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Preface

The work reported herein was performed by personnel at the
University of Alabama in Huntsville's Center For Applied Optics,

Huntsville, Alabama, under contract titled "Contamination Study".

The measurements portion of the task was accomplished at the

Materials and Processess Laboratory at NASA's Marshall Space Flight
Center. The author would like to express appreciation to Mr. Roger

Linton for the many helpful suggestions and discussions during this

period.



ABSTRACT

NASA's In Situ Contamination Effects Facility, Marshall Space

Flight Center has been used to measure the time dependence of the

angular reflectance from molecularly contaminated optical surfaces

in the Vacuum Ultraviolet (VUV). The light scattering measurements

are accomplished in situ on optical surfaces in real time during

deposition of molecular contaminants. The measurements are taken

using non-coherent vacuum ultraviolet (VUV) sources with the

predominant wavelengths being the Krypton resonance lines at 1236

and 1600 Angstroms. Detection of the scattered light is

accomplished using a set of three solar blind VUV photomultipliers.

An in-plane VUV BRDF experiment is described and details of the on-

going program to characterize optical materials exposed to the

space environment is reported.



1.0 INTRODUCTION

The purpose of this work is to analyze the forms of molecular
contamination present in the space environment by measuring the
loss of specular reflectance and increased scatter on good optical
surfaces while the contamination is underway. The various
potential contaminants are space candidate polyurethanes, silicones
and fluorinated silicones. Since we are interested in the optical
effects of the contamination a short introduction to light
scattering is required to understand any data gathered in this
effort.

Light incident on any real surface will scatter some portion
of the incident energy into all allowed angles relative to the
surface normal. In the scalar scattering theory, the intensity of
the scattered light will be a function of both the incident angles
and scattered angles as well as the surface material and its
condition. The accepted parameter for describing this
bidirectional reflectance, or angular scattering, is the
Bidirectional Reflectance Distribution Function (BRDF) _ Figure
i.i shows the geometry considered in this work.

However, to adequately describe the scattering, the vector
nature of the light must be included. That is, the functional form
of the scattered light should be written in the following way;

S' (Oo,_o,_o,lo) = [M] * S(O.,O,,_,,A.) (z)

where _ is the Stokes vector of the incident light, M is the

Mueller matrix of the surface under consideration and S' is the

Stokes vector of the scattered light. Note that we can also carry

the angular dependence of the incident and scattered light in the

Stokes vector. (See, for example Bickel, et. al._2)).

At short wavelengths the scattering process is strongly

wavelength dependent due to the relative scale sizes between

surface irregularities and the incident wavelength. And since we

are measuring M as a function of surface contamination, the total

description of the scattering matrix must also include this time

dependence.

The surface Mueller matrix is well behaved when the wavelength

is much larger than the characteristic surface irregularity but

becomes increasingly more complicated as the wavelength to

characteristic irregularity dimension ratio approaches zero (i.e.

small wavelengths/rough surface).

Figure 1.2.a. shows a typical uncontaminated mirror used in

this work. The mirrors are quartz substrates with a i000 angstrom

coating of aluminum and a 250 angstrom overcoat of magnesium

fluoride. Figure 1.2.b. shows a mirror that has been contaminated



with _ a molecular contaminant (Chemglaze Z-306) used in this
program. As can be seen, the contamination due to this contaminant
proceeds in a discrete fashion, i.e. islands of contaminant appear
rather than a uniform layer or film. During a typical
contamination run, a mirror will develop surface irregularities
whose diameters approach that of the incident wavelength and,
according to Mie theory, there may occur peaks in the scattered
intensity when the surfacescatterers are approximately equal to
the wavelength. We want to take advantage of this todetermine the
growth rate and optical properties of the contamination.:

Therefore, the thrust of this work is to describe the
measurements of scattered light in the region .where the long
wavelength approximations no' Ionge_ hold"_nd to compare these data
with measurements of the scattering functions in the long
wavelength approximation.
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Figure 1.2a. Clean mirror.



Figure 1.2b. Mirror highly contaminated with Z-306.
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2.0 THEORY

Light incident on an optical surface will be scattered due to

the irregular structure of the surface at the microscopic level.

These irregularities will cause some of the incident light to be

reflected, or scattered, at an angle not predicted by Snell's law

applied to the mean surface value. The phenomenon of surface

scattering is commonly divided into broad categories based on the

size of the surface irregularities causing the scattering (3_.

There are two important regions dealt with in this work. First is

the long wavelength region where scattering arises from small

imperfections on the surface. Secondly is the intermediate

wavelength region where the scattering is caused by imperfections

comparable to the wavelength in size. A detailed description of

the theory of scalar and vector scattering theory is presented in

the Appendices and won't be repeated here.

The main point of the present work is to produce baseline data

in the long wavelength region, and while contamination is underway,

to observe the transition of the scattering from the long

wavelength to the intermediate wavelength region.



3.0 EQUIPMENT

These measurements have been carried out at the In Situ
Contamination Effects and the VUV BRDF Facilities at NASA's
Marshall Space Flight Center, Huntsville, Alabama and at the

Visible BRDF Facility and the Center for Applied Optics, UAH.

3.1 In Situ Contamination Effects Facility

The In Situ Optical Surface Measurement Facility shown

schematically in figure 3.1. is an equipment package designed to

measure the real time deposition of outgassed molecular

constituents from candidate space materials. These measurements

are made using VUV light and observing the deleterious effects of

the material deposition on the surface reflectivities of optical

materials while the depositions are in process. This arrangement

is used to simulate the on-orbit effects of contamination and

degradation of optical surfaces such as Space Telescope.

VUV light is generated using a low pressure RF excited

discharge Krypton lamp. The krypton resonance line at 123.6 nm is

coupled into the vacuum chamber through a window or filter port.

Typical VUV filters have a spectral width of i0 nm and any

continuum output in the longer wavelengths are down by five or more

orders of magnitude. The physical mount for the source tube and

filter housing serve as a limiting aperture of approximately 6 mm,

used in collimating the incident light.

After the filter we place the reflection type polarizer

followed by the second aperture in the collimating scheme. This

work employs three mirror metal front surface polarizers of the

type reported by Hamm et.al, c4_ Typical diattenuation values of

0.996 have been reported for these polarizers. These polarizers

allow minimum deflection of the optical axis and introduce little

problem in alignment of the system.

The collimated light is incident on the sample mirror and

specular light and scattered light will be collected by the three

fixed solar blind photomultiplier tubes (PMT). Placed in front of

the PMT's is another polarizer used as an analyzer. These PMT's

are arranged so that the specular channel is at 30 degrees angle of

reflection, the forward and back scatter channels are at +30 and -

45 degrees, respectively, relative to the specular.

In addition to the signal PMT's there is a reference channel

PMT at the output of the source. Part of the signal is picked off

by the beamsplitter and directed to the reference. This setup

allows us to monitor the condition of the source output.



Figure 3.1. Schematic Diagram of the In Situ Optical Surface
Measurement Facility

The contamination source is a simple resistance heater in

contact with the outgassing material and is housed in front of and

beside the back scatter PMT. The temperature of the sample is held

to within one degree either side of the desired temperature. Mass

loss and therefore contamination level is determined by using a

temperature controlled quartz crystal microbalance (TQCM). For our

15 Mhz TQCM the mass loading, m, is given by m = 1.56 x I0 °' g/cm '

hz. In this application the TQCM is located coplaner above the

sample mirror and the housing is temperature controlled and

monitored to less than one degree.

This set-up approximates a planer BRDF measurement at three

positions, i.e. the incident light, surface normal and scattered

light are in the same plane. Measurements can then be taken using

incident linearly polarized light at any orientation and analyzed

at any orientation while contaminant is being deposited.

3.2. VUV BRDF Facility

In addition to the In Situ Facility there is available a 0.5

meter MacPherson VUV spectrometer, shown schematically in figure

3.2. This equipment is used for measuring angular scattering in

the UV and the VUV. This device uses a mercury vapor lamp as the

source and an acrylic light pipe coated with sodium salicylate (a

florescent material) as the detector. The output of the 1/8"

florescent spot is directed through the light pipe to a visible

photomultiplier. The light pipe is free to rotate about the sample

at a distance of 1.5 inches giving a solid angle of roughly 0.007

steradians.

3.3. Visible BRDF Facility

The BRDF Facility at UAH is capable of measuring the entire

full angle scattering function for a given surface. The facility

consists of the three meter motor driven detector arm, gimballed

sample pedestal, source and detection electronics as well as the

computer software and hardware required to control the
measurements.

The facility is capable of handling most visible and infrared

laser sources with little extra effort. Due to ease of use, the

wavelength most often employed is 632.8 nm from a HeNe laser. The

long wavelength approximation for scattering occurs when the

characteristic height of the surface irregularities is much smaller

than the wavelength so that the small angle approximation holds.

For typical "good" optical surfaces with roughnesses less than I00

angstroms the HeNe red line is in the long wavelength approximation

and thus provides a control measurement of the surface quality for

comparison with the VUV measurements.
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4.0 EXPERIMENTAL METHOD

Molecular contamination of optical surfaces from outgassed

material has been shown to proceed from acclimation centers (see

figure 1.2). The origin of these centers at the surface is not

well understood but each grows faster than the surrounding surface

area. This implies that the contaminant has a higher sticking

ratio for itself than the surface has for it and as a result the

surface will appear on the microscopic level to be composed of many

small "islands" of accumulated material with plains of relatively

clean surface in between. This situation provides the experimenter

with many roughly hemispherical scattering centers that are growing

with time. This is analogous to the common static situation for

scattering of near infrared light from surfaces by dust particles

(see BennettC3_). By using a fixed wavelength and observing the

scattered light as the islands grow, we will observe the typical

resonance peak in scattered light predicted by the Mie theory.

This sort of scattering situation suggests using the Mie

Theory to explain the angular scattering; and the form of the

scattering can be used to shed some light on the growth rates of
the islands and therefore the activation energies of the outgassing

phenomena.

Appendix A presents the mathematical model developed during

this contract perion for predicting the scattering versus island

size and angle. Figure 4.1 shows a typical scattered output versus

time (or island size) for contamination in the intermediate

wavelength region. In the results section of this report we will

see that the scatter, in some cases, does match that shown in

figure 4.1.

Figure 5.6. shows the relevant data on the mirror shown in

figure 1.2.b. Notice that there is the resonance peak in the

scattered light as predicted by the Mie theory. We calculate from
this curve that the index of refraction of the surface contaminant

is approximately given by m = (i.i -0.04 i). It should be pointed

out that the numbers that are derived from this model are

relatively soft. The model can accommodate a plus or minus ten

percent change in the real part and factors of two to three in the

imaginary part of the index of refraction and still give good fit

to the experimental data. This derives from the complexity of the

model and the lack of knowledge of the size distribution of

scatterers on the surface. We also see that the specular

reflectivity drops fairly quickly after contamination starts but

reaches a steady state value with no further significant change.
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5.0 RESULTS

The experimentally obtained data in this work will be

presented in this section. Section 5.1 will show the data from the

In Situ Contamination Effects Facility, section 5.2 will present

the data acquired in the VUV BRDF Facility and Section 5.3 will

show the data from the Visible BRDF Facility.

5.1 In situ contamination

Figure 1.2.a shows a typical optical surface before

contamination. These mirrors are one inch quartz flats with a I000

angstrom coating of aluminum and a final 250 angstrom overcoat of

magnesium fluoride which provides a high reflection coating at 1200

angstroms. Close inspection shows some imperfections in the MgF
coating as well as the A1 reflective coat. These imperfections

provide a baseline scatter which is always there and this baseline
is directly related to the size and number of the imperfections on
the surface.

Figure 1.2.b shows a typical mirror contaminated by Chemglaze

Polyurethane Z-306. This mirror was exposed to the contaminant at

elevated temperatures up to 160 degrees centigrade for

approximately four hours. The Z-306 paint had previously been

baked at 60 degrees for two days.

Figures 5.1 thru 5.13 show the raw data for the important

measurement runs taken during this reporting period. All runs

shown are for Z-306 except for Series 10 and 11 which are DC 93-

500. Table 5.1.a and 5.1.b shows a summary of the important runs

during this contract.

5.2 VUV BRDF Runs

The data shown in figures 5.14 through 5.17 show the results

of measurements of the angularly scattered VUV light from some of

the important mirrors in this task.

Figure 1.2c shows a mirror contaminated with Silastic E. The

material was cured at i00 degrees centigrade for four hours before
this 90 minute run at 125 degrees. Note how the form of the

contamination is in roughly circular islands similar to those

formed by Z-306 but are much more sharply peaked than the
hemispherical islands of the Z-306. However, the scattered light

is very different in that the scatter channels don't show the

resonance scattering that occurs with the Z-306 contamination.

Figure 5.14 shows the results of the BRDF measurements done on the

0.5 meter VUV spectrometer at about 2300 angstroms. The mirror K-I

is heavily contaminated with Z-306 and mirror 47-89 is the Silastic

E. The data shows the increased scatter at large angles from Z-306
over that from the Silastic E. Also notice that since our detector

has such a large solid angle we are measuring the beam shape at
small angles relative to specular. For comparison figure 6.b shows

the measured BRDF at a wavelength of 6328 angstroms for mirror K-I.



This mirror was highly contaminated with Z-306

Figures 5.15, 5.16 and 5.17 show typical results of angularly

scattered light on contaminated mirrors versus a clean mirror

(mirror #43-85). Note that at large angles the clean mirror has

less scattered light but at intermediate angles the scattering of
the contaminated mirrors is less.

5.3 Visible BRDF Runs

The BRDF measurements from mirrors contaminated in the In situ

Facility are shown in figures 5.18 thru 5.25. In addition to these

mirrors, the BRDF of other optical surfaces were measured during

this contract. Figures 5.26 and 5.27 show the BRDF from two paint

samples flown on the LDEF spacecraft. In addition soft and hard

anodized aluminum samples were measured before and after exposure

to atomic oxygen. The results of these measurements are shown in

figures 5.28 thru 5.35.

Figure 5.18 shows the BRDF for our calibration sample. We use

a nearly Lambertian surface for calibration. For a perfect

Lambertian surface the BRDF would be unity for all angles. Figure

5.19 shows the BRDF of a Z-93 paint sample used in this work.

Notice that this sample is very close to Lambertian. Figure 5.20

shows the BRDF for a clean mirror. The next three figures (5.21,

5.22 and 5.23) show the measured BRDF for mirror K-l, a highly

contaminated mirror in the normal, back and forward scatter

directions. For comparison, figure 5.24 shows the BRDF for a clean

mirror in the forward scatter direction. Finally, figure 5.25

shows the BRDF for a lightly contaminated mirror at near normal
incidence.

Figure 5.26 and 5.27 show the BRDF for two S13GL paint samples

flown on the LDEF spacecraft. Figure 5.26 is for an unexposed

paint sample whereas figure 5.27 is for a sample exposed to the

space environment.

Figures 5.28 through 5.35 show a series of measurements taken

on black anodized aluminum samples. Figures 5.28 and 5.29 show

type II anodized aluminum and figures 5.30 and 5.31 show type III

anodized aluminum before exposure to atomic oxygen. Figures 5.32

through 5.35 are the corresponding figures for the samples after

exposure to atomic oxygen. Each sample is measured at two

positions corresponding to when the machining grooves on the
aluminum surface are vertical and horizontal.
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6.0 CONCLUSIONS

Measurements of the contamination of optical surfaces show

that in some cases the material grows in separate distinct islands
of contamination rather than in a uniform thin film. This can

produce an increase in scattered light due to Mie type resonance

scattering which can, because of the angular distribution of the

scattering, impact the design of optical systems. We see that the

current tests for acceptable levels of optical contamination must
include not only loss of surface reflectance but also the

distribution of any scattered light. In addition we have seen that
by measuring the scattering in situ we can determine the

effectiveness of a potential contaminant in a short time.
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Appendix A. Mathmatical Model of Mie Scattering Calculations

The following is a fortran program for calculating the surface

scattering in the Mie scattering region for islands of molecular

contamination. Input for the program is the complex index of
refraction for the contaminant and the surface diameter

distribution of the islands. The output is the scattering

amplitude versus diameter (time) for any scattering angle and for

both incident s- and p-polarization states.



C

C

C

C

c

C

C

C

C

c

C

c

C

1

c

C

Program to calculate the value of scattered light versus

angle

for spheres of varying sizes

program MIESCAT

include "c:\lahey22\f771\mie.inc"

common /norm/ x, pi, spi

common /polys/ polypi(0:21,100), polytau(0:22,100)
common /ints/ iprint

common /plex/ zjl(50), zj2(50), fact(0:200)

implicit integer*2 (i-n)

implicit real*8 (o-z)
real*8 fact

complex*16 an(20), bn(20), em, a(0:20), cy, tpl, tp2,
*w(-l:20), sl(0:100), s2(0:100), tp3, tp4, tp5, tp6

character aprint

pi=3.141592654d0

spi=dsqrt(pi)

print *, 'You are entering the world of Mie scattering...'

print *, 'Want to enter the data or use the RUN.DAT file?'

print *, 'Enter "D" for hand entry of data'

read(*,*) iprint

if (iprint.eq.999) then
continue

'. Enter the starting and ending radii?'print *, ..

read(*,*) xl, x2

print *, '...Enter the complex index of refraction?'
read(*,*) em

print *, '...Enter the wavelength'

read(*,*) wavl

print *,

print *,

print *,

print *,

print *,

print *,

'You have entered the following values...'

'starting radius = ', xl

'ending radius = ', x2
'index of refraction = ' em

'wavelength = ', wavl

'Are these values correct (Y/N)?'

read(*,*) aprint

if (aprint.eq.'N') then

goto 1
endif

else

open (5,err=800,file='run dat' status='old')

read (5, *) wavl

print *, wavl

read (5,*) em

print * , em
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c

c

c

c

c

c

18

20

c

c

118

120

c

c

c

6

c

read (5,*) xl, x2

print *, xl, x2

endif

print *, ' Enter the angle you wish to observe...(I3 format)'

read(*,*) mprt

mm - mprt - (mprt/2)*2

if (mm.ne.0) then

mprt = mprt + 1
endif

print *, 'The program will be run for the following angle ',

mprt

call angle

open the output file and write some initial values

open (unit=7, err=800, file='xdata.dat',status='unknown')

open (unit=8,err=8OO,file='ydata.dat',status='unknown')

write (7, 18)

format(ix, ' Wavelength Sphere radius

* index of refraction')

write (7, 20) wavl, xl, x2, em

format (ix, 3(e16.4,1x), (e16.4,e16.4))

x

xdel = (x2-xl)/20.

do 9000 iloop = i, 21

r = dfloat(iloop-l)*xdel + xl

x=2.0 * pi * r / wavl

write (7, 118)

format(ix, ' Wavelength Sphere radius

• index of refraction')

write (7, 120) wavl, r, x, em

format (ix, 3(e16.4,1x), (e16.4,e16.4))

x

p = real(em) * x

q = dabs(dimag(em) * x)

cy = cmplx(p,-q)

psin = dsin(p)

pcos = dcos(p)

qsinh = dsinh(q)

qcosh _ dcosh(q)

temp = psin*psln+qslnh qsinh

a(0) = cmplx((psin * pcos)/temp, (qsinh * qcosh)/temp)
n=O

write (7,6)

format( ' Following is the A(n) ')

write (7,8) n, a(0)



c

c

c

8

i0

375

390

400

c

c

485

490

5OO

c

c

c

910

do i0 n = 1,20

tp3 = cmplx(dfloat(n), 0.) / cy

a(n) = -tp3 + cmplx(l.,0.)/(tp3 - a(n-l))

write (7,8) n,a(n)

format (ix, i3, (e16.4,1x,e16.4))
continue

Generate half integer order Bessel functions

w(-l) = cmplx(cos(x), -sin(x))

w(0) = cmplx(sin(x) , cos(x))

write (7,375)

format('Value of the circular functions follow')

k=-I

write (7,8) k, w(-l)

k=0

write (7,8) k, w(0)

do 400 k=l,20

tp3 = cmplx(dfloat(2*k - l)/x, 0.)

w(k) = tp3 * w(k-l) - w(k-2)

write (7,8) k, w(k)

if (iprint) 400,400,390

print *, k,w(k)
continue

write (7, 485)

format( 'following is the An and Bn coefficients')

do 500 n = i, 20

tpl = a(n)/em + cmplx(n/x,0.)

tp3 = (tpl * real(w(n)) - real(w(n-l)))

tp4 = (tpl*w(n) - w(n-l))

an(n) = tp3/tp4

print, tpl,tp3,tp4,an(n)

tp2 = em * a(n) + cmplx(n/x,0.)

tp5 = (tp2 * real(w(n)) - real(w(n-l)))

tp6 = (tp2*w(n) - w(n-l))

bn(n) = tp5/tp6

write (7,490) n, an(n), bn(n)

format (ix, i3, 2(ix, e16.4,1x,e16.4))

continue

Now compute the values of Sl(theta) and S2(theta)

write (8,910)

format ('Output values for angular fcns Sl and S2')

do i000 m = i, 180/2

mn= (m-l) *2

sl(m) = 0.d0

s2(m) = 0.d0

do 900 n = i, 20

templ = dfloat(2*n + l)/dfloat(n*(n+l))

tp3 = cmplx(templ,0.)*(an(n)*polypi(n,m) +

bn(n) *polytau (n, m) )

sl(m) = sl(m) + tp3



tp6 = cmplx(templ,O.),(bn(n)*polypi(n,m) +

* an(n) *polytau (n,m))

s2(m) = s2(m) + tp6

print *, n, templ, tp3, tP6

c print, an(n), bn(n)

print *, n,m, polypi(n,m)
900 continue

print *, m , sl(m), s2(m)

write (8, 950) mn,sl(m), s2(m)

950 format (Ix, i4, 2(ix,(e16.4, e16.4)))

if (iloop .eq. I) then

write (8, 950) mn, x,sl(m), s2(m)
endif

print *, 'enter a letter, q to quit'

read(*,*) iprint

if (iprint .eq 999) then

go to 999
endif

if (mn .eq. mprt) then

print *, 'done with x value = ', x

write (7, 1950) mn, x,sl(m), s2(m)
endif

1950 format (ix, i4, 2x, f8.4, 2(ix,(e16.4, e16.4)))

i000 continue

c

9000 continue

c

goto 999

print *, 'Error opening data file'

continue

8OO

999

c

close (7)

end

c

c

c

c

c

c

c

c

c

subroutine angle

include c:\lahey22\f771\mie.inc

common /norm/ x, pi, spi

common /polys/ polypi(0:21,100), polytau(0:22,100)

common /ints/ iprint

common /plex/ zjl(50), zj2(50), fact(O:200)

implicit integer*2 (i-n)

implicit real*8 (o-z)

dimension p(0:22)

real*8 conv

' Initialize some constants

conv= pi / 180.dO

m = 0

'Pi sub n is polypi(l,n) where l=poly # and n=angle value

' Load the first element of pi sub n with known values



i00
C

C

C

C

C

200

5O

310

isum = 0

do i00 n = 1, 20

isum = isum + n

polypi(n, 1) = dfloat(isum)

polytau(n,1) = dfloat(isum)
continue

' Calculate Legendre polynomial versus angle
m = 1

do 50 ideg = 2, 178, 2

thdeg=dfloat(ideg)
m=m+l

thrad = thdeg * cony

xc = dcos(thrad)

IF (thrad .eq. 0.d0) THEN
thrad = .0001d0

else

y = dsqrt(l.d0 - xc * xc)

endif

p(0) = l.d0

p(1) = xc

'Polyaray is the Legendre polynomials for angle m

polypi(0,m) = 0.d0

polytau(0,m) = 0.d0

polytau(l,m) = xc

do 200 n = i, 20

nl = n + 1

p(nl) = (dfloat(2*n+l)/dfloat(nl)) * xc * p(n)

- dfloat(n)/dfloat(nl) * p(n-l)

polypi(n, m)=(dfloat(n)/(y*y)) * (p(n-l) -

xc*p(n))

if (n.gt.1) then

polytau(n,m) = xc*(polypi(n,m)-polypi(n-2,m))

endif

continue

continue

return

END

+ polytau(n-2,m)

dfloat(2*n-l)*(y*y)*polypi(n-l,m)
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Measurements of polarization scattering
in the vacuum ultraviolet
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ABSTRACT

NASA's In-Situ Contamination Effects Facility, Marshall Space

Flight Center will be used to measure the polarization scattering from

optical surfaces due to outgassed molecular contamination.

Measurements will be taken using a non-coherent vacuum ultraviolet
(VUV) source at 123.6 nm and a set of three solar blind VUV

photomultipliers. An in-plane VUV BRDF experiment is described and
details of the on-going program to characterize optical materials

exposed to the space environment is reported.

_NTRODUCTION

Light incident on any real surface will scatter some portion of

the incident energy into all allowed angles relative to the surface

normal. In the scalar scattering theory, the intensity of the

scattered light will be a function of both the incident angles and
scattered angles as well as the surface material and its condition.

The accepted parameter for describing this bidirectional reflectance,

or angular scattering, is the Bidirectional Reflectance Distribution

Function (BRDF). Figure 1 shows the BRDF geometry considered in this

paper.

However, to adequately describe the scattering, the vector nature

of the light must be included. That is, the scattered light must be

written in the following way;

S' (00,_0,n0,_) = [M] * S(e,,_s,ns,_) (Z)

where _ is the Stokes vector of the incident light, M is the Mueller

matrix of the surface under consideration and _' is the Stokes vector

of the scattered light, n is the polarization state and i is the

wavelength. Note that we can also carry the angular dependence of the

incident and scattered light in the Stokes vector. (See, for example
Bickel, et. al.) I.

At short wavelengths the scattering process is strongly
wavelength dependent due to the relative scale sizes between surface

irregularities and the incident wavelength. And since we want to
measure M as a function of surface contamination, the total
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description of the scattering matrix must also include this time

dependence.

The surface Mueller matrix is well behaved when the wavelength is

much larger than the characteristic surface irregularity but becomes

increasingly more complicated as the wavelength to characteristic

irregularity dimension ratio approaches zero (i.e. small

wavelengths/rough surface).

Figure 2 shows a mirror that has been contaminated with a

molecular contaminant used in this program. As can be seen, the

contamination proceeds in a discrete fashion, i.e. islands of

contaminant appear rather than a uniform layer or film. During a

typical contamination run, a mirror will develop surface

irregularities whose diameters approach that of the incident

wavelength and, according to Mie theory, there will occur a peak in
the scattered intensity when the surface scatterers are approximately

equal to the wavelength. We want to take advantage of this to
determine the growth rate of the contamination.

Therefore, the thrust of this work is to provide measurements of

scattered light in the region where the long wavelength approximations
no longer hold and to compare these data with measurements of the

scattering functions at long wavelengths.

THEORY

Light incident on an optical surface will be scattered due to the

irregular structure of the surface at the microscopic level. These

irregularities will cause some of the incident light to be reflected,

or scattered, at an angle not predicted by Snell's law applied to the
mean surface value. The phenomenon of scattered light can be broken

into the following three broad categoyies based on the surface
irregularities causing the scattering ;

i. Short Wavelength Region

-Irregularities large relative to the wavelength

2. Intermediate Wavelength Region

-Isolated irregularities comparable in size to the
wavelength

3. Long Wavelength Region

-Correlated irregularities with heights small compared

to the wavelength but covering the entire surface

Note that each of these depend strongly on the incident

wavelength and an effect in the first category at a wavelength of 200
nm might well be in the third category at a wavelength of i0 microns.

We need only consider the short and intermediate wavelength
regions in this work. The intermediate region is governed by resonant

scattering of the type known as Mie scattering. Bennett 2 presents
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data that shows this type of scattering with the resonance at

approximately one micron due to dust particles.

The Bidirectional Reflectance Distribution Function (BRDF) is the

accepted functional description for scattered light. (See figure 1

for nomenclature.) Light is incident at polar angle 80 and azimuthal

angle #0 and the scattered light is measured at polar angle 8s and

azimuthal angle _,. Some authors have defined the BRDF with the

incident azimuthal angle at zero and the fourth angle, _', being the

polarization angle measured relative to the plane of incidence. _

In this case setting _' equal to zero gives an incident s-

polarization and setting it to _/2 gives a p-polarization. Any

arbitrary incident linear polarization can be described by a

combination of these two orthogonal polarization states.

Elson 3 has chosen to expand the angular dependence using the

latter case with the incident azimuthal angle, #0, set equal to zero.

No loss of generality should occur with this condition. In that paper

Elson solves the wave equation LA = 0 using the coordinate

transformation below to map the roughness profile into a plane.

u I = x, u 2 = y, u 3 = z - _(x,y) (2)

By insuring that proper boundary conditions are met, the Laplacian can
be reduced to one like L = L (0) + L (I) that is correct to first order in

This first order approximation to the scattered light is given

below,

I dP (cole) 4 I IX°t2 IX"-"I--'2 1Pod_" _2 " c°sOo' c°s2(O I t-E 12)" g(k-ko)iq,+qel2+tq,.qol 2

where

Xo . (q'qo' cos$-kkoe)cos$' ÷ (uo/c)q'sinSsin$'

qo' ÷qo_ qo +qo

X =co<qo'sin#cos_'_(coic._).cos_._.sin_ ' }
c qo' ÷ qoE qo' + qo

o3 oo
Y ,

qi'--cosO, ; k_=--sinO t .
c c

(3)
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This result can be reduced to the following form.

1 dP __l 4 F
(4)

where k = 2_/lambda

F(8) is an optical factor dependent on polarization

W(P) is the power spectrum of the height distribution

P is k(_ - 80) where _ is related to sin(8)

Note that the first term in F( ) is in the plane of the scattered

light and the second term is normal to the plane of scattered light

and can therefore be considered to be the p- and s-polarizations of

the scattered light, respectively.

Furthermore we can rewrite F(8) as

F(8) = (Qss + Qsp + Qps + Q_) (5)

where Qab is the angular dependence and "a" is the input polarization

and "b" is the observation polarization as defined above.

Thus we can write the Q's as follows 5,

Q$$

I 1 -_ Iz

COS (_s

/
(cOSOo* %/C- sin2Oo)(COS8, _- y 6- sinZO,)

esp

I i -E 12

(_/e- sin2e,)(sin Q,)
p

(cosO o ÷ _£- sinZSo) (6¢os8, * _/6- sin 26),)
(6)

_/e-sin2Oosin@,

(ecoseo * _/e- sin 2eo) (cos e, + Se- sin 2e, )

Qpp ] _/6-sinZSo_-sinZ@,cosQ,-6sinOo sin@,
(6¢OS8o + $c- sinZOo)(Ecos8, ÷ _/£- sin2O,)

If we limit ourselves to very small scattering angles it can

be shown that the Q's will reduce to the following forms,
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J cosO o-$E-slnzE)o
COSOo-* _/E- sin 20o

2

= R,(0o)

!

Qpp =

 coseo - - sin 2eo

ECOS0o + v/E- Sln ze o

2

= R,(Oo)

(7)

Q,p = Qp, = o

where R, and R_ are the Fresnel intensity reflectances for s- and p-
• , P

polarlzatlons, respectively. Note that these functions explain how

light incident at a particular polarization is scattered from the

given surface but does not develop the Jones or Mueller matrix of the
scatterer.

The above results are not easily derived from the Mueller

calculus for the vector scattering process, although those results

will follow. It is obvious that the correct form for the scattering

from a surface is that given in equation (i) and thus the problem

reduces to finding the elements of the Mueller matrix and applying it

in each case of a particular incidence angle. The above equations

should then be derived from the elements of the scattering matrix.

Unfortunately this is an overwhelmingly difficult problem to

solve explicitely and must be attacked by measurement of the

individual matrix elements for each set of incidence angles and

scattering angles.

By using the technique similar to that developed by Azzam 6 we can
take individual transmission measurements and determine nine of the

sixteen elements of the scattering matrix. Since we have no method

for altering the phase of the incident light we cannot determine the
entire matrix.

_OUIPMENT

These measurements will be carried out at the In-Situ

Contamination Effects Facility at NASA's Marshall Space Flight Center,

Huntsville, Alabama.

The In-Situ Optical Surface Measurement Facility, shown

schematically in Figure 3, is an equipment package designed to measure

the real time deposition of outgassed molecular constituents from

candidate space materials. These measurements are made using VUV

light and monitoring the deleterious effects of the material

deposition on the surface reflectivities of optical materials while

those depositions are in process. This arrangement is used to
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simulate the on-orbit effects of contamination and degradation of

optical surfaces such as Space Telescope.
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Figure 3. In-Situ Optical Surface Measurement Facility

VUV light is generated using a low pressure RF excited discharge

Krypton lamp. The krypton resonance line at 123.6 nm is coupled into
the vacuum chamber through a window and filter port. Typical VUV

filters have a spectral width of I0 nm and any continuum output in the

longer wavelengths are down by five or more orders of magnitude. The

physical mount for the source tube and filter housing serve as a

limiting aperture of approximately 6 mm, used in collimating the

incident light.

After the filter we place the reflection type polarizer followed

by the second aperture in the collimating scheme. This work will

employ three mirror met_l front surface polarizers of the type
reported by Hamm et.al." Diattenuation values as high as 0.996 have
been reported for these polarizers. These polarizers allow minimum

deflection of the optical axis and introduce little problem in

alignment of the system.

The collimated light is incident on the sample mirror and
specular light and scattered light is collected by the three fixed

solar blind photomultiplier tubes (PMT). Placed in front of the PMT's

is another polarizer used as an analyzer. These PMT's are arranged so
that the specular channel is at 30 degrees angle of reflection to the

sample and the forward scatter and back scatter channels are at a

scatter angle of 30 degrees.

The contamination source is a simple resistance heater in contact

with the outgassing material and is housed in front of and beside the
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back scatter PMT. The temperature of the sample is held to within one

degree either side of the desired temperature. Mass loss and
therefore contamination level is determined by using a temperature

controlled quartz crystal microbalance (TQCM). The TQCM is a

precision matched pair of 15 Mhz quartz crystals, one being the sensor
and the other the reference. The output of the TQCM is the beat

frequency between the two crystals. If the sensor is mass loaded by
contaminant the resonant frequency changes and the output beat

frequency changes. For this 15 Mhz TQCM the mass loading, m, is given

by the following.

m = 1.56 x 10 .9 g/cm 3 hz (8)

In this application the TQCM is located directly above the sample

mirror and the housing is temperature controlled to less than one

degree.

This set-up approximates a planer BRDF measurement at three

positions, i.e. the incident light, surface normal and scattered light
are in the same plane. Measurements can then be taken using incident

linearly polarized light at any orientation and analyzed at any
orientation while contaminant is being deposited.

EXPERIMENT METHOD

Molecular contamination of optical surfaces from outgassed

material has been shown to proceed from acclimation centers (see

figure 2). The origin of thesecenters at the surface is not well

understood but each grows faster than the surrounding surface area.
This implies that the contaminant has a higher sticking ratio for

itself than the surface and as a result the surface will appear on the
microscopic level to be composed of many small "islands" of

accumulated material with plains of relatively clean surface in

between. This situation provides the experimenter with many roughly

hemispherical scattering centers that are growing with time. This is

analogous to the common static situation for scattering of near
infrared light from surfaces by dust particles (see Bennett ).

By using a fixed wavelength and observing the scattered light as

the islands grow, we will observe the typical resonance peak in

scattered light predicted by the Mie theory. The form of the

scattering can be used to shed some light on the growth rates of the
islands and therefore the activation energies of the outgassing

phenomena.
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By using established techniques for determining the components of

the surface scattering Mueller matrix, we expect to measure this

matrix at the vacuum ultraviolet wavelengths• In addition, these

measurements will be made in-situ, i.e. while the contaminant is being

deposited at the surface•
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ABSTRACT

NASA's In Situ Contamination Effects

Facility, Marshall Space Flight Center has been
used to measure the time dependence of the
angular reflectance from mo!ec=ularly contaminated
opti_l surfa_s In the Vacuum Ultraviolet (VUV).
The light scattering measurements are
accomplished in situ on optical surfaces in real
time during deposition of molecular contaminants.
The measurements are taken using non-coherent
vacuum ultraviolet (VUV) sources with the
predominant wavelengths being the Krypton
resonance lines at 1236 and 1600 Angstroms.
Detection of the scattered light is accomplished
using a set of three solar blind VUV
photomultipliers. An in-plane VUV BRDF

experiment is described and details of the on-going
program to characterize optical materials exposed
to the space environment is reported.

INTRODUCTION

Light incident on any real surface will scatter
some portion of the incident energy into all allowed
angles relative to the surface normal. In the scalar
scattering theory, the intensity of the scattered light
will be a function of both the incident angles and
scattered angles as well as the surface material
and its condition. The accepted parameter for
describing this bidirectional reflectance, or angular
scattering, is the Bidirectional Reflectance
Distribution Function (BRDF) _. Figure 1 shows the
geometry considered in this paper.

However, to adequately describe the
scattering, the vector nature of the light must be

included. That is, the functional form of the
scattered light should be written in the following

way;

_'(eo,_o,n'o,,_=) = [M] * S(e,,¢,,n,,,_,) O)

where S is the Stokes vector of the incident light,
M is the Mueller matrix of the surface under

consideration and ._' is the Stokes vector of the

scattered light. Note that we can also carry the
angular dependence of the incident and scattered
light in the Stokes vector. (See, for example
Bickel, et. al._).

At short wavelengths the scattering process
is strongly wavelength dependent due to the
relative scale sizes between surface irregularities
and the incident wavelength. And since we are
measuring M as a function of surface
contamination, the total description of the
scattering matrix must also include this time

dependence.
The surface Mueller matrix is well behaved

when the wavelength is much larger than the
characteristic surface irregularity but becomes
increasingly more complicated as the wavelength
to characteristic irregularity dimension ratio
approaches zero (i.e. small wavelengths/rough
surface).

Figure 2 shows a mirror that has been
contaminated with a molecular contaminant

(Chemglaze Z-306) used in this program. As can
be seen, the contamination due to this
contaminant proceeds in a discrete fashion, i.e.
islands of contaminant appear rather than a
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uniform layer or film. During a typical
contamination run, a mirror will develop surface

irregularities whose diameters approach that of the
incident wavelength and, according to Mie theory,
there may occur peaks in the scattered intensity
when the surface scatterers are approximately

equal to the wavelength. We want to take
advantage of this to determine the growth rate and

optical properties of the contamination.
Therefore, the thrust of this paper is to

describe the measurements of scattered light in

the region where the long wavelength
approximations no longer hold and to compare
these data with measurements of the scattering
functions in the long wavelength approximation.

THEORY

Light incident on an optical surface will be

scattered due to the irregular structure of the
surface at the microscopic level. These
irregularities will cause some of the incident light to
be reflected, or scattered, at an angle not predicted
by Snell's law applied to the mean surface value.
The phenomenon of surface scattering is
commonly divided into broad categories based on
the size of the surface irregularities causing the
scattering r_. There are two important regions dealt
with in this work. First is the long wavelength
region where scattering arises from small
imperfections on the surface. Secondly is the
intermediate wavelength region where the
scattering is caused by imperfections comparable
to the wavelength in size.

LONG WAVELENGTH REGION The
Bidirectional Reflectance Distribution Function

(BRDF) is the accepted functional description for
scattered light. (See figure 1. for nomenclature.)
Light is incident at polar angle eo and azimuthal
angle <Do and the scattered light is measured at
polar angle e, and azimuthal angle _,. Some
authors have defined the BRDF with the incident

azimuthal angle at zero and the fourth angle, ¢',

being the polarization angle measured relative to
the plane of incidence, c`_'_

In this case setting ¢_' equal to zero gives an
incident s-polarization and setting it to Tr/2 gives a
p.polarization. Any arbitrary incident linear
polarization can be described by a combination of
these two orthogonal polarization states.

The accepted form for the BRDF is given as
follows (for example see Wang and Wolfe")

fr =B _ !1 dP = (k'/)?) F(e)W(P) (2)

Po dQ

where

k = 2n/,_
F(e) optical factor dependent on

polarization
W(P) is the power spectrum of the height

distribution

P is k(.8 - #=) where/_ is related to

sin(e)

We see that the BRDF can be broken into

two parts, one that contains only the angular
dependence of the scattering and one that
contains the surface nonuniformity.

To investigate the mueller matrix
traditionally one illuminates with either parallel or

perpendicularly polarized light and observes with
either a parallel or perpendicular analyzer. This
results in four measurements and we can rewrite

F(e) to accomodate these as follows;

F(e) = (Q. + Q,p + Q_ + Q_ (3)

where the Q=,'s are the angularly dependent
measurements and "a" is the input polarization and
"b" is the observation polarization as defined
above.

We then write the Q's as follows m,

QS,

I l-El z =l cos$, " I 2-- (coseo.._/__s,n2eo)(Cose,. ,__stn2_,)

(yfE-slnZe,)(sin$,) I(coseo - _/,- sin'e_)(,cose,- __- s,n2;,)

It-_l_= (_coseo _-q'E-'sin2eo)(cose, _-_'_-slnze,)

eoqE-sln O,cos$,-EsLneosme, t
q.. . 'J_-sin_ ' . ,

It-_l'''-_ (_coseo +,_- s,nZeo)(ecose, ÷ v'_' sinze,)

(4)
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If we limit ourselves to very small scattering
angles it can be shown that the Q's will reduce to
the following forms,

O. - R,(e)

o. = R,(e) (s)

Q,. = O. = 0

where R, and Rp are the Fresnel intensity
refiectances for s- and p-polarizations, respectively.
These functions explain how light incident at a
particular polarization is scattered from the given
surface but does not develop the Jones or Mueller
matrix of the scatterer.

As shown by Van de Hulst 8, we require not

only parallel and perpendicularly polarized input
but also two other independent input polarization
states of the incident light, as well as a method for
retardation of the states in order to solve for the
entire Mueller matrix of the surface.

INTERMEDIATE WAVELENGTH

SCATTERING . When the particle size of the
scatterer approaches the value of the wavelength
of the incident light, the above theory no longer
holds and new equations for the scattered light
must be developed. We must derive a formal
solution from Maxwell's equations. This was first
accomplished by Mie in 1908', hence the name

and has been modified later by many authors. In
this paper we will follow the results derived by Van
de Hulst'.

From the geometry shown in figure 1. the
incident electric field is given by the following
equation;

E(x,t) = Eo exp[.ikz + iwt] (6)

and by matching the boundary conditions at the
particle and observing the scattered field far from
the source, we can write the scattered field as
follows;

.|kro_u_t

£. - H, = -_-Tre •cos_. Sz(0)

oi_r*(su!

-E, = H,---_r e • sinS. sl(e)

(7)
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where the argument, x = kr = 2_r/x and the
amplitude functions S, and $2 are given by the
following;

S_(e) - . R(n+I)

Sz(e) " t 2n_l
,,-t R(n I)

{a._.(cose)* 6._.(cose)>

(b. n.(cos e) + a._.(cos e) >
(8)

The coefficients a, and b, are determined
from the boundary conditions and the angular
functions are given below;

n.(cose) = s=--_-P_.(cose)

d
_(cos0) = -- P_(cos0)de

(9)

Figure 3. shows the results of the previous
equations for light incident on spheres with a
complex index of refraction, m = 1.1 - 0.0431 i and
scattered at zero degrees (forward scatter) and at
30 degrees. Notice that there is a resonance in the
scattering amplitude where x = 25. This
resonance is typical of the scattering from spheres
where the wavelength is approximately equal to the
radius of the scatterer.

The above results are not easily derived
from the Mueller calculus for the vector scattering
process, although those results will follow. It is
obvious that the correct form for the scattering
from a surface is that given in Eq (1) and thus the
problem reduces to finding the elements of the
Mueller matrix and applying it in each case of a
particular incidence angle.

Unfortunately this is an overwhelmingly
difficult problem to solve explicitly and must be
attacked by measurement of the individual matrix
elements for each set of incidence angles and

scattering angles.
By using the technique similar to that

developed by Azzam 1° we can take individual
transmission measurements and determine nine of

the sixteen elements of the scattering matrix.
Since we have no method for altering the phase of
the incident light we cannot determine the entire
matrix.

Frequently the BRDF is cylindrically
symmetric and the experimenter can limit himself
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Figure 3. Model Prediction of Time Dependent Scattering From Contaminated Surface in Figure 2.

to scattering in a plane, i.e. when the polar angle
of incidence and the polar angle of observation are
both limited to Tr/2 (known as one-dimensional
vector theory)' This has been the case for our
previous work and all data presented in this paper
has been taken in the horizontal plane.

EQUIPMENT

These measurements have been carried out

at the In Situ Contamination Effects Facility at
NASA's Marshall Space Flight Center, Huntsville,
Alabama.

The In Situ Optical Surface Measurement
Facility shown schematically in figure 4. is an
equipment package designed to measure the real
time deposition of outgassed molecular
constituents from candidate space materials.
These measurements are made using VUV light
and observing the deleterious effects of the
material deposition on the surface reflectivities of
optical materials while the depositions are in
process. This arrangement is used to simulate the
on-orbit effects of contamination and degradation
of optical surfaces such as Space Telescope.

VUV light is generated using a low pressure
RF excited discharge Krypton lamp. The krypton
resonance line at 123.6 nm is coupled into the
vacuum chamber through a window or filter port.
Typical VUV filters have a spectral width of 10 nm

and any continuum output in the longer
wavelengths are down by five or more orders of
magnitude. The physical mount for the source
tube and filter housing serve as a limiting aperture
of approximately 6 mm, used in collimating the
incident light.

After the filter we place the reflection type
polarizer followed by the second aperture in the
collimating scheme. This work employs three
mirror metal front surface polarizers of the type
reported by Hamm et.al." Typical diattenuation
values of 0.996 have been reported for these
polarizers. These polarizers allow minimum
deflection of the optical axis and introduce little
problem in alignment of the system.

The collimated light is incident on the
sample mirror and specular light and scattered

light will be collected by the three fixed solar blind
photomultiplier tubes (PMT). Placed in front of the
PMT's is another polarizer used as an analyzer.
These PMT's are arranged so that the specular
channel is at 30 degrees angle of reflection, the
forward and back scatter channels are at + 30 and

-45 degrees, respectively, relative to the specular.
In addition to the signal PMT's there is a

reference channel PMT at the output of the source.
Part of the signal is picked off by the beamsplitter
and directed to the reference. This setup allows us
to monitor the condition of the source output.
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IN-SITU OPTICAL CONTAMINATION TEST FACILITY
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Figure 4. Schematic Diagram of the In Situ

The contamination source is a simple
resistance heater in Contact with the outgassing
material and is housed in front of and beside the

back scatter PMT. The temperature of the sample

is held to within one degree either side of the
desired temperature. Mass loss and therefore

contamination level is determined by using a
temperature controlled quartz crystal microbalance
(TQCM). For our 15 Mhz TQCM the mass loading,
m, is given by m = 1.56 x 104 g/cm 3 hz. In this
application the TQCM is located coplaner above
the sample mirror and the housing Is temperature
controlled and monitored to less than one degree.

This set-up approximates a planer BRDF
measurement at three positions, i.e. the incident
light, surface normal and scattered light are in the
same plane. Measurements can then be taken
using incident linearly polarized light at any
orientation and analyzed at any orientation while
contaminant is being deposited.

In addition there is available a 0.5 meter

MacPherson VUV spectrometer for measuring
angular scattedng in the UV and the VUV. This
device uses a mercury vapor lamp as the source
and an acrylic light pipe coated with sodium
salicylate (a florescent material) as the detector.

OpticalSurface Measurement Facility

The output of the 1/8" florescent spot is directed
through the light pipe to a visible photomultiplier.
The light pipe is free to rotate about the sample at
a distance of 1,5 inches giving a solid angle of
roughly 0.007 steradians.

EXPERIMENTAL METHOD

Molecular contamination of optical surfaces

from outgassed material has been shown to
proceed fr,'_m acclimation centers (see figure 2).
The origin of these centers at the surface is not
well understood but each grows faster than the
surrounding surface area. This implies that the
contaminant has a higher sticking ratio for itself
than the surface has for it and as a result the

surface will appear on the microscopic level to be

composed of many small "islands" of accumulated
material with plains of relatively clean surface in
between. This situation provides the experimenter
with many roughly hemispherical scattering centers
that are growing with time. This is analogous to
the common static situation for scattering of near
infrared light from surfaces by dust particles (see
Bennett,. By using a fixed wavelength and
observing the scattered light as the islands grow,
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we will observe the typical resonance peak in
scattered light predicted by the Mie theory.

This sort of scattering situation suggests
using the Mie Theory to explain the angular
scattering; and the form of the scattering can be
used to shed some light on the growth rates of the
islands and therefore the activation energies of the
outgassing phenomena.

RESULTS

Figure 5.a shows a typical optical surface
before contamination. These mirrors are one inch

quartz fiats with a 1000 angstrom coating of
aluminum and a final 250 angstrom overcoat of
magnesium fluoride which provides a high
reflection coating at 1200 angstroms. Close
inspection shows some imperfections in the MgF
coating as well as the AI reflective coat.

Figure 2 shows a mirror contaminated by
Chemglaze Polyurethane Z-306. This mirror was
exposed to the contaminant at elevated

temperatures up to 160 degrees centigrade for
approximately four hours. The Z-306 paint had
previously been baked at 60 degrees for two days.

Figure 5.b shows a mirror contaminated with
Silastic E. The material was cured at 100 degrees
centigrade for four hours before this 90 minute run
at 125 degrees. Note how the form of the
contamination is in roughly circular islands similar
to those formed by Z-306 but are much more
sharply peaked than the hemispherical islands of
the Z-306. However, the scattered light is very
different in that the scatter channels don't show the

resonance scattering that occurs with the Z-306
contamination. Figure 6.a shows the results of the
BRDF measurements done on the 0,5 meter VUV

spectrometer at about 2300 angstroms. The mirror
K-1 is heavily contaminated with Z-306 and mirror
47-89 is the Silastic E. The data shows the

increased scatter at large angles from Z-306 over
that from the Silastic E. Also notice that since our

detector has such a large solid angle we are
measuring the beam shape at small angles relative
to specular, For comparison figure 6.b shows the
measured BRDF at a wavelength of 6328

angstroms for mirror K-1. This mirror was highly
contaminated with Z-306

Figure 7. shows the relevant data on the
mirror shown in figure 2. Notice that there is the
resonance peak in the scattered light as predicted
by the Mietheory (s_ figure 4). We calculate from
this curve that the index of refraction of the surface

contaminant is approximately given by m = (1.1 -

7

0.04 i). It should be pointed out that the numbers
that are derived from this model are relatively soft.
The model can accommodate a plus or minus ten
percent change in the real part and factors of two
to three in the imaginary part of the index of
refraction and still give good fit to the experimental
data. This derives from the complexity of the
model and the lack of knowledge of the size
distribution of scatterers on the surface. We also

see that the specular refiectivity drops fairly quickly
after contamination starts but reaches a steady

state value with no further significant change.
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Figure 7.a. Data from Run #3_89
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Figure 7.b. PMT Outputs for

Mirror #3_89
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Figure 5.a. Clean Uncontaminated Mirror

Figure 5.b. Mirror Contaminated with Silastic E.
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CONCLUSIONS

Measurements of the contamination of

optical surfaces show that in some cases the
material grows in separate disUnct islands of
contamination rather than in a uniform thin film.

This can produce an increase in scattered light due

to Mie type resonance scattering which can,
because of the angular distribution of the
scattering, impact the design of optical systems.
We see that the current tests for acceptable levels
of optical contamination must include not only loss
of surface reflectance but also the distribution of

any scattered light. In addition we have seen that
by measuring the scattering in situ we can
determine the effectiveness of a potential
contaminant in a short time.
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