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ABSTRACT

In recent years, a number of results on the relationships between the inertias of Her-

mitian matrices and the inertias of their principal submatrices appeared in the literature.

In this paper, we study restricted congruence transformations of Hermitian matrices M

which, at the same time, induce a congruence transformation of a given principal subma-

trix A of M. Such transformations lead to the concept of the resctricted signature normal

form of M. In particular, by means of this normal form, we obtain short proofs of most

of the known inertia theorems and also derive some new results of this type. For some ap-

plications, a special class of "almost" unitary restricted congruence transformations turns

*The work of this author was supported in part by Cooperative Agreement NCC 2-387

between the National Aeronautics and Space Administration (NASA) and the Universities

Space Research Association (USRA).



out to be usefUl. We show that, with such transformations, M can be reduced to a quasi-

diagonal form which, in particUlar, displays the eigenvalues of .4. Finally, appUcations of

this quasi-spectral decomposition to generalized inverses and Hermitian matrix pencils are

discussed.

1. INTRODUCTION

In recent years, there has been considerable interest [2,4,5,6,9,10,12,13,14,15] in study-

ing connections between the inertias in(M) of Hermitian matrices M and the inertias of

their principal submatrices. Here and in the sequel,

in(M) := (_r(M),v(M),_(M))

where w(M), v(M), and 5(M) denotes the number (counted according to their maltipHci-

ties) of positive, negative, and zero eigenvalues of M, respectively. A typical result of this

type is the following

Theorem A (Dancis [6]). Let M be a Herm/tian n × n matr/x and M1 any m × m

pr dpa submat ofM. Then, "=dim (ker(M)n ker(M1)),

_(M1) + 5(M1) - d <_ _(M) <_._(M_) + n- m-6(M) + d. (1.1)

It turns out that most of the results in [2,4,5,6,9,10,12,13,14,15] can be easily derived in a

uniform manner by means of the restricted s_mature normal form for Hermitian matrices

which was introduced in [7] in connection with extension problems for Toep]itz matrices

(see also [8]).

Throughout this paper, let M be an n x n Hermitian matrix, 1 _< m < n, and A any

m x m principal submatrix. It is always assumed that the rows and columns of M have

been permuted such that A is a leading submatrix of M. Hence, M can be partitioned in

the form

M=(2 H B)C " (1.2)

We call TI_MT a restricted congruence transformation of M if T is a nonsingular matrix

of the form

T22 ) with Tla an m × m matrix. (1.3)

Note that such a restricted congruence transformation induces the congruence transforma-

tion T_ATll of A. Because of the zero block in T, in general it is not possible to reduce
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M to a signature matrix by restricted congruence transformations. However, M can be

transformed into a restricted signature matr_ of the type

/,,-_ 0 0 0

0 -Iv_ 0 0
0 0 0 0

0 0 0 Oat

o 0 Ik 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 O, 0

0 0 0 0

irk 0 0 0
0 0 0 0

0 0 0 0

o ir.o o o
0 0 -I,,o 0

0 0 0 0ao

(1.4)

Here and in the sequel, Ij resp. 0j denotes the j x j identity resp. zero matrix. Moreover,

the lines in (1.4) correspond to the partitioning (1.2) of M, i.e. the block to the left of the

vertical line and above the horizontal line is m × m.

With these notations, our result on the restricted signature normal form reads as

follows.

Theorem B ([7, Lemma 1]). Let M be a Hermitian matr/x of the form (1.2). Then,

there e_sts a restricted congruence transformation TS MT = I] where I] is a uniquely

determined restricted signature matrix of the type (1.4). Moreover, the sizes of the blocks

in (1.4) are determined by

_, = _(A), _, = _(A), k=rank(A B)-rankA, d1=6(A)-k,

_0= _(M)- _(A)- 4, do= _(M)- a,.
(1.5)

The restricted signature normal form is an efficient tool for obtaining results on the iner-

tia of partitioned Hermitian matrices. For example, (1.1) (with M_ replaced by A) is a

consequence of the relations

which readily followfrom (1.4).

The purpose of this paper is twofold. First, we investigate in Section 2 congruence

transformations T_MT with matrices T of the form (1.3) whose diagonal blocks are in

addition required to be unitary. It turns out that, under this restriction,M can stillbe

transformed into a matrix with the same zero structure as (1.4).Since such matrices T are

"almost" unitary, we refer to the resultingfactorizationas quasi-spectra/decomposition
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of M. In particular, Theorem B is an immediate consequence of Theorem 2.1 on quasi-

spectra] decompositions.

Secondly, using the restricted signature norms] form reap. quasi-spectra] decompo-

sition, we deduce some new results and a/so obtain short proofs of a number of known

results. More precisely, in Section 3, connections with genera]ized inverses are pointed out.

In Section 4, we are concerned with inertia theorems. Section 5 dea]s with applications to

Hermltian matrix pencils. Finally, inequalities for inertias of M and its submatrices are

collected in Section 6.

Throughout this paper, the following notations are used. xt is the Moore-Penrose

inverse (e.g. [1, p. 7]) of the matrix X. For partitioned matrices M of the type (1.2)

M/A .= C Bx AtB

is th_gener_ S_= complemento_a in M (_ [31)._the_ore, thef,,-c_ion6(X)
is extended to arbitrary matrices X by setting

_(x) := dim (kerX).

Finally, X > 0 resp. X _> 0 indicates that a Hermitian matrix X is positive definite resp.

positive semidefinite.

2. QUASI-SPECTRAL DECOMPOSITIONS OF HERMITIAN MATPJC_S

In this section, we investigate transformations TRMT of partitioned matrices (1.2)

where T is of the form

( DrO _) with U resp. V unitary m xm resp. (n--m)×(n--m) matrices. (2.1)T=

The spectra] theorem for Hermitian matrices states that there exists a unitary matrix T

such that THMT is diagonal. With the restricted class of transformations (2.1), it is

possible to reduce M to the quasi-d/agona/matrix

'A1 0 0 0

0 0 0 D_

0 0 0,_ 0
A

0 D_ 0

O 0 0

0 0 0

O_

0

0

0 0 0

0 A0 0

0 0 Odo

with A1, A0 nonsingular diagonal matrices and Dk > 0 a k x k diagonal matrix.

(2.2)
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More precise]y, we have the following

Theorem 2.1. Let M be a HermJtlan matrix of the form (1.2).

matrix T of type (2.1) such that

Then, there exists a

TH MT = A with A a quasi-diagonal matrix (2.2). (2.3)

Moreover, the nonzero blocks At, Dk, A0 o[ all quasi-diagonal matrices A and U, V, X o[

alltransformations T of the form (2.1)which satisfy(2.3) are _ven by

AU.=U.A1, AUo=O, U=(U. U.),

Oo) o
X=-AtBv+U. O;_(S-_ a') -D_IG"

Z,. Z,

with a_ .= Vy(M/.4)Vj, j =,.,.,

and arbitrary matrices Z_, Z,, and skew-Herrnitian S = -S H.

V.),

(2.4)

(2.5)

(2.6)

(2.7)

In particular, the diagonal entries o[ A1 and A0 are the nonzero eigenvalues of A and

Vy (M/A) Vo, respectively.The diagonal elements of Dk are the positive singular values

o£ U,_ B.

Remark 2.2. Clearly, the quasi-diagonal matrix A in (2.3) is uniquely determined up to

permutations of the diagonal entries of A1, Dk, and A0 respectively.

Remark 2.3. The zero structure of A in (2.3) is identical to that of the restricted signature

normal form (1.4) of M. In particular, Theorem B is just a corollary to Theorem 2.1. Also,

note that (cf. (1.5))

_r(A_)=_r(A), t,(A_)=z,(A), k=rank(A B)-rankA.

Remark 2.4. Since the diagonal blocks U and V in (2.1) are unitary, we have

det(THT) = 1 and det(M) = det(A) (2.8)

for any quasi-spectral decomposition (2.3).

Proof of Theorem 2.1. Let T resp. A be an arbitrary matrix of the form (2.1) resp.

(2.2). First, note that (2.3) is equivalent to MT = T-HA where

= -VXHU V "
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Therefore, T and A satisfy (2.3) iff the

(i) AU=U(A_

(ii) BHU = --vxHu

following four equations are fulfilled:

°i)0 . ,

0

0 +V

0 0

ooI(iii) AX+BV=U 0 0 , "

0 0

(ooo)(iv) BRX + CV -VXSU 0 0 + V Ao .

.- 0 0 0

Clearly, (i) is equivalent to (2.4). Next, consider (ii). Using the partition (2.4) of U and

V -1 = V s, (ii) can be rewritten in the form

The first relation in (2.9) is the same as in (2.5). Note that, for the last identity in (2.9),

we have used that, in view of (2.4), At = U,A] "1U_. Since U = ( U, U, ) is unitary, the

second part of (2.9) implies that X is of the form

x = -AfBV + U.Z (2.10)

where Z is still arbitrary. It remains to fulfill (iii) mad (iv). By means of (2.4) and (2.10),

one easily verifies that (iii) is equivalent to

0 (2.11)

However, since I-UrU_ = U,U_, (2.11) just leads to the first identity in (2.5). Finally, we

turn to condition (iv). Substituting the ansatz (2.10) for X into (iv) and using VHV = I,

AtU, = 0, and the first relation in (2.5), one obtains

/ (000)0 . (2.12)

Next, we partition Z conformally with the matrices on the right-haad side of (2.12):

Z=( YrZ,. Z,Y') withYrakxkmatrix. (2.13)
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A straightforward calculation then shows that (2.12) (and hence (iv)) is satisfied if[ the

second identity in (2.5) holds and

Y, = D;'(S- 1G,) with S= -S s, Y, = -D;'G,. (2.14)

Here G_ and G, are the matrices defined in (2.7). Note that the blocks Z_ and Z, in

(2.13) are arbitrary. By (2.10), (2.13), and (2.14), X is indeed of the form (2.6), and this

concludes the proof. D

3. CONNECTIONS WITH GENERALIZED INVERSES

The quasi-spectral decomposition (2.3) naturally gives rise to a generalized inverse

of M. Let T and A be matrices of the form (2.1) and (2.2), respectively, such that (2,3)

holds. Then, we define

M _ := TAtT H. (3.1)

Next, let A, be the matrix which is obtained by deleting the dl + do zero columns and

rows in (2.2). Remark that A, is nonsingular and

i 0 D_ 0
A? 1 = .... (3.2)

-;'i 0
o I o Ao

Similarly, we denote by T, resp. S, the matrix which is obtained by deleting the columns

with the numbers m- dl + 1,...,m and n- do + 1,...,n in T resp. T -s. Wlth these

notations, (3.1) can be rewritten in the form

M | = T,A.1T H.

Analogously, (2.3) can be stated as follows:

=S.A.S_.

(3.3)

(3.4)

Since S, has full column rank (3.4) immediately (see [1, p. 24]) leads to the representation

..... m = (st.)'_^:_st., wh_ s.t= (S_S.)-_s_, (3.5)

of the classical Moore-Penrose inverse of M.

In the following theorem, we collect some properties of M J.
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Theorem 3.1. Let M be a Hermitian matrix of the form (1.2) and M| be deilned by

(3.1). Them:

(i) M t is an 1,2-inverse of M, i.e. MIMM t = M t and MMtM = M. (see [1, p. 8]).

r_r0,2) of M for W = TT H and U = W -1
(ii) M II is the weighted inverse _'-(w, tr)

i.e. (WMM|) ;r = WMM I and (UM|M) H = UMIM (see [1, p. 123]).

(Hi) Let T in (2.3) be chosen such that Z, = Z, = 0 in (2.6). Then, M | = Mt if, and only

if,

with do defined in (2.2).

Proof. With (2.3) mad (3.1), one readily verifies (i) and (ii). We now tuna to part (iii).

In view of (i) and the usual [1, p. 7] definition, M t and Mf are identical if, and only if,

MM t and MtM are both Hermitian. From our definition of T, and S,, it is obvious that

T,xS. = I. Thus, with (3.3) and (3.4), we obtain

= T.S." and = S.Ty = (r.S.")H

Therefore, it remains to show that the condition (3.6) is equivalent to T,S H being Hermi-

tian. For this purpose, denote by

(0) (0) (3.7)

the parts of U, X, and V whose deletion from T just yields T,. Note that Uo and Vo are

Withthe matrices defined in the partitions of U and V in (2.4) and (2.5), respectively.

(3.7), one readily verifies that

( (j(fs _[jCIH XVtt + _frs )I = TT-* = T,S_ + 0 frfrH •

Moreover, with (2.4), (2.6), (3.7), mad our assumption Z, = Z° - 0, it follows that

(3.8)

[IHX=(Z, Z°) = 0. (3.9)

Using (3.8), (3.9), and the fact that l? fas full column rank, we conclude that T,S, H is

Hermitian iff ._ = 0. However, by (3.7), (2.6), and (2.7),

_ = _A ' BQ- U, ( I_-' ) V_(M/A) f,r. (3.10)
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Since, by (2.4), the columns of U, are orthogonai to range At", (3.10) implies that X - 0

is equivalent to

A_BV-O, V,(M/A)V-O. (3.11)

Finally, note that, by (2.5), V,(M/A)V -- 0, and therefore the second condition in (3.11)

can be rewritten as (M/A)_" = 0. Thus (3.11)is equivalent to (3.6), and this concludes

the proof. 1"1

Remark 3.2. In general, (3.6) is not fulfilled and hence Mt and M B are different. For

example, consider the family of 3 × 3 matrices

(iMa= , aER.11)2a 0

0 -2a

All quasi-spectral decompositions T_MaTa = A are given by

(OV_ ' 'q_ i) "-1 (_ i '0" 2._1_)
A = 0 , Ta -- _ 1 a E 1t arbitrary.

0 1

Note that A does not depend on the parameter a. M., has the generalized inverses

11 1 _

Mt- = 2 0 and Mat -- 2(2_ + 1) 2g
0 a

which coincide only if a - 0.

By means of M l, one can obtain a generalization of a signature formula due to

Lazutkin [13]. First, we partition M j conformally with M:

M|=(Q Ps QR) withPanmxmmatrix. (3.12)

Moreover, denote by sgn(X) := _r(X) - v(X) the signature of the Hermitian matrix X.

Then, we have the following

Theorem 3.3. Let M be a Hermitian matrix (1.2) and R be defined by (3.12). Then,

sgn M = sgn A + sgn R.



Proof. First, we remark that, as an immediate consequence of (2.1-2.3),

sgnM = sgnA1 + sgnA0 andsgnA = sgnA1.

Furthermore, with (2.1), (2.2), (3.1), and (3.12), it follows that

0 0 O)
R= V 0 A__ 0 V R .

0 0 0

(3.13)

This shows that sgnA = sgnA0, and, in view of (3.13), the proof is complete. [3

Remark 3.4. For the case of nonsingular M, M | is the usual inverse of M. In particular,

for nonsingular real symmetric matrices M, Theorem 3.3 reduces to the recent result [13]

of Lazutkin.
..--

4. INERTIA THEOREMS

Numerous authors investigated the connections between the inertias of Hermitian

matrices and the inertias of their principal submatrices (see e.g. [9-12,14]). The most

general results of this type are due to Maddocks [14]. In this section, we present a different

approach, based on the resricted signature normal form, to the main results in [14]. In

particular, this will lead to shorter and more elementary proofs.

In [14], Maddocks considered only real symmetric matrices. Here, we will deal with

general complex Hermitian n x n matrices M. Moreover, let F be any n x p matrix and

set Y = range(F). Generalizing the corresponding notion [14, Lemma 2.2, Corollary 2.3,

and Definition 2.2] for real matrices, we introduce

in'(Y; M) := in'(F uMF) := in(F uMF) - (0, 0, S(F)). (4.1)

Next, we reformulate and prove the main results in [14] for the general complex case.

Theorem C (Maddocks [14, Corollary 4.1]). Let M = M R be n x n, F n x p, and

G any" n x q matrix whose range is ker(F//M). Then:

in(M) = in'(FXMF) + in'(GRMG) + (d,d,-d- f), (4.2)

Wher e

d := dim (range(MF) f3 ker(F/_)) and / := dim (range(F) N ker(F HM')).
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Proo/. A straightforward computation, using the slngu]ar value decomposition of

F, shows that it suffices to consider the case F = (I,,_ 0 )T. Furthermore, let M be

partitioned as in (1.2) with leading m x m principal submatrix A. Note that m -- rank(F),

A -- FIIMF, and FIIM - (A B ). Next, we apply Theorem B and reduce M to the

restricted signature normal form TIIMT - Y_. By grouping the columns of T which

correspond to the zero columns in (1.4), one obtains the partition

T=(r, ]Ts T,) withT r,

Since

ker(F HM) = ker ( A B ) = range ( T_

we can choose G = ( T2 T, ). It follows that

GttMG =

A0 0do / "

(4.3)

Furthermore, we obtain

f __--dim (range (/0m I n ker (A B )) -- dim (range(T2)) --- 6(A),
(4.4)

and

n ker ( I.., 0 )) -- dim (range((AH) UJ))

=-_dim (range(V (D0 k _))) -- k,

(4.5)

with Uo, V, and Dk as defined in Theorem 2.1. Finally, combining (4.3), (4.4), and (4.5)

yields (4.2). [_

Following [14], we set, for any subspace Y C C a,

yM := (My)± and d°(Y):= dim(M(Y FlyM)).

Here, .1_ indicates the orthogonal complement in C '_. Using these notations, Theorem C

can be rewritten as follows.
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Corollary D ([14, Corollary 2.T]). Let M be a Hermltian n × n matr/x and Y s

subspace of Cn. Then:

in(M) = in'(Y; M) + in°(YM; M) + (d°(Y),d°(Y),-d°(Y) - dim(Y f3 yM)).

We remark that the results of Han and l_jlwara ([10, Theorem 2.3] and [9, Theorem 4.1]),

and Jongen et al. [12, Theorem 2.1] are only special cases of Corollary D.

As in [14], the formula

ker(F XM) = Mt[ker(F X) f3 range(M)] _ ker(M)

can be used to derive from Theorem C the following result.

Corollary E (cf. [14, Corollary 4.3 and Theorem 3.1]). Let M and F be as in

Theorem C, and let E be any n × q matrix with range(E) - ker(F H) f'l range(M). Then:

in(M) = in*(FgMF) + in°(EHM t E) + (d,d,e - 2d),

where

d :- dim (range(MF) N kerCFH)) and e := S(M) - dim (kerCM) N range(F)).

Remark 4.1. For special cases, the result of Corollary E was also derived by Han [10,

Theorem 4.3] and Lazutkin [13] (e.g. Theorem 3.3 and Remark 3.4).

We conclude this section with a result on the relationship of the inertias of M, its

submatrix A, and the generalized Schur complement M/A of A in M.

Theorem 4.2. Let M be a Herin/t/an matrix of the form (1.2). Then:

with

in(M) = in(A) + in*(ker(UHB);M/A) + (k,k,-k)

range(Us) = ker(A) and k = rank( A B ) - rank(A).

Proof. This result is an immediate consequence of Theorem 2.1. Also, recall Remark

2.3 for the definition of k.

Remark 4.3. For the special case that the submatrix A in (1.2) is nonsingular Theorem

4.2 reduces to

in(M) = inCA ) + in(C - B HA -1B). (4.6)
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This result is due to Haynsworth [11]. It seems that (4.6) is one of the earliest inertia

formulas for partitioned Hermitian matrices.

5. APPLICATIONS TO HERMITIAN MATRIX PENCILS

In this section, we are concerned with Hermitian matrix pencils (see e.g. [16, Chapter

15])
_M- AN, _,Aeet, (_,A)# (0,0), (5.1)

where M = M II and N - NII _ 0 are n x n matrices. Moreover, without loss of generality,

it is always assumed that N is of the form

(o o)N= 0 I._= ' m=

Let THMT = A of M be a quasi-spectral decomposition (2.3) of M with matrices

T and A of the type (2.1) and (2.2), respectively. Then, by (2.1) and (5.2), we have

THNT - N. Together with (2.3)itfollowsthat

r (.M - =

f'pA1 0 0

0 0 0

0 0 0d_

0 pD_ 0

0 0 0

0 0 0

0 0 0

pDk 0 0

0 0 0

-A& o o

0 _Ao - AIz 0
0 0 -M_ o

(5.3)

Next, we show that the essentialpropertiesof pencil(5.1)can be deduced from itsnormal

form (5.3). First, recall that a matrix pencil (5.1) is said to be singalar, if det(pM-AN) = 0

for all p, A E R, and it is called regular otherwise. From (5.3), we immediately obtain

Theorem 5.1. The matrix pencil (5.1) is regular _, and only @, dl = 0 in (5.3).

In the following it is always assumed that (5.1) is a regular matrix pencil. Then, by

(5.3) and since det(THT) = 1 (cf. (2.8)), we get

det(pM- AN) - det(pA1) det (pDhO pDk_Ai)_ det(pA0 - A/) det(-Aldo)

_ (5.4)
-- det(pA,) (-A) do H(pAj - A) H(-p2_-),

j=l j=l

where Ao = diag(A_,..., As) and D_ = diag(a_,...,aj,). The next theorem readily follows

from (5.4).
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Theorem 5._. ml soIutlons(_,A) # 0 ofdet(_,M- AN) -0 are _v_ by:

(i) A = 0, p arbitrary, if do > O;

(ii) A = pAj, p arbitrary, for aft] = 1,...,l.

(;;;) p = 0, A arbitrary, if m + k > O.

The solutions of det(pM - AN) = 0 with p = 1 resp.

eigenvv.lues of the generalized eigenvalue problem

p = 0, A _ 0 are just the

M= = AN=. (5.5)

For this special case, Theorem 5.2 together with (5.4) leads to the following

Corollary 5.3. The eigenva/ues A of (5.5) are g/yen by:

(i) A = 0 with multipllclty do, if do > O;

(_) A= A_,j = 1,..., z.
(_) A = oo with multiplicitym + k, ifn* + k > O.

As a further application, by means of (5.3), one can easily characterize all cases for

which pM - AN > O.

Theorem 5.4. Let p, A E R and (p, A) _ O. Then, the matrix (5.1) pM - AN is positive

definite if, and o-/y if, the fo//owing four conditions are satis_ed:

(i) al = k = o;

(i/) m = 0 or/_ha > 0;

(iil) l = 0 or/_A0- AI_> 0;

(iv) do =0 ovA<0.

In particular, we obtain the following

Corollary 5.5. There exist p, A E R such that the matrix (5.1) pM - AN is positive

defudte if, and on/y if, the submatrix A in the partition (1.2) of M IS positive or negative

definite.

Finally, we conclude this section with an inertia formula which again immediately

follows from (5.3).

Theorem 5.6. For the matrix pencil (5.1) with p, A E R, p _ O, it holds

in(pM - AN) = in(pAl) +in(pAo - X/) + in(--A/'do) + (k,k,6, - k)

= in(A1) + (k,k,61 - k) + in'(kerCUnB);M/A + AI).

14



Here, U, Js de._zneclin (2.4), (2.5) and the notation in* in (4.1).

Remark I;.7. Different inertia formulas for matrix pencils (5.1) can be found in [12,

Section 4].

6. POSSIBLE INERTIAS FOR A HERMITIAN MATRIX AND ITS

PRINCIPAL SUBMATRICES

In this section, we are concerned with the following problem: For given Hermitian

nl × ni matrices, i = 1, 2, characterize the possible inertias of Hermitian - × n matrices

M=(Ma B) (6.1)"" B H M2

in terms of the inertias of M1 and M2.

Along these lines, a main result is the foI]owing theorem of Dancis [6, Theorem 1.2].

Theorem F. Let M be n Hermitian matrix o[ the form (6.1). Set 5a := 5(]I//I), d :=

dim(ker M N ker Ma ), A := 6, -- d, and A* := 6(M) - d. Then:

n2 +_i - A" > _ > _I + A, (6.2)

_ra + 6a + n2 - A > _ + 5(M) > _'a + 51 + A*, (6.3)

61 + n2 - 2A >_ 5(M) >_ 51 - n2 + 2A'. (6.4)

Proo[. Using Theorem B on the restricted signature normal form of M, we obtain

k = 5a - d = ZX and A* = ,_(M) - d = _, + 5(M) - 6_.

Note that (6.2) has already been provenin Section 1, Theorem A. To show (6.3), we remark

that in view of (1.4)

-_ + =1+ (5_- k) _>= + 5(M) _>=1+ _ + _0 + 5(M) > =_+ k + 5(M).

Finally, since -2 > A + A ° = k + do, we have

(5_ - k) + (n2 - k) _> _(M) = 4" ÷ (51 - k) >_ 24" ÷ 51 - n2

and this implies (6.4). []

Remark 6.1. In ad_tion, for _r0 = v0 = 0 or, equivalently, 6(M) -- n2 + 2d - 6a, by (1.4)

we get Ir = _'a + k. ....

Next, let us consider some inertia properties of XHMX.
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Theorem G (Dancls [4, Theorem 3.1] and de S_ [15, Theorem 1]). Let _f be

an n × n Hermitian matrix w_th in(M) = (_r, v, 8) and m, s inteEers such that 1 < m <

min(s,n). Then, there exists an n x 8 matrixX o/ran/c m _th in(XXMX) = (_rl,vl,61)

if, and only if, the £ollowing inequalities are satis_ed:

(6.5)

Proof. In view of the sinsmlar value decomposition of X, we can assume that

Then X_MX is the m × rn leading principal submatrix of M and Theorem A shows that

On the other hand, for given lq and vl satisfying (6.5), we can define a solution X via

the quasi-spectral decomposition. Set A a quasi-diagonal matrix (2.2) with in(A) = in(M)

and in(A1) = (_rl, v_, 6_). Because A and M are both Hermitian matrices with the same

inertia, there exists a nonsingular matrix S with SHMS = A. Then for

0

we get raxLk(X) = ra and in(XHMX) = (xl,vl,61). D

Theorem H (de S_i [15, Theorem 5]). Let Mi be nl x ni Hermitian matr/ces w/th

inertias (a'i,r,i,6i), i = 1,2. Le_ lr and z, be nonnegative integers. Then there exists an

n1 × n2 matxix X such that

in(M_ + XM_X "v) = (_r,v,n, - _r - v)

if, and only Lf, the following inequalities hold:

_rl - _2 < w <_1rl + 1r2, (6.6)

vl --_r_ < v < vl + r,2, (6.7)

+ _, < n_. (6.8)
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Proof. Obviously, we can assume that M1 and M2 are diagonal matrices with diagonal

elements -t-1 and 0, and that, in addition, Ms is nonslnguIar. Thus, we have M1 -

diag(ll,...,Z.,) and Ms = diag(,,,...,r.,) with

I for i = l,...,lh f 1li= -I fori=w1+l,...,lh+vl and ri=__l
0 for i = 7rl + vl + 1,... ,nl

for i = 1,..., lrs

for i = tr2 + 1,..., Ira + vs

First, let _r and v be given nonnegative integers which satisfy (6.6)-(6.8). It suffices to

consider matrices X := _diag(zl,... ,z,_,) with real zi and _ a permutation matrix.

Applying _ on diagonal matrices induces a permutation of the diagonal elements. Then

M1 q- XMsX H = diag(dl,... ,dr, t) is also a diagonal matrix with

1 + z_r,,(1)
dl = -1 + z_r,,(O

Z _ r e,( i)

for i = 1,2,...,Iri,

for i = lrl + 1,...,lrl + vl,

for i = Irl + vl + 1,... ,nl.

Setting zi := 0 for i = 1,2,...,min(Th,_r) and i = _r_ + 1,...,_h + min(vl,v), yields

min(_h, _r) positive and min(vl,v) negative dl.

If lrl ___7r < lrl + Ira and vl _< v _< vl + v, we set:

1 _ori = ,,'1+ ,_1+ 1,..., _'1+ ,',+ (" - _'_)+ (" - _',),
0 otherwise,

I for i = lrl -{- t,1 + 1,...,Irl + vl + (lr -- lrl),--1 for i = lr -{- vl + 1,...,_r + vl + (v -- vl).

If _rl ___lr __. Irl +lrs and vl - Ira _< v < vl, we set:

V_ for i = _h + v + 1,...,_h + _,
z_:= 1 fori=_h+v_+l,...,_r+v,

0 otherwise,

r_( 0 := 1 for i = _h + v + 1,... ,_h + v + (_r - _h).

If _h - vl _ _r < _r_ and vl - _rs _< v < v_, we set:

1zi := 0

r_,(i) := {

--1

1

for i=_r+l,...,_h and i=_h+v+l,...,_h+v_,

otherwise,

for i = _r + 1,...,a'_,

for i = _r_ + v+ 1,...,_h +u_.

For the remaining case _rl - vs _< _r < _h and vl _< v _< v_ + us we can define X and

analogously. Clearly, the above defined matrices have the prescribed inertia.
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Secondly, let us assume that Mi, i - 1,2, and X are given matrices, and that M2 is

nonsingular. Then, Theorem F applied to the first matrix of the equation

X M1 = ,, MI +XM2X _

yields (6.6) and (6.7). I'l

As a consequence of Theorem H and Theorem B on the restricted signature normal

form, we obtain the following

Theorem I (Cain and de S_ [2]). Let

M=(M, B)-: B i_ M2

be s He.rm/tian matrix with in(M) = (_',v,n - _" - v) and in(M/) = (_ri, vi,ni - _ri - vi),

i = 1,2. Then the following iaequMJties are satis_ed:

max(_l,_2) _<_ _<_n(m + _2,n_+ _1)
(6.9)

and max(v,, u2) < v < rain(n, + u2, n= + _,,),

Ir - v < a'l + lr= and v - _r < v, + v=, (6.10)

7r+ v _< n, +n2.

Proof. By the restricted signature normal form (1.4) of M, the inequMities (6.9) are

obvious. Next, note that, with the notation of Theorem 2.1, diag(A0,0) = V_(M2 -

B_M_B)V.. Then,TheoremO and a show_(A0)_<,_ + v,. Thusweget

,_- _ = ,_ + ,KA0)- v, - _(A0)_<'U - v_+ 'K^0)-<,U- "1+ ,_2+ _1 <_'U+ '_.

B

Finally, we will prove the most general result on the connection between the inertia

of a partitioned matrix M of the form (6.1) and its submatrix M,.

Theorem J (Dancis [5, Theorem 1.3 for m--2]). Let M_ and M2 be Herm/ffan

matrices with /nert/a (_ri, vi, nl -- lri - vi), and V/ C ker(Mi), di = dim(V/), /'or i = 1, 2.

Then, 341 and M2 can be extended to a ttermitian matrix

M= B X M2
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/f, and on/y/f,

6 > dl + d2, _" > max(_'a + & - d_),
-- -- i----1,2 (6.11)

v>max(vi+_i-di) and lr+v+_=rtl-l-n2.
- i=1,2

Proof. The 'only if' part has already been established in Theorem A. Now let us turn

to the proof of the 'if' part of Theorem J. Using orthogonal eigenvectors of MI and Ms,

we can reduce M to the form

¢'Oat 0 0

O Da 0

0 0 Od_

0 0 0

Exl Ea2 0

E21 E22 0

0 EH E_ ] 0d_ o 0
0 E_ Eg ] o D2 0
0 0 0 ] 0 0 0_

, d_ := $/- d/, i = 1,2, (6.12)

where D/, i = I, 2 denote the nonzero eigenvalues of Ma and Ms. By eliminating the zero

lines and columns in (6.12) we get the following reduced version of Theorem J:

Let Ma = diag(Da,O) and Ms = diag(0,D2) be diagonal matrices with inertia (lr/,_,/,6/),

i = 1,2. Assume that

lr > max(_ri + $/)
m i----1,2

Then there exist matrices E/d, i,j = 1, 2, such that

r_k(E_ E_) and r_k(E_ E_)

and y > max(ei + _,). (6.13)
/_-1,2

t

are both maximal, (6.14)

and in(M) = (_r,v,6) with

M

D1

0

 12)
E22

0

D2

Mx B ) (6.15)= B u Ms "

Here, the rank conditions (6.14) correspond to di = 0, i = 1,2, in the reduced version of

Theorem J.

Without loss of generality it suffices to consider the case 6a _> $2. Now we have to find
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Eid, i,] = 1,2, that fulfill (6.14) and (6.15). To this aim set En = 0. Theorem H shows

that, by choosing E12 appropriately, we can generate matrices

F = M2 - B H B= D2 - E12D xs-1En = 0 F1

with any inertia for which

_r2- _rl_<_'(F) < a'2+ v1 and _ - zq < v(F) < v2 + _rl

is fulfilled. For W, an (n_ - 62) x (n, - 81) matrix with orthogonal columns define

V° = (06'x("'-_') /Wo

and G = V,_FV, = W_FIW,. By Theorem G, for the inertia of G we can reach

(6.16)

and

m=(O,v2- _i- (81- ,h)) < v(a)_<_2+ _-1 (6.1_')

for different choices of Wo. In addition we can assume that G is a diagonal matrix by

multiplying W° with a suitable unitary matrix.

Now for given _r and I,,, (6.13) shows that (6.16) and (6.17) are fulKUed for _r(G) = _r-_r1-61

and _,(G) = I,, - z,1 - &l. Thus, by choosing E12 and IV, appropriately, it holds lr =

It(G) + _'I+ 61 and ,,= *,(G) + *'I+ 61. Now set (En F-_2)= V,X = (W_ ,) such that

V = (V, V,) is a unitary matrix and Wr,. is a ta x (n2 - 61) matrix of full rank. All in all

we have defined El,i, i,j = 1,2, and thus M via (6.15). It remains to show that M has

the desired properties. Eliminating E12 leads to

DI 0 0

0 F__,

0
0

and the congruence transformation with T = diag (I

0

En

0

F1

V ) then gives
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Therefore, _r(M) = z'(G) + _r_ + 5_ = z" and _,(M) = _(G) + v_ + _ -- _,. Futhermore,

it hold, E2, = WH and thusr_kCE2, E_) = r_kCVY) = _, and r_kCE_ E_) =
r_CE H) = ra_k(W,) = S_are both m_imal. Hence,(6.14)is alsof_taUed.0
Remark 6.2. In Theorem 1.3 of [5] Dancis considers the more general case of the extension

of r matrices Mi to a matrix M of prescribed inertia. By a nontrivial induction Theorem

J can be extended to this case.
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