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FIGURES

1. Quantum Confinement and Resultant Quantization of Energy Eigenvalues (1)

2. Sawtooth Superlattice with and without Strong External Reverse Blas

a. Zero-field sawtooth superlattice
b. Strong external reverse bias Fap, resulting in staircase superlattice

4. Transfer Matrix at a Potential Step

5. Transfer Matrix for a Single Step Barrler: E » Vg

a. Transmission coefficient for uniform effective mass
b. Transmission coefficient for different effective masses inside and outside the barrier

6. Tunneling In a Single Step Barrier: E < Vg
a. Transmission coetfficient for uniform effective masses
b. Transmission coefficient for different effective masses inside and outside the barrier

~

. Transfer Matrix for a Single Step Barrier: E = Vp

@

. Multiple Step Barrier (MSB): N periods

9. Multiple Step Barrler with Three Perlods
The single resonance at Eg is split into two levels at Eg + AE by coupling between the two wells.



10. The Difference Between Multiple Step Barriers and Multiple Quantum Wells
(MQW).

For energies E below the top of the barriers or well, respectively, MSB's can have only virtual, or

quasi-bound, states, while MQW's can have true bound states. Both types of heterostructure can

support resonances for E greater than the barrier or well height.

11. Bound States and Resonances of a Single Quantum Well
a. E > 0: Transmission coefficients for uniform and varying effective masses. Resonances in T.
b. E < 0: Criterion for bound states. Eigenvalue condition on My gives bound states.

12. Transfer Matrix Method Applled to Arbitrary, Real Potential V(z).
The potential is broken into intervals Az wide. Transfer matrices M; at each step are multiplied to

give overall transfer matrix M.

13. Single Quantum Well and Barrler In Uniform Electric Field Fap

14. Transfer Matrix Method Applled to Finding Bound States of a Single
Quantum Well In Uniform Electric Fleld Fqp

The region inside the well is divided into intervals where plane-wave transfer matrices are

calculated. In the regions outside the well, the solutions of the Schroedinger equation are the Airy

functions.

15. The Airy Function and Derlvative with Negative Argument
a. Ai(-x)
b. Ai'(-x)

16. The Balry Function and Derivative with Negative Argument
a. Bi(-x)
b. Bi'(-x)

17. Single Quantum Well In a Localized Electric Fleld.
The applied field is zero far from the well.

18. Deformation of a Single Quantum Well in a Localized Electric Field.
The applied field shifts the bound and quasi-bound levels to lower energy.
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a. Low field strength, with true bound states at Eg and E;
b. Moderate field strength, with one true bound state at Eg - A, and a quasi-bound state at Eq - A.

¢. High field strength, only quasi-bound states remain.

19. Transfer Matrix Method Applied to Single Quantum Well in Localized Field
The well and a small surrounding area over which the field extends are broken into intervals. At
each step a transfer matrix M; is calculated; the overall transfer matrix M is the product of all the M;.

20. Transfer Matrix Method Applied to Multiple Step Barrier with N Periods In an
External, Localized Electric Fleld Fap.

21. Transfer Matrix Method Applied to Sawtooth Superiattice with N Periods in
an External, Localized Electric Field Fap.

22. Energy Band Structure of Pure GaAs (<100> and <111> directions) (33)

23. Complex Energy Band Structures of pure GaAs and AlAs (34)
i. (110) interface: a. GaAs b. AlAs
ii. (100) interface: a. GaAs b. AlAs

24. Energy Gap In Al(x)Ga(1-x)As as a Function of AlAs Mole Fraction x (19)
The x-dependence of the direct conduction band T'{¢ is shown by the solid line; that of the
indirect gap Xi¢ by the dashed line. The direct and indirect minima are equal at x = 0.37

25. The Fraction of Conduction Electrons In 1 of Al(x)Ga(1-x)As as a Function

of AlAs Mole Fraction x.(18)
Data are taken at 300 K. Dotted line is for degenerate case with N = 4x1017 cm3 ; solid line is for

nondegenerate case with N = 4x1016 cm-3,

26. Band-Edge Alignments at GaAs-Al(x)Ga(1-x)As Heterojunctions (R. Miller,

ATT-Bell Laboratories)
a. AE¢, conduction band misalignment
b. AE,, valence band misalignment

27. Esaki-Tsu Multiple Step Barrier Geometry (11)
a. Zero applied electric field
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b. Applied field strength F = F55, over the length | of the MSB

28. T-E Data for Single Step Barrler
Barrier is 10 nm wide, 0.33 eV high. Effective mass is uniform and equal to free electronic mass

Mmp.

29. T-E Data for Single GaAs-Al(0.4)Ga(0.6)As Step Barrier
Barrier is 10 nm wide and 0.33eV high. Effective mass is mj, = 0.0871 inside the barrier, mot =

0.0636 outside. - I

30. T-E Data for Single Step Barrlers 10nm Wide and 0.33 eV ng h.

a. Superposed T-E curves for GaAs-Al(0. 4)Ga(0 6)As barrier, and barner with unTorm effective

mass Mt = My everywhere. Curve 1: GaAs-Al(0.4)Ga(0.6)As, mi = 0. 0871, n Moyt = 0.0636;
Curve 0: mggf = Mg 7

b. Superposed T-E curves for GaAs-Al(0.4)Ga(0.6)As barrier, and barrier with uniform effective
mass Mgfs = 0.0636 everywhere. Curve 0: GaAs-Al(0.4)Ga(0.6)As; Curve 1: meff = 0.0636

31. Effects of Applied Electric Field on Transmission Coefficient of Single Step

Barrler.
Bamier is 10 nm wide, 0.33 eV high. Effective mass = mg everywhere.
a. Fap = 0
b. Fap =2 x10-2 eV/nm
C. Fap =5 x102 eV/inm

32. Effects of Applied Electric Fleld on Transmission Coefficlent of Single

GaAs-Al(0.4)Ga({0.6)As Step Barrler.
Barrier is 10 nm wide, 0.33 eV high. Inside the barrier mgff = 0.0871, outside the barrier megi =

0.0636. Curve 0: Fap = 0; Curve 1:Fap =2 x102 ev/nm; Curve 2: Fap =5 x1 02 eV/nm

33. Applled Fleld and Effective Mass Effects on Transmisslon Coefficient of

Single Step Barrlers.
Barriers are 10nm wide, 0.33 eV high. The two curves in each figure are for a barrier with uniform
effective mass Mgt = Mg, and a GaAs-Al(0.4)Ga(0.6)As barrier: Curve 0: metf = Mo; Curve 1. Mip =
0.0871, mgyyt = 0.0636
a. Applied field Fap = 2 x10-2 eV/nm
b. Applied field Fap =5 x10-2 eV/nm
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34. Total Transfer Matrix Element My4 for Single GaAs-Al(0.5)Ga(0.5)As
Quantum Well: Bound State.

Well is 3 nm wide, 0.4 eV deep. This calculation took account of the effective mass variation at the

well edges: the effective masses inside and outside the well are m;, = 0.094, mgyt = 0.0636. The

minimum of M1 4 gives a bound state energy of -0.197 eV below the top of the well.

35. Bound State Energy as a Function of the Effective Mass Inside Well.
Well is the same as that of Figure 34. The effective mass, however, is taken in this calculation as
0.0636 inside and outside the well. The new bound state energy is -0.217 eV below the top of

the well, instead of -0.197 eV,
Curve 0: Effective mass = 0.0636 everywhere. Eqg = -0.217 eV.
Curve 1: Effective mass = 0.094 inside the well, 0.0636 outside the well.Eg = -0.197 eV.

36. Bound States in Single Quantum Well.

Well is 3nm wide, 0.4 eV deep. Effective mass is uniform and equal to mg. The minima in M1
correspond to bound states. Using the free-electronic mass results in four bound states, in
agreement with equation 139.

37. Total Transfer Matrix Element M¢4 as a Function of Localized Fleld Strength.
Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. Each curve corresponds to a different field strength. Minima
shift to energies deeper in the well as the field strength is increased.

Curve 0: Fap =0; Curve 1: Fap=1x10"2 eV/nm; Curve 2: Fap = 2 x102 eV/inm;

Curve 3: Fap =3 x10°2 eV/nm; Curve 4: Fap = 4 x10°2 eV/nm;

Curve 5: Fap = § x102 eV/nm

38. Stark Shift of Bound State Energy Level under Localized Fleld.

Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. In this figure the Stark shift (referred to the zero-field bound
state energy) is plotted as a function of the applied field strength. The Stark shift is linear in the
field strength.

39. The Ratlo (F/E) as a Function of Energy and Applied Field Strength.
Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere; field is uniform and unrestricted. Each curve is for a different
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field strength; the maxima in the data correspond to quasi-bound states of the quantum well.
Maxima shift to energies deeper in the well as the field strength increases.

Curve 0: Fap = 1.0 x102 eV/nm; Curve 1: Fgp=1.5 x1 02 eV/nm;

Curve 2: Fap = 2.0 x102 eV/nm; Curve 3: Fap = 25 x10-2 eV/nm;

Curve 4: Fap = 3.0 x10-2 eV/nm

40. Stark Shift of Bound State Energy Level under Uniform, Unrestricted Field.
From Figure 39, the energy levels of the maxima in (F/E) are plotted as function of the applied field
strength. The bound state energies are quadratically dependent on the applied field strength.
41. Stark Shift of Bound State Energy Levels under Uniform, Unrestricted Field.
From Figure 40, the Stark shift relative to the zero-field level is plotted as a function of the applied

field strength. Also shown are the data of Austin and Jaros (41) for an identical quantum well.

42. Stark Shifts under Localized and Unrestricted Unlform Fields Compared.
From Figures 38 and 41, the Stark shifts calculated for a 3nm, 0.4 eV Al(0.5)Ga(0.5)As quantum
well are plotted together. = o

43. T-E Curves for Two-, Three-, and Flve-Barrier GaAs-Al(0.5)Ga(0.5)As

Multiple Step Barrlers.
These are the results of transfer matrix calculations for step barrier superlattices identical to those

of Esaki and Tsu (11). Barriers are 2 nm wide, 5 nm apart, and 0.5 eV hifgh'. Effective mass in the
barriers is mip = 0.094, between the barriers mgy = 0.0636. Modified connection rules are used.

Figures a, b, and ¢ are for two, three and five barriers, respectively.

44. T-E curves for Two- and Flve- Barrler Esaki-Tsu Type MSB's
The T-E curves from Figure 43 for two and five barriers superposed. Note the splitting of single

resonances into four, caused by coupling between wells.

45. T-E Curves for Two-, Three-, and Flve-Barrier MSB's Calculated By Esakl

and Tsu (11).
Note the close agreement between these curves and those of Figure 43.

46. J-V Curves for Two- and Three-Barrler GaAs-Al(0.5)Ga(0.5)As MSB's
These curves are calculated for the same MSB's whose T-E curves appear in Figure 43.
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47. J-V Curves for Two- and Three-Barrier MSB's Calculated by Esakl and Tsu
(11).
Note the agreement between these curves and those of Figure 46.

48. T-E Curves of Two-Barrler MSB's: Influence of Effective Mass.

Both curves are for two-barrier MSB's with barriers 2 nm wide,5 nm apart, and 0.5 eV high. Curve 0
is for GaAs-Al(0.5)Ga(0.5)As MSB with effective mass variations taken into account, and Curve 1 is
for MSB with effective mass uniform and equal to mg.

49. T-E and J-V Curves of Two-Barrier MSB's: Effect of Neglecting the Effective
Mass Step at Heterojunctions.

Data are for GaAs-Al{0.5)Ga(0.5)As Esaki-Tsu-type MSB's. Figures a and b are T-E and J-V curves

respectively. In Curve 0, the effective mass is taken as uniform and equal to 0.0636. In Curve 1,

the effective mass is 0.094 inside the barriers, and 0.0636 in the wells.

50. T-E and J-V Curves for GaAs-Al{0.4)Ga(0.6)As and GaAs-Al{0.5)Ga(0.5)As
Two-Barrier MSB's: Effects of Composition

Data are for MSB's with barriers 2 nm wide, 5 nm apart. Figures a and b are T-E and J-V curves

respectively. Curve 0 is for GaAs-Al(0.4)Ga(0.6)As. Curve 1 is GaAs-Al(0.5)Ga(0.5)As.

51. T-E Curves for Sawtooth and Step Barriers Compared.
Sawtooth barrier is 10 nm wide at the base, step barrier is 10 nm wide. Both are 0.33 eV high.
Figure a. Effective mass is uniform and equal to mg. Curve 1 is for the sawtooth, Curve 2 is for the

step barrier.
Figure b. Barriers are made of GaAs-Al{0.4)Ga(0.6)As. Effective mass is 0.0636 in GaAs, 0.0871 in
Al(0.4)Ga(0.6)As. Curve 0 is for step barrier, Curve 1 is for the sawtooth.

52. T-E Curves for GaAs-Al(0.4)Ga(0.6)As Sawtooth Barriers: Influence of the
Effective Mass.

Both barriers are 10 nm wide at the base and are 0.33 eV high. Curve 0 is for GaAs-

Al(0.4)Ga(0.6)As with effective mass variations taken account of, and Curve 1 is for effective mass

uniform and equal to mg. Note the similarity between the two curves, as opposed to the same data

for step barriers.

53. T-E Curves for Sawtooth Single Step Barrlers: Influence of Effective Mass
and Applled Electric Fleld Strength.

xi



All data is for barriers 10 nm wide at the base and 0.33 eV high. Curve 0: Fap = 0, Meff = Mo.
Curve 2: Fap = 0, GaAs-Al(0.4)Ga(0.6)As Curve 3: Fap = 0.02 eV/nm, Meff = mo. Curve 4: Fap =
0.02 eV/nm, GaAs-Al(0.4)Ga(0.6)As Curve 5: Fap = 0.05 eV/nm, mett = mg.  Curve 6: Fap = 0.05

eV/nm, GaAs-Al(0.4)Ga(0.6)As .

54. Deformation of Single Sawtooth Barrier under Applled Electric Field.
The shape of the barrier under Fap = 0, 0.02, and 0.05 eV/nm is shown in Figures a, b, and c,
respectively. At Fap = 0.05 eV/nm the barrier is actually a staircase.

55. T-E Curve for Two-Barrler Sawtooth Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. Effective mass is uniform and equal to mg.

56. T-E Curves for Two-Barrler Sawtooth Superiattices: Influence of Effective

Mass.
Bases are 4.5 nm wide, heights are 0.5 eV. Figure a is for mest = mg, Figure b is for GaAs-

Al(0.5)Ga(0.5)As superattice.

§7. T-E Curves for Sawtooth and Step Two-Barrier GaAs-Al(0.5)Ga(0.5)As

Superlattices. e e
Curve 0: MSB with barriers 2 wide, 5 nm apart, and 0.5 eV high
Curve 1: Sawtooth superattice with 4.5 nm wide bases.

58. T-E Curves for Sawtooth and Step Flve-Barrler GaAs-Al(0.5)Ga(0.5)As

Superlattices.
Curve 0: Sawtooth superlattice with 4.5 nm wide bases.

Curve 1: MSB with barriers 2 wide, 5 nm apart, and 0.5 eV high

59. J-V Curves for Two-Barrler GaAs-Al{0.5)Ga(0.5)As Sawtooth and Step

Superlattices.
Curve 0: Sawtooth superlattice with 4.5 nm bases, 0.5 eV high

Curve 1: MSB with barriers 2 nm wide, 5 nm apart, 0.5 eV high

60. Deformation of Two-Barrier Sawtooth Superlattice under Applied Electric

Fleld.
In Figures a, b, and ¢ the applied field strength Fap is 0, 0.02 and 0.05 eV/nm, respectively. At Fap

= 0.05 eV/nm the structure is a staircase.
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61. T-E Curve for Two-Barrier GaAs-Al(0.5)Ga(0.5)As Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. The applied field strength is 0.052 eV/nm (applied
voltage = 0.47 V).

62. T-E Curves for Two-Barrler Sawtooth Superlattices: Etfects of Composition.
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63. J-V Curves for Two-Barrier Sawtooth Superlattices: Effects of Composition.

Data for GaAs-Al(0.4)Ga(0.6)As and GaAs-Al(0.5)Ga(0.5)As superlattices are shown in Curves 0
and 1, respectively. Bases are 4.5 nm wide.
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1. INTRODUCTION

Recently there has been much interest in semiconductor heterojunction superlattices
both theoretically and practically. The theoretical interest lies in the fact that quantum effects are
observable in these macroscopic structures (1-3). The practical interest lies in the application of
these superlattices as novel electronic devices with desirable characteristics (3-8).

The quantum mechanical effects displayed by semiconductor superlattices are
manifestations of both quantum size effects and tunneling (1-11). Quantum confinement of
electrons and holes in structures which are of the same order as the de Broglie wavelength of the
particle results in quantization of the energy eigenvalues where previously a continuum existed.
The degree of quantization depends on the number of dimensions in which the confinement
exists. The motion of the confined particle then has a reduced dimensionality depending on
whether the quantum confinement is present in more than one dimension. For instance,
confinement in one direction results in approximately two-dimensional motion with partial
quantization of energy eigenvalues. If the particle is confined in all three dimensions, the energy
levels can be sharply quantized.(See Figure 1)

Tunneling is the process whereby a quantum particle can cross a potential barrier, which
classically would be completely impenetrable because of its higher energy, to a state of equal or
lower energy. The wave function of the particle exiends into or even through the barrier when the
barrier potential is finite. A non-zero particle current density through the barrier then results from
the tunneling process. Quantum mechanical tunneling has been the basis of many
semiconductor devices, starting with the Esaki tunnel diode, named for its inventor Leo Esaki,
and introduced in 1958 (12). A discussion of the evolution of tunneling theory from 1928 up to
the early seventies has been presented by L. Esaki (3, pp. 47-77).

When a particle interacts with and is confined by two or more barriers of finite height and
not too great thickness, its wave is reflected mulliply oft each potential barrier reached by
tunneling. When the confining region’s dimension is some mufltiple of the wavelength, the particle
"resonates” in the regions where its energy is greater than the local potential. At these
wavelengths the tunneling current is amplified. Actually, both size quantization effects and
resonance result from the same source: the constructive interference of forward and backward
waves. This is the source of the quantized energy levels that result from the confinement of the
particle.

Resonant tunneling figures prominently in the transport of carriers through
semiconductor superlattices, and to understand it is not only desirable theoretically, but is also
central to the application of these structures as electronic devices. Resonant tunneling of
electrons and holes in the conduction and valence bands leads to formation of sub- or mini-
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bands, whose widths and energy levels will affect the operation of superlattice devices. Tunneling
calculations for semiconductor superlattices can provide this informafion, which can then be
implemented in design of improved structures. By finding the transmission coefficient through
the structure as a function of energy for either carrier, one can locate the energy levels of the

resonances. It is also possible to find the effects of an external electric treld on the transmission
coetfrcrent ‘and hence upon the resonanceehergy levels. Much effort has already been directed
to this end for step superlattrces however the sawtooth or graded band- gap supertattrce
proposed by F. Capasso (3) has up until now not been studied theoretrcally, except for an analysrs

of the muttrplrcatron noise assocrated with its use as a photo-detector This is the aim m of the

present study

A resurgence of ‘interest in resonant tunnehng in hetero;unctron semrconductors ‘has
been spurred by recent advances in molecular beam epitaxy, (MBE), which provides abrupt
interfaces (on the order ofa monolayer) as well as very uniform layer thicknesses (4-8,13). MBE is
used to make superlattices of multiple barriers and wells in which the energy levels of the virtual
states are consistent from well to well, leading to miniband formation and therefore to efficient
transport of carriers through the structure. The energy tevels in quantum wells and superlattices
have been most recently and thoroughly reviewed by Attarellr (2) ‘Excellent dis drscussrons of the
devices which can be made from semiconductor superlattices grown by MBE, and the relationship
of the superlattice structure to energy levels and resuttant dev:ce pertormance are gwen by

Capasso et alia (4-8).
The earliest theoretical exploration of resonant tunneling in semiconductor

heterojunction superlattices was published by L. Esaki and R. Tsu in 1970 (9), who predicted
negative conductance, caused by electron transport into negative effective mass regions of the
minizone, and Bloch oscillations. The first experimental observation of resonant tunneling
through a double barrier was made by Chang, Esaki, and Tsu in 1974 (10).

A fairly comprehensive body of work addressing carrier transport through GaAs-AlGaAs
step superlattices exists with which comparisons may be made when studying other kinds of
superlattice, starting with the work of Esaki and Tsu cited above. In a paper published in 1973
(11), they presented the calculated transmission coefficient as a function of incident energy, and
tunneling current as a function of applied voltage, for two, three, and five GaAs-Al(0.5)Ga(0.5)As
step barriers. A transfer matrix method was used for this work. Their computations were for thin
layers (50 and 20 A wells and barriers,respectively), neglecting the potential gradients caused by
the applied field within each layer, but taking account of the total potential drop between
successive periods. They took account of effective mass variations throughout the superlattice.
The correlation of the current peaks in the calculated J-V curves with the resonance energy levels
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in the transmission data indicates a Stark shift in the levels that is linear in the electric field
strength.

More recently, Marsh (14) applied an empirical pseudopotential formulation to tunneling
calculations through a GaAs-Al(x)Ga(1-x)As double heterostructure step barrier under zero
external electric field, and compared the results to those obtained by the effective mass
approximation. In taking account of the effective mass variations throughout the heterostructure,
Marsh made the distinction between an effective mass approximation which uses conventional
wave function connection rules at interfaces where there is a sharp change in effective mass, and
one which uses the modified connection rules suggested by Kroemer and Zhu (15,16). The
latter, about which more will be said below, maintain particle flux continuity through the interface.
Marsh found good agreement between the effective mass approximation and the empirical
pseudopotential when the modified connection rules are used, and the aluminum concentration
in the barrier layer is such that it is still a direct gap material. Significant discrepancies were
observed between the two methods when direct-indirect interfaces were studied, and in all cases
when the unmodified connection rules were used.

A modified scattering matrix formalism was recently applied to calculating the resonance
energy spectra for electrons in multiple GaAs-AlGaAs quantum wells (17). The Stark shift of the
levels was also calculated and found to be linear In the field strength. Although in that work the
effective masses appropriate to each region were used, it appears that the conventional wave-
function connection rules were used in deriving the scattering matrices, which may have resulted
in some error in the computed energy levels.

MBE growth of these structures provides very precise control of the aluminum
concentration in AlGaAs even at the monolayer level, allowing linear and even parabolic grading of
the band-gap. Several novel electronic devices using both linearly and parabolically graded-gap
materials have recently been described in the literature (4-6). A superlattice proposed by Capasso
for use as a low-noise, high-gain solid-state avalanche photodiode is described in (7). In this
structure, the conduction and valence band edges in each stage describe a sawtooth profile, that
is, the band-gap in each layer is approximately linearly graded. (refer to Figure 2) This is achieved
by varying the aluminum content linearly within the layer.At each interface there is a band-gap
mismatch between pure GaAs and Al(x)Ga(1-x)As which is taken up mostly in the alignment of the
conduction bands. Five or six stages are contained between n and p doped GaAs cladding layers.
In operation, photo-electrons are accelerated down the structure by a strong external reverse
bias. At each interface, because of the built-in potential drop afforded by the conduction band
misalignment, the electron acquires enough kinetic energy to impact-ionize a lattice atom and
liberate another electron. In this way the electrons multiply at each stage. The small valence band
discontinuity in AlGaAs prevents the impact ionization of the holes. The larger the conduction



band discontinuity, the higher the probability that each electron will impact-ionize at each stage.
This means that very low-noise multiplication can be achieved, approaching the light- detection

performance of a photomultiplier tube.
The size of the potential mismatch at each interface in this device is determined by the

amount of aluminum in the Al(x)Ga(1 x)As at the end of each s stage “For x greater than
approximately 0.4 (18,19), Al(x)Ga(1-x)As is an indirect gap material; pure » AlAs has an indirect
bandgap, and pure GaAs is a direct-gap material. The problem of electron idnrielmg through a
direct- indirect gap interface must be handled dnﬂerently than the snmpler case of transport
between two direct-gap layers, as the work by Marsh cited above indicates. Physically, the
transport of electrons may be hindered by the competition of the direct and indirect bands in the
high aluminum material. This may partially undo the advantage of the large conduction band
discontinuity associated with high aluminum content. Hence consideration of Al(x)Ga(1-x)As
sawtooth superlattices was limited in this study to compositions with x no greater than 0.4. -
Sawtooth superlattices achieved by cdrﬁpositional grading differ from ste;5 ‘superiattices in

carriers is nowhere constant throughout the structure. In step superlamces the effectlve mass is
constant within each Iayer, but there is a sharp change at each boundary. In sawtooth
superiattices in AlGaAs the effective mass of the electron in the direct band is a quadratic function
of the amount of aluminum. Since the aluminum content is linearly gradgg “there is a quadratic
variation of the effective mass and the band-gap within each Iayer and a large dtscontmuny at the
end of each stage as well (18 19) oo ’

Another significant difference between the step and sawtooth superlattices is the
presence of internal or "quasi® fields associated with the band-gap grading. One of these is a
constant field which is the gradient of the band-gap. This field accelerates electrons and holes in
the direction of the narrowest bandgap, and opposes the reverse bias applied to the device.

dE
Fe= — _£ (13)
dz S
E
] (1b)
dz

Ec(z) and Ev(z) are the conduction and valence band edge energies, respectively. This field is
practically much less than the applied reverse bias for direct-gap AlGaAs-GaAs sawtooth

superiattices.
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Furthermore, the varying effective mass of the carriers gives rise to another quasi-field
which assists the external reverse bias in accelerating carriers through the structure. This field is

given by:
Fo= d lkTQn(Tﬁfﬁ) (2a)
dz \ 2 m,
Fi,= d (B kT (.Te_fL!‘_) (2b)
dz \ 2 m,

where Mgq(z) and mpex(z) are the electron and hole effective masses, respectively. For electrons
in a direct-gap AlGaAs-GaAs sawtooth, this field strength is much less than that due to the band-
gap gradient, and these two quasi-fields offset one another somewhat.

One more major difference between step and sawtooth superlattices is the way they
deform under high external fields. Figure 3 illustrates this difference.Iln a step superlattice, no
matter how strong the field, the barriers remain such that there is always a well between them.
Resonances can in principal always be formed in these wells even under strong fields. The
sawtooth, on the other hand, becomes a staircase structure at applied voltages greater than the
sum of the conduction band discontinuities over all the stages. Then the triangular wells between
the sawtooth bamiers no longer exist. The electron still interacts with the staircase, but tunneling is
no longer occurring between the barriers. Therefore it is expected that the transition from
sawtooth to staircase should be signalled by some feature in the current-voltage characteristic.

An analysis of tunneling through a graded gap superlattice should thus take account of
not only the external electric field and structural parameters such as number of stages, layer
widths, composition, and interfacial conduction band discontinuities, but also of the quasi-fields
caused by the gradients in the band-gap and effective mass. The differences between step and
sawtooth superlattices should be reflected in the results of tunneling calculations.

It is the central purpose of the work described here to study the resonant energy levels of
graded band gap GaAs-Al(x)Ga(1-x)As superlattices for x less than or equal to 0.4 (i.e. for direct
gap material only), as a function of the applied and quasi-fields discussed above. A transfer matrix
method is used to calculate the transmission coefficient and tunneling current for conduction
electrons in sawtooth superlattices similar to those which might be used as avalanche
photodiodes. Tunneling calculations are also presented for the same kind of step superiattice
investigated by Tsu and Esaki (11). These are shown to agree with those previously obtained,
and are also used to illustrate the differences and similarities between sawtooth and step
superlattices with similar compositions and structural parameters. Throughout this work particular



attention is paid to role of the effective mass In electron transport through these structures. The
justification for using the modified wave function connection rules when effective mass
discontinuities are encountered at interfaces, is discussed. The effects of neglecting effective
mass variations, or using inappropriate connection rules, are also explored. :
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2. THEORY OF TUNNELING IN SUPERLATTICES

2.A. Quantum Mechanical Tunneling

In quantum mechanical tunneling, a particle of energy E is incident on one or more
potential barriers of arbitrary shape and height.lts behavior is described by the Schroedinger
equation; specifically, the wave function inside and outside the barrier, energy eigenvalues and
resonances, the transmission and reflection coefficients, and transmitted and reflected probability
density currents may be calculated. In the problem of tunneling in superlattices, the salient
features are essentially one dimensional: most often the superiattice is formed of paraliel layers
alternating in one dimension, say the z direction. The tunneling barriers then extend in the z
direction, while momenta in the x and y directions are constants of the motion. The one-
dimensional Schroedinger equation is then used to describe the motion of the tunneling particle:

2
2 &Y, vi-E)y -0 (3)
2""eff dz2

where vy is the wave function, V(z) is the potential due to the superlattice, and mes is the mass of
the incident paricle (20,21).

In superlattices formed of real solids, the mass in the expression above is the effective
mass appropriate to each layer. In the effective mass approximation, the ionic potential of the
crystalline lattice is not dealt with directly, but instead is taken account of by the parameters of the

eftective mass and the energy band edge.(22)
The solution to the Schroedinger equation in regions of constant potential where V(z) =
Vij, is the set of plane waves:

{4)

where:
Y 2mest (EV)) (5)
! h
When the energy E is greater than the potential Vj, (E - Vj) > 0 and the general solution
above is composed of plane waves propagating to the right: exp(ik;j z), and to the left: exp(-ik; z).



The particle propagates throughout this region like a free particle. This is characteristic of the

motion of the particle in the regions outside the barriers.
When the particle encounters regions where its energy is lower than the potential, then
(E - Vj) < 0, and the solution to the Schroedinger equation is the sum of exponentially growing

and decaying parts:

(6)

where Xj is:

- i \/?mgff (E - Vj) (7)

This wave function describes the penetration of the particle into a barrier. When the effective
mass Met of the particle is constant from region to region, the coefficients A and B; are found by

applying the standard connection rules of matching the wave functions and first derivatives at
each boundary:
dfi(Z) = wj""l(z) (8a)

yla = Yl (8b)

In semiconductors the effective mass is dependent on composition. In semiconductor
superlattices, the effective mass therefore makes a discontinuous jump at each interface between
dissimilar materials. When this is the case, the standard wave function matching procedure above
will not result in conservation of the probability density current through the interface (15,16,23).
The connection rules must be modified so that this current is conserved. One approach (15,16} to

this is to redefine the wave functions on either side of the interface as:

Mo (9)

Once this is done, the standard practice of matching the wave functions and their first derivatives
can be applied to the x; to obtain the coefficients Aj and Bj. To summarize, the former wave
function v is not continuous at each boundary when the effective mass of the particle changes
abruptly there, but the renormalized wave function x, used with the standard connection rules,
results in coefficients which maintain the continuity of particle flux J through the boundaries:
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(10)

i j+1
* *
—i dy; dy -ih dyx; dx 4
2mo b} dz dz 2mo i+1  dz i+l dz

2.B. Transfer matrix method
2.B.1. General properties of the transfer matrix

Transfer matrices can be derived describing the propagation of a wave through a
superlattice of wells and barriers. The formalism is identical to that used in optics, where ray
matrices are applied to the propagation of light through optical elements. (24)

The transfer matrix M used in the present work is closely related to the scattering matrix S
that is applied to three-dimensional problems of nuclear scattering. The S matrix is most useful for
formulating symmetry properties, whereas the M matrix is best applied to the one-dimensional
problems dealt with here. it has been used in tunneling calculations for semiconductor multiple
step barriers (MSB's), by Esaki and Tsu (11) and C. Schwartz (17), and for electrode-polymer
interfacial layers by Meijer and Van Roggen (25,26).

The wave functions on either side of a potential step at z = 0 are written:

ik.z —ik.z
ll/j= A e } + B.e }

’ i 2 <0 {12a)

ik: 42 —iki, 42
Vier = Ajsr © AN Bj+q © i+ 220 {12b)

There are two linear, homogeneous equations relating the coefficients on either side of the step.
The transfer matrix M expresses these equations:

= (13)

The origin of the Mj; are the matching conditions at the step. M is determined to be:

k. k.

(1 + Ejﬂ) el(kj+1 - kj)l (1 _ k+1) e—i(k]+1 + 