ASTEROID FLUX AND IMPACT CRATERING RATE ON VENUS. E.M. Shoemaker, R.F. Wolfe, and C.S. Shoemaker, U.S. Geological Survey, Flagstaff, AZ 86001.

By the end of 1990, 65 Venus-crossing asteroids had been recognized (Table 1); these represent 59% of the known Earth-crossing asteroids. Further studies, chiefly numericai integrations of orbit evoluion, may reveal one or two more Venus crossers among the set of discovered asteroids. We define a Venus crosser as an asteroid whose orbit can intersect the orbit of Venus as a result of secular (long range) perturbations. Venus crossers revolving on orbits that currently overlap the orbit of Venus are here called Venapol asteroids, and those on orbits that don't overlap are called Venamor asteroids; we recognize 42 Venapols and 23 Venamors.

Collision probabilities with Venus for 60 of the known Venus crossers have been determined by the methods described in [1]. The mean collision probability with Venus is $6.2 \times 10^{9} \mathrm{yr}^{-1}$, which is 1.45 times the mean collision probability of Earth-crossing asteroids with Earth [1]. Hence, the collision rate of asteroids on Venus is $0.59 \times 1.45=0.86$ times the collision rate on Earth. The collision rate per unit area on Venus is $0.86 \times 0.509 \times 10^{9} \mathrm{~km}^{2} / 0.460 \times 10^{9} \mathrm{~km}^{2}=0.95$ times the rate per unit area on Earth.

The cratering efficiency (for sufficiently large asteroids) is somewhat higher on Venus than on Earth, owing partly to the higher rms impact speed of the asteroids and partly to the slightly lower surface gravity on Venus. If we neglect atmospheric retardation, the average cratering efficiency is 1.14 times higher on Venus than on Earth (as measured by relative crater diameters). This is equivalent to a correction to the cratering rate of $(1.14)^{2.27}=1.34$ relative to the cratering rate on Earth. Hence, the nominal asteroid impact cratering rate on Venus is $0.95 \times 1.34=1.27$ times the asteroid cratering rate on Earth. Before accounting for losses, we add about 10% to the total asteroid cratering rate for the undiscovered Venus-crossing asteroids whose orbits lie entirely inside the orbit of Earth and remain undetected in the conventional search programs. Thus, the total (uncorrected) asteroid cratering rate on Venus is $1.1 \times 1.29=1.4$ times the rate on Earth.

Two corrections should be considered for asteroids impacting on Venus. First, extinct comets probably should be eliminated. The ratio of extinct comets among Earth-crossing asteroids is very uncertain. No known Earth crossers are D-type objects, but there is good presumptive evidence that a few dark asteroids (F-type and C-type) are extinct comets (e.g., Phaethon, the source of the Geminid meteors, and 1986 JK , which appears cometary from its radar properties). We estimate that about 10% of the Venus-crossing asteroids are extinct comets that won't survive atmospheric passage (unless they are very large-- 10 km diameter or greater). This reduces the cratering rate relative to Earth to about 1.27.

Secondly, a rough correction for atmospheric deceleration of projectiles can be made as follows. Nominally, a 20 - km -diameter crater on Venus is produced by an S-type asteroid 1.71 km in diameter. At an average entry angle of 45°, this body sweeps out a mass of atmosphere equivalent to about $92 \mathrm{~kg} \mathrm{~cm}^{-2} / \sin 45^{\circ}$ $=130 \mathrm{~kg} \mathrm{~cm}^{-2}$. The longitudinal mass at the stagnation point of a nominal S-type asteroid is $1.71 \times 10^{5} \mathrm{~cm} \mathrm{x}$ $2.4 \mathrm{gm} \mathrm{cm}^{-3}=410 \mathrm{~kg} \mathrm{~cm}^{-2}$. From conservation of momentum, the impact speed ν_{i} will be $\nu_{\mathrm{i}}=\nu_{0} \times 410 /$ $(410+130)=0.76 \nu_{0}$, and the cratcring efficiency will be only $(0.76)^{2 / 3.4}=0.85$ times the efficiency for the uncorrected velocity. The cratering rate will be reduced by the factor $(0.85)^{2.27}=0.69$. About 40% of the craters are produced by S-type asteroids and the other 60% produced by C-type asteroids, which are larger but have lower density than S-type [1]. At the same kinetic energy, the longitudinal mass of C-types is the same as S-types and the correction for momentum transfer is the same. For crater production at $20-\mathrm{km}$ diameter, the asteroid cratering rate on Venus is $0.69 \times 1.27=0.88$ times the rate on Earth. With increasing crater diameter, the relative rate increases; at $50-\mathrm{km}$ crater diameter, the relative rate on Venus is $0.84 \times 1.27=1.06$ times the rate on Earth. For craters $\geq 20 \mathrm{~km}$ diameter, our best estimate of the asteroid impact cratering rate is $(3.7 \pm 2.0) \times 1 \sigma^{15} \mathrm{~km}^{-2} \mathrm{yr}^{-1}$ on Earth [1] and (3.3 $\left.\pm 1.8\right) \times 10^{15} \mathrm{~km}^{-2} \mathrm{yr}^{-1}$ on Venus.

All except a few of the largest impact craters on Venus probably have been produced by asteroids, as the atmosphere tends to shield the surface from impact of comets. Applying our estimate of the crater production rate, we find an average crater retention age at 20 km crater diameter of $260+310,-90$ million years for the Venusian surface imaged by the Venera spacecraft [2] and $240+290,-85$ million years for the portion of the surface imaged by the Magellan spacecraft [3].

References: [1] Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S., 1990, in Sharpton, V.L., and Ward, P.D., eds., Geol. Soc. America Spec. Paper 247, p. 155-170. [2] Schaber, G.G., Shoemaker, E.M., and Kozak, R.C., 1987, Solar System Research, v. 21, p. 89-93. [3] Schaber, and 7 others, 1991, this volume. [4] Veeder amd 5 others, 1989, Astron. Jour., v. 97, p. 1211-1219. [5] Williams, J.G., 1969, Ph.D. Thesis, Univ. Calif. at Los Angeles, 270 p. [6] Shoemaker, E.M., Williams, J.G., Helin, E.F., and Wolfe, R.F., 1979, in Gehrels, T., ed. Asteroids: Tucson, Univ. Ariz. Press, p. 253-282. [7] Opik, EJ., 1951, Proc. Roy. Irish Acad., v. 54A, p. 168-199.

TABLE 1. VERUS-CROSSING ASTEROIDS: MAGNITUDES, DIAMETERS CROSSING DEPTHS, AND CORLISIOM PARARETERS

Within each class (Venapols and venamorg), asteroids are listed in order of iacreasigg perihelion distance: estimated perimelion at the tie of veaus crossing is used to order all asteroids vit
 formula.

The colum headed Dian gives the estimated diameter in kilometers. Aceurately determined dian
 magnitudes, where albedon have been asisumed on the basis of epectrophotopetric ciessificarion, and parentheses Approximate diameters, where magnitudes are bas
perihelion distance, q. is itt the time of yenus crossing, except for values in pareatheses, which are osculating peribelion distances.

Depth is the crossing depth fthe maximun overlap of the orbit of the asteroid vith the orbit of Venus aleng the radius to the node) deterained fron the theory of Nilliams \{5!

The orbital oloments (semimajor axis), (eccentricity), and ifinciination with respect to the invariable planel and the derivative of the radius to the node, dr/dt, are estiated representative values at the time of venur crosing. Te is the period of precession of the major axis rith respect to the ifine of the nodes in the invariable plane. pifistheprobability of collision with venus calculated from the quations of shoenaker et al. ifi, and po is probability of callision with venus calculated from the equations of opik [7]. Uncertain values are shovn in parentheses.

The column headed vi given the impact speed in kilometers per second, corrospoadiag to the
 AU for Yenapale and at 0.746 au for Venamors.

