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ABSTRACT

In recent years, a number of results on the relationships between the inertias of Her-
mitian matrices and the inertias of their principal submatrices appeared in the literature.
In this paper, we study restricted congruence transformations of Hermitian matrices M
which, at the same time, induce a congruence transformation of a given principal subma-
trix A of M. Such transformations lead to the concept of the resctricted signature normal
form of M. In particular, by means of this normal form, we obtain short proofs of most
of the known inertia theorems and also derive some new results of this type. For some ap-

plications, a special class of “almost” unitary restricted congruence transformations turns
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out to be useful. We show that, with such transformations, M can be reduced to a quasi-
diagonal form which, in particular, displays the eigenvalues of A. Finally, applications of
this quasi-spectral decomposition to generalized inverses and Hermitian matrix pencils are

discussed.

1. INTRODUCTION

In recent years, there has been considerable interest [2,4,5,6,9,10,12,13,14,15] in study-
ing connections between the inertias in(M) of Hermitian matrices M and the inertias of

their principal submatrices. Here and in the sequel,
in(M) := (m(M),v(M),6(M))

where m(M), v(M), and §(M) denotes the number (counted according to their multiplici-
ties) of positive, negative, and zero eigenvalues of M, respectively. A typical result of this
type is the following

Theorem A (Dancis [6]). Let M be a Hermitian n X n matrix and My any m X m
principal submatrix of M. Then, with d := dim (ker(M) N ker(M,)),

x(My) + 6(My) — d < (M) < 7(My) +n —m — §(M) +d. (1.1)

It turns out that most of the results in [2,4,5,6,9,10,12,13,14,15] can be easily derived in a
uniform manner by means of the restricted signature normal form for Hermitian matrices
which was introduced in [7] in connection with extension problems for Toeplitz matrices ‘
(see also [8]).

Throughout this paper, let M be an n x n Hermitian matrix, 1 <m < n, and A any
m x m principal submatrix. It is always assumed that the rows and columns of M have

been permuted such that A is a leading submatrix of M. Hence, M can be partitioned in

M= (BAH g) . 12)

We call THMT a restricted congruence transformation of M if T is a nonsingular matrix

the form

of the form

0 TIp

Note that such a restricted congruence transformation induces the congruence transforma-

T = (11]1 le) with T11 an m X m matrix. (1.3)

tion TH ATy, of A. Because of the zero block in T, in general it is not possible to reduce

2



M to a signature matrix by restricted congruence transformations. However, M can be

transformed into a restricted signature matrix of the type

(w0 0 0 o 0 o0 0 \
0 -I, 0 0 0 0 0 O
6 0 0 0 | I 0 0 0O
0 0 ©0 0g | O 0O 0 O
T = . (1.4)
0 0 I 0 0o 0 0 0
0O 0 0 0 0 I, 0 0
o 0 0 0 0 0 -I, 0
\o 0 0 0 0 0 0 04/

Here and in the sequel, I; resp. 0; denotes the j x j identity resp. zero matrix. Moreover,
the lines in (1.4) correspond to the partitioning (1.2) of M, i.e. the block to the left of the
vertical line and above the horizontal line is m x m.

With these notations, our result on the restricted signature normal form reads as

follows.

Theorem B ([7, Lemma 1]). Let M be a Hermitian matrix of the form (1.2). Then,
there exists a restricted congruence transformation THMT = X where I is a uniquely
determined restricted signature matrix of the type (1.4). Moreover, the sizes of the blocks
in (1.4) are determined by

m =x(4), v1=v(d), k=rank(A B)-rankd, d;=5(4)—Fk,

(1.5)
o =n(M)—m(A) =k, vo=v(M)—v(A)—k, do=86DM)—d.

The restricted signature normal form is an efficient tool for obtaining results on the iner-
tia of partitioned Hermitian matrices. For example, (1.1) (with M; replaced by 4) is a

consequence of the relations
r(M)=m+k+m, k=6A)-d, k+m<n-m-—§M)+d,

which readily follow from (1.4).

The purpose of this paper is twofold. First, we investigate in Section 2 congruence
transformations THMT with matrices T of the form (1.3) whose diagonal blocks are in
addition required to be unitary. It turns out that, under this restriction, M can still be
transformed into a matrix with the same zero structure as (1.4). Since such matrices T are

“almost” unitary, we refer to the resulting factorization as quasi-spectral decomposition
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of M. In particular, Theorem B is an immediate consequence of Theorem 2.1 on quasi-

spectral decompositions.
Secondly, using the restricted signature normal form resp. quasi-spectral decompo-

sition, we deduce some new results and also obtain short proofs of a number of known
results. More precisely, in Section 3, connections with generalized inverses are pointed out.
In Section 4, we are concerned with inertia theorems. Section 5 deals with applications to
Hermitian matrix pencils. Finally, inequalities for inertias of M and its submatrices are

collected in Section 6.
Throughout this paper, the following notations are used. X t is the Moore-Penrose

inverse (e.g. [1, p- 7]) of the matrix X. For partitioned matrices M of the type (1.2)
M/A:=C-BHAlB
is the generalized Schur complement of A in M (see [3]). Furthermore, the function §(X)
is extended to arbitrary matrices X by setting
§(X) := dim (ker X).

Finally, X > 0 resp. X > 0 indicates that a Hermitian matrix X is positive definite resp.

positive semidefinite.

2. QUASI-SPECTRAL DECOMPOSITIONS OF HERMITIAN MATRICES

In this section, we investigate transformations THMT of partitioned matrices (1.2)

where T is of the form

0 Vv

The spectral theorem for Hermitian matrices states that there exists a unitary matrix T
such that TH MT is diagonal. With the restricted class of transformations (2.1), it is
possible to reduce M to the quasi-diagonal matrix

T= (U X) with U resp. V unitary m x m resp. (n —m) X (n — m) matrices. (2.1)

(A 00 0 0 0)
0 0 0 D, 0 O
0 0 O0q 0o 0 0
A=
0 Dy 0 o o0 o | (2.2)
0 0 0 0 Ao O
\o 0 o0 0 0 odo/

with A;, Ao nonsingular diagonal matrices and D¢ >0 a k x k diagonal matrix.
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More precisely, we have the following

Theorem 2.1. Let M be a Hermitian matrix of the form (1.2). Then, there exists a
matrix T of type (2.1) such that

THMT = A with A a quasi—diagonal matrix (2.2). (2.3)

Moreover, the nonzero blocks Ay, D&, Ao of all quasi-diagonal matrices A and U, V, X of
all transformations T of the form (2.1) which satisfy (2.3) are given by

AU, =U.A;, AU, =0, U=(U, U,), (2.4)
D, 0\ [(VH Ao O
UHB = ( 0" 0) (V,H)' VE(M/A)V, = ( 0" o)’ V=(V. V,), (2.5)
-1 1 -1
X =-AlBV +U, (D k (SZ‘ 1Gr) -D; G') (2.6)
with G;:=VHE(M/A)V;, j=r,s, , (2.7)
and arbitrary matrices Zr,Z,, and skew—Hermitian § = —S¥.

In particular, the diagonal entries of A; and Ao are the nonzero eigenvalues of A and
VH(M/A)V,, respectively. The diagonal elements of D; are the positive singular values
of UHB.

Remark 2.2. Clearly, the quasi-diagonal matrix A in (2.3) is uniquely determined up to
permutations of the diagonal entries of A, Di, and Ao respectively.

Remark 2.3. The zero structure of A in (2.3) is identical to that of the restricted signature
normal form (1.4) of M. In particular, Theorem B is just a corollary to Theorem 2.1. Also,
note that (cf. (1.5))

x(Ay) = 7(A), v(A1) =v(A), k=rank(4 B)-rankA.
Remark 2.4. Since the diagonal blocks U and V in (2.1) are unitary, we have
det(TET) =1 and det(M) =det(A) (2.8)

for any quasi-spectral decomposition (2.3).
Proof of Theorem 2.1. Let T resp. A be an arbitrary matrix of the form (2.1) resp.
(2.2). First, note that (2.3) is equivalent to MT = T-HA where

pr_( U 0
=\-vxiy v )
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Therefore, T and A satisfy (2.3) iff the following four equations are fulfilled:

Ay 0 0
() AU=U|0 00],

0 00
Ay 00 0 Di O
(#) BEy=-vxHyl{ o0 0 0)+V{0 0 0],
0 00 0 0 0
0 00 ]
(iii) AX+BV=U|D: 0 0],
0 00
_ 0 00 0 0 0
(iv) BEX+CV=-VXBU | Dy 0 0]+V |0 Ao O}.
0 00 \o 0 0

Clearly, (i) is equivalent to (2.4). Next, consider (ii). Using the partition (2.4) of U and

V-1 = VH  (ii) can be rewritten in the form

UHB = (13,, g) VH and UHX =-A7'UHBV (-_- _U:IATBV). (2.9)

The first relation in (2.9) is the same as in (2.5). Note that, for the last identity in (2.9),
we have used that, in view of (2.4), At = U, AT'UE. Since U = (U, U, ) is unitary, the
second part of (2.9) implies that X is of the form

X =-AtBV +U,2 (2.10)

where Z is still arbitrary. It remains to fulfill (iii) and (iv). By meaans of (2.4) and (2.10),
one easily verifies that (iii) is equivalent to

’ Dy 0 -
(I—U,U,”)BV=U,( 0" 0). (2.11)

However, since I U, UH = U,UF, (2.11) just leads to the first identity in (2.5). Finally, we
turn to condition (iv). Substituting the ansatz (2.10) for X into (iv) and using VHV =1,
Aty, = 0, and the first relation in (2.5), one obtains

0 0 O
H
Vir ) (M/4) (V. V)=~ D 0N, _zu(Dw 0) (g Ay 0}. (212)
V; 0 0 0 o0 0 0
0
Next, we partition Z conformally with the matrices on the right-hand side of (2.12):

Z= (? ?) with Y, a k x k matrix. (2.13)
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A straightforward calculation then shows that (2.12) (and hence (iv)) is satisfied iff the
second identity in (2.5) holds and

Y, = D;*(S - 56») with § = -S¥, Y, =-D}’G.. (2.14)

Here G, and G, are the matrices defined in (2.7). Note that the blocks Z, and Z, in
(2.13) are arbitrary. By (2.10), (2.13), and (2.14), X is indeed of the form (2.6), and this
concludes the proof. [J

3. CONNECTIONS WITH GENERALIZED INVERSES

The quasi-spectral decomposition (2.3) naturally gives rise to a generalized inverse

of M. Let T and A be matrices of the form (2.1) and (2.2), respectively, such that (2.3)
holds. Then, we define

MY .= TATTH, (3.1)

Next, let A, be the matrix which is obtained by deleting the d; + dy zero columns and

rows in (2.2). Remark that A, is nonsingular and

A7! 0 0 0
0 0 D' 0
A= . .(3.2)
0 D;! 0 0
0 0 0 A

Similarly, we denote by T, resp. S. the matrix which is obtained by deleting the columns
with the numbers m —d; +1,...,mand n —dp + 1,...,n in T resp. T-H, With these

notations, (3.1) can be rewritten in the form
M! =T A;'TH, (3.3)
Analogously, (2.3) can be stated as follows:
M = S.A.SE. (3.4)
Since S, has full column rank (3.4) immediately (see [1, p. 24]) leads to the representation
Mt = (sh¥a;1sl, where )= (s#s.)7sE, (3.5)

of the classical Moore-Penrose inverse of M.

In the following theorem, we collect some properties of M LR
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Theorem 3.1. Let M be a Hermitian matrix of the form (1.2) and M? be defined by
(3.1). Thea:
(i) MY is an 1,2-inverse of M, i.e. M'MM?* = M' and MM'M = M. (see {1, p. 8]).
(ii) M? is the weighted inverse M((:sz),) of M for W =TTF and U = W},
ie. (WMMY)E = WMM?' and (UMIM)¥ = UMM (see [1, p. 123]).
(iii) Let T in (2.3) be chosen such that Z, = Z, = 0 in (2.6). Then, M? = M1 if, and only

(A;B) v, (13.,) —0 (3.6)

Proof. With (2.3) and (3.1), one readily verifies (i) and (ii). We now turn to part (iii).
In view of (1) and the usual [1, p. 7] definition, M and M t are identical if, and only if,
MM?® and M'M are both Hermitian. From our definition of T, and S., it is obvious that
THS, = I. Thus, with (3.3) and (3.4), we obtain

’

with dy defined in (2.2).

MM =T,S¥ and MM'=STH = (T.5%)".

Therefore, it remains to show that the condition (3.6) is equivalent to T.SH being Hermi-
tian. For this purpose, denote by

t'f::U(}l):U.(Igl),- X::X(Igo), V::V(Igo)=v.(l.go) (3.7)

the parts of U, X, and V whose deletion from T just yields T.. Note that U, and V, are
the matrices defined in the partitions of U and V in (2.4) and (2.5), respectively. With
(3.7), one readily verifies that

- U0H -UUHXVE 4 XVH
I=TT'=T.S¥ + ( 0 JVH . (3.8)
Moreover, with (2.4), (2.6), (3.7), and our assumptioﬁ Ze=2Z,= O,Vif; follows that
UHX =(2, 2,)=0. (3.9)

Using (3.8), (3.9), and the fact that V fas full column rank, we conclude that T2 S is
Hermitian iff X = 0. However, by (3. 7) (2.6), and (2.7),

% =-atBV _U, (D- )V,(M/A)V. , (3.10)
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Since, by (2.4), the columns of U, are orthogonal to range At (3.10) implies that X=0
is equivalent to

AtBV =0, V.(M/A)7 =0. (3.11)

Finally, note that, by (2.5), V,(M/A)V = 0, and therefore the second condition in (3.11)
can be rewritten as (M/A)V = 0. Thus (3.11) is equivalent to (3.6), and this concludes

the proof. [
Remark 3.2. In general, (3.6) is not fulfilled and hence M t and M! are different. For

example, consider the family of 3 x 3 matrices

o] 1 1
M, = 1 20 O , «€R.
1 l 0 —2a

All quasi-spectral decompositions THM,T, = A are given by

0 | v2 0 V2 | io 2a
1 .
A= V2 o ol Ta=—\/—§- 0 1 -1 o € R arbitrary.
0 0 O 0 1 1

Note that A does not depend on the parameter a. M, has the génera.lized inverses

0|11 0] 1 1
1 1
t _ = t
1 0 O 1 0 -2«

which coincide only if a = 0.
By means of M!, one can obtain a generalization of a signature formula due to

Lazutkin [13). First, we partition M! conformally with M:

M = (;H %) with P an m x m matrix. (3.12)

Moreover, denote by sgn(X) := m(X) — v(X) the signature of the Hermitian matrix X.
Then, we have the following

Theorem 3.3. Let M be a Hermitian matrix (1.2) and R be defined by (3.12). Then,

sgn M = sgn A + sgn R.
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Proof. First, we remark that, as an immediate consequence of (2.1-2.3),
sgn M =sgnA; +sgnAy andsgnA =sgnA;. (3.13)

Furthermore, with (2.1), (2.2), (3.1), and (3.12), it follows that

0 0 O©
R=V [0 A;! 0| VE
0 0 0

This shows that sgn A = sgn A, and, in view of (3.13), the proof is complete. [
Remark 3.4. For the case of nonsingular M, M?! is the usual inverse of M. In particular,
for nonsingular real symmetric matrices M, Theorem 3.3 reduces to the recent result [13]

of Lazutkin. -

4. INERTIA THEOREMS

Numerous authors investigated the connections between the inertias of Hermitian '
matrices and the inertias of their principal submatrices (see e.g. [9-12,14]). The most
general results of this type are due to Maddocks [14]. In this section, we present a different
approach, based on the resricted signature normal form, to the main results in [14]. In
particular, this will lead to shorter and more elementary proofs.

In [14], Maddocks considered only real symmetric matrices. Here, we will deal with
general complex Hermitian n x n matrices M. Moreover, let F be any n x p matrix and
set Y = range(F). Generalizing the corresponding notion [14, Lemma 2.2, Corollary 2.3,

and Definition 2.2] for real matrices, we introduce
in*(Y; M) := in*(FEMF) := in(FEMF) — (0,0,5(F)). (4.1)
Next, we reformulate and prove the main results in [14] for the general complex case. .

Theorem C (Maddocks [14, Corollary 4.1]). Let M = M¥ ben x n, F n x p, and
G any n X q matrix whose range is ker(F¥M). Then:

in(M) = in*(F¥MF) +in* (G MG) + (d,d, —d - f), . (4.2)
where
d := dim (range(MF) N ker(F¥)) and f:=dim (range(F)N ker(FE M)).
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Proof. A straightforward computation, using the singular value decomposition of
F, shows that it suffices to consider the case F = (Im 0)T. Furthermore, let M be
partitioned as in (1.2) with leading m x m principal submatrix A. Note that m = rank(F),
A= FHMF, and FEM = (A B). Next, we apply Theorem B and reduce M to the
restricted signature normal form THMT = Z. By grouping the columns of T which

correspond to the zero columns in (1.4), one obtains the partition
T=(Ty T» | T5 T.) with Tj nxrank(4), T3 nx§(4), Ts n X k.
Since
ker(FEM) =ker(A B)=range(T> | Ti),
we can choose G = (T Ti). It follows that
0k
04,

GHEMG = : (4.3)

04,

Furthermore, we obtain

f=dim (ra.nge (Iau) Nker(A B )) = dim (range(T3)) = §(4), (44)

and
d= dim (range ( 1;‘,,) Nker(In 0)) = dim (range(( BAH) U.))

= dim (range(V (%* 8))) —k, o

with U,, V, and Dy as defined in Theorem 2.1. Finally, combining (4.3), (4.4), and (4.5)
yields (4.2). 0
Following [14], we set, for any subspace Y C C",

YM .= (MY)* and d°(Y):= dim(M(Y nYM)).

Here, | indicates the orthogonal complement in C". Using these notations, Theorem C

can be rewritten as follows.
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Corollary D ([14, Corollary 2.7]). Let M be a Hermitian n X n matrix and Y a
subspace of C". Then:

in(M) = in*(Y; M) +in*(YM; M) + (&(Y), & (Y), -4’ (Y) — dim(Y N YM)).

We remark that the results of Han and Fujiwara ([10, Theorem 2.3] and [9, Theorem 4.1]),
and Jongen et al. [12, Theorem 2.1] are only special cases of Corollary D.
As in [14], the formula .

ker(FE M) = M1 [ker(F¥) N range(M)] © ker(M)
can be used to derive from Tﬁeorem C the following result.

Corollary E (cf. [14, Corollary 4.3 and Theorem 3.1]). Let M and F be as in
Theorem C, and let E be any n x q matrix with range(E) = ker(F¥) Nrange(M). Then:
in(M) = in*(FEMF) + n*(E¥ M1E) + (d,d, e - 2d),

where
d := dim (range(MF) Nker(F¥)) and e:=§(M) - dim (ker(M) N range(F)).

Remark 4.1. For special cases, the result of Corollary E was also derived by Han [10,
Theorem 4.3] and Lazutkin [13] (e.g. Theorem 3.3 and Remark 3.4).

We conclude this section with a result on the relationship of the inertias of M, its
submatrix A, and the generalized Schur complement M/A of A in M.

Theorem 4.2. Let M be a Hermitian matrix of the form (1.2). Then:
in(M) = in(A) + in® (ker(U;? B); M/A) + (k, k, k)
with
range(U,) = ker(A) and k= rank( A B)- ra.nk(A)

Proof. This result is an 1mmed1ate consequence of Theorem 2.1. Also, recaJl Remark

2.3 for the definition of k. [
Remark 4.3. For the special case that the submatrix A in (1.2) is nonsingular Theorem

4.2 reduces to '
in(M) = in(4) + in(C — BY¥A™'B). (4.6)

12
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This result is due to Haynsworth [11]. It seems that (4.6) is one of the earliest inertia

formulas for partitioned Hermitian matrices.

5. APPLICATIONS TO HERMITIAN MATRIX PENCILS

In this section, we are concerned with Hermitian matrix pencils (see e.g. [16, Chapter

15))
pM - AN, p,AeR, (p,A)#(0,0), (5.1)
where M = MH and N = N¥ > ( are n xn matrices. Moreover, without loss of generality,

it is always assumed that N is of the form

N= (g I,.?m) . m=5(N). (5.2)

Let THMT = A of M be a quasi-spectral decomposition (2.3) of M with matrices
T and A of the type (2.1) and (2.2), respectively. Then, by (2.1) and (5.2), we have
THNT = N. Together with (2.3) it follows that

(hs 0 0 0 0 0\
0 0 0 | wDe O 0
0 0 0 0 0 0
TH(uM — AN)T = (5.3)
0 D 0 | -AL O 0 '
0 0 0 0 pho—AL 0
\o o0 o 0 0 AL,/

Next, we show that the essential properties of pencil (5.1) can be deduced from its normal
form (5.3). First, recall that a matrix pencil (5.1) is said to be singular, if det(uM—AN) = 0
for all 4, ) € R, and it is called regular otherwise. From (5.3), we immediately obtain

Theorem 5.1. The matrix pencil (5.1) is regular if, and only if, d; = 0 in (5.3).

In the following it is always assumed that (5.1) is a regular matrix pencil. Then, by
(5.3) and since det(THT) =1 (cf. (2.8)), we get

det(uM — AN) = det(uA;) det (ng F_‘_I;}) det(plAg — AI) det(—Alg,)
! k (5.4)
= det(uhs) (-0 [ =) J[(-#*47),
j=1 j

i=1
where Ag = diag(A1,...,A1) and D; = diag(o1,...,0%). The next theorem readily follows
from (5.4).

13



Theorem 5.2. All solutions (u,)) # 0 of det(uM — AN) = 0 are given by:
(i) A =0, p arbitrary, if do > 0;
(ii) X = p)j, p arbitrary, for all j =1,...,1.
(iii) u = 0, X arbitrary, if m+ k > 0.
The solutions of det(uM — AN) = 0 with 4 = 1 resp. g = 0,) # 0 are just the
eigenvalues of the generalized eigenvalue problem

Mz = AN=z. (5.5)

For this special case, Theorem 5.2 together with (5.4) leads to the following

Corollary 5.8. The eigenvalues X of (5.5) are given by:
(i) X = 0 with multiplicity dy, if dy > 0; '
(i) A=2;,i=1,...,L
(iii) A = oo with multiplicity m +k, if m +k > 0.
As a further application, by means of (5.3), one can easily characterize all cases for
which uM — AN > 0. o
Theorem 5.4. Let p,A € IR and (u,)) # 0. Then, the matrix (5.1) puM — AN is positive
definite if, and only if, the following four conditions are satisfied:
(i) dl =k= 0,’
(i) m =0 or uA; > 0;
(m) l=0o0rpuAo— 21 > 0;
(iv) do =0 or A < 0.
In particular, we obtain the following

Corollary 5.5. There exist p,A € R such that the matrix (5.1) pM — AN is positive
definite if, and only if, the submatrix A in the partition (1.2) of M is positive or negative
definite.

Finally, we conclude this section with an inertia formula which again immediately

follows from (5.3).

Theorem 5.8. For the matrix pencil (5.1) with p,A € R, p # 0, it holds

in(uM — AN) = in(uAq) +in(pAe — M) +in(—A1g,) + (k, k, 61 — k)
= in(A;) + (k, k, & — k) +in*(ker(UF B); M/A + AI).

14
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Here, U, is defined in (2.4), (2.5) and the notation in® in (4.1).

Remark 5.7. Different inertia formulas for matrix pencils (5.1) can be found in [12,

Section 4].

6. POSSIBLE INERTIAS FOR A HERMITIAN MATRIX AND ITS
PRINCIPAL SUBMATRICES

In this section, we are concerned with the following problem: For given Hermitian
n; X n; matrices, i = 1,2, characterize the possible inertias of Hermitian n X n matrices
M, B
w- (2% 2) o
in terms of the inertias of M; and M;.

Along these lines, a main result is the following theorem of Dancis [6, Theorem 1.2].

Theorem F. Let M be a Hermitian matrix of the form (6.1). Set & := §(M), d :=
dim(ker M Nker M,), A := §; — d, and A* := §(M) — d. Then:

na+m-A"2>2r>2m+A4, (6.2)
1r1+61+n2-—A_>_1r+5(M)21r1+61+A', (6.3)
6y +ng — 20 > §(M) > 61 —ng + 2A°. (6.4)

Proof. Using Theorem B on the restricted signature normal form of M, we obtain
k=6,—d=A and A'=5(M)—d=k+5(M)—51.

Note that (6.2) has already been proven in Section 1, Theorem A. To show (6.3), we remark
that in view of (1.4)

na+m + (6 — k)2 7+ 86M) > m +k+m+ M) 2m +k+ 6§(M).
Finally, since n2 > A + A®* = k + dy, we have
(51—k)+(n2—k)26(M)=A'+(61—k)22A'+61—n2

and this implies (6.4). 0
Remark 6.1. In addition, for 7y = vy = 0 or, equivalently, §(M) = n; + 2d — 6, by (1.4)
we get T = m + k. o S '

Next, let us consider some inertia properties of X HMX.
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Theorem G (Dancis [4, Theorem 3.1] and de S& [15, Theorem 1]). Let M be
an n X n Hermitian matrix with in(M) = (7,v,8) and m, s integers such that1 < m <
min(s,n). Then, there exists an n x s matrix X of rank m with in(XHMX) = (m1,1,6)

if, and only if, the following inequalities are satisfied:
r+m-n<i<m<nm, v+im-n<nv, m+ryy<m (6.5)
Proof. In view of the singular value decomposition of X, we can assume that
x=(% 1)
Then XHMX is the m x m leading principal submatrix of M and Theorem A shows that
r+m—-n<r+m-n+(f-d)<m<r—(61~d)<.

On the other hand, for given m, and v, satisfying (6.5), we can define a solution X via
the quasi-spectral decomposition. Set A a quasi-diagonal matrix (2.2) with in(A) = in(M)
and in(A;) = (m1,14,6;). Because A and M are both Hermitian matrices with the same

inertia, there exists a nonsingular matrix § with S#MS = A. Then for

I 0
x=5 (™ )
( 0 O(n—m)x(s—m)

we get rank(X) = m and in(X¥MX) = (m1,11,6). 0

Theorem H (de S4 [15, Theorem 5]). Let M; be n; x n; Hermitian matrices with

inertias (w;,v;,8;), i = 1,2. Let = and v be nonnegative integers. Then there exists an

ny X n, matrix X such that
in(M; + XM, X¥) = (m,0,ny — 7 —v)

if, and only if, the following inequalities hold:

m —p < <M+ 72, (6.6)
V1—7rg_<_VSV1+V2, (67)
r+v <. (6.8)
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Proof, Obviously, we can assume that M; and M; are diagonal matrices with diagonal
elements +1 and 0, and that, in addition, M, is nonsingular. Thus, we have M; =
diag(ly,...,In,) and M; = diag(r1,...,Tn,) with

1 fori1=1,...,m 1 fori=1 T2
JR— —_ ) = e i = '— 1 )
l,—{ 1 fori=m+1,...,m+»1 and 7 {—1 fori=m +1,...,m2+ 11

0 forti=m+un+1,...,m
First, let 7 and v be given nonnegative integers which satisfy (6.6)-(6.8). It suffices to
consider matrices X := odiag(z,...,Zn,) With real z; and ¢ a permutation matrix.
Applying ¢ on diagonal matrices induces a permutation of the diagonal elements. Then
M, + XM, XH = diag(d,,...,dn,) is also a diagonal matrix with
V 1+z?r‘,(,~) for:=1,2,...,m,

di={ -1+, fori=m+1,...,m+wn,
z3ro(i) fori=m+11+1,...,0;.

Setting z; := 0 for ¢ = 1,2,...,min(m,r) and : = m +1,...,m + min(vy,v), yields
min(#;, ) positive and min(v1,v) negative d;.
frm <7 <m +m and v v <y +v, we set:

g d 1 fori=m+wn+1,...,m+un+(r—-m)+{¥-—mn),
710  otherwise,

. 1 fori=m+ni+1,...,m +v1+(r—m),
o() *= ) —1 fori=r+u1+1,...,7r+v1 +(v—11)

Ifm <7 <m+m and v — 1z < v <y, we set:

V2 fori=m+v+1,...,m+u1,
Ti=41 fori=m+un+1,...,7r+v,
0 otherwise,

royi=lfori=m+v+1,...,m +v+(r—m).
Hr —1vy <7 <m and vy —m S v <1, weset:

1 fori=n+1,...,mand t=m+v+1,...,m +1,
z; = .
0 otherwise,
- -1 fori=n+1,...,m,
()= 11 fori=m+v+1l,...,m 4.
For the remaining case my — v < 7 <7 and v; < v < v; + v, we can define X and o

analogously. Clearly, the above defined matrices have the prescribed inertia.
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Secondly, let us assume that M;, ¢ = 1,2, and X are given matrices, and that M; is

nonsingular. Then, Theorem F applied to the first matrix of the equation

in -M;' x*H =in M7t 0
X M= 0 M, +XMXH

yields (6.6) and (6.7). O
As a consequence of Theorem H and Theorem B on the restricted signature normal

form, we obtain the following

Theorem I (Cain and de Sa [2]). Let

_(My B
- (5% 1)
be a Hermitian matrix with in(M) = (7,v,n — 7 — v) and in(M;) = (m;,v5, 7 — ™ — v5),
i = 1,2. Then the following inequalities are satisfied:

max(my, ;) < 7 < min(n; + 73,02 + M)

(6.9)

and max(vy,v;) < v < min(n; + v3,n2 + 11),
r—v<m+m and v—7v<1 +1,, (6.10)
T+ v<n+ns.

Proof. By the restricted signature normal form (1.4) of M, the inequalities (6.9) are
obvious. Next, note that, with the notation of Theorem 2.1, diag(A¢,0) = VHE(M,; —
BH Mlt B)V,. Then, Theorem G and H show 7(Ao) < m2 + v1. Thus we get

r—v=m+w(Ao) —vi—v(Ao) <M —v1+7(A)) <m -1+ M+ <M+

0

Finally, we will prove the most general result on the connection between the inertia

of a partitioned matrix M of the form (6.1) and its submatrix M;.

Theorem J (Dancis [5, Theorem 1.3 for m=2]). Let M, and M; be Hermitian
matrices with inertia (m;,v;,n; — m; — v;), and V; C ker(M;), d; = dim(V;), for ¢ = 1,2.

Then, M; and M; can be extended to a Hermitian matrix

(M, B
M—(B” Mz)

18
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T

with inertia (x,v,n—n —v) such that ker(BH)Nker(M,) = V; and ker(B)Nker(M;) = V3,

if, and only if,
§>dy+d;, w2 max(m +§;—di),
=1 (6.11)
uz;na.g(u,-+6,-—d,-) and w+v+46é=mn;+n3.

=1,
Proof. The ‘only if’ part has already been established in Theorem A. Now let us turn
to the proof of the ‘if’ part of Theorem J. Using orthogonal eigenvectors of M, and Mz,

we can reduce M tc; the form

{ 04, 0 0 0 0 0 \
0 D 0 Eiiy Ei2 0
0 0 0411 Ea Eaz 0

: ’ d: = 5,' - d,', 1= 1,2, (6.12)
0 EE Ef | 0y 0 O

0 Ef EE 0 D, 0

\ 0 0 0 0 0 0.1,)

where D;, i = 1,2 denote the nonzero eigenvalues of M; and M;. By eliminating the zero

lines and columns in (6.12) we get the following reduced version of Theorem J:
Let M; = diag(D;,0) and M, = diag(0, D;) be diagonal matrices with inertia (m;, v, 6;),
i = 1,2. Assume that

> mg.xz(‘lr,- +6) and v2 ;nzla.xz(u,- + &). (6.13)
=1, =1,
Then there exist matrices E; ;, 3,j = 1,2, such that
rank(Ez; E;;) and rank(Ef] Ej]) are both maximal, (6.14)

and in(M) = (,v,8) with

D, 0 Ey Ej

0 0 E;; Ex; M, B
EH EH 0 0 2
EE ER 0 D,

Here, the rank conditions (6.14) correspond to d; = 0, i = 1,2, in the reduced version of

Theorem J.
Without loss of generality it suffices to consider the case §; > é2. Now we have to find
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E;;j,i,j = 1,2, that fulfill (6.14) and (6.15). To this aim set E11 = 0. Theorem H shows

that, by choosing E;, appropriately, we can generate matrices

_ 2 _pHutg . (06 0 _ (05 O
F=M, BM‘B—(O D,-Efgp;lEn)—(o Fi

with any inertia for which
m—m <m(F)<m+v; and - Sv(F)<r+m

is fulfilled. For W, an (nz — §2) X (ny — 61) matrix with orthogonal columns define

05, x(na—
'V. —_ ( JQXéV: 51))

and G = V,H'FV, = W,H F,W,. By Theorem G, for the inertia of G we can reach
ma.x(O, Ty — MW — (61 - 82)) S W(G) _<_ w2+ (6.16)

and
ma.x(O,ug -V — (61 -_ 52)) S V(G) S V2 + m 7 (617)

for different choices of W,. In addition we can assume that G is a diagonal matrix by
multiplying W, with a suitable unitary matrix.

Now for given 7 and v, (6.13) shows that (6.16) and (6.17) are fulfilled for 7(G) = 7—m1 —4;
and ¥(G) = v — vy — 8. Thus, by choosing E;3 and W, appropriately, it holds =
(@) 4+ 71 + §; and v = ¥(G) + v1 + §1. Now set (Ez1 En) = VH = (WH ) such that
V = (V, V,) is a unitary matrix and W is a §; x (nz — 6;) matrix of full rank. All in all
we have defined E;;, i,j = 1,2, and thus M via (6.15). It remains to show that M has
the desired properties. Eliminating E;2 leads to '

Dy 0 0 0
0 0 Eq; Ez

0 EX 0 0
0 E& 0 B

and the congruence transformation with ' = diag (I V') then gives

Dy 0 0
0 0 I, 0O

0 I, 0 O
0 0 0 G
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Therefore, #(M) = n(G) + 71 + 8 = 7 and v(M) = v(G) + 11 + §; = v. Futhermore,
it bolds Ez; = W¥H and thus rank(Ey Ez;) = rank(V;F¥) = 6 and rank(Ef] ER) =
rank(EH) = rank(W,) = §; are both maximal. Hence, (6.14) is also fulfilled. 0

Remark 6.2. In Theorem 1.3 of [5] Dancis considers the more general case of the extension
of r matrices M; to a matrix M of prescribed inertia. By a nontrivial induction Theorem

J can be extended to this case.
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