
w

u

E , Cooperating Systems:

Layered MAS

JRC Research Report No. 90-21

May, 1990

w

Final Report D.O. 50

Prepared for:

Mr. Tim Crumbley

NASA Marshall Space Flight Center

By

Daniel Rochowiak

Research Scientist

Johnson Research Center

University of Alabama in Huntsville

Hutsville, AL 35899

(205) 895-6583

(205) 895-6672

https://ntrs.nasa.gov/search.jsp?R=19920001114 2020-03-17T14:47:49+00:00Z

A BUREAUCRATIC MODEL

FOR MUTIAGENT SYSTEMS

z

i

INTRODUCTION

Distributed intelligent systems can be distinguished by the models that they use. The model

developed in this report focuses on layered multiagent systems conceived of as a

bureaucracy in which a distributed database serves as a central means of communication. In

this section the various generic bureaus of such a system will be described and a basic

vocabulary for such systems will be presented. In presenting the bureaus and vocabularies

special attention will be given to the sorts of reasonings that are appropriate.

The bureaucratic

system (B-

system) is

composed of a

collection of E-

agents and B-

agents that

operate in a

cooperative way

through a

collection of

protocols and

policies. The E-

agents like

Master System

Policies Protocols

B-agent B-agent B-agent B-agent

Work Group Work Group

B-agent B-agent

Diagnostician Scientist Diagnostician Scientist

E-.agent . E-_agent .
_--aaem _--sagent .

E-_gent . t--.._gent .
_--agent t-agent

diagnosticians and scientists perform specialized services. These specialized services are

monitored and facilitated by B-agents. Within the B-system that task decomposition is

more-or-less fixed in terms of the bureaus or work groups of the bureaucracy.

In brief a bureaucratic model has a hierarchy of master system and work group that

organizes the E-agents and B-agents.

-- A Bureacratic Model fo Multia_ent Systems 2

w

m

m

w

w

The master system provides the administrative services and support facilities for the work

groups. The goal of the master system is to stay in a stable state in which the

communications between work groups can continue and the results of the work groups can

be shared. The workgroups are collections of agents. The minimal workgroup would be

composed of one B-agent and one E-agent. The administrative oversight and

communications of the E-agent would be provided by the B-agent. Additionally, if there

were several E-agents, the B-agent would provide the facilities for cooperation and

especially result sharing among the E-agents.

In order to accomplish these goals the use of a DDB is essential. The DDB acts a central

repository for information communicated by both the builder/designers of the system and

the current states of the agents in the bureaucracy. The distributed database also serves to

account for the actions of the agents and provide each agent with some account of the

general nature of other agents. In order to generate cooperation among the agents of the

system there must be specified protocols and policies. The protocols provide for the

exchange of information and knowledge with out which the bureaucracy would collapse

into chaos. Without the protocols no agent would know how to communicate and no agent

would be able to share its knowledge. The policies of the master system establish the

distribution of the tasks and the general modes of interaction among work groups. With out

these no work group would know either what it was supposed to do nor the manner in

which a task was to be done.

This general model was developed during prior work for Marshall Space Flight Center and

reported in UAH Report No. 804. In this report, the framework is extended and applied to

considerations of the role simulations, the ECLSS software for Space Station Freedom, a

tool for knowledge management, and explanation.

w

m

w

KBS AND SIMULATION

=

r

m

One of the obvious benefits of a KBS is that it is capable of constructing an analysis on the

basis of the state of knowledge at a given point in time. A KBS can be understood as using

an engine to apply knowledge to a packet of atoms and issue messages that constitute the

analysis. The engine is the code that applies the knowledge to the atoms of the packet. The

atoms can be though of as the statements or facts the knowledge is designed to reason. The

knowledge may be represented in many forms, but in what follows a rule like

representation will be assumed. The messages are the results of the engine applying the

knowledge to the atoms of the packet, and the messages may be either conjunctions of

clauses or symbols that stand for operations. The messages are various and can range from

messages to display something to messages to reassign values for the parameters or atoms.

The operation of a KBS is composed of cycles. Descriptively the cycle includes tasks to

load a packet, load knowledge, run engine, issue messages, and to reset the packet,

knowledge, and engine. Although this descriptive notion is linear, it is possible to have

some of the tasks occur in parallel or to have some of the task units operate in a parallel

fashion. However, it should be noted that the idea of a KBS cycle is not well defined under

a range of operations. In particular it should be noted that the descriptive account does not

clearly indicate the condition of termination. One way in which termination might be

defined and the cycle established is to allow that the cycle is completed when the messages

are sent or formulated. Alternatively, the cycle may be said to be complete when the engine

is unable to generate any new messages. The second sense is preferable since it accords

with the idea that that a cycle should be complete in the sense all of the information in the

packet, relative to the available knowledge, is used before the process terminates. Adopting

this second way allows the knowable content of the packet to be defined as the total

collection of messages issued by a specific engine with specific knowledge.

A further restriction on the notion of a KBS cycle and knowable content must be imposed,

if the knowable content of a packet is to be produced in a cycle. The restriction is that the

only changes that a message may make are either to send a message to some other agent or

to change the state of a variable from an unknown state to a value. The point of the

restriction is to prohibit the change of a value in an atom of the packet. A KBS that accords

w

--- KBS and Simulations 4

=

L_

w

W

m

with this restriction will be called a closed KBS, and one that does not will be said to be

open.

CLOSED KBS

A closed KBS might be designed for several reasons. First, the closed KBS directly

satisfies conditions for individuating packets. Each packet consists of a specified number of

atoms with a specified set of values. If a KBS resets the values of the atoms, then either a

new standard of individuation is needed or the resulting packet is deemed a new packet. If

the packet is deemed a new packet, then the processing of the first packet would not

terminate. Thus, as will be discussed below, allowing a new value to be set for an atom of

a packet will at least require a new criterion of individuation if the notion of a cycle is to be

kept in a meaningful way. Second, if the KBS can alter the value of an atom in a packet,

then it would be difficult to define the notion of consistency in a packet. This would be so

since the setting of a new value would be equivalent to saying that "Atom A has value X,

and it does not have the value X." Finally, a closed KBS might be desirable since it most

clearly specifies the knowable content of a packet given a certain knowledge structure and

engine.

A closed KBS is such that for a given packet, engine, and knowledge structure a specific

message will be produced, remembering the message might be a conjunction of clauses or a

symbol for further operations. To simplify the issue any apparent messages that appear to

change a parameter from an unknown state to a known state can be conceived of as

operating as part of a chain argument. This process of chaining can be eliminated by

allowing that if the inference is a chain, then the complex chain can be replaced by a

complex antecedent. (See example 1)

Example l

Atoms in packet: P, Q, R
Rule 1: (P&Q) D S
Rule 2: (R&S) D T
Message h S by Rule 1
Message 2: T by Rule 2 and Message 1

_-- KBS and Simulations 5

Chain to T

1 P&Q&R Packet
2 (P&Q) D S Rule 1
3 (R&S) D T Rule 2
4 P&Q Simp 1
5 S MP 4,2 Message 1
6 R Simp 1
7. R&S Conj 6,7
8 T MP 7,3 Message 2

Eliminate Chain

1 (P&Q) D S Rule 1
2 (R&S) D T Rule 2
3 P&Q&R Assume
4 P&Q Simp 3
5 S MP 4,2
6 R Simp 3

7 R&S Conj 6,5
8 T MP 6,2
9 (P&Q&R) D T Cond. Proof 3-7

In the example the formula created by the conditional proof allows the chaining to be

eliminated. That is, the packet, 'P&Q&R' and the new conditional, '(P&Q&R) _ T' can

allow for the issuing of Message 2 without the additional issuing of Message 1. This

process can be generalized so that all intermediary assignments to atoms whose values are

unknown and do not appear in either the packet or the message can be eliminated.

m

i

The general strategy works in a similar way in the case of disjunctive elements of rules. In

this case, however, it is easier to consider any rule in which a disjunctive element occurs to

be represented in terms of two rules.

Example 2

Packet: P, Q, R
Rule h (P&(QvS)) D T
Rule 2: (R&T) D U
Message 1: T by Rule 1
Message 2: U by Rule 2 and Message 1

Chain to ld

I P&Q&R Packet
2 (P&(QvS)) D T Rule 1
3 (R&T) D U Rule 2
4 Q Simp 1
5 QvS Add4

6 P Simp 1
7 P&(QvS) Conj 6,5

Message 1
8T MP 7,2
9 R Simp 1
10 R&T Conj 9,8
11 U MP 10,3

Message 2

Separation of Rules

1 P&Q&R Packet
2 (P&Q) D T Rule 1"
3 (R&T) _ U Rule 2
4 T Message 1
5 U Message 2

1 P&S&R Packet

2 (P&S) D T Rule 1"*
3 (R&T) D U Rule 2
4 T Message 1
5 U Message 2

Eliminate Chain

1 (P&(QvS)) _ T Rule 1
2 (R&T) D U Rule 2
3 P&(QvS)&R Assume
4 P Simp 3
5 Q Simp 3
6 QvS Add 5
7 P&(QvS) Conj 4,6
8 T MP 7,1
9 R Simp 3
10 R&T Conj 9,8
11 U MP 10,2
12 (P&(QvS)&R) _U CP 3-11

r

The 'Chain to U' column illustrates the way in which the intermediary messages would be

sent and used. The 'Separation of Rules' column illustrates in a brief form how the

separation would produce the same result with different packets. The 'Eliminate Chain'

column illustrates how the intermediate messages could be removed through a single rule.

m

KBS and Simulations 6

w

In turn the rule that results at step 12 of the column could be separated into two rules,

'(P&Q&R) DU' and '(P&S&R) _U.' The two new rules would then clearly illustrate the nature

of a closed KBS.

Allowing that all of the rules in a knowledge structure of a KBS can be formulated using

only the packets to which they respond on the left hand side of the rule and messages to be

issued on the fight hand side, then given any packet the engine would apply one and only

one rule for a closed system. In effect the rules would represent no more than a large two

dimensional array of packets and messages.

OPEN KBS

An open KBS does not obey the restriction that the only changes that a message may make

are either to send a message to some other agent or to change the state of a variable from an

unknown state to a value. Thus an open KBS can change the value of an atom in a packet,

or change the value of some atom for which a value has already been inferred. There are

several reasons for violating the restriction.

The violation of the restriction on closed systems is reasonable when there is a need to set a

seed value or to make an assumption. In both cases this occurs as a first step in determining

a value for an atom. A typical example is the use of iteration to find a value within given

limits by first "guessing" a value. However, it should be immediately noted that there are

two ways in which such guesses can be made. Given a sufficiently powerful algorithm for

determining the desired value, any guess will do. Guesses for such algorithms are often

informed by background knowledge and produce quicker results. These cases need not be

serious violations of the restriction, however. The restriction can be amended such that the

algorithm is locked into a procedure such that from the point of view of the flow of

knowledge only the final value of the procedure is assigned to the atom of the KBS. In this

way the spirit of the restriction is kept, but the operation of the engine is altered such that

temporary computational assignments of values to the atoms are kept distinct from the

permanent values assigned to the atoms for the purposes of reasoning.

NON-MONOTONIC REASONING AND OPEN KBS

Even the amended restriction may be violated in cases that, from a knowledge perspective,

require the assignment of a new value based on further reasoning. This is the case in which

-- KBS and Simulations 7

r

u

reasoning behaves in a non-monotonic way. Reasoning behaves in a monotonic way just in

case the collection of true inferred claims always grows, or the validity of the inference is

unaffected by additional information. Note that in example 1 and 2 (above) it was not

necessary to violate the amended restriction when using the logical rule of conditional proof

(CP) even though assumptions are made. In processes like CP the assumption used in the

deduction is discharged from the list of true statements in the proof, but is hidden in the

antecedent of the conditional that is formed in the conclusion. However, in the case of non-

monotonic reasoning the truth of a claim is retracted and the list of proven true claims is

contracted. The contraction clearly indicates the non-monotonic character of the reasoning.

The way in which non-monotonic reasoning operates can be illustrated by a slight variation

on a case generated by Dov Gabby (1982). Gabby's example focuses on a case in which a

package tour company must make decisions about what to do with the passengers on one

of its tour flights. The flight deviates from standard conditions because the Paris airport is

one of the stops on the tour flight and the airport has been closed because of terrorist

action. Abstracting from the specifics of the case the essential elements are the following:

1 there is set of procedures that should be followed

2. there is limited knowledge of relevant events

3. at time T a conclusion C is deduced

4. at time T' a conclusion not-C is deduced.

Turner (1984) looks at various ways in which situations of this kind can be handled. Given

the abstract statement of the problem it should be clear that cases of this sort must be

handled, if they can be handled at all, by open KBS. The reason should be clear if 1

represents the knowledge structure and the engine remains unchanged, then the only source

for the change in the conclusion must rest with 2 which can be considered to be the packet.

In short, the analysis of this sort of problem requires that the known value of some atom in

the packet must change. This is a direct violation of the restriction that generates a closed

KBS. Further it should be clear that without any new restriction the termination of the cycle

has as its upper limit the changes of all values in all atoms in the packet such that the atom

appears in the left hand side of any rule.

Consider the following example (Example 3). The example is similar to those found in the

previous cases. The only difference is that a contradiction in the set up of the problem is

made explicit. It should be clear that if the packet contained P, Q, and -R or P, -Q, and R

-- KBS and Simulations 8

then contradiction would not appear. In the former case S would be sent as the message,

while in the latter no message would be sent. Further note that if backward chaining were

to be used and the target was either T or -T a solution could be found. In the former the

solution would be P, Q and R and in the latter Q and R. This would seem to be at least an

unhappy state of affairs since the added information P would generate the contradiction. It

should be notic_ hat the reasoning to T, -T, and T&~T is formally valid. If an additional

non-formal metarule were applied, then some decision about the ultimate conclusion could

be reached. If, however, there is no such rule, then the reasoning that leads to the inferred

rule, '(P&Q&R) D T&~T' would be valid but with the addition of the packet could not be

sound. Thus, it would seem that some bit of information of knowledge should be rejected.

However, the formal side of the bivalued logic cannot be a help in this case.

w

m

Example 3

Atoms in packet: P, Q, R
Rule 1: 0_&Q) D S
Rule 2: (R&S) D T
Rule 3: (R&Q) D -T
Message 1: S by Rule 1
Message 2: ~T by Rule 3
Message 3: T by Rule 2 and Message 1

Chain to T&~T

1 P&Q&R Packet
2 (P&Q) D S Rule 1
3 (R&S) D T Rule 2
4 (R&Q) D -T Rule 3
5 P&Q Simp 1
6 S MP 5,2 Message 1
7 Q&R Simp 1
8 -T MP 7,4 Message 2
9 R Simp 1
10 R&S Conj 6,9
11 T MP 10,3 Message 3
12 T&~T Conj 9,11

Eliminole Chain
1 (P&Q) D S Rule 1
2 (R&S) D T Rule 2
3 (R&Q) D -T Rule 3
4 P&Q&R Assume
5 P&Q Simp 4
6 S MP 5,1
7 Q&R Simp 1
8 -T MP 7,3
9 R Simp 4
10 R&S Conj 6,9
11 T MP 10,2
12 T&-T Conj 11,8
12 (P&Q&R) D T&-T Cond. Proof4-12

The case of non-monotonic reasoning is both difficult to solve and illustrative of a wide

range of problems to which KBS might be applied. In order to see why this is so, a closer

examination of the issues is required.

m

w

w

Consider the sequence of events in a KBS. A packet is delivered to the engine with a

particular knowledge structure in place. For example, a packet of data is delivered to an

engine whose knowledge structure is tuned to fault diagnosis. Now there are several

possibilities.

-- KBS and Simulations 9

m

w

w

w

The first possibility can be established by considering the data in the packet and the

knowledge elements in the knowledge structure to be fixed and exhaustive. If such

elements are fixed their values do not change and if the collection of elements is exhaustive,

then all combinations of values of atoms in the packet are such that some rule can be

applied that will issue an appropriate message. This is the case for a closed KBS and the

problem reduces to the case of finding the correct row in the decision table. This possibility

leads to the conclusion that 3 and 4 differ because they are acting on different packets. At T

and at "V the cycle is completed and the appropriate message is issued. Part of the message

issued in each case is to flush the KBS. This means that all values of atoms are returned to

an unknown state and the engine is reset to accept a new packet. It is as if the KBS has

amnesia; it neither remembers what it did in a previous cycle nor that there was a previous

cycle. In this case non-monotonic reasoning cannot occur since the engine does not have

the memory that would allow it to know that the reasoning is non-monotonic.

The second possibility can be established by considering the data in the packet and the

knowledge elements in the knowledge structure to be fixed but not exhaustive. Two

subcases should be considered. The first subcase focuses on the rules in the knowledge

structure. In this subcase some combinations of values for the atoms will not match the

arrangement of atoms on the left hand side of any rule in the KBS even allowing for

backward chaining. That is there some situation in which the engine applying the

knowledge in the structure to the atoms in the packet will be unable to issue a message. To

force the completion of the cycle a rule is generally added to the effect that if no message

can be issued by the rules in the structure, then a message that this is so should be issued.

This solution avoids the problem of non-monotonic reasoning by forcing the KBS to be

closed. In general, the solution to the lack of exhaustive knowledge for the domain is to

force the KBS to be closed. The second subcase creates a different situation. In the second

subcase it is the atoms in the packet that are not exhaustive. This subcase will collapse into

the previous case only when the elements of the knowledge structure, especially if they are

rules, are in complete declarative form. The knowledge element is in complete declarative

form just in case the condition of the element (the left hand side of the rule) references

every atom in the KBS. In such a case the lack of a specification of an atom in the packet

will prohibit the KBS from issuing any message accept a message that no other message

can be issued. However, if the elements are not in full declarative form, then even though

the entire collection of element conditions may reference every atom of the system, it is

possible either that the system will generate no message or that it will generate multiple

KBS and Simulations lO

E

w

r--

_n

z
r

messages. The former option leads to the previous line of solution; the KBS is forced to be

closed. The latter option provides a place for non-monotonic reasoning.

The third possibility can be established by considering the data in the packet and the

knowledge elements in the knowledge structure to be variable and exhaustive. This case

establishes a possibility for non-monotonic reasoning when it is applied to either the packet

or the knowledge structure. If the values of the atoms in the packet can be reset to a new

known value or if the applicability of the rules can be altered, then the KBS will be open.

Further, in each case it is clearly possible to generate claims such as 2 and 3 on a cycle of

the engine. This can happen either because an intermediate atom forces the consideration of

a group of knowledge elements which in turn resets the value of an atom in a packet, or

because some intermediary creates a condition in which the value of an atom in a packet is

directly reset. In either case there is an opportunity for non-monotonic reasoning.

The fourth possibility is established by considering the packet and the knowledge structure

to be both variable and non-exhaustive. In this case it is clear that non-monotonic reasoning

will occur and that the KBS will be open.

Consideration of the four possibilities strongly suggests that non-monotonic reasoning

should be a prevalent phenomenon, and since this is so should be considered an important

class of problem. In practice this can be clearly seen. Most of the work that goes into the

knowledge engineering of a KBS is an attempt to convert non-monotonic reasoning into

monotonic reasoning, and thereby convert an open KBS into a close KBS. During the life

cycle of the KBS there is a tacit assumption that as the KBS develops it will become a

closed monotonic KBS.

Consider a case of fault detection and diagnosis. In this case it initially might be assumed

that all of the sensors of the physical system are truthful, that all of the sensor readings can

be delivered as a packet to the engine, and that the knowledge elements are fixed and

exhaustive. Under these assumptions the process of knowledge engineering the KBS is a

process of cataloguing all of the atoms (sensor readings) and associating with every

combination of atoms some rule. It may be assumed that some of the rules might generate

intermediates that are used by other rules, but given the considerations advanced above for

the eliminability of chaining and disjunction, these can be considered 'logical sugar.' This

is so because the use of these structures makes it easier for the human to get at or organize

the knowledge, but is not required by the logic of the system. Thus, for every

-- KBS and Simulations l 1

w

L

m

L

configuration of the sensors there exists some rule such that that rule will issue a message

that represents the detection and diagnosis of some fault if it exists or issues a message that

the system is 'healthy.'

So far the presentation has stressed ways in which non-monotonic reasoning can be

eliminated to create a closed KBS and has emphasized the formulation of non-monotonicity

in terms of the growth of truths. At this point it is useful to introduce an alternative sense of

non-monotonicity in which a system is said to be non-monotonic if the introduction of new

data, information, or knowledge invalidates previous results. If the values of the atoms in

the packet are also considered to be a result, then changing the value of an atom in a packet

will create non-monotonic reasoning. When it is not the case that the sensors are truthful,

when it is not the case that the sensors can deliver their readings as a packet, or when the

knowledge elements are not fixed and exhaustive the possibility of ineliminable non-

monotonic reasoning arises.

If the sensors of the system are not truthful, then the messages issued by the closed KBS

may be fallacious. This is clearly undesirable. Thus it may seem appropriate to add a new

KBS to the general system such that it is a closed KBS that either indicates the fault in a

sensor or reports that the sensors are healthy. But what would such a KBS be like?

Consider a two sensor system in which the only message is to be a message about the

health of the sensors. Suppose that the sensor checking apparatus terminates its cycle when

it detects a bad sensor. In this case only two checking operations are needed; one for the

first sensor and one for the second. Now suppose that the sensor readings are linked in

some way. For example suppose the second sensor acts as a check on the first sensor. If

the values differ, then the fallacious sensor cannot be directly isolated from the packet of

values delivered to the KBS. If the sensors agree, the same result will occur since it will be

possible that both sensors are in error. Adding additional sensors will not help either since

the same type of problem will occur if another sensor is added. Depending on the way the

sensors are arranged and the processes that intervene greater complexity could result. The

point here is that from a logical point of view the closed KBS could do its work only if it

already knew the truthful sensors (or the fallacious ones). Of course in this case, the KBS

would not be needed. Further it should be clear that even if there could be a correct

judgment about the sensors, it would still require that the fault detection KBS be an open

system, since the result of the sensor KBS would alter the values in the packet, and pass

that packet to the fault detection KBS. In any case removing the assumption of the

w KBS and Simulations 12

r

w

w

w

z
D

_m

.,,,...

truthfulness of the sensors will create a condition under which non-monotonic reasoning is

ineliminable.

If all of the sensor readings cannot be delivered to the engine as a packet, then either the

engine must wait until the information is so delivered, or engage in non-monotonic

reasoning. If the engine waits for the whole packet to be delivered, then critical actions may

not be taken. Consider the case of fire detection and suppression (FDS) on board the Space

Station. If the KBS charged with the monitoring of the FDS must wait for the packet of all

sensor information which is relevant to the FDS KBS knowledge structure, then the action

taken on a single sensor item that indicates a fire would be postponed until the packet is

assembled. This wait might easily be deemed unacceptable; the KBS might be charged with

acting on the fire as soon as it is noticed. Note that the previous considerations of multiple

sensors would also apply with a vengeance. If the sensor that indicated fire was subject to

the action of a sensor KBS prior to the fault KBS, then the delay would increase. Faster

processing may help, of course, but the fact of the delays would remain. It should also be

remembered that the reason for waiting is to ensure that a closed KBS can be applied. To

avoid the waiting the KBS must be open and engage in non-monotonic reasoning. In this

case item 2 of the specification of non-monotonic reasoning is at issue. At one point in time

conclusion C is generated, and at another time conclusion not-C is generated. In the case of

FDS it would be unreasonable to think that the system would be purged at the termination

of a cycle since the fact that the message of fire was generated would seem to require a

focus of attention and historical analysis related to that fire event. In brief, the KBS would

ideally use the information that a fire message had been sent as part of a continuous

reasoning process. This continuous reasoning process might even provide a facility for the

plausible inference that the fire detector that reported the condition was in error. This would

be so if other related sensors (temperature, atmospheric contaminants) reported findings

that were inconsistent with the fire detector's report. In any case non-monotonic reasoning

is needed.

If the knowledge elements are not fixed or are not exhaustive, then the analysis given above

concerning open systems will apply. In practice this situation can obtain either when there

is the opportunity for metareasoning about possible conclusions (messages) or when there

is simply a lack of knowledge. The former creates a situation that requires non-monotonic

reasoning in an open KBS because the metareasoning may require the system to backtrack

if an unacceptable or incoherent conclusion is reached. If, for example, a KBS could

generate a solution that indicates a device or process is in a physically unrealizable

KBS andSimulations 13

m situation, then the engine should backtrack. In this case the new knowledge would cause a

retraction of an inference previously deemed valid. The latter creates a situation that is much

more typical of the kind problem that is actually encountered. Either it is not possible to get

all of the information into a packet, or the elements of the knowledge structure do not cover

all of the possible cases. In any case the reasoning that is appropriate would be non-

monotonic.

Thus, it seems that non-monotonic reasoning is an important and in many cases

ineliminable part of reasoning. Since a closed KBS prohibits such reasoning, systems that

require non-monotonic reasoning must be open systems.

OPEN KBS AND SIMULATION

A simulation is a computer program that projects what events will take place given certain

initial conditions and structures. A KBS is a computer program that generates messages

(conclusions) given certain packets and knowledge. At a very high level both simulation

and KBS have a similar structure: If certain conditions are satisfied and certain structures

exist, then certain results are produced. However, the simulation and the KBS differ in that

the simulation is forward looking, while the KBS is backward looking.

The difference in whether the engine is forward or backward looking points to the

incapacities of both the simulation engine and the KBS engine. The incapacities of each are

due to the fact that certain information the would make either more knowledgeable is

lacking.

Consider the sort of information that is typically lacking in a KBS.

First, there is in general little that is done to validate the atoms of the packet. In part this is

due to the emphasis on closed KBS. However, there is another deeper reason why a typical

KBS does little to validate the packet. The deeper issue is that the packet constitutes that

which is to be analyzed by the engine and knowledge structure; it is akin to the 'givens' in a

proof. To alter or even to question the veracity of the packet is to fundamentally alter the

character of the KBS. Rather than issuing messages that are diagnoses or conclusions

about the intended domain, the messages would constitute plausible hypotheses about the

domain. That is, each message of the KBS would function as though it were a hypothetical

conditional of the form: "If the conditions in the packet are correct, then the message is a

"-- KBS and Simulations l 4

plausible conclusion." This would be tantamount to creating a new rule or knowledge

element that should be used in coming to a conclusion. The only way to come to the

conclusion at this point would be to show that the conditions in the packet are correct. In

general, this is not an ordinary line of attack since it is at least unclear, if not impossible, to

determine whether the atoms of the packet are veridical. The reason for this is that if one is

to determine the veracity of the atoms in the packet this can only be done in the KBS

framework by having another KBS agent determine the veracity of the atoms. Of course,

that KBS agent must itself have a packet delivered to it. Since this is the case, this second

KBS must have the atoms of its packet checked. And so on. Thus, the deeper problem is

that if at some point the atoms of the packet are not taken as veridical givens, an infinite

regress ensues. If the principle to be used is that no concluding message is to be established

until the veracity of the atoms of the packet is established, then it would appear that no

concluding message can be established.

Second, the information in the knowledge structure in general represents knowledge about

how to extract additional knowledge content from the packet. The assumption used in

building the knowledge structure for a KBS is that the knowledge in the knowledge

structure makes explicit the information about the domain as captured in the packet. The use

of a deductive model of how knowledge applies to information, generates this sort of

situation since the knowable content of the packet is the set of messages that can be

generated from it. It is the set of consequences of the packet, given the knowledge

structure. Thus it is reasonable on such a deductive account to interpret the function of the

engine on the packet and knowledge structure as making explicit the knowable content of

the packet. What is lacking in this case is the sort of knowledge that comes about through

the projection of consequences, the sort of knowledge that constitutes background

knowledge, and the sort of knowledge that fuses disjunctive reasoning into reasoning that

more strongly supports the conclusion. The focus of this section will be on the

consequences of a lack of projective knowledge and a partial remedy.

w

In each of the foregoing cases, increasing the strength of the reasoning on the packet can be

understood as at least partially a function of the projective strength of the reasoning

structure and its ability to handle non-monotonic sorts of reasoning. In particular, it is the

ability of the system to project the next state of affairs and backtrack, if necessary, that is

important. If the KBS only tries to make explicit that which is already contained in the

packet, then the projective capacity of the system is weak. At best it can generate

conclusions of the form: "This condition (error, problem, difficulty) has been detected, and

w

•- KBS and Simulations 15

s

the following action should be taken." However, there is typically little done about

projecting the consequences of taking such an action. The projection should act as a

prediction that if satisfied demonstrates the soundness of the reasoning, and if not calls for

some modification.

The soundness of the reasoning is what is at least in part at issue in the consideration of

non-monotonic reasoning. Using a closed conception and accepting the atoms of the packet

as veridical, the issue of the soundness of the reasoning does not even appear. Each cycle

of a closed KBS will generate messages that are both valid and sound; that is simply the

nature of the closed KBS. As soon as questions of soundness are raised issues of openness

arise. In the present context the issue of openness can be examined from the combined

perspective of the simulation plus KBS.

The open KBS in its initial work operates much as closed KBS would operate. The

knowledge structure of the system is applied to the packet by the engine. The system then

issues a message based on that application. However, the cycle of an open KBS with a

simulation agent does not end at this point. Rather the action in the message is applied to

the packet by the simulation agent in order to generate predictions of the activity of the

physical system. That is, the simulation agent makes a predication of what will happen if

the proposed action is taken given the state of the physical system represented in the atoms

of the packet. The KBS continues its cycle with the arrival of a new packet. At this point

rather than the KBS simply applying the knowledge structure to the packet a comparison

phase is entered. If the data in the packet matches the predicted values, then the KBS

accepts the reasoning about the previous packet as sound and the first open KBS cycle

terminates. The new packet is loaded and the system starts again. However, if the new

values do not match the predicted values, then two possibilities must be examined. The first

possibility is that the reasoning on the previous packet was incorrect. The second is that the

reasoning on the first packet was correct and that a new problem has arisen. These two

possibilities present many of the same difficulties as the case of the veridicality of sensors

does.

How should the simulation plus KBS system determine whether its previous reasoning

was incorrect or a new error has arisen? One answer would be to check whether the values

that do not accord with the prediction would have occurred if some atom in the original

packet had been different. This case could easily go beyond the bounds of available

computational power when there are either many atoms in the packet or when the values of

"- KBS and Simulations 16

w the atoms cooperate in generating a new condition. Thus this approach is not acceptable.

There is something right about this approach, however. What is right about it is that the

prima facie case is strong that a relevant possibility is that the original results of the KBS

were in error. What should prove more tractable is a subtractive approach.

w

w

w

The subtractive approach allows the engine to operate on the packet and attempts to

determine what the condition is and what its resolution might be. Once the condition is

determined the simulator sets to work again. This time it takes as its inputs the projected

state of the first simulation with the currently detected error and compares these to the

values in the second packet. If there is a match at this point, then the first reasoning of the

combined system is accepted as sound, the cycle is terminated and the combined system

begins again. If, however, the two do not match, there are again two cases: either the

current diagnosis is incorrect or the previous diagnosis was incorrect. At this point the

situation is somewhat different than the previous situation. If the current diagnosis is

incorrect, then it can be hoped that the next cycle will capture it. If the previous diagnosis

were incorrect, then the simulator can be put to work in determining what the state of the

system would have been if the first action had not been taken. The difference between the

states of the physical system and the two simulations will provide a rule of thumb for

distinguishing were the blame lies. If the new packet more closely resembles the state of

affairs generated by the simulation without the action, then there is reason to believe that the

first diagnosis was at fault. If the values in the new packet more closely resemble the

simulation values with the action taken, then there is good reason to think that the first

diagnosis was correct. If the latter is the case, then the first cycle terminates. If the former

is the case, then the first diagnosis is retracted and the values of the simulation without the

action are used as the comparison values for a new cycle. The new cycle keeps these values

for the testing of the soundness of the second diagnosis and action.

w
Although the combined systems appears complex, and may even seem needlessly so, there

is reason for it. What the combined system is trying to avoid is the deadlock of example 3.

The combined system is attempting to escape from the condition of contradiction by using

both historical and simulation knowledge to determine what the best conclusion is and

retract any conclusions that do not match that best conclusion. Of course determining the

best conclusion is the problem. Th following table may help. (See Table 1) The first

column indicates the round of the reasoning. A round of reasoning is the operation of the

system up to the point of action. In round 0 no judgement is made. The second column

indicates the actions of the system. These actions include making inferences, issuing

KBS and Simulations 17

w

w

r

messages, and running the simulation. It should be noted that the simulation is used to

predict values. The f'mal column indicates the judgements that are made by the system about

the activities of the KBS and simulation agents. The judgements are based on comparisons

of the values in the packets and the values generated by the simulation with and without

actions being taken. If The action based on the first packet is incorrect, then the action is

withdrawn and a corrective action is taken. If it is only suggestive that the first reasoning is

unsound, then the cycle is terminated, but corrective action is not taken.

Table 1

Round

Round 0

Round 1

Round 2

Acuon

Packet 0, knowledge structure and
engine generate message 0
Message 0 and packet are used to
generate simulation 0 that
predicts the values for round 1
Packet 1 is compared to
simulation 0 values

The values of packet 0 are used to
generate simulation 1

Judgement

If the values of packet 1 and simulation 0 match,
then the reasoning of round 0 is accepted as sound
and the cycle 1 terminates.
If the values of packet 1 and simulation 0 do not
match then enter round 2.

If the values of simulation 1 and packet 1 match,
then the reasoning of round 0 is rejected as unsound
and corrective (backtracking) action is taken. Cycle
1 terminates.

If the values of simulation 1 and packet 1 do not
match, then if the values in the packet more closely
resemble the values in simulation 0 than
simulation 1, then the reasoning of round 0 is

accepted as correct and the cycle is terminated.
If the values more closely resemble simulation 1,
then the reasoning of round 0 is rejected as
unsound, and the knowledge sa'ucture is used to
generate a new message. Cycle 1 is terminated

The judgments rendered by the combined system do not guarantee the truth of the

conclusion or the soundness of the reasoning. That is simply not a possible or reasonable

demand in any case that requires an open KBS. It should be noted, however, that this lack

of a guarantee is something that afflicts most of human activity. It is rarely the acse thast

such guarantees can be issued and it is certainly not the case that the can be issued in any

strong case for the empirical world. The best that can be said is that on the basis of

available knowledge the fforgoing procedure can issue a principled judgment and that the

principled judgement is based on more and better information than would be available for a

KBS alone.

L_

L_ KBS and Simulations 1s

Next consider the sort of information that is typically lacking in a simulation. In a

simulation the packet and knowledge structure that is given to the siulation agent, generate a

group of values. By itself the simulator makes no judgment about wheteher the value are

good, veridical, indicative of problems, or anything else of interest. The purpose of the

simulator is simply to take initial values and apply the knowledge structure to project new

values. In the best of worlds were the construction of the simulator is such that if veridical

values are input, then veridical values are output, then the simulator simply predicts the sate

of affairs at some later time. This predictive function is crucial for the making of

judgements about the soundness of reasoning. This should be so since if the reasoning is

sound, then the actions taken on the basis of the conclusions of that __asoning should have

predictable consequences if no new fault eneter the physical system being examined. What

the simulation does not include is rules of thumb for making judgements about the data that

it produces.

This separation of the rules of KBS and a simulation ought not to be surprising. Diagram 1

indicates the general flow of the simulation plus KBS structure.

m

m

w

w

w

m

Packet

D_ Compare

I KnowledgeStructure

KBS

Engine

Simulation

Simulation F--Engine

r_
m

As the diagram illustrates there are seperate knowledge sources for both the KBS and

simulation engines. This is not unreasonable. The knowledge needed to make a diagnosis

or evaluation may be and often is distinct from the knowledge needed to simulate a physical

_-.-., KBS and Simulations 19

system. Indeed it may be the case that simulation will accept any initial values and attempt

to set output values. This is a desirable feature of the simulation since the simulation should

be used to simulate 'bad' as well as 'good' events. Further, it should be noticed that the

separation into results that agree and results that disagree can be altered to advantage of

different comparison strategies. The subtractive strategy is just one strategy. Other

strategies may rely on goodness of fit, trend analysis, etc. The result of the comparison

once agreement is reached is either to discharge or accept the previous reasoning. In either

situation the reasoning is in principle non-monotonic since the information present at a later

time is used to accept or reject the reasoning at a prior time. Simply put what at one time

appeared to be the correct message, no longer does.

w

w

ECLSS SOFTWARE

In a previous report UAH Report No. 823 the following overview of the ECLSS software

suppport was presented in the context of an appraisal of the ECLSS for Space Station

Freedom. In this report that material will be extended with a specific focus on the ways in

which a layered MAS might be added to the system and the places where simulations could

act in cooperation. For full references see:

w

Sensor Commands
Sensor

THC Input_ AR

Temperature and Air Revitalization

Humidity Control

Commands

Sensor

ACS

[HABOMA _ ECLSS Atmosphere

Support Control

] STADIS _ Software and Supply

FDS
WM Fire

Waste Detection and
Management

WRM Suppression

Water Recovery

and Management

_Commands

Commands Sensor

Input

Sensor Sensor Commands

Input Commands Input

Context Diagram for an Overview of ECLSS Software

The software for the ECLSS incorporates several different levels of function and

processing. This section of the report will focus on the way in which the software leads

Lo

•-- ECLSS Software 21

t =

w it

w

w

w

w

w

from the ECLSS Software Support module (now called ECLSSMGR) to the potable water

software (POTH20). No attempt is made in this section to give an exhaustive account of

the software for each ECLSS subsystem. However, the discussion of the ECLSS Support

Software will apply to all of the subsystems.

ECLSS Support Software (ECLSSMGR)

The ECLSS Support Software is intended to aid in the administration of the subsystems of

the ECLSS. It is through the ECLSS Support Software that the Space Station's HABOMA

and STADIS software are informed of the conditions and needs of the ECLSS system. It

should be noted that the organization of the software is a logical organization and not a

physical organization. It is not a question of where the software is, but of what the

software does. Thus, the software for the subsystems and the ECLSS support software

may reside in physically distinct computers, or the same computer.

The context diagram

indicates the ways in

which the ECLSS

Support Software

(now called

ECLSSMGR)

coordinates the

activities of its

subsystems (THC,

AR, ACS, FDS,

WRM, WM) and

passes information to

the habitat module

level software

(HABOMA) and the

Level Short Name _ N¢w Name

Station

STADIS

Habitat Module

ECI_S

HABOMA

ECLSS Software

Support
TI-IC

AR

ACS

FDS

WRM

WM

Station Distributed

System

Habitat Operations
Management

Application

Temperature and

Humidity Control
Air Revitalization

Atmosphere
Control and

Supply
Fire Detection and

Suppression

Water Recovery

and Mana]ement
Waste

Management

ECLSSMGR --

ECLSS Manager

station level software (STADIS). (Larger context diagrams appear at the end of this report.)

Each subsystem of ECLSS is represented in the diagram. At this context level, each

subsystem can be thought of as taking in sensor data and, on the basis of its code and

communication with the ECLSS Support Software, issuing commands to the hardware.

Taken in this way, the software packages for each of the physical ECLSS subsystems

represents the actions that ought to take place given certain sensor readings and

communication with the ECLSS Support Software. In terms of the context diagram at this

ECLSS Software 22

level, there is no direct communication of the software for the ECLSS subsystems to the

habitat or station level software. Rather it is the ECLSS Support Software that

communicates with those software packages.

The ECLSS Support Software receives commands from both HABOMA and STADIS and

sends requests and status information to HABOMA while operational data is sent to

STADIS. Each subsystem sends requests and status information to the ECLSS Support

Software, while the ECLSS Support Software sends commands to the subsystems.

w

w

r
w

At the level of the overall system there are several issues that a layered MAS will need to

address. The first is the specific cites at which it would be appropriate to have reasoning

rather than purely computational agents. Although NASA appears to be committed to

incorporating advanced technology into Space Station Freedom the cites should be carefully

chosen and there should be a clear reason for using the newer knowledge based

technologies. The second issue to be addressed concerns the way in which the various

knowledge based agents should communicate. In part this will be an issue about where (in

terms of processor units) the software is located and what the communications protocols

are. This can be illustrated readily. If two logically distinct agents are to be used on the

same processor, then the memory of that processor can be shared by the agents. This

ideally would be the case for bureaucratic and scientific agents in the same domain.

However, it need not be the case that the agent's can share physical memory. In this case

the information and knowledge in memory must be packaged and communicated to another

agent. This may lead to complications that make a multiple agent system oppressive. The

third issue concerns the decomposition of the tasks about which the agents are to cooperate.

Here there are several different ways in which complicating design factors may play a role.

As an example, it might be the case all FDS operations in all parts of the Space Station are

to be centralized. In this situation there is only one FDS agent, all subcomponents

concerned with FDS are parts of the FDS agent, and the physically different parts of the

Space Station are different end nodes of the FDS. On the other hand, one could design the

FDS in such a way that there are multiple FDS agents and these agents correspond to the

physical parts 6f the Space Station. In this situation there is no agent that is the FDS agent.

Actions occur because of the actions of various FDS agents in the various physical

components of the Space Station. In the first alternative the ECLSS agent is to be taken as a

centralized bureau with the Space Station; in the latter the ECLSS agent stands for a

collection of individual agents distributed through out the physical Space Station.

ECLSS Software 23

=

w

w

The issues of cites, communications, and distribution are issues that should be addressed

early and often in the design of the Space Station. In terms of a layered MAS approach this

is a necessity since these factors amount to the operationalization of the problem

decomposition. Since the layered MAS approach assumes such a decomposition, the actual

work of deigning this sort of cooperative system cannot begin until the decomposition is

specified. It should be clear, however, that these sorts of issues gain prominence when the

layered MAS perspective is under consideration. Hence at this level the adoption of the

layered MAS perspective leads to a focusing on particular design issues that will be useful

even if a system of cooperating agents is not adopted.

Inside of the ECLSS Support Software are six subcomponents that handle the incoming

information from the ECLSS subsystems, HABOMA, and STADIS.

As indicated in the context diagram for

the ECLSS Support Software,

ACTIVATE is the central

subcomponent, since it issues

commands to ECLSS subsystems and

requests to HABOMA. The commands,

however, are checked before an

activation. INHIBIT, INHDATA

Short Name

ACI1VATE Activate Valid ECLSS Process

Process ECLSS Inhibit CommandsINHIBIT

INHDATA ECLSS Inhibited Function List

CMD Verify and Validate ECLSS
Commands

ECLSSERR ECLSS Fault Detection and

Isolation

ECLSSPER ECLSS Performance and Trend

Analysis

DISPLAY ECLSS Displa),

ECLSS, and CMD are the modules that check for processes that are inhibited. ACTIVATE

sends a process name to INHIBIT which in turn sends a message to the inhibited function

list in INHDATA ECLSS. The resulting process status is sent to CMD. CMD receives

requests from all ECLSS subcomponents, as well as commands from HABOMA and

STADIS. CMD indicates invalid commands to HABOMA and valid commands to

ACTIVATE.

=

w

ACTIVATE also sends commands to ECLSSERR, ECLSSPER, and DISPLAY.

ECLSSERR receives failure data from all ECLSS subsystems and sends critical errors to

HABOMA and operational data to STADIS. ECLSSPER receives status data from all

ECLSS subsystems and sends history, performance, and status data to HABOMA and

DISPLAY. DISPLAY receives display data from all ECLSS subsystems as well as

ECLSSPER, and sends display data to HABOMA.

=

"- ECLSS Software 24

:..._

w

Failure Data Status Data

ECLSSPERECLSSERR Performance

Fault and

Detection Trend Analysis
and Isolation

Errors

[Operational Data I

[SrADISI

ACTIVATE
Activate Valid

Process

Commands --

Invalid
Command CMD

Verify and
Validate

Commands

INHIBIT

Inhibit

Commands

Requests

INHDATA ECLSS l
Inhibited Function List "_--

Performance Data

Display

DISPLAY

Display Data

ACqYVATE

THC

AR

ACS

FDS

WRM

WM

i

w

Context Diagram for ECLSS Support Software -- ECLSSMGR

In terms of the layered MAS approach this organization of ECLSS components exhibits the

central characteristic of the approach. There is a heavy reliance on result sharing. This is

especially so in considering the dynamics of the process and the operations of ECLSSERR

and ECLSSPER. In this case the results of the two agents would be shared. In this sense

the results of performance analysis are relevant to fault detection and the results of fault

detection are relevant to performance analysis. The case of DISPLAY is somewhat

different. If DISPLAY is the agent that receives all ECLSS data and displays it to the

operator, then the information that is received from the other agents will be more complexly

structured and include information on the priority of the event, the time of the event, and

perhaps on the way in which the information should be displayed. The results of display

are not shared with other computational agents, but with a human. However, even here

there may be a form of result sharing if DISPLAY is also charged with accepting user

-- ECLSS Software 25

inputs that initiate actions. In this case DISPLAY must reason about which other agents

should be notified.

As in the top level of ECLSS there are again problems connected with whether the

collection of agents is taken to be a centralized or distributed bureaucracy. Are the agents in

this collections agents for all ECLSS events, or are there multiple agents in charge of only

ECLSS events in a particular part of the Space Station? This sort of question is persistent in

the design as it currently stands.

WATER RECOVERY AND MANAGEMENT SUBSYSTEM (WRM)

W

u

u

w

m

Commands _ Commands

Requests _ _ Requests

Display Data _ / Display Data

Status _ _ Status

Failure Data _ _--/_ Failure Data

/ \.. omma ds
[_ _ ! Process Water _ Iodine Sensor Data

Potabie I _ Quality I Conductivity Sensor Data

Commands /"_ Water- / \ Sensor Data / pH Sensor Data

Sensor Dat_" _ /__ TOC Sensor Data

 al?y

WRMLIM1TS . ,..._ \ xi¢_,,.. l

_ WRM Limit Data _ _anges _ \ /
_tatus _ . x _ / Commands

q Ranges _ Sensor Data

[_] Limit -_¢ \ _ Commands

"I'12 _'"]'--"-Data /[..UKIP_B _ Requests

\ / . / [l_oc.ess i Display Data

_. / _l_ \ urine / Status

__ Commands _ _ Failure Data

" Requests _ "_Display Data
Commands

Command Status Sensor Data
Failure Data

u

Context Diagram for ECLSS WRM Software

As the context diagram for the WRM indicates there are six modules that include both the

potable and hygiene water systems. These modules analyze and control the water recovery

!

w

-- ECLSS Software 26

L_

w

i

u

functions in terms of the limits set for the subsystem. In general, each unit receives

information sensors and various software units, and on the basis its processing generates

new data and issues commands and requests.

On the basis of commands from

ACTIVATE, WRMLMT constructs new

limit data for WRMLIMITS and reports its

status to ECLSSPER. WRMLIMITS

establishes the ranges for the main

subcomponents POTH20, H2OQUAL,

HYGH20, and URINE. Each of these

Short Name

WRMLMT
WRMLIMITS

POTH20

HmqtJ_
HYGH20

URINE

Set WRM Limits
WRM Limit Data

Process Potable Water

Process Water Qualit_ Sensor Data

Process H_siene Water
Process Urine

subcomponents receives commands from

ACTIVATE and sensor inputs from hardware. The case of H2OQUAL is somewhat special

since it receives special sensor inputs for iodine, conductivity, pH, and TOC (Total Organic

Carbon). Additionally, each subcomponent sends commands to hardware, requests to

CMD, display data to DISPLAY, status data to ECLSSPER, and failure data to

ECLSSERR. Additionally, H2OQUAL sends quality status to POTH20 and HYGH20.

Within WRM, POTH20 will be taken as an example since the potable water system is the

focus of the demonstration software produced for the overall effort of this research and

presented with the report on the ECLSS project. The details of the demonstration system

are presented in UAH research report No. 824. It should be noticed, however, that the

demonstration software overlaps the functionality of POTH20 and H2OQUAL. In part this

is because the physical potable water system overlaps both software components, and in

part because the potable water design effort is geared to producing water of a specified

quality. This raises the important fact that the breakdown of software components need not

match precisely the breakdown of the function of the physical system. In the case at hand

there seems to be an obvious reason why the software and physical breakdowns do not

correspond. Although the potable and hygiene water systems are distinct physically, the

process of monitoring water quality is sufficiently similar that one module (H2OQUAL)

can satisfy the demands of both the potable water system (POTH20) and the hygiene water

system (HYGH20). For reasons of economy, the monitoring process is placed in one

module rather than in two.

The use of H2OQUAL by two distinct agents illustrates one of the advantages of result

sharing in a layered MAS system. The advantage is that the centralization of function can

result in an economy of computational units provided that the agent in question knows how

-- ECLSS Software 27

to deal with various inputs and the agents sending messages know how to encode them.

Further, it should be clear that H2OQUAL acts as an initial scientific agent that assembles

the relevant data and builds a hypothesis on that data. The actual control of the processes is

in the control of the other agents. The requests for diagnosis in these cases is forwarded to

ECLSSERR.

m

i

Commands Commands

Statuses % Statuses % Commands

Limit _ . Limit _. Requests

Ranges _ Ranges _ StatusData

CommandsA an_ /"x A _rocess/
Requests_,/" _ -J Control Status "_. •

StatusP _ N . / __
Data I \ _ Ag /

Pump Sta_ f _ :ontrol

Status _.A / CHKRTA '_

I _[-_- _ Commands
Statuses

EC_SPER_--_ Status-------_ Subsystem _ / Limit

I _Sta'tuseS/_status _._==_.._ Ranges

 ommo ,,,x.

Commands ,_ / N Commands
n / _ _ _ Requests
Kequests

Status _ _ Xd_ Status

Data Dam

r

m
m

Context Diagram for ECLSS WRM POTH20 Software

As indicated in the context diagram, POTH20 consists of five modules. The central module

is CHKSTA. CHKSTA receives status information from each of the other modules and

issues controls to each. Further, CHKSTA provides status information to ECLSSPER.

m

-- ECLSS So,ware 28

E

w

i

m

Each of the modules that report to

CHKSTA act on the basis of commands

from ACTIVATE, limit ranges from

WRMLIMITS, and controls from

CHKSTA, and each module sends its

status to CHKSTA and ECLSSPER,

requests to CMD, failure data to

Short Name Lon_ Name

CHKSTA

RECH20

PURIFY

STORAGE

QUALIFY

Monitor Subs]/stem Statuses

Monitor and Control Receiving

Tank and Pump

Monitor and Control the
Purification Process

Monitor and Control Potable Water

Storage

Monitor the Water Quality

ECLSSERR, and display data to DISPLAY. The modules differ in the statuses that are

input and the hardware commands that are output. RECH20 receives sensor statuses from

the liquid, speed, pressure, pressure transducer, and flow meter, as well as statuses from

pump and valve, and sends commands to pump and valve as well as passing the pump

status to QUALITY. PURIFY receives sensor statuses from pressure, pressure transducer,

and temperature, as well as the status from heater, and sends commands to heater.

STORAGE receives sensor data from liquid sensor, as well as status from valve, and sends

commands to valve. QUALITY receives sensor status from temperature, as well as statuses

from pump, valve, and H2OQUAL, and sends commands to valve.

At the lowest level of this part of ECLSS are the agents that are the most mechanical in

nature. They function to monitor and control various aspects of the physical process and

their results are sent to other knowledge containing agents which may in turn cooperate

with other knowledge containing agents. This sort of structure allows that the system as a

whole contains knowledge, but at the lowest level there is no need for such knowledge.

Rather at the lowest level there is a need for specific functions that either produce the effects

of a knowledge based decision or forward information to the knowledgeable agent. Look at

as sort of organism this makes sense. At this level one is dealing with the computational

analogues of sensors and effectors. Knowledge and knowledge containing agents are to be

found elsewhere in the system

THE ROLE OF SIMULATIONS

m

Simulations in the ECLSS can provide a vital facility for checking the results of the

operation of some knowledge based agent. The specific ways in which this might occur

have been examined in the previous section of this report. At this point and with some of

the detail in mind it should be clearer that such simulations are needed not only to check the

results of some inferential process, but also to predict some of the actions that other agents

may take. For example a general simulator in ECLSSERR or ECLSSPER might be able to

--- ECLSS Software 29

W

predict not only what state the system should go to after some change, but also what agents

should be activated and what they should do. Such a simulation may help to diagnose the

health of the computational knowledge containing agents in way that is similar to the way in

which a simulation may help with the faulty sensor problem. Again as in that case there can

be no guaranty that the results of such an operation are accurate. The possibilities for error

are vast and interactive. However, such a scheme can supply information that may aid in

decisions about the general health of the system

SUMMARY

The ECLSS software is a layered collection of software modules that may be thought of as

a logical hierarchy that can be located in physically distinct computers. Although only the

path from the ECLSS support software to POTH20 has been traced analogous tracings

could be produced for the other ECLSS subsystems. The use of a layered MAS approach

in the analysis and design of this system may prove useful since there are multiple agents

which may contain knowledge, there is a tendency to share results, and the decomposition

of the system is contained in its design. Further, there appear to interesting reasons for

joining the diagnostic and simulation approaches in the ECLSS system.

m

M

w

T

KNOWLEDGE ACQUISITION

INTRODUCTION

v

The familiarization aspect of knowledge acquisition (KA) continues from the beginning of a

knowledge based programming project until the final content for the project is determined.

Familiarization, in this sense, is not a distinct episode of knowledge engineering, but

consists in all those activities which the knowledge engineer (KE) engages to prepare for

the project and to prepare for particular knowledge acquisition sessions. It is important to

note that these preparatory activities are both important and time consuming. They are

important since they lay the ground for shared common content about the domain, and are

time consuming since the knowledge engineer is required to become acquainted with terms,

concepts, methods, and theories that may be far different from those with which he or she

has already become familiar. In the familiarization process at the beginning of the project

the knowledge engineer attempts to find the sources of important information, organize that

information, read the documents, charts and other materials that have been assembled, and

gain an elementary mastery of the vocabulary of the domain. As the project progresses the

KE will continually need to become familiar with new material. However, the

familiarization process for knowledge acquisition sessions based on this new material

ideally should be less time consuming since a base has been established by previous

efforts.

o--

Familiarization is document-driven. Documents play a primary role even when there is a

mentor to guide the KE through the material. The documents become a base on which KA

can proceed. There are two reasons for this. (9) The first is practical. In order to interact

effectively with an expert, the KE and the expert must have some shared conception of the

domain. The shared conception is not to be understood as a detailed, precise, accurate or

comprehensive account of the domain. Rather the shared account is the base that will

continue to develop in the KA process. If the interaction with the expert requires that there

be some common understanding, then it should be clear that in the beginning this must be

provided in a way other than the interview process. In general, the information needed to

establish this shared level of understanding is contained in documents associated with the

m

---- Knowledge Acquisition 3 t

i

v

m

m

L

expert's domain. The second reason is structural. Organizations collect knowledge in

documents. These documents represent the stored knowledge of the organization. As such,

the knowledge in these documents is social and intersubjective, and constitutes the

background against which both individual knowledge and expertise are defined. Thus, for

practical and organizational reasons the familiarization aspect of KA is document-driven.

The focus on documentation generates advantages.

• Documents are often "approved" knowledge sources.

• The writers of the documents have "decompiled" to some degree the domain

knowledge.

• Documents tie down references in the knowledge dictionary.

• Documents make multiple lines of reasoning available.

• The documents provide a context needed to gain access to specific expertise.

• The documents provide a source of material for both explanation and help facilities.

• Attention to the documentation leads to the identification of weaknesses in the

documents.

• Attention to the documents provides a point of reference for the expert and the user.

• Attention to documents leads to tighter coupling and resource-sharing between KE and

technical writer.

Methods and aids must be devised to gain these advantages, however.(4) There are at least

two ways in which such methods and aids might be built. The first focuses on the direct

analysis of existing documents. The objective of this way is to create tools that would

directly analyze documents and abstract knowledge. The second way focuses on the

management of the familiarization process associated with the documents. We have adopted

the latter way. The methods and aids that we are developing focus on the idea of a

knowledge dictionary that is similar to the idea of a data dictionary in traditional database

operations, and the expanded model of reasoning articulated by Toulmin, Rieke, and Janik

(10).

A DOCUMENTATION APPROACH TO KNOWLEDGE ACQUISITION

Traditional approaches to knowledge engineering emphasize the interview process.

Interview driven methods assume that interviewing an expert is the best way to acquire

knowledge that is "chunked" and "compiled". Knowledge is "chunked" when items of

_- Knowledge Acquisition 3 2

m

m

I

m

L

m
m

L

knowledge are organized into meaningful units. Such chunking is believed to increase the

performance of human experts. Unfortunately, such chunking makes knowledge

acquisition more difficult especially when such chunks are "compiled"."Compiled"

knowledge is knowledge that has been distilled and abstracted of all unnecessary elements;

elements which may have originally been needed to gain the knowledge are removed.

Further, the organizational schemas may be altered to increase the efficiency of recalling the

items in the chunks. Compiled chunks may account for the fact that experts recall all of the

content of one chunk before processing a subsequent chunk.

Knowledge engineers are familiar with the problems of chunked and compiled knowledge,

and have developed various techniques for acquiring various kinds of knowledge. The

documentation approach is consistent with the assumption that knowledge is chunked and

compiled, and adds to the available techniques, especially those available during the

familiarization activities of knowledge acquisition. Such familiarization activities are part of

the episodic units in knowledge acquisition. The episodic units of knowledge acquisition

include preparing, conducting, and reviewing interviews. The preparation activities which

include familiarization are most intensive during the initial phase of a project. Although it is

difficult to obtain data on this topic, informed, but informal, estimates suggest that during

the initial phase of a project the ratio of preparation time to session is as high as 8 to 1,

while over the life of the project the ratio might be closer to 3.5 to 1. (3) In either case it is

clear that a significant portion of a knowledge engineer's time is spent in preparation

activities and that such activities are more time consuming during the beginning of the

project.

Preparation during the initial phase of a project is a complex undertaking. The knowledge

engineer's activities are geared to becoming familiar with the domain. But how does one

become familiar with a domain and in what does that familiarity consist? Our suggestion is

that the KE becomes familiar with the domain through documents and that this familiarity

leads to the production of a knowledge dictionary.

During preparation, the KE attempts to amass documents about the domain. Such

documents include text books, reports, instructional materials, design plans, and, in

general, any written (hard copy or electronic) materials about the domain. In using the

documentation approach, it is assumed that documents have a degree of authority for the

experts in the domain, that the experts in the domain would recognize the authority of the

documents, and that documents are written and revised in order to establish common

"-- Knowledge Acquisition 33

understandings and frameworks. We do not assume that there is any direct correspondence

between the chunks and terms identified in the documents and those used by domain

experts. We do assume, however, that the documents act as constraints on the domain

expert. In this sense, the documents constitute an official and authoritative framework

within which the expert brings his or her skill to bear. These documents act as a backdrop

for two important KEing tasks: building a knowledge dictionary and analyzing it.

-_ Document Base Bibliographic Information

Status

Reviewers

B fief Description

Description of Meaning
Link to DB

Tests

Contraindications
Preconsgaints
Postconsu'aints

--[Chunk Base Grounds

Claim
Modalities
Warrants

Backings and Links to DB
Rebuttals

Figure I

A knowledge dictionary, in its

initial formulation, consists of a

document base, a term base, and a

chunk base. (See Figure 1) These

three bases provide a map of the

domain and a "first pass" collection

of materials for automation.

The document base consists of

bibliographic material, the status of

the document, indications of

whether and by whom a document

has been reviewed, and a brief

general description of the content

and utility of the document. The

materials in the term and chunk

bases are keyed to these document

base. Since in many cases the documents undergo revision as the project evolves, keying

the terms and chunks to the document base provides a way of systematically reviewing the

materials in the knowledge dictionary in light of revised documentation.

L_

v

The term base provides information about the meaning and application of the term. An

entry for a term provides a brief ordinary language description of the term and any

appropriate abbreviation or symbol for it. Additionally, an entry contains typical

information about the values the term may take, tests associate with the term,

contraindications for the application of the term, and pre and post constraints on the

application of the term. The specification of the source for the information provides a link

to the documents base.

-- Knowledge Acquisition 34

Knowledge in the

chunk base is

represented using the

Toulmin, Rieke, and

Janik (TRJ) model of

reasoning. (See Figure

2). Using this model a

knowledge chunk is

treated as an

argumentive or

[WARRAN
!1 Given the grounds, warrants supported

by backings modally support the claim
in the absence of specific rebuttals.

GROUNDS {

I

Figure 2

inferential structure, However the model allows for greater depth and flexibility than more

strictly logical models. When working with documents, one notices the flexibility of

arguments. Even in highly technical areas, assumptions and premises are often not made

explicit. (6) Further, the use of language makes it possible to link various knowledge

elements in subtle, but important ways. The TRJ model more closely represents this sort

reasoning.

In the TRJ model a claim is analogous to a conclusion in a deductive model or the the facts

that are added to the knowledge base after a rule is fired in a rule based system. The

grounds are analogous to premises or the facts in the knowledge base before a rule is fired.

The modality can be thought of as a confidence value or some other measure of the strength

of the claim based on the grounds. The warrant is most often the conditional statement that

allows the grounds to lead to the claim. The warrants may be expressed as a rule, but other

representations are possible. The backing indicates the support or basis for the warrant.

The rebuttal indicates the considerations that would inhibit or prevent the assertion of the

claim.

r

v

The TRJ model of reasoning is much more flexible than traditional models that emphasize

the logical (propositional and predicate) style of representation. First, it should be noted

that a warrant might have multiple backings. If this is so, then the removal of any one of

the backings is not sufficient for retracting a warrant. This suggests that a modal logic

might be applied to reasonings about warrants. This has been explored in Rochowiak (5).

There a very minimal modal system, T, showed promise. Second, the use of the rebuttal

notion may prove valuable in nonmonotonic reasonings. For example, if the reasoning unit

were implemented in a frame like structure, then the rebuttal slot could be used as a trigger

for retracting the rule's application and the retraction of the facts asserted in the claim. Or, it

Knowledse Acquisition 35

w

could be used to prohibit the application of a rule that would otherwise match a pattern in

the facts. Third, it should be noticed that the notion of a backing provides a very natural

way to include references to documents and can be easily extended to include the statements

of experts in interview situations. Finally, the availability of backings for warrants (rules)

allows for a clearer separation of the system and domain oriented notions of explanation.

(7,8).

Given a knowledge dictionary composed of the bases specified above how is it to be

analyzed? This question can begin to be given an answer by specifying the sorts of

operations that a KE would want to have performed on the bases.

Beginning with the simplest case the KE should be advised of possible alteration sites

when a document is updated, revised, deleted, or in some way altered. In an effort to build

an essentially bureaucratic system this would be of great importance. A bureaucratic system

is one that attempts to automate some process in a bureaucracy. The administration of

loans and the purchasing of parts are typical examples. In these cases new rules or forms

may require an alteration in either the term or the chunk bases. Another important arena is

that in which the KE activity is occurring while the domain is being constructed. In this

arena changes to the domain in terms of designs or specifications may force changes in the

dictionary. An operation for alerting the KE to potential changes is needed for the analysis

of the dictionary. A more complex case involves the grouping and reporting of the materials

in the dictionary. Operations that would provide reports of how terms, chunks, and

documents are linked, as well as the frequency of such linking, would help the KE to better

understand how the knowledge is clustered. At another level operations that would identify

some gaps or sites for decomposition are desirable. Such operations might begin with the

identification of terms used in the chunks that are not defined or the identification of

missing elements in the definition of the term. The identification of empty elements in the

chunks would be equally important. Additional operations would be desirable for allowing

multiple views of the knowledge dictionary, tracing of particular elements (say particular

backings or typical tests) through the knowledge dictionary, and identifying links between

chunks (grounds to claims, claims to grounds). Finally in keeping with the spirit of the

documentation approach, there should be operations that would generate relevant sections

of the knowledge dictionary as a document. Such documents would be useful in creating

reports, setting agendas for interviews, and constructing materials for interviews. This is

not, of course, an exhaustive account of the sorts of operations that a KE might need in

Knowledge Acquisition 3 6
i

v

m

w

m

m

analyzing the knowledge dictionary, but it is indicative of the kinds of concerns that are

relevant in the construction of a tool for generating and analyzing a knowledge dictionary.

The process of analyzing and updating the knowledge dictionary is one that will continue

over the life of the project. Ideally, the final dictionary would contain all of the information

required to document the knowledge aspect of the finished system. For example, the

coding that implements a chunk should be tied to the dictionary. This sort of tie would

facilitate the identification of the locations in the code that need to be update as a result of

some change in the domain knowledge.

A TOOL FOR THE DOCUMENTATION APPROACH

A tool that implements the documentation approach to knowledge acquisition is being

developed. "Knowledge Management Tools" (KMT) is constructed primarily in HyperTalk

ru and CLIPS for the Macintosh ru family of computers. The use of a hypertext system is

desirable since the hypertext facilities are of themselves useful in KA activities. (1,11).

CLIPS is being used since it provides a readily available inference system.

The associational character of the construction and analysis of the knowledge dictionary

strongly suggests that a hypertext system is appropriate. During familiarization the entry of

data is not strongly structured. The KE may obtain information on one topic and then

another without there being a clear connection between the units of information. However,

as more information is entered into the dictionary it is reasonable to think that patterns will

emerge. These patterns can be quickly and easily captured in associational links. Such

links can provide a map of the material in the dictionary and represents the KE's view of

the structure of the domain. Further, in familiarization the KE may become aware of new

elements that should be added to the dictionary only in the process of reviewing

information already entered. This again suggests that an associational link should be created

that will allow the KE to easily add the needed information. Finally when there is more than

one KE it will often be necessary to review what another KE has done. This review is

again an associational link. Each of these reasons suggests the desirability of using a

hypertext approach to the management of the familiarization process.

From a management point of view the knowledge dictionary can be treated as a (nonlinear)

text. The production of the text should be such that a KE or a member of a KE team can

add additional text to an entry during review. This factor means that the text in the

"- Knowledge Acquisition 3 7

w

knowledge dictionary not only can serve as the background against which a KE formulates

interview sessions, but also is a means of communication for members of a KA team. The

knowledge dictionary, in this sense, serves as a shared, common background for further

knowledge acquisition. These management features again suggest that a hypertext approach

is appropriate.

The inclusion of CLIPS in KMT is both an illustrative and cautionary tale. The inclusion of

CLIPS was motivated by practical considerations. CLIPS is readily available, and some

projects needed to use CLIPS. Further, since reading CLIPS code can be difficult, the

direct association of the CLIPS code and the text in the knowledge dictionary would seem

desirable. That is, the material in the knowledge dictionary would indicate what a segment

of CLIPS code was intended to represent. On the other hand, this approach leads to an

effort to coerce the information and knowledge into CLIPS form. This coercion while

having some practical advantages leads to difficulties. Most importantly, rather that trying

to capture knowledge and information as would seem to be natural, an effort is made to

capture knowledge and information in a way that is amenable to CLIPS. It is almost as if an

assumption is made that CLIPS is the appropriate tool for the domain. This difficulty is a

general one. The problem can be put clearly in the following way: Should the selection of

the tool be a determinate of the KA process, or should the KA process be a determinate of

the tool? This essay will not attempt to resolve this difficulty, but it should be noted as a

serious one.

KMT-CLIPS includes a K-edit stack, a K-dictionary stack, and a K-document stack.

Separation of these three stacks adds to the efficiency of the system. The links between the

stacks are in the beginning directed toward the K-document. The system as a whole

attempts to keep a list of the associations. As the dictionary develops other links are

established. Lists of these associations are also kept by the system. Internally, KMT is a

collection of associated lists of association links. Access to the text information stored in

the system is provided in various ways be accessing these lists.

The key stack is the K-edit stack. Currently this stack contains four screens. Future screens

for analysis are planned. The idea of the K-edit stack is to allow the user to enter

knowledge based elements and later provide the CLIPS code. However, this is not required

and all materials can be entered at one time. Additionally, CLIPS is interactively available.

The K-edit stack implements the idea of a chunk base only in a partial way in its rule card.

Backings for the warrants are limited to References. Further since CLIPS is a rule based

v Knowledl_e Acquisition 38

v

inference system the grounds and claims components of the TRJ model are identified as

Conditions and Actions. The idea of a term base is also only partially implemented in the

parameter card. The parameter card does not contain fields for all of the features identified

above.

RuIiIUsor

W|rr|ntl

R8fere_

Figure 3

The first card of K-edit is a rule

card that contains a chunk

template. (See Figure 3) The user

provides the name of the rule, its

conditions, and actions as

ordinary text. Rebuttals are

specific circumstances that would

prevent the application of the rule.

Warrants are the reasons why the

rule is being asserted. Both of

these are ordinary text, as is the

field for references. The diagram in the lower left illustrates the structure. At the top of this

card and every card is a list of the currently known parameters, rules, and templates. This

provides an interactive access to other parts of the knowledge dictionary. The entries for the

term base are found in the Current Parameter and Current Template list. These

identifications were selected to provide a more CLIPS-like interface.

v

The field at the lower right is used for CLIPS code. This may be added or not at the time

the chunk is entered. Additionally, it can be tested by clicking the CLIPS button. This

button will add the CLIPS code to a user specified text file, and additionally, if desired,

load CLIPS and place that file in a buffer. The buffer can then be compiled and run. On

exiting CLIPS, the user will be returned to the stack with the clipboard in tact. Thus, if

modifications are made to the CLIPS code in the CLIPS environment, those changes can be

copied and pasted into the card. It might be handy to have the new rule load into a buffer

and then load the previous rules or templates into another buffer. The KE can then paste the

new rule into the old CLIPS code and test it. When it is the way the KE wants it, it can be

saved as a CLIPS code file. If this approach is taken the KE will need to clean up the

dictionary at a latter date. By treating the CLIPS code as a document and building tools that

understand CLIPS code, cleaning up the dictionary will be much easier. We are currently

developing such tools.

-- Knowledge Acquisition 39

w

The AddRule button adds the rule elements to a database indexed by the name. The Find

button allows the user to find previous elements in the different bases. By selecting an

element from those currently known and clicking Find, the user is taken to the database

element in K-dictionary. Clicking the Return button in K-dictionary will return to the

current card.

ParamlUser

Current Parametenl Current Rules Current Templates

Figure 4

The parameter card partially

implements the idea of a term base

and functions in a way similar to

the rule card. (See Figure 4) The

parameters are used to identify the

terms in the dictionary. Currently,

only the description of the

meaning of the term, the range of

values, and the reference for the

term are included. Fields for

additional elements can be added.

The AddParameter button adds the data in the fields to the database indexed by name in K-

dictionary. Find will find the selected item as in the case of the chunk cards.
t

The template card is again similar

to the rule card. (See Figure 5)

The idea of a template is needed in

order to make the general ideas of

the documentation approach

amenable to the latest version of

CLIPS (4.3). A template is a

structure that is somewhat similar

to a frame and allows for more

flexible access to and modification

of facts. The template card also

Tplate/User

I !
m Current Parameters Current Rules TemplatesCurrent

Figure 5

provides access to CLIPS since CLIPS code is used to define templates. It should be noted

that the file to which the template is saved will load into the CLIPS buffer. If there is any

additional editing to be done, it can be done there. The AddTemplate button adds the field

to the database in K-dictionary indexed by name. Find will find the selected dictionary item

KnowledgeAcquisition 40

=

m
=

_,..¢

Currently work is under way to provide more of the features of the documentation

approach and to generalize KMT. While there are practical reasons for orienting the system

toward a specific inferencing mechanism, that selection also brings problems. The focus on

rules and the need for a specific template card are examples. From the beginning, the KE is

thinking in terms of the concepts and structures that will ultimately be used in the encoding

of the knowledge rather than the knowledge itself. In an ideal case, the software should

conform to the knowledge, rather than the knowledge conforming to the software. In

improving KMT a more general approach will be taken.

The generalization of KMT will allow for alternative ways of entering information and

provide a greater integration with tools that can be used in the interview process. Treating

KMT as a "poor man's" knowledge acquisition tool, provides a way of adding different

strategies. (4) Of particular interest are the additional representational strategies found in

BDM-Kat and MacKat. (2)

User

Currlnt Persmltlrl Current Rulll Eurrlnt Ternplati$

Figure 6

The compare card is used to

generate comparisons between the

database and the current CLIPS

file. The CLIPS File button allows

the KE to select a CLIPS

knowledge base. The knowledge

base is loaded into the field on the

right of the card. Selecting a

current parameter, rule, or

template and clicking the Get

button will load the database item

from K-dictionary into the field at the left, place its name into the current item field, and

move the CLIPS code to the first occurrence of the item. The items text can then be edited.

Copy and paste can be used on the two fields. The Update button updates the database in

K-dictionary. Similar procedures allow the KE to update the CLIPS code.

While the compare card performs several useful functions, there is much more that it

should be able to do. Currently several features are being added that improve on the

analysis capabilities of KMT and m,_ke greater use of inferencing about the material in the

cards. For example, scanning the materials in either of the two fields should be able to

- Knowledge Acquisition 41

L

r

produce a list of common items, and a list of items contained in the CLIPS code but not in

the database. This would alert the user to check the common elements and to determine if

new entries are needed for the elements in the CLIPS code that do not match terms in the

dictionary.

K-dictionary and K-document currently share the same structure. The fields on the cards

and the operations available are, however, easily tailored to specific needs.

The main card for the two stacks

controls the operations of the

stack.(See Figure 7) The buttons

along the bottom of the card allow

the KE to enter or alter the material

in the stack rather freely. The New

Term Button allows the user to

enter a new term or document into

the appropriate stack and indexes

the entry. The Remove Term

button removes the term and

Dictionary
Entries

Referenced

Topics

(..d Se,.c.o.)

NewTerm _ IRemoveTerm) _RemoueRefToplc$)

C ,.,d °|..) C_r,,.°,,t.) C C,..rO,ct.)

Figure 7

updates the index. In each case the scrolling list in the Dictionary Entries field is updated

and alphabetized. The Write Dict. button allows the KE to build a text file of the materials

in the stack. This file can be imported into a word processor, or saved as a separate file that

can be loaded by Build Dict. This allows the user to operate with multiple files. The Clear

Dict. button is used in conjunction with the two previous buttons to initialize the stack and

prepare for a new file. The Browse by Letter area allows the user to select a letter and

browse the entries for that letter. The scrolling list in the Referenced Topics field operates

in two ways. In the first way the KE simply create a list of terms that he or she needs to

add to the stack. Selecting one of these terms and clicking the Find Selection button will

notify the user if the term already exists. If it does not the KE can then enter the

information. The Find Selection button also works in connection with the items in the

Dictionary Entries field. The Remove Ref Topics button clears the Referenced Topics field.

Items in this field can also be cleared manually.

KnowledgeAcquisition 42

The cards that store the

information currently have

minimal structure. (See Figure 8)

The information can, however, be

structured in multiple fields, and

resources in the stack allow the

information to be gathered in

multiple ways. The buttons on the

bottom of the card provide a

number of functions. The To

Figure 8 Word button links to the KE's

word processor. The word processor is loaded with the clipboard in tact so that the KE can

paste the information into the document. The Main Card button takes the user to the main

card of the stack. By highlighting material in the cards entry field and clicking the For

Reference button, the Referenced Topic field of the main card is updated. This allows the

KE to scan through a stack and quickly note terms that need definitions. The Return button

takes the KE back to the K-edit stack, if this stack was entered through it.

The K-dictionary and K-document stacks currently share the same structure and are only

distinguished by their content. Links can be established between the two stacks in several

ways. We are currently working on ways to make the linking of the information in the three

stacks easier. It should also be noted that the K-dictionary and K-document stack contain

resources for formulating a frequency-recency model of the user interaction. This may

prove to be helpful when an expert is allowed to view the stack or when tracing the flow of

knowledge through a stack.

CONCLUSION

The documentation approach to the management of knowledge acquisition provides a way

in which the familiarization aspect of knowledge acquisition can be made more productive.

The emphasis on existing documentation, especially in bureaucratic systems or systems in

the design phase, can be significant. The KMT tools partially implement the documentation

approach. The KMT tools have been used on several projects and have been very useful. It

should be remembered that the documents in a bureaucracy have been the traditional

repository for its knowledge. The documentation approach is directed toward making use

of this repository and augments the classical interview approach to knowledge acquisition.

Knowledge Acquisition n3

AC KNOWLEDGEMENTS

Results presented at the 1990 NASA--UAH AI for Space Applications Conference.

z

=

REFERENCES

(1) Barrett, Edward(ed). Text, ConText, and HyperText (Cambridge, Mass.: MIT Press,

1988).

(2) McGraw, Karen L. "Developing a cognitively-based toolkit for knowledge

acquisition," Workshop on Knowledge Acquisition (1989) 7-9.

(3) McGraw, Karen L. and Karan Harbison-Briggs. Knowledge Acquisition (Englewood

Cliffs: Prentice Hall, 1989).

(4) Moseley, Warren. Final Report for FAST- 1, "Automated Software Tools," 1989.

(5) Rochowiak, Daniel. "Expertise and reasoning with possibility," Proceedings of the

Second Conference on Artificial Intelligence for Space Applications, 1987.

(6) "Extensibility and completeness: an essay on scientific reasoning," The

Journal of Speculative Philosophy 2 (1988): 241-266.

(7) "Simple explanation and reasoning," Proceedings of the AAAI'88

Workshop on Explanation, 1988, 95-98.

(8) Rochowiak, Daniel, B. Ragsdale, and L. Wurzelbacher. "An integrated hypertext and

rule based system for explanation," Proceedings of Expert Systems '89, 1989, 345-

352.

(9) Rochowiak, Daniel, D. Hays, and D. Ford. "Document driven knowledge acquisition

in the construction of expert systems for aquaculture," Proceedings of Expert Systems

'98 , 1989, 109-120.

Knowledge Acquisition 44

(10) Toulmin, S., R. Rieke, and A. Janik, An Introduction to Reasoning (New York:

Macmillan, 1984).

(11) Wells, Tracy. "Hypertext as a means for knowledge acquisition," SIGART Newsletter

108 (April 1989): 136-138.

u

r_

m

TYPES OF EXPLANATION AND

LOOSENESS OF KNOWLEDGE

A central issue of the first AAAI Workshop on Explanation concerned whether

explanations could or should be based on knowledge that is only loosely related to the

knowledge used to solve a problem (Wick, 1989). In constructing a response to this issue

it is important not to over state the response. It is highly unlikely that all explanations have

the same form and that one type of explanation will be suitably universal to characterize all

instances of explanations. I will argue that there are several types of explanation and that

these types of explanation show why there are cases in which additional knowledge should

not be used and others in which it should. Finally, I will indicate why knowledge that

appears to be only loosely related has this appearance because of the way in which

knowledge is acquired and not because the knowledge itself is loosely related.

Explanations come in a variety of types. (Rochowiak, 1988) In ordinary life explanations

are generated in great abundance. (Schank, 1986) As a working principle one might hold

that for every action an individual can generate some explanation for the act. In saying that

the individual can generate some explanation this does not mean that the explanation is a

good, valid, legitimate, or acceptable explanation. To add the qualifier is to appeal to some

criterion by which the virtues of explanation are established and the character of particular

explanations appraised.

A PASS AT A GENERIC ACCOUNT OF EXPLANATION

h

r

One classic way to attempt to generate a generic account of explanation, is to follow out the

views of the logical positivist school of philosophy. Simply put this conception holds that

explanation is a deductive relation between initial conditions, scientific laws, and a the

proposition (which describes an event or state) that is to be explained. This account holds

the promise of giving what appears to be a general account of the way in which science

operates. If the initial conditions and laws are known, then a proposition about a predicted

event can be generated. If a proposition about an event is known, then the specification of

laws and initial conditions will explain it. If the initial conditions and a proposition about an

Types of Explanation and Looseness of Knowledge 46

w

event are known, then induction might be used to discover a new law. Clearly this is an

oversimplification, but it does capture the ideal of generic explanation.

There have been numerous criticisms of this generic account within the literature on the

philosophy of science. These criticisms assert that the idea is too broad and, therefore, will

allow arguments that are not explanations to be counted as such, and that the idea is too

narrow and, therefore, will not allow for explanations that are otherwise legitimate. The

specific nature of these criticisms are various. Some emphasize the notion of causality, and

others the role of theoretical models. Some emphasize the role of history, and others the

independence of explanation and prediction. Still others directly attack the notion of a

genetic account and the lack of a pragmatic dimension. It is the last pair of notions that is of

interest in the present context.

One way in which an attack can be made on the generic account of explanation is to note the

different ways in which reasons and causes may be used. For example, reason

explanations often make references to intentions. For example, given a puzzling piece of

behavior by Sally, one might offer the explanation that Sally intended to do this thing. This

is in some ways a curious explanation, but it is often used. "Why did you do that?"

"Because I intended to." Such explanation explain by attempting to remove the surprising

character of some behavior. Of course such explanations can be expanded through further

questions, or through the specifications of a series of things related to a cognate term. For

example one might reasonably ask for explanation of the intention, "Why did you intend to

do that?" On the other hand, one might have offered a related, but distinct, initial

explanation, "I wanted to do X, and it appeared to me that doing A would get me (closer to)

''

What is interesting about these sorts of reason explanations is that they do not fit the

generic model since they involve intensional elements and seem to violate the conditions on

causal explanation. The former is so, since notions of intention, desire, and belief do not

satisfy the extensional demands of substitution. The latter is so since it is a principle of

causal explanation that the event that is the cause should be describable independent of the

event that is the effect, and this does not seem to be so for intentions, beliefs, and desires.

In short the deductive seductions of the generic model are undermined by the attempt to

explain human actions through reasons. This generates a situation in which either this

particular generic account must be given up and another produced, or it must be admitted

that there are varieties of explanations.

Types of Explanation and Looseness of Knowledge 47

That there are varieties of explanations is supported by the consideration of the pragmatics

of explanation. The pragmatics of explanation involve the construction and presenting of

explanations. Note that this is not an issue in the generic account. In the generic account an

argument that satisfies specific formal and empirical considerations is an explanation even if

it fails to explain anything to anyone. Thus, on the generic formalist view it is quite

possible to assert that some structure S is the explanation of A, even though you don't

understand why. In this situation the issue is simply that presenting the tight sort of

structure counts as an explanation even if one does not know why the elements of the

structure are relevant, or what the elements mean. This is not an uncommon experience in

the learning of science where the student can respond to a request for an explanation on an

examination, yet still claim to not understand the material.

The pragmatics of explanation in which there is a demand that information in the

explanation generates some understanding of the event to be explained raises problems of

determining exactly what is to be explained, how it is to be explained, and to whom it is to

be explained assuming that resources for constructing explanations are available. Thus,

when considering the pragmatics of an explanation it is not sufficient to indicate a generic

pattern of explanation unless it can be shown that it is reasonable to claim that a specified

group of resources will be sufficient for determining what is to be explained and how it is

to be explained to a potential diverse group of individuals. Ordinary experience seems to

argue against this, however. Thus, in terms of the pragmatics of explanation it seems that

there will be different types of explanations.

Assembling the different parts of the objections to the generic account of explanation, it

appears that explanations must :

use available resources to construct accounts

respond to some surprising event

make the event less surprising

generate some increased measure of understanding.

Since there is no reason to suppose that these requirements can be satisfied with one

genetic mode of explanation, it seems reasonable to suppose that there will be multiple

explanation types.

In the construct of automated explanation systems, it will be useful to consider the varieties

of explanation from the metaphorical intentional stance. This stance assumes that the

Types of Explanation and Looseness of Knowledge 48

z

%,..

explanation system is metaphorically an agent in the same way that people are. This does

not entail a claim of identity and only requires that that explanation systems and persons be

treated similarly in ways that are relevant to explanation. Given the requirements noted

above this entails that both the machine and human systems must satisfy the foregoing

conditions ff either is to be understood as presenting an explanation.

TYPES OF EXPLANATION

Ordinary explanations of actions tend to identify the reasons for the action and in general

identify states of the agent that are prior to the agent's act. For example, leaving a wake-up

call for 7:00 AM, might be explained by the agent's desire to be at a meeting by 9:00 AM.

Or, if an agent has the belief that a due date for an abstract is April 6, this might be

explained by the agent's prior belief that all abstracts are due on the same day and the belief

that an abstract for another section is due on April 6. In both examples, the explanation of

the action -- leaving a wake-up call or believing that the due date is April 6 -- is based on

the presumed prior state of the agent and some pattern of explanation. These sorts of

explanations might be called agent explanations since they are designed to explain the

agent's actions in terms of the agent's states.

Such ordinary explanations have corollaries in automated explanation systems. One kind of

explanation that an automated system might give is an agent explanation. Automated

explanation systems give agent explanations when the system is designed to explain the

system's action in terms of the system's prior states. As in the ordinary case, the

explanation itself is structured in terms of some previously established pattern. That pattern

might, for example, refer to the subgoals of a system's operation, the identification of a

candidate schema that would solve the problem at hand, or the sequence of inferences that

have been made by the system. In any case there is a significant disanalogy between the

ordinary case and the automated system case. In the ordinary case it is at least difficult, and

perhaps impossible, to determine what the prior states of the agent were. In the automated

case this is not a problem.

A second kind of explanation does not focus on the agent's actions or prior states. In the

ordinary case these explanations are explanations of external events, conditions, or things.

The request for an explanation of the status of a piece of equipment or the color of

someone's clothing, is not ordinarily treated as a request for an agent explanation. Rather,

it is treated as a request for an ontic explanation. An ontic explanation is designed to explain

-- Types of Explanation and Looseness of Knowledge 49

why some state of affairs is the way it is, or fits into a pattern of the way things can be. In

giving such an ontic explanation the account of how an agent came to a conclusion is not to

the point. This so even if one holds that explaining is something that agents do. (Thagard,

1988)

In the realm of automated explanation, ontic explanations present a problem. They are a

problem if automated explanation is intended only to give explanations of what the

computational agent is doing. However, if the computational agent also attempts to explain

why something is the case, then agent explanation is no longer satisfactory and knowledge

outside of that by which an agent comes to a a particular conclusion may be needed. Hence

to engage in the generation of ontic explanations is admit the possibility of using

knowledge that was not used in coming to a conclusion.

In the case of both agent and ontic explanations knowledge not directly coded into the

inferencing system is needed.

In the case of agent explanations this additional knowledge will concern the way in which

the system is attempting to reason. Such knowledge might be called introspective

knowledge and be represented in terms of meta-rules. (Rolston, 1988). This way of

specifying what sort of additional knowledge is needed for the explanation system is

attractive while the focus of the system is agent explanation. In agent explanation it should

be clear that the system is attempting to explain to another what it is doing. Assuming that

the inferencing system is a rule system, such knowledge about what the system is doing is

compiled out of the system. That is, for the purpose of doing the inferencing, such

knowledge is not needed. (It should be noted that this sense of a meta-rule is distinct from

that in which meta-rules are used to guide or control inferencing.) Agent explanation at this

level is akin to debugging in that the user is more or less presented with a report of what

has happened. However, agent explanation can be taken to deeper levels by adding

knowledge about the strategies that are being used in making the inference. Such strategic

knowledge would be akin to the sort of knowledge ordinary human agents use in

elaborating upon their intentions.

In the case of ontic explanations the additional knowledge concerns the way in which the

system that is the object of the inferencing operates. This additional information does not

add to the knowledge store concerning the way in which the inferences are made. Rather,

the additional knowledge attempts to explain a conclusion of an inferencing process in

-- Types of Explanation and Looseness of Knowledge 50

terms of the event or state described in the conclusion. The knowledge required in ontic

explanation is knowledge that is closely related to the sort of knowledge that would be

required in building a simulation. Ontic explanations explain an event described in a

proposition in terms of a model or theory of the world and not in terms of a model or

theory of an inference maker. It is this fact that seems to require ontic explanation systems

to be at least partially independent of the inferencing system. The distinction is between

explaining how I came to a conclusion, and explaining how the event or state described in

the conclusion follows from other known events or states. This distinction is all the more

important when it is remembered that expert's knowledge is chunked, compiled, and

formed in accord with certain heuristics. These allow the expert to quickly access a broad

base of knowledge and come to an answer without it being the case that the way in which

the expert would explain a conclusion could be easily mapped onto the way in which the

expert produced it.

Thus in both cases it appears that additional knowledge is required for explanation. This

additional knowledge may, however, be closely related to the knowledge used in the

inferencing system. This is most clearly the case in agent explanations. In this case the

additional knowledge required for the explanation system is in some sense knowledge

already contained in the construction of the inferencing system. What is needed is a way of

making that knowledge accessible to the end user. On the other hand ontic explanations do

not seem to be directly or indirectly an extension of the inferencing system. The focus of

the explanation system has changed. Rather than attempting to explain an agent's actions

the system is attempting to explain why some event or state described in a proposition

should be the case. Ontic explanation systems will require knowledge of a different sort

since the system will not be a model of an expert's inferencing, but the content of the

expert's knowledge.

LOOSELY RELATED KNOWLEDGE?

The determination of whether or not knowledge is 'loosely related' can be made in terms of

whether the knowledge was used in coming to a conclusion. This is satisfactory in the case

of agent explanation and loosely related knowledge should be avoided. In ontic explanation

this is not so. Knowledge not used in coming to the conclusion may be exactly the sort of

knowledge needed to explain why something is the case. In ontic explanation, however, it

is not quite accurate to say that the knowledge used in generating such an explanation is

-- Types of Explanation and Looseness of Knowledge 51

loosely related. Rather such knowledge is tightly related to this type of explanation, even if

loosely related in terms of agent explanation.

The relation of one item of knowledge to another is a function of the target to which the

knowledge is to be applied. This is especially so if one adopts a declarative understanding

of knowledge units. In the declarative interpretation a knowledge unit can be applied at any

time. This is most clear in a rule based system in which the inference is made whenever the

conditions of the rules are satisfied. In such a system knowledge is tightly related to the

system when it is used to make an inference about some goal state. Thus, if there were a

rule that was never fire in coming to satisfy any goal for which the system was designed,

then the knowledge could be eliminated because it was loosely related. Further, if there

were two more rules such that the terms on the right side of some of the rules where only

intermediaries that were immediately used on the left side of other rules, then condensing

the rules into single rule would be permissible if there were no loss of functionality. In this

case the knowledge that was represented in the uncondensed rules represented knowledge

that was only loosely related related to the system. Both of these cases occur in the

construction of rule systems either at the coding phase or at the knowledge acquisition

phase. In either case, the are a compilation of knowledge that removes knowledge from the

system. In such cases the elimination of such knowledge is legitimated on the grounds that

it is only loosely related to the inferencing process and that the removal of the knowledge

may improve the performance of the system.

The attempt to provide systems that can build either agent or ontic explanations requires that

decisions about such explanation capacities be made when the system is being designed

(McKeown and Swartout, 1987). Once such decisions are made determinations of what

knowledge is and is not loosely related can be made. This will have a most direct affect in

the knowledge acquisition phase of system construction.

The apparent looseness of the knowledge is also a function of the knowledge acquisition

process employed in developing a system. (Rochowiak and Mosley, 1990) If an effort is

made to remove the explanatory component of the knowledge obtained during the

knowledge acquisition process, then the knowledge used in ontic explanation will appear to

be only loosely tied. However, if it is recognized that the knowledge acquisition process

must also focus on the acquisition of knowledge for explanation as well as knowledge for

reasoning, then much of the appearance of the looseness of the relation disappears.

-- Types of Explanation and Looseness of Knowledge 52

CONCLUSION

w

It is dubious the there will be a satisfactory generic account of explanation. This is

especially so when one considers the pragmatics of explanation. Given the desire for an

explanation that satisfies pragmatic goals, more knowledge than that required for

inferencing will be required.

Agent explanations that focus on explaining how the agent makes inferences to arrive at

some conclusion, and ontic explanations that attempt to show why some event or state

described in a conclusion are distinct. Each type of explanation will require knowledge not

contained in the inferencing part of the system. Further the type of knowledge required for

each of these types of explanation will be distinct.

The degree to which knowledge is loosely tied to a system is a function of the kind of

explanation facilities that are to be included in the system. Knowledge not required for the

inferencing part of the system will be required for the explanation part of the system. While

the knowledge needed for agent explanation can reasonably considered to be an extension

of the knowledge needed for the inferencing part of the system, this is less so for ontic

explanations.

REFERENCES

McKeown and Swartout, 1987. "Language generation and explanation," Annual Review of

Computer Science 2(1987): 401-449.

Rochowiak, 1988. D. Rochowiak, "Simple explanations and reasoning: from philosophy

of science to expert systems." In Proceedings of the AAAI'88 Workshop on Explanation,

p. 95-98.

Rochowiak and Mosley, 1990. D. Rochowiak and M. Mosley, "Documentation and

knowledge acquisition," To be included in the Proceedings of the Fifth Conference on

Artificial Intelligence for Space Applications.

-- T]cpes of Explanation and Looseness of Knowledge 53

Rolston, 1988. David Rolston, Principles of Artificial Intelligence and Expert Systems

Development (McGraw-Hill, 1988)

Schank, 1986. Roger Schank, Explanation Patterns (Lawrence Erlbaum, 1986).

\

Thagard, 1988. P. Thagard, Computational Philosophy of Science (Bradford Book / MIT

Press, 1988).

Wick, 1989. M. Wick "The 1988 AAAI Workshop on Explanation," AI Magazine, Fall

1989 p. 22-23, 25-26.

m_

