(D). Consider the sequence {u_} generated by

ur`+x= ur` + :_r`p.,where llF(ur`) + S(v_)Pr`llz_<or`llF(u-)llz fo_ all n with 0 < or`<_,7< 1 for all

n, and )_r` chosen so that (3.49) and (3.50) hold with ,_< ½ and _ > ½.
If u,, --. u. E D with J(u.) nonsingular, then F(u.) = O. If in addition, _Tr -̀-* o as n --. oo,

then there ezists an no >_ 0 such that for all n > no, )tr` = 1 is admissible (i.e., satisfies conditions

(3.49) and (a.50)). Furthermore, if Xr` = 1 `for all n > no, then ur` --* u. superlinearly. If also

_. = O(llF(u.)ll_), then the convergence is quadratic.
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Proof: Since ](u) = ½F(u)TF(u) _> 0, and since IlF, + J-P-II_ s _/I[F, II2 (where F, = F(un),

J, = J(u,), etc.) implies VfSp, < 0 for all n, with r/E (0, 1), we have by Theorem 3.12 that

lira v'fTP" - 0. (3.54)
,_--,ooIIP-II,

If u_ --, u, E D with J, = J(u,) nonsingular, then by continuity Mr= : cond2(Jn) --* M, =

cond2(J,), and so the sequence {M,_} is uniformly bounded from above. Thus, the discussion after

the proof of Lemma 3.4 implies that Vf(t_) --* 0 as n -, oo. Hence, again by continuity

o= v/(..)= jTF.,

which givesF(u,) = O.

Next, we show that IIp.ll_-* 0 as. -_ _. Since

Pn _-- -Jnl Fn "IL _l(Fn "_- _nPr_),

we have

IIp.t12 Ila;lll, • IIF.II=+ IIJ;lll, • IIF. + J.p.ll=
(1+ _7)11=z,_111_..IIF-II,

Thus,IIF.II__ 0 impliesIIP-tl,_ 0as_ -_ oo.Also,

IlVf-II_-= IIJ_F-It_._ IIJ_ll_-1"IIF-II2= IIJ-II_-_"

Hence, by Lemma 3.4 we have

--VfTp,

IIp_ll,

where Mn = cond2(J_). Thus,

IIF.II,.

1-7/

_> (z__:=,. IIS.ll_-_. tlF.II=,71)lVln

n)M"llJ.II=•IIF.II_< (Z+ -VfTp.
- 1 - n IIp.ll_

IIF.II," IIP-II=-<(1÷ ,7)M.iiJ.ll_.(_Vf_p.)_ -_vf_p.,
l-r/

and so

_+-_M..IlS.ll_.In addition, it immediately follows from (3.55) thatletting a,= = 1-_

(1 + 77)2 2 T T
_ -b.V/,_ p.,llp,,ll'_< i- _ M,_(-V.f,_p,_) =

lettingbn - (z+_)=M:2
-- 1-17 n"

Using (3.56) and (3.57), and the fact that Ilp.ll_-_ 0, we next show that ,_n

conditions (3.49) and (3.50) for n large. First note that if F = (FI,..., FN) T, then

N

V2f('tt') : J(")TJ(u) "{- E Fi(tL)V'Fi(")

i=1

-- J(u) TJ(u) -F S(u).

(3.55)

(3.56)

(3.57)

= 1 satisfies
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Also note that [[S(_)[[2 --* 0 as n _ oo since _ --, u, and F(u,) = O. For each n, by the mean

value theorem there exists a fin on the line segment between un and u. + p. such that

I V2f(_.)p.)rI(_. + p.)- J'(-.)- _vS(-.)_p. = _ (vs. + p..

This then gives

1 [(Vf. + V'f(f_.)P.)rP.[

1
< _ (llJ_(F.+J-P,-,)II_"IIP-II_+ (IIS-II,+_IIP,',II_)IIP-II_)

1
(,7,.,ll.h.,ll_"IIF-II_-IIP-II_+ (IIS-II_+_IIP-II_)IIP-II_)<_
1

_<-_. (a,-,w.IIJ.II_+ b.(llS.ll,-+_IIP-II_))Vf_p,.,
1 T

= -_.vf,_ p.,

where we have used (3.56) and (3.57), and defined _. - a.'7.11J.ll,. + b-(llS-ll_ +'_IIP-II_). Therefore,

1(1 + e.)V,f_p. _<f(u. + p.)- .If. ____(1- _.)v.fTpn.

Next, note that since an, b. and [[J.][2 are all bounded from above, and since r/., [[S.H 2 and Hp.H_

all converge to 0 as n --* oo, we have that e. --* 0. So, choose no > 0 so that for all n > no we have

e. < rain{1 - 2a, 2/3 - 1}.

It then follows that for all n > no

_v frp. <.f(,,. + p.) - .f. < .v.frp..

Thus, A. = 1 is admissible for all n > n0.The superlinear (quadratic) convergence of the sequence

follows from Corollary 3.5 in [9] or Theorem 2.1 above. []

One can relax the condition that r/. --. 0 in the above theorem somewhat, although the resulting

condition on r/is not computationally feasible in general.

Corollary 3.14 Let F : R N _ R N, and let f =_ ½FTF be twice continuously differentiable in an

open convex set D C R N with V_.f 6 Lip.r(D ). Assume that M = sup,_eD{COnd2(J(u)) } < c_ and

that K = sup,,eD{llJ(u)[[2 } < _. Consider the sequence {u.} generated by u_+l = u. + Anpn,

where IlF(u.) + S(u.)p,,ll, ___,711F(u,,)ll2 .for all n with 0 < _ < 1 .for all n, and A. chosen so that

(S.49) and (S.50) holdwith a < ½ and _ > ½.

I.fu. ---, u. 6 D with J(u,) nonsingular, then F(u,) = O. If in addition, ,7 satisfies

1+77 rain{1 2a,2/3 i}, (3.58)
rI__.M.K < - _

then there e:cists an no >_ 0 such that for all n >_ no, An = 1 is admissible (i.e., satisfies conditions

(s.#9) and (S.50)). Furthe_ore, if _, = 1 .forall, > no, then ,_ -. u. linearly.
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Proof." From the proof of Theorem 3.13, the corollary wm be true if we have

a_711J-II2< rain{1- 2a,2/3- 1},

foralln. But thisfollowsimmediately firomthe definitionsof M and K, and condition(3.58).[]

One may wonder whether or not the conditionsrequired in the theorem are too strongifwe

want to ensurethat A_ = Iisadmissible.More precisely,does the weaker conditionHFn%JnpnH2 <

17[]Fnl12 for all n, where r} e (0, I), allow the existence of sequences _+I = un + )tnpn converging

to a u, for which An = 1 is admissible for all large n. The answer is no as is illustrated in the

following example.

Example: Consider the one-dimensionalfunction F(u) = u E R.

0<a< ½</9 < Isothat

max{1 - 2a, 2/3 - 1} < 7/.

Choose 0 so that 0 < 0 < 1 and

Choose _7E (0,1) and

nmx{1 - 2a, 2/3- 1} < 1 - 0 < r/.

Consider a sequence {un} generated by _+I = u_ + Anp,, where u0 = I,P, = -Su_, and

An = (2- a -/3)/0 for aLl n. Then f(u) = ½u 2 with Vf(u,_)Tpn = -0u2,, and so Pn is a

descent direction for all n. Also, IIF.+  .p.l12 = [(1 - 0)u.[ _<wIIF(u.)ll2= wlu.Ifor all n,

We next show that A,_ is admissble for all n. We have

1
f(_ + AP-)= _(u- + A-P-) 2 = 1_ _ A0u_" + lx_o_ ,_"" -- n"

Next,

and

Thus, A is admissibleif

or if

f(un)-{-A/3Vf(un)TPn= -{-

2(1-/3) < A < 2(1- a)

Clearly,the An definedabove isadmissblefor alln. However, forthe parameters givenabove

we have 1 < _-_-_, and so A = 1 can never satisfy conditions (3.49) and (3.50). Notice that

u,_+l = (a +/3 - 1)un, and so u, : (a +/9 - 1)nu0 with ]a +/9 - 11 < 1. Hence, un --, 0 as

n _ 0 linearly.

Note that the convergence results of this section are similar to others in the literature. However

the emphasis was put on the additional residual norm condition (3.28). As was seen, slightly

different, and somewhat stronger, results can be shown in the situation where 6, satisfies a residual

norm condition.
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For the purposeof illustration, we end this section by describing the particular backtracking

algorithm we have used in [5]. The selection procedure for )_ is modelled after that in [11].

Algorithm 3.2: Backtracking Procedure _2

1 11. Choose a E (0,½) and fl E (_,).

2. Given un the current Newton iterate, find in some unspecified manner p with [IFn + JnPll2 <-

3. Find an acceptable new iterate u_+l = un + _p. First, set _ = 1. Define u(_) = u_ + _p.

a. If u()_) satisfies (3.49) and (3.50), then exit. If not, then continue.

b. If u(_) satisfies (3.49), but not (3.50), and )_ > 1, set )_ _- 2_ and go to (a).

c. If u(_) satisfies (3.49) only and _ < 1, or u(_) does not satisfy (3.49) and X > 1, then

c.1 If )t < 1, define )% = _ and _hi = last previously attempted value of )_. If _ > 1,

define )% = last previously attempted value of _ and )thl = _. In both cases, u()tto)

satisfies (3.49) but not (3.50), u(_hi) does not satisfy (3.49), and )tZo < )_hi.

c.2 Find X E ()%,)_hi) such that u()_) satisfies (3.49) and (3.50) using successive linear

interpolation.

d. Otherwise (u(_) does not satisfy (3.49) and X < 1), decrease _ by a factor between 0.1
and 0.5 as follows:

d.1 Select the new )_ such that u()t) is the minimizer of the one dimensional quadratic

interpolant passing through f(un), f(un) = V f(un)Tp and f(u_ + )tp). Then take

the maximum of this new _ and 0.1 as the actual value used. (One can show

theoretically that the new )t value so chosen will be less than or equal to one-half

the previous value.)

d.2 Go to step (b).
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4 Global convergence results for model trust region techniques

In [5], we presented a trust region algorithm based on a Newton-GMRES iteration. We give here

a convergence theory for this algorithm and other methods based on projection principles. We

start by describing in Section 4.1 general trust region methods and give some background on their

theory. Our basic approach will be modelled after the work of Schultz, Schnabel and Byrd [26]. In

Section 4.2 we will adapt this theory to the particular case that is of interest to us, namely the case

in which a projection method onto a lower dimensional subspace is used.

4.1 General trust region techniques for nonlinear optimization

The model trust region algorithm generates a sequence of points un, and at the nth stage of the

iteration a quadratic model of f : R N --. R near the current iterate un is used which has the form

_n(w) = fn + gTw "{-]'wYBn w,
2

where fn = f(u,_),g,,- Vf(u,,),and B,_ _ V2f(un). (A projectedanalogue of the above function

based on approximations from the subspace K willbe developed later.)At thisstage an initial

value for the trustregion sizern isalso available.An inner iterationisthen performed which

consistsof using the currenttrustregionsizer_ and the informationcontained in the quadratic

model to"compute a step

p.(r.) = p(g.,B.,rn).

Then a comparison of the actualreductionof the objectivefunction

ared_(T_)= fn- f(z_ + pn(rn))

and the reductionpredictedby the quadraticmodel

predn(Tn) --fn - _n(pn(Tn)),

isperformed. Ifthere isa satisfactoryreduction,then the stepcan be taken,or a possiblylarger

trustregionused. Ifnot, then the trustregionisreduced and the inneriterationisrepeated.

For now we leave unspecifiedwhat algorithm is used to form the step computing function

p(g,B, T), and how the trustregion sizeor radiusT, ischanged. We alsoleaveunspecifiedthe

selectionof Bn except to restrictit to be symmetric positivedefinite.Detailson these options

willbe given later.Shultz,Schnabel and Byrd [26]describean abstracttrustregion algorithmas

follows:

Algorithm 4.1: General Trust Region Algorithm

I. Choose "/1,o_1,o_2E (0, I),ux E R N, T1 > 0, and letn : i.

2. Compute fn : f(un), gn = g(u_) =. V f(un), and Bn G R NxN symmetric and positive

definite.

3. Find Tn and compute Pn - pn(T,_)satisfying:[IP,_l12< r,_and
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ared.(_)
(a) pred.(_.) -> al and

(b) either r,_ >_ m-l, or

• _>llB;11g._ll12,or
• for some r < rn/71, _ <

- pred.(_)
ared__l(.)

a2 or pred._l(_. ) < a2.

4. Let u.+l=u.+pnandn=n+l.

5. Go to Step 2.

The conditions that the step selection function p(g, B, r) must satisfy will now be considered.

Defining
1

pred(g, B, T) : --gT p(g, B, T) -- 2p(g, B, r)r Bp(g, B, r),

the conditions that we consider are:

Condition 1 There exist two scalars _1, al > 0 such that for all g E R N, for all symmetric positive

definite B e R N×N, and for all r > 0, pred(g, B, r) > _l]lgll,mm{_, _llglldllB]l,}.

Condition 2 If B is symmetric positive definite and llB-_gl[_ < r, then p(g, B, r) = -B-lg.

The first condition requires that the predicted decrease be at least as large as a given multiple

of the minimun decrease that would be provided by a quadratic search along the steepest descent

direction. The second condition forces the direction p to be equal to the Newton direction whenever

the next point un + p lies in the trust region. The following result is given in [26].

Theorem 4.1 Let f : It Iv --* It be twice continuously differentiable and bounded below, and let

V2f(u) satisfy ]lV2f(u)ll2 _</_1 for all u e It N. Suppose that an algorithm satisfying the conditions

of Algorithm 4.1 above is applied to f(u), starting.from some u_ E It N, generating a sequence {u.},

n = 1, 2,---. Then

(i) If p(g, B, r) satisfies Condition I with IIB,,II2 for all n, then g, -- O.

(ii} If p(g,B,r) satisfies Conditions I and 2, B,., = V2f(u.) for all n, V2f(u) is Lipschitz
continuous with constant L, and u. is a limit point of {u,.,} with V2f(u.) positive definite,

then u_ converges to u. q-quadratically.

The first result in the theorem gives the first order stationary point convergence of. the sequence

of iterates while the first and second results taken together give second order stationary point

convergence.
We next discuss the procedures normally used to form the step computing function p(g, B, r).

One way in which this can be done is to take p(g, B, v) to be the solution of the minimization

problem
1

rain ¢(w), where ¢(w) ----/ + gTw + 2wTBw.
I1_112<_

Assuming B is symmetric and positive definite, the solution to this problem is given by

-(B + pI)-lg, with II(B + pI)-lgll2 = r when I[B-lgl[2 > % andff(_') = -B-lg, when IIn-Xgll _<r.
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We note that the p in the first part of the definition of p is unique. It is well-known that for

p(g, B, r) =/_(r) the following inequality is true:

1 Ilgl12
- _ _-_2"

For a proof of this result see [17]. With this ideal choice of the direction p(g, B, r), Condition 1 is

trivially satisfied.

Since there is no finite method of determining/t such that [[(B +/_r)-lg[]2 = r when r <

IIB-tg]]2, frequently a piecewise linear approximation to if(p) is used. The dogleg strategy of Powell

[22] is an example of such a procedure. (See [11] for a discussion of this and other dogleg strategies.)

If we denote Powell's dogleg solution by iS(r), then it is also well-known that for p(g, B, r) = 15(y)

the following lemma is true.

Lemma 4.2 Let _(r) be the dogleg solution to the minimization problem

rain ¢(w), (4.59)
11,,,112_<,"

where ¢(w) = f + gTw + ½wTBw with B symmetric positive definite. Then

1 Ilgll }. (4.60)
/- >_ llgll2 in{ ,

For a proof of this lemma see Powell [23]. Again, a consequence of the above lernma is that

Condition 1 is trivially satisfied, and as a result of Theorem 4.1 global convergence will take place

under the mild condition that IIB.II2 remains bounded.

4.2 Application to projection methods for nonlinear equations

In the context of nonlinear equations, one typically bases the global strategy on the related function

f(u) =_ ½F(u)TF(u). Letting u be the current approximate solution, the locai quadratic model now
has the form

_b(w) = f + gTw q- lwT Bw,
2

where f = f(u), g = Vf(u) = J(u)TF(u), and B approximates J(u)Tj(u). Note that V2/(u) =

J(u)TJ(u) + _"]_N1Fi(u)V_Fi(u), and so in general V2f(u) : J(u)Tj(u) only when f(u) = O.

When using projection methods to solve the nonlinear system, the full quadratic model ¢(w) is

replaced by a quadratic model on a lower dimensional subspace K. Letting the columns of the

N x m matrix V form an orthonormal basis for K (with m the dimension of K), we have

¢(y) - ¢(vv)

= f + gTVy + I(Vy)TBVy

= / + (VTg)Ty + 2yT(VTBV)y.
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Thus,V¢(O) = vrg. Note that since V has orthonormal columns, the matrix VTBV is symmetric

positive definite whenever B is. In the current setting, we will take B = J(u)Ty(u). If _(r) is the

dogleg solution to the minimization problem

then Lemma 4.2 implies

IIvTgll2
f- ¢(4(r)) >_-_llVTgll,__min{'r, IIVTBVII,}.

We then have

1 ]lVYgll2x (4.61)
f- _(_(r)) > _llVTgil2min{r, _ ,,

using the fact that ][vTBvI[2 ( [[BII2.

In order to be able to apply the results of Shultz, Setmabel and Byrd [26], we must convert the

lower bound in the above inequality to one involving [[gil2, and not IlVrg[I,.. As indicated above,

1FT Fwe have f = _ , and so ¢(w) has the form

lb(w)---- f + (jTF)Tw + lwT(jTj)w,

which gives g = JTF and B = jTj. Thus, we need a lower bound for [[VTg[[_ = IIvTjTF[[2. Such

a lower bound was derived in Section 3. Indeed, Corollary 3.5 states that

1-7/

IlVrV'fll2 = IlVTgll2 >- (1 ¥_)'M Ilgl12,
(4.62)

provided that there exists at least one vector p in K such that

IIF(_,)+ JC,_)vll,-<,711f(u)ll,. (4.63)

Therefore, we immediately have the following lemma.

Lemma 4.3 Let J E R/vx/v be nonsingular and F E tt iv be given. Let I7 E [0, 1) be chosen and let

K be a subspace of dimension m in It N such that

mi_ lie + Jpll2 _<,711F112.
pEK

Choose the N x m matriz V so that its columns form an orthonormaI basis for K. Let _(r) be the

dogleg solution to

mln q_(y) where ¢(y) = f + (VTg)Ty + lyT(VTBV)y,
II_il2<_

1FT F V f JT F and B jT j. Thenwith f = _ , g = = =

ilVrgll2 >_ o-Ilgll:_, (4.64)
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and

where

I ligll=
(4.65)

1-_ (4.66)
- (1 + _)M"

Given this lemm_ it is now possible to state a model trust region algorithm appropriate for

use with a general projection method. The algorithm is stated in terms of a sequence of general

subspaces Kn.

Algorithm 4.2: Inexact Newton Trust Region Algorithm

1. Choose an lh_x E (0, 1).

2. Choose 71, al, a2 E (0, 1), ul fi R N, :'1 > 0, and let n = 1.

3. Compute Fn, Y, and choose T/n G [0, _Tmax). Then choose a subspace Kn C R N satisfying

• m_eK. IIF. + J.Pli2 <-'7.IIF.II2.

Let rn. be the dimension of K., and build V. E R Nx"" whose columns form an orthonormal

basis for K,,.

4. Compute f,, = 1 r_F_ Fn, VTg. = VrjTF., and B. = VTJTJ=V= with J,_ nonsingular.

5. Find r,_ and compute p. = V.qn = V.q.(rn) satisfying: Ilp.l[2 -< r_ and

ared.(_-.)
Ca) pred.(r.) -> al and

(b) either 7". >_ 7,_-1, or

_ /_-1 v T• T. > II .-1 .-lg.-xll.-, or

• for some r < r./71 , _ < as or ared.__(_)
- pred.(r) pred.__(r)< a2.

6. Let u.+z --un + p. and n - n 4-I.

7. Go to Step 3.

In the above algorithm,the step selectionfunctionq.(V_g,_,B., r.) isgiven by

where _.(_'_)isthe doglegsolutionto the minimization problem

1 T-
min Cn(Y) with ¢.(y) - ¢.(V,_y) =/n + (VTg.)TY + _Y B.y.

Then by Lemma 4.3 we have

1 _.l[g.ll_
:.- ¢.(q.) > _.llg.ll2m_{_., IIB.il, L (4.67)
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where 1 - r/r,

o..- (z+ _.)M_

with Mn = cond_(Jn). We now state the main result of this section.

Theorem 4.4 Let F : R N _ It N be twice continuously differentiable. Define f = ½FTF and

assume IIV2f(_)l12<__ax for all u E RN. suppose that an algorithm satisfying the conditions of

Algorithm 4.e above is applied to f(u), starting from some ul E R N, generating a sequence {u,_},

and assume that I1_11, <__, and cond_(J_) <_M for all n. Then

(i) gn _ O.

(ii) If V2f(u) is Lipschitz continuous with constant L, and u. is a limit point of {u_} with J(u.)

nonsinqular, then F(u.) = O. If in addition, the sequence rl,_ --, 0 as n --. oo, then un

converges to u. superIinearly. Also, if 0n = O(ltF(u_)ll_), then the convergence is quadratic.

This theorem is a direct adaptation of Theorem 4.1 above. The proof uses the previous lemma,

and due to its length is deferred to an appendix.

The actual dogleg algorithm we have used in [5] is modelled after that in [11], and is described

below. The condition for accepting u,_+l is the a-condition in §3, namely

f(_ q-5)< f(un)-1-aVf(un)T6,

where 6 = V_ and the columns of V form an orthonormal basis for the Krylov subspace K. The

vector _ will be that point on the dogleg curve for _b(y) such that ]lql]2 = r, where 7- is the current

trust region radius. The algorithm is then as follows.

AlgorRhm: Dogleg

1. Choose a E (0,½).

2. Given un, the currentNewton iterate,calculate6GM = VyGM. Here, YGM iscalculatedusing

the GMRES method (without restarting)with initialguess 6(0)= O, and itisassumed m is

large enough so that llFn + Jn6_M[l_ < rlnllFnl[2.

3. Given r, the current trust region size, calculate _, the point on the dogleg curve for _(y) with

ll@ll2--r. Then calculateun+z = un + V_. IfUrLq-1 is acceptable,then go to step(5).

4. Ifun+1 isnot acceptable,then do one of the following:

(a) IfI-has been doubled duringthisiteration,then setUn+l equal to itslastaccepted value

and set7"_ 7"/2.Then continue to the next Newton iteration.Ifnot:

(b) Determine a new 7"by usingthe minimizer ofthe one dimensionalquadraticinterpolating

f(un), f(u,_+x), and the directionalderivativeof f at un inthe direction6 : V_. Letting

A be the value forwhich un + A6 isthisminimizer, set 7"_ AII6I[_,but constrainingit

to be between 0.1 and 0.5 of the old 7".Then go to Step 3.

5. For an acceptabletin+l, calculateared_(7")and pred,(7").Then do one ofthe following:
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(a) If arecln(r) and pred,(r) agree to within relative error 0.1, and r has not been decreased

during this iteration, set r _ 2 • r, and go to step (3). If not:

(b) If aredn(r) < 0.I • predn(r ) set r = r/2, or if arecln(r) > 0.75 * predn(r), set r = 2 • r.

Otherwise, do not change r. Then continue to the next Newton iteration.

Note that the a-condition is equivalent to the condition in step 5(a) of Algorithm 4.2, and.that

the conditions for decreasing the size of the trust region in 5(b) are met. For more details on

permissible trust region updating strategies, see §3 in [26].
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5 Applications to Newton-Krylov methods

In this section we show how the theory outlined in the previous sections applies to the Newton-

Krylov methods discussed in §2. The details of the implementation of the Newton-Krylov algorithms

when combined with either a llnesearch backtracking strategy or model trust region are discussed

at length in our earlier paper [5], and so we will not go into them here. As was seen above, the

most important condition to guarantee convergence is that the residual norm be reduced by a

certain amount. This was crucial in both the liuesearch methods and the trust region methods.

Unfortunately, as we indicate below, there is always the possibility of stagnation when using either

linear Axnoldi or GMRES, and as a result there remains the possibility of a breakdown in the

nonlinear iteration. In these situations the basic residual condition (2.1) may not be satisfied using

a single subspace. We begin this section by giving sufficient conditions under which stagnation of
the linear iteration never occurs.

The simplest condition is simply to ensure that the steepest descent direction -g = -JTF

belongs to the subspace K. Then the minimum of IIF + JP[[2 for p G K, is reduced from its value

of [[FI[_ when p = 0 to an amount not less than that obtained by a steepest descent step, i.e.,

cond2(J) 2 - 1
minllF+ Jpll=< "  jjTFII= <_ - " " IIFll2._ IIF+ condz(J)U 1 (5.1)

As a result, if the steepest descent direction is known, or computable, it suffices to add it to the

subspace to guarantee the existence of an W E (0,1) for which the residual condition is always

satisfied. The resulting modification of the underlying algorithms is very simple.

A particular case of the above situation is when vl = ±F/IIFII, and the Jacobian J is symmetric.

Then the Krylov subspace K" will in fact contain the steepest descent direction for the function

f = ½FTF for any m > 2. This is because

V f = JT F = JF = +llFIluSv_

which, apart from a scaling factor, is the second vector of the Krylov sequence. As a result,

stagnation can be avoided if J is symmetric and a Krylov subspace of dimension rn E 2 is used.

Analogous arguments also guarantee that the steepest descent direction lies in K whenever Y is

skew-symmetric or, whenever J = I + aS, with S skew-symmetric, and a real. More generally, if

there is a polynomial q of degree m such that jr = q(j) then again the steepest descent direction

lies in K '_. However, this is equivalent to the property that J is normal, see [13] for details.

A third case for which there is no difficulty is when the Jacobian at every point is positive

real, i.e., J + jT is symmetric positive definite. It has been shown by several authors that, in this

situation, linear Krylov subspace methods will converge. Thus, if one required the Jacobian matrix

J(u) to be positive definite for all u E R to, then the residual conditions in the main results of

the previous sections can be satisfied, and so convergence of the sequence of nonlinear iterates wiU

follow. This will be the case for some problems, but it is clear that requiring J(u) to be positive

definite everywhere is very restrictive.

For problems whose coefficient matrices are indefinite, the convergence theory for the linear

Arnoldi and GMRES algorithms is lacking in one very important area at the present time in that

it is impossible to predict how weU either algorithm will perform on the probhm

Az=b.
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Somepartial answersto this questionhavebeengivenby severalauthors. For example,in [2],
severalresultsare shown which basically show that either both algorithms will perform well on

a particular problem or both will perform poorly. Some numerical studies performed by Huang

and van der Vorst [15] suggest that the convex hull of the upper Hessenberg matrix H,, in the

Arnoldi process must wen approximate that of the matrix A in order for the GMRES solution to

well approximate the true solution of the above linear system.

There also are generalizations of the above results for the linear Krylov methods when the

coefficient matrix is positive definite. We now show a result which gives necessary and sufficient

conditions for the first k steps of the linear GMRES algorithm to stagnate.

Theorem 5.1 Consider the solution of Az = b using GMRES with initial guess zo and residual

ro = b - Azo. Let zi be the i-th GMRES iterate .for i = 1,..., k. Assume A is nonsingular and let

p be the minimal degree o.fA with respect to to. Then for anyk < p, we have zk = zk-1 = ... = zo

if and only if rToAiro = 0 for i = 1,..., k.

Proof: Let rj = b-Azj (j = 1,..-,k) withk < p. Becausej < k < p, the N×jmatrix

Zj - [to, Aro, ..., Ak-aro] is of full rank. It follows directly from the remark after (2.7) that zj =

zo + Zjyj, where yj E RJ solves the j × j system

(AZS(ro - AZj j) = O.

SinceZj isoffullrank and A isnonsingular,the above system has a unique solution.Observe that

zj = z0 ifand only ifthisunique solutionisyj = 0. This istrueifand only ifthe righthand side

(AZj)Tro iszero,i.e.,ifand only ifr0TAir0= 0 fori= 1,.-.,j.The resultfollowsimmediately. []

Using thisresult,itfollowsimmediately that ifA I'iseitherpositiveor negativereal,then

GMRES(k t)convergesfor any kI > k. Although interestingtheoretically,thisresultisoflimited

practicalapplication.However, itand the ones referredto above indicatesome of the subtleties

involvedin analyzingthe convergencebehavior ofthe linearKrylov methods.

An important issuesomewhat relatedto the questionof stagnationisthat ofpreconditioning.

We mentioned above that adding the steepestdescent directionto each subspace K guarantees

convergence.In fact,using the normal equation approach,i.e.,solvingthe linearsystems by using

the conjugategradientalgorithm on the normal equations,alsoguarantees convergence.However,

the convergencecan be very slow and thiscan be justas problematicas divergence.The usual way

to improve convergence of the linearsolversis to preconditionthe systems. The key solutionto

avoidingstagnationisto use a good preconditioningtechnique.The importance ofpreconditioners

overthe Krylov subspace methods themselveshas been illustratedinthe testsin our previouspaper

[5].There area number ofstandardpreconditionersthat can be used when the Jacobian isexplicitly

available,the simplest and often the most inexpensivebeing the incomplete ILU factorization.

Unfortunatelywhen the Jacobian matrix isnot available,i.e.,in matrix-freemethods, thisisnot

feasible.Preconditioningsthat do not requirethe Jacobian explicitlybut onlyitsactionon a given

vectorcould be extremely useful.We should mention that any nonlinearfixed-pointiterationcan

be consideredas a matrix-freepreconditioner[7].We believethat much researchremains to be

done in thisdirection.For now, we can say that the best successesof nonlinearKrylov subspace

methods have been in cases where the particularknowledge of the physicsof the problem allows

one to derivesuitablepreconditioners[29].
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6 Conclusion

We have provided some theory for nonlinear projection methods with emphasis on those methods

based on Krylov subspaces. The main results are similar to others in the literature, from which

they have been adapted.

One of the main restrictions of most of the schemes used is that the subspace onto which a

given Newton step is projected must solve the Newton equations with a certan accuracy which is

dictated by the residual condition (2.1). This, as we have shown, is enough to essentially guarantee

convergence of the standard linesearch and trust region algorithms. On the practical side, the

main difficulty is that one does not know in advance if the subspace chosen for projection will be

good enough to guarantee this residual condition. Techniques which use restarting of the linear

iteration can be very useful in this context. Moreover, preconditioning is essential in the successful

application of these methods.

Finally, there are generalizations of the Newton-Krylov methods considered in this paper which

may be more effective on certain problems. For example, once a subspace K has been constructed

along with an orthonormal basis V, one could consider solving the nonlinear least squares problem

rain + Vy),

where f(u) = ½F(u)rF(u) and u is the current approximate solution. This would be in lieu of

the quadratic models considered in the trust region algorithms. Preliminary testing of such an

algorithm has been encouraging. We will consider this and other generalizations in future work.

Acknowledgements. The authors are indebted to Homer Walker for the very valuable help he

provided them by carefully reading the manuscript and pointing out a few errors. In particular the

modification of the first step in Algorithm 3.1 was spurred by his remarks. Also, as was mentioned

earlier, the result in Lemma 3.8 is due to Walker.
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Appendix

The proof below follows closely that of Theorem 4.1 given in [26]. The major ditrerences arise

from the fact that a lower dimensional quadratic model is used, rather than the full N-dimensional

model assumed in [26].

Proof of Theorem 4.4: By Taylor's theorem, for any n and any 7" > 0,

=
m

= 1

Z-< Ilp.(_)lll IIB_- v2f(_ + O.(_))ll,(1 - _)d_.

So,

predn(T)ared_(T)1,I<-IIP-(_)II_$_ IIB_ - V_f(_lpred_(T)l+ _p.(_))ll2(i - _)d_ (A.1)

Also, note that for any sequence {u,_} generated by an algorithm satisfying the conditions of

Algorithm 4.2, the related sequence {f,_} is monotonically decreasing and bounded from below.

Hence, f,_ converges to an f, as n goes to infinity. This fact will be used in the remainder of the

proof.

Proof of (i): Since _,_ _< _ < 1 for all n, we have

£From (4.67) it follows that

1 -- _[n&X

_r,_> - _ > 0 for all n.
(i+ _)M

1 -_IIg_ll_
fn - _b,_(q,(_')) >_ _llg_ll_min{_,_, for all n. (A.2)

Next, consider any k with Ilgkll2# 0. Forany _, I@(u)- gkll2_</3xllu -u_ll2. So, if Ilu- _kl12<
[Igkll_/(2/3_),then

llg(u)ll,> Ilgk[12-IIg(_)- gkll2> Ilgkll,
-- -- 2

Let R = Ilgkll2/2 and DR = {u: [[u - ttkl]2 < R}.
At this point there are two possibilities: either un E DR for all n E k or eventually {u,_} leaves

the ball. We show the latter is true by contradiction. Suppose u,_ E DR for all n >__k. Then for all

n >__k, [[gn][2 E [Igk[12/2(= _). Thus, by what was shown above,

i -_IIg.ll=,

>_ _n{_, _},
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for_ n _ k, sinceIIB_ll2_ _2 and IIg_ll2_ __pUes IIg_ll2/lIB_ll2_ _/_2. Tos_npnfynotation

let 6 = _. Then, using the above inequality we have

_ed._(r) 1,] < IIp,.,.(_)ll] fo1 liB,...-6_n(,.,.,6/_}V2f(_+ _'p,.,('r))ll'_(1- _')d_

< "r'_(_l+ _2)
- 6',',',_{_,6/_._}
<_ T(_I "4- _2)

-

for all n >__k and r _ 6/]32. This gives for T sufficiently smaU and n >__k that

_rea.(_)
_> _X2 .pred.(T)

In addition, we have

IIV_Tg,',II2_ -_IIg-112
II(v_TB"v")-IVIg"'II":> IIV_B.V;.II_ _ _ _'

so that for r_ suf[iciently small none of the conditions allowing decrease ofrn in 5(b) of Algorithm 4.2

above can hold. It follows that r_, is bounded away from 0. But, since

fn - fn+l = ared_(Tn) > alpred,_(r,_) _ alSmin{Tn, _}, (A.3)

and since f is bounded from below, we must have Tn --* 0, which is a contradiction. Therefore,

{un} must eventually be outside DR for some n > k.

Let l + 1 be the first index after k with ut+l not in DR. Then

l

f('_l,)- ,f('_t+l) : _ f('_n)- ,f(_+l)
n----k

1

>-- E alpredn(Tn)

n=k

l 6

n=k

Now, if T_ _< 8/_2 for k _< n _ I, we have that

!

n---k

Otherwise, we have that f(ul,) - f(ut+l) > a152/_2 • (That is, there exists at least one n with

Tn > 5//32.) In either case,

L}
f(_)-f(_t+l) >__a_min{n,#2

= _x_ll_ll____2min(_llg_ll2___,___y_llg_ll'-

2 -2 1 1 1}>_ II.q_li_l*"_min{_,_2 •
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By assumption, / isbounded below, and by constructionIn ismonotonically decreasing.These

imply that/n -'/.. Then by the precedinginequality

F _21 . 1 -

Therefore, gn _ 0 as n ---,oo.

Proof of (ii):By assumption,u. isa limitpointof {un}. Let {u_j} be a subsequence,converging

to u,. We show firstthat un convergesto u.. By (i),g(u.) = 0. Since J(u.) isnonsingularand

0 = g(u.) = J(u,)rF(u,), itfollowsthat F(u.) : 0. We then have V2/(u.) = S(u,)rS(u.), and

hence ispositivedefinite.Since V2/is continuous,thereexistsa 61 > 0 such thatif[]u-u.ll2 < 61,

then V2/(u) ispositivedefinite,and ifu ¢ u, then g(u.) _ 0. Let D1 = {u: flu- u.[]2< 61}.

Sinceg(u.) : 0, we can find62 > 0 with 62 < 61/4 and [[V2/(u)-1112.Jig(u)[12< 61/2 for all

u E D2 = {u: liu- u.l12< 62}.
Find j0 such that /(unjo) < inf{/(u) :u E DI - D2} and un#o E D=. Consider any ut with

l> njo,u! E D_. We claim that ut+1 E D2, which impliesthat the entiresequence beyond un#ois

in D_. Suppose that uz+1 isnot in D2. Since/t+1 </hi 0,u_+tisnot in D1 either.So,

_>[luz+t- u,ll2 _> lluz+1- u.ll= - llu_- _.I12_>al - T_I_ _6_3

61> llB(uz)_lll_-[[g(uz)l[2
> __

> ll(V,TBz_)-_VtrgzI12.

But, since the inexact-Newton step is within the trust region, we have

pl( Tl) = --(_l T nl_l)-l _l T g(ul).

Since llPl(_)[[2< 61,itfollowsthat u/+1 E DI, which is a contradiction.Hence, for alln _ njo,

u, E D2, and so sincef(u,_)isa strictlydecreasingsequence and u. isthe unique minimizer of f

in D2, we have that u,,convergesto u..

Next, we show thatthe convergencerateissuperlinear.This isdone by showing thateventually

I](V_B,V,,)-IV_g,,[[2wiflalways be lessthan r,_,and hence inexact-Newton step willalways be

taken. SinceJ(u.) isnonsingular,itfollowsfrom the resultsin [9]thatthe convergencerateofun

to u. issuperlinear.

To show that eventuallythe inexact-Newton step isalways shorterthan the trustradius,we

need a particularlower bound on predn(r). By the assumptions of (ii),for alln largeenough,

B,_= V_.f(un) ispositivedefinite.Hence, eitherthe inexact-Newton stepislongerthan the trust

radius,or p,_(_')isthe inexact-Newton step.In eithercase,

llp.(_-)l12_ II(V_B.V_)-XV_g_II2_ ll(v_n_v_)-all,llV_g.ll _-,

and so it follows that llV_g.ll2_>llp.(r)ll,lll(V_.v.)-_ll_ • By what was shown in the proof of

(i), for all n large enough we have

pred.(r) > 1_ IIP-(_)II_ • * - IIg-112.
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i Hp.(_)[]_ }

1 • IIp.O')ll_
- 2M_ IIB_II, "

So, by the continuity of V2f, for all n large enough,

predn(r)
IIp.O')ll]

4 ilvV(_.)-lll,

Finally, by the argument leading up to (A.1) and Lipschitz continuity,

I_ed_(_)- pre_(r)l <_IIP-(_')II_.

Thus, for any r > 0 and n large enough,

< IIp.O')ll_411v_f(..)-_ll_
- allp.(_')ll_

= 2LIIVV("')-IlI_ iip.(¢)lt_

< 2LIIV2f(",)-_l12r.
- _.

Thus, by step 5(b) of Algorithm 4.2, there is a "_ such that if r,_-I < "_, then r_, will be less

than 7"n-1 only if vr, >_ II(Vr_IB._W._I)-IVT__g.-III2. It follows from the superlinear con-

vergence of the inexact-Newton method that for u,-1 close enough to u. and n large enough,

ii(vSB,,v,,)-_vSa,,il, < IICVT_xB,,__V,,_I)-XVTa,,_xII_. Now, if r, is bounded away from 0 for all

large n, then we are done. Otherwise, if for an arbitrarily large n r,_ is reduced, i.e., 7"r,< "rrs-1,

then we have

r. >__II(V.r_iB.,_, V,,_,)-'Vfl_ag,__,ll2 > IICV.r B,,V,,)-'V.r g,,II,,

and so the full inexact-Newton step is taken. Inductively, this occurs for all subsequence iterates

and superlinear convergence follows. []
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