
AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

INTRODUCTION

This issue of Aeronautical Engineering—A Continuing Bibliography (NASA SP-7037) lists 539 reports, journal articles, and other documents originally announced in August 1991 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA).

Accession numbers cited in this issue are:

STAR (N-10000 Series) N91-23073 — N91-25099 IAA (A-10000 Series) A91-36013 — A91-40566

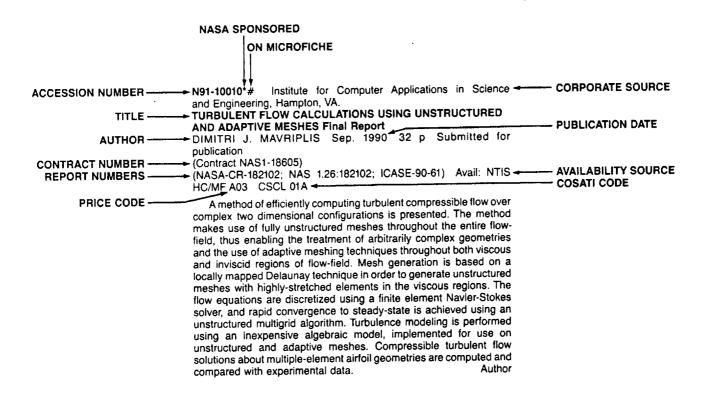
The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine *STAR* specific categories and the remaining *STAR* major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals.

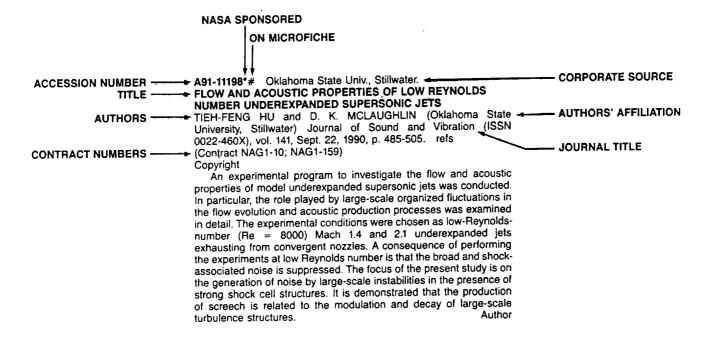
Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included.

A cumulative index for 1991 will be published in early 1992.

Information on availability of documents listed, addresses of organizations, and NTIS price schedules are located at the back of this issue.


The second secon

CONTENTS


Category 01	Aeronautics (General)	611
	Aerodynamics are derodynamics of bodies, combinations, wings, rotors, and control surd internal flow in ducts and turbomachinery.	613
Category 03 Includes	Air Transportation and Safety passenger and cargo air transport operations; and aircraft accidents.	634
	Aircraft Communications and Navigation digital and voice communication with aircraft; air navigation systems and ground based); and air traffic control.	641
Category 05 Includes	Aircraft Design, Testing and Performance aircraft simulation technology.	645
Category 06 Includes	Aircraft Instrumentation cockpit and cabin display devices; and flight instruments.	655
Category 07 Includes engines a	Aircraft Propulsion and Power prime propulsion systems and systems components, e.g., gas turbine and compressors; and onboard auxiliary power plants for aircraft.	656
Category 08 Includes	Aircraft Stability and Control aircraft handling qualities; piloting; flight controls; and autopilots.	663
Category 09 Includes wind tunr	Research and Support Facilities (Air) airports, hangars and runways; aircraft repair and overhaul facilities; nels; shock tubes; and aircraft engine test stands.	668
facilities space co spacecra	Astronautics astronautics (general); astrodynamics; ground support systems and (space); launch vehicles and space vehicles; space transportation; emmunications, spacecraft communications, command and tracking; ft design, testing and performance; spacecraft instrumentation; and ft propulsion and power.	669
physical	Chemistry and Materials chemistry and materials (general); composite materials; inorganic and chemistry; metallic materials; nonmetallic materials; propellants and d materials processing.	670
electrical photogra	Engineering engineering (general); communications and radar; electronics and engineering; fluid mechanics and heat transfer; instrumentation and phy; lasers and masers; mechanical engineering; quality assurance cility; and structural mechanics.	673

Category 13 Geosciences Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.	685
Category 14 Life Sciences Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.	N.A.
Category 15 Mathematical and Computer Sciences Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.	686
Category 16 Physics Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.	687
Category 17 Social Sciences Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.	690
Category 18 Space Sciences Includes space sciences (general); astronomy; astrophysics; lunar and planet- ary exploration; solar physics; and space radiation.	N.A.
Category 19 General	691
Subject Index Personal Author Index	
Corporate Source Index Foreign Technology Index	D-1
Contract Number Index	
Report Number Index	
Accession Number Index	
Appendix A	

TYPICAL REPORT CITATION AND ABSTRACT

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

			 -
	 		 -

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 269)

SEPTEMBER 1991

01

AERONAUTICS (GENERAL)

A91-36351#

WRIGHT LABORATORY

ALAN S. BROWN (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) Aerospace America (ISSN 0740-722X), vol. 29, May 1991, p. 8-10.

A review is presented of past and present aerospace research conducted at Wright Laboratory. Some of the advanced projects under study include turbines with twice the thrust/weight ratio of today's aircraft engines, flight helmets that reconstitute reality as a computer-enhanced simulation on their darkened inner walls, and hypersonic aircraft that fly from New York to Philadelphia in 90 seconds. The two major research programs being investigated are the National Aerospace Plane and the Integrated High-Performance Turbine Engine Technology effort, whose principal goal is to develop a flow of new technologies that can be integrated into turbine design. Attention is given to the research and development of composite materials and the important role they play in all of these advanced projects.

A91-36353#

LONG-RANGE AIRCRAFT ARE IN DEMAND

RICHARD DEMEIS Aerospace America (ISSN 0740-722X), vol. 29, May 1991, p. 24-27, 31.

The overriding technological combinations that must be developed to provide for increased payload/long-range efficiency in commercial aircraft are discussed. The many requirements include: lighter structures, fuel efficiency, available engine thrust at optimum cruise altitude, and the relationship of lift, drag, and engine fuel efficiency to produce the greatest range when drag divided by speed is kept to a minimum. Attention is given to the various new ultra-high-bypass turbofans under development that approach the 100,000 lb thrust category with bypass ratios of better than 20/1.

A91-36875

METAL MATRIX COMPOSITE VERTICAL TAIL FABRICATION

DAVID M. GINBURG (Lockheed Aeronautical Systems Co., Marietta, GA) Society of Manufacturing Engineers, Metal Matrix Clinic Conference, Anaheim, CA, Nov. 13, 14, 1990. 20 p. (SME PAPER EM90-438) Copyright

Four full-scale Metal-Matrix Composite (MMC) vertical tails were built from two types of MMC: 15v/o SiC(w)/2124-T6 Al, and SiC/6061 Al. Fabrication of the detail parts used several unique, cost-effective processes. The greatest labor-saving device was the robotic abrasive waterjet used to cut the flat patterns. Flanged ribs were formed by hot-rubber hydroforming, replacing matched dies with a single male form block. The large laminated SiC(w)Al skins were chemically milled and adhesive-bonded. All fabrication and assembly operations were performed in accordance with production-rate process standards and instructions.

A91-36895

AUTOMATIC AIRCRAFT PAINT STRIPPING

VERNON R. STURDIVANT (Southwest Research Institute, San Antonio, TX) Society of Manufacturing Engineers, Conference on Aerospace Automation and Fastening, Arlington, TX, Oct. 9-11, 1990. 12 p.

(Contract F33615-86-C-5044)

(SME PAPER MS90-280) Copyright

Paint must be removed from aircraft to allow detailed surface inspection, to perform repair operations, and to keep weight at acceptable levels after many coats of paint have been applied. Southwest Research Institute is presently constructing a robotic system for automatically removing paint from fighter aircraft for the United States Air Force. The process removes paint by plastic media bead blasting. The blast nozzles are positioned over the aircraft surface with a robot. The system consists of two, 9 degree-of-freedom (DOF) robots together with two robot controllers, one cell control computer, paint sensors, and bead blasting equipment.

A91-36898

THE INTRODUCTION OF OFF-LINE PROGRAMMING TECHNIQUES FOR THE ROBOTIC ASSEMBLY OF AIRCRAFT STRUCTURES

JOHN R. THOMPSON (British Aerospace /Military Aircraft/, Ltd., Blackburn, England) Society of Manufacturing Engineers, Conference on Aerospace Automation and Fastening, Arlington, TX, Oct. 9-11, 1990. 25 p. refs

(SME PAPER MS90-276) Copyright

A system is described for off-line programming a robot performing assembly operations where interaction and coordination between peripheral devices is essential for correct operation. The complex nature of automated assembly operations requires multidevices to assemble and fasten components together. As part of British Aerospace's on-going commitment to automated assembly development, this paper discusses the introduction of a robotic off-line programming method which uses a CAD database to construct device part programs. A 3-D computer simulation system models and animates all the programmable motions in the physical automated assembly cell. Once tape proved an off-line program is produced incorporating calibration methods.

A91-36944

AIRCRAFT REPAIR/GENERAL AVIATION QUICK TOOLING

FRED BANKE (Composite Craft, Inc., Orlando, FL) Society of Manufacturing Engineers, Conference on Tooling for Composites '90, Anaheim, CA, June 5-7, 1990. 20 p.

(SME PAPER EM90-178) Copyright

It is often required that a damaged component be returned to its original contours and aerodynamic smoothness on site. Sound, efficient in-field composite repair techniques are necessary to effect such repairs. This paper summarizes some approaches taken to the in-field repair mold concept and the resultant findings.

Author

A91-37061#

CAPP IMITATIVE SYSTEM OF AIRCRAFT ASSEMBLY

GONGFAN SHE and HUASHOU QIU (Northwestern Polytechnical University, Xian, People's Republic of China) Northwestern

Polytechnical University, Journal (ISSN 1000-2758), vol. 9, April 1991, p. 240-245. In Chinese, with abstract in English.

A rule-based 'imitative' expert system for computer-aided process planning (CAPP) is proposed which can serve as the Chinese aircraft industry's bridge between CAD and CAM processes' implementation. The imitative CAPP employs the Al language TURBO-PROLOG to conduct simple and easily modifiable modular programming; simplicity levels are in fact such as to allow microcomputer CAPP implementation. The modules in question address data inputs, tooling and assembly, operation sequence arrangement, and specifications editing. Attention is presently given to CAPP's description-related data.

A91-38546#

AIRCRAFT DESIGN FOR MAINTAINABILITY

ANTHONY E. MAJOROS (Douglas Aircraft Co., Long Beach, CA) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 187-192. Previously cited in issue 21, p. 3248, Accession no. A89-49459. refs Copyright

A91-38580*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AERONAUTICAL RESEARCH IN THE UNITED STATES - CHALLENGES FOR THE 1990'S

RICHARD H. PETERSEN and BRUCE J. HOLMES (NASA, Langley Research Center, Hampton, VA) DGLR, Annual Meeting, Friedrichshafen, Federal Republic of Germany, Oct. 1-4, 1990, Paper. 12 p. refs

An overview is presented of NASA R&D initiatives in air transportation technologies that will dominate its efforts through the 1990s. These efforts are to be concentrated in (1) advanced subsonic transports with greater fuel economy, passenger capacity, and control effectiveness, whose design will be undertaken with state-of-the-art CFD and CAD/CAM systems; (2) a second-generation SST whose propulsion system will be substantially more fuel-efficient than that of Concorde and have far lower atmospheric emissions; and (3) a hypersonic transport predicated on the results of research into materials, cryogenic fuels, propulsion cycles, and propulsion/airframe aerodynamics integration, which will be undertaken in connection with the X-30 testbed.

A91-39392

THE TECHNICAL CHALLENGES OF THE CREW ESCAPE TECHNOLOGIES PROGRAM

EDWARD O. ROBERTS (USAF, Human Systems Div., Wright-Patterson AFB, OH) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 170-175. refs

Some of the technical challenges of the Crew Escape Technologies (CREST) program that are inherent in developing a true 700-KEAS open-ejection-seat capability are discussed, and some insight is provided into the complex job of integrating all of the various subsystem components into a workable system. These challenges include the design, construction, and testing of an open ejection seat with a 'safe' ejection up to 700 KEAS; increased performance over the baseline ACES-II, or 'third-generation', seat; the design of a seat system that will tailor its linear and angular acceleration performance to human tolerance criteria that are defined in terms of injury-risk limits; and the development of the appropriate control-system software. Results from a performance comparison of various types of crew-escape technologies (catapult test, axial head lift force, and longitudinal head force) are presented in graphs.

A91-39852

COMPOSITES FOR A WIDEBODY

FRANK COLUCCI Aerospace Composites and Materials (ISSN 0954-5832), vol. 3, May-June 1991, p. 22-24.

A review is presented of the composite material technology

that has been applied to the development and construction of the wide-bodied MD-11 commercial transport aircraft. It is shown that composites promise fatigue lives two to three times greater than metal, and DC-10 aileron access doors, trailing edge panels, and floor beams and struts all demonstrated the fatigue and corrosion resistance inherent in the new materials. Safety-of-flight structures are developed to handle ultimate loads with undetectable damage and limit loads with easily detectable damage. Advanced stitched spars and stringers can resist interlaminar tension loads in future primary structure, and high modulus toughened thermosets can open new composite design opportunities.

A91-39854

MOULDED MUSTANG

FRANK COLUCCI Aerospace Composites and Materials (ISSN 0954-5832), vol. 3, May-June 1991, p. 40, 41, 43. Copyright

A project to market full-scale composite replicas of the P-51 is presented that has already produced large high-temperature composite tools to mould Mustang kits for racing and recreational pilots. The teardrop shape, compound curve design of the fuselage lends itself particularly well to composite moulding. It is expected that the composite aircraft will weigh 3,200 to 3,500 lb empty, compared to the 7,800 to 11,000 lb weight empty of the metal original. Details of the composite moulding technique are described along with tooling and materials involved. Engine selection has not been finalized, however, several liquid-cooled candidates from offshore racing boats are under consideration.

A91-40180 TILTROTOR DEVELOPMENTS

ICAO Journal (ISSN 0018-8778), vol. 46, Feb. 1991, p. 6-10. Copyright

The present evaluation of the technology-development requirements and commercial viability of tiltrotor VTOL aircraft of V-22 size and larger gives attention to the technical changes needed by the civilian version of the V-22 and the commuter market anticipated for the movement of passengers from small airports to airline hub airports. It is noted that the elimination of various military structural features from the V-22 will substantially reduce gross takeoff weight or allow a less expensive metallic, rather than all-composite, fuselage to be employed. High developmental priority is given in the present study to noise-reduction technology and design features, such as higher blade-number rotors.

A91-40181

MODIFICATION MEETS CHAPTER 3 STANDARDS

WALTER H. JOHNSON (Valsan, Purchase, NY) ICAO Journal (ISSN 0018-8778), vol. 46, Feb. 1991, p. 16, 17. Copyright

Airport vicinity noise-reduction legislation, in conjunction with higher fuel prices and slower growth in global air traffic, have enhanced the economic viability of reenginings for such older airliners as the B 727s presently discussed. A 1990 certification for the reengined 727-100s discussed established noise levels 9 dB lower than ICAO chapter 3 levels, while reducing operating costs and increasing flight performance. The reengining replaces the port and starboard engines with JT8D-217Cs, and acoustically treats the existing central engine.

A91-40563#

SAFETY OF AGING AIRCRAFT - BOEING PROGRAMS FOR THE 1990'S

P. J. HARRADINE and M. MILLER (Boeing Commercial Airplanes, Seattle, WA) AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference, 32nd, Baltimore, MD, Apr. 8-10, 1991. 11 p.

(AIAA PAPER 91-0909) Copyright

An overview is presented of historical and current aging aircraft activities, efforts anticipated for aircraft models in production, and how the knowledge gained and lessons learned will be incorporated into future designs. It is shown how industry and airworthiness

authorities have collaborated to develop and implement major new programs involving structural modifications, corrosion prevention and control, and the damage tolerance of structural repairs. Consideration is also given to awareness and training programs, including a course to acquaint key airline maintenance and FAA personnel with the requirements and the procedures of the newly mandated Corrosion Prevention and Control Program. R.E.P.

N91-23076# Institute for Defense Analyses, Alexandria, VA.
THE COSTS AND BENEFITS OF AIRCRAFT AVAILABILITY
Final Report, Jan. - Sep. 1990

MATTHEW S. GOLDBERG and KAREN W. TYSON Mar. 1991

(AD-A232660; AD-E501359; IDA-P-2462; IDA/HQ-90-35834) Avail: NTIS HC/MF A03 | CSCL 01/2

This paper contains estimates of the effects of research and development costs (through initial operational capability) and unit procurement costs on the mission-capable (MC) rates of eleven tactical aircraft models. These estimates are transformed into estimates of the marginal cost of increasing MC rates through, respectively, increased development or increased procurement expenditures. The benefits of higher MC rates are also computed. One benefit is that, with more reliable aircraft, the procurement quantity may be reduced. A second benefit is that more reliable aircraft have lower operations and maintenance (O and M) costs in the field. The magnitudes of these effects are also estimated. Finally, the costs and benefits are combined to compute optimal levels of investment in reliability, both for hypothetical aircraft models and for the eleven aircraft models used in the statistical analysis.

N91-23077# Institute for Defense Analyses, Alexandria, VA.
ESTIMATING FIXED AND VARIABLE COSTS OF AIRFRAME
MANUFACTURERS Final Report, Dec. 1988 - Dec. 1990
STEPHEN J. BALUT, THOMAS P. FRAZIER, and JAMES BUI
Mar. 1991 42 p

(AD-A232661; AD-E501360; IDA-P-2401; IDA/HQ-90-35536) Avail: NTIS HC/MF A03 CSCL 05/3

This report presents a model for separating annual costs at airframe manufacturing plants into fixed and variable components. The use of the model is to aid defense analysts in estimating the cost to manufacture aircraft systems when the manufacturer has not yet been determined or when proprietary models for the specific firms are not available. The material is unclassified and non-proprietary.

N91-24087# Wichita State Univ., KS. National Inst. for Aviation Research.

KANSAS AVIATION REVIEW

FLOYD PRICE, ed. 1991 45 p The 5th Annual Kansas State Aviation Conference was held in Liberal, KS, 14-16 Sep. 1990 (NIAR-91-3) Avail: NTIS HC/MF A03

The purpose of the Review is to provide a multi-disciplinary aviation publication opportunity. Topics addressed include: automated inspection of aging aircraft; secondary certification in aerospace education; cognitive performance in cockpits; information resources in aviation; demand for college aviation programs.

N91-24088# Wichita State Univ., KS. EVALUATION OF AUTOMATION FOR INSPECTION OF AGING AIRCRAFT

BEHNAM BAHR In its Kansas Aviation Review p 1-8 1991 Avail: NTIS HC/MF A03

A new automated/robotics system or a potential system for aircraft inspection is described. In order to develop a semi-automated or robotics system for the inspection of an aircraft, several facts need to be considered. Therefore, a set of criteria are prepared that will enable any interested party to make an appropriate response as to what type of system should be supported or bought. These issues may involve not only the selection of what mechanism is the best system but also if

additional training will be required to implement the automated inspection.

N91-24093# Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

SOME ANALYSIS OF DECISION-MAKING IN THE TEST MANUFACTURE OF MILITARY AIRCRAFT

RUOSONG WANG 29 Nov. 1990 14 p Transl. into ENGLISH from Guoji Hangkong (Peoples Rep. of China), no. 319, Sep. 1989 p. 23-24

(AD-A233111; FTD-ID(RS)T-0716-90) Avail: NTIS HC/MF A03 CSCL 01/2

Modern military aircraft are complex engineering systems. They include target or object systems, operating systems, as well as related structural systems. They form a large, complicated engineering system made up from natural systems and social systems. As far as the goodness or badness, the success of failure of this type of engineering is concerned, it is not simply a matter of one industry; one cannot even stop with a consideration of the aviation industry of one nation; it extends even to the nation as a whole. All these things are important factors. This type of engineering requires long periods of time. The technology is complicated and new. It has enormous consequences. In addition to this, the whole world is paying careful attention to it. As a result of this, its influence involves economic effects, military effects, and political consequences.

N91-24160# Wichita State Univ., KS. BONDED/FUSION REPAIR OF AIRCRAFT STRUCTURES WAYNE BECKER and JAMES HO In its Program Plans for Aviation Safety Research 6 p Dec. 1990

Avail: NTIS HC/MF A04

The objective is to quantify a procedure for assessment and repair of aircraft metallic and composite structures which will provide reliable, consistent results with minimal downtime. The technical approach and project management and coordination are briefly discussed.

Author

N91-24163# Wichita State Univ., KS. MECHANICAL PAINT REMOVAL TECHNIQUES FOR COMPOSITE AIRCRAFT

JORGE E. TALIA, BEHNAM BAHR, WAYNE BECKER, and HAMID M. LANKARANI *In its* Program Plans for Aviation Safety Research 6 p Dec. 1990

Avail: NTIS HC/MF A04

The use of conventional paint removal on composite material can lead to a fast deterioration or weakening of the material due to the absorption and chemical attack of the solvent which may result in a catastrophic failure of the structure. Moreover, recent EPA regulations ban the use of solvents for paint removal and and sea military bases. The objective is to investigate the possibilities of paint removal by mechanical techniques, specifically by the impingement of solid particles, a technique that would not leave structural damage on the treated material and would not effect the environment.

02

AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A91-36359 UNSTEADY, FREQUENCY-DOMAIN ANALYSIS OF HELICOPTER NON-ROTATING LIFTING SURFACES OLYMPIO A. F. MELLO and OMRI RAND (Maryland, University, College Park) American Helicopter Society, Journal (ISSN 0002-8711), vol. 36, April 1991, p. 70-81. refs Copyright

A model for predicting the unsteady periodic loads acting on non-rotating helicopter lifting surfaces is derived. Lifting surfaces and their wakes are represented by bound, trailing, and shed vortices that account for the involved unsteady effects. Rotor blades are represented by bound vortices having prescribed spanwise and azimuthal strength distributions. Rotor wake is modeled by helical tip vortices of varying strength. Assuming periodic behavior, the overall governing equations are formulated in terms of Fourier coefficients. Consequently, no time discretization is used, thus permitting a single step numerical procedure while all the unsteady effects are consistently included. The method is shown to give an insight to the problem and to be an appropriate tool for predicting unsteady characteristics of the lifting surfaces and the related vibratory loads, along with their sensitivity to helicopter design parameters. Correlations with existing experimental results are presented.

A91-36452* New Jersey Inst. of Tech., Newark.
THE STABILITY TO TWO-DIMENSIONAL WAKES AND SHEAR
LAYERS AT HIGH MACH NUMBERS

DEMETRIOS T. PAPAGEORGIOU (New Jersey Institute of Technology, Newark) Physics of Fluids A (ISSN 0899-8213), vol. 3, pt. 1, May 1991, p. 793-802. refs

(Contract NAS1-18605)

Copyright

This study is concerned with the stability properties of laminar free-shear-layer flows, and in particular symmetric two-dimensional wakes, for the supersonic through the hypersonic regimes. Emphasis is given to the use of proper wake profiles that satisfy the equations of motion at high Reynolds numbers. In particular the inviscid stability of a developing two-dimensional wake is studied as it accelerates at the trailing edge of a splitter plate. The nonparallelism of the flow is a leading-order effect in the calculation of the basic state, which is obtained numerically. Neutral stability characteristics are computed and the hypersonic stability is obtained by increasing the Mach number. It is found that the stability characteristics are altered significantly as the wake develops. Multiple modes (secondary modes) are found in the near wake that are closely related to the corresponding Blasius ones, but as the wake develops mode multiplicity is delayed to higher and higher Mach numbers. At a distance of about one plate length from the trailing edge, there is only one mode in a Mach number range of 0-20. The dominant mode emerging at all wake stations, and for high enough Mach numbers, is the so-called vorticity mode that is centered around the generalized inflection point layer. The structure of the dominant mode is also obtained analytically for all streamwise wake locations and it is shown how the far-wake limit is approached. Asymptotic results for the hypersonic mixing layer given by a tanh and a Lock distribution are also given. Author

A91-36453* High Technology Corp., Hampton, VA. REAL GAS EFFECTS ON HYPERSONIC BOUNDARY-LAYER STABILITY

M. R. MALIK (High Technology Corp., Hampton, VA) and E. C. ANDERSON (NASA, Langley Research Center, Hampton, VA) Physics of Fluids A (ISSN 0899-8213), vol. 3, pt. 1, May 1991, p. 803-821. refs

Copyright

High-temperature effects alter the physical and transport properties of a gas, air in particular, due to vibrational excitation and gas dissociation, and thus the chemical reactions have to be considered in order to compute the flow field. Linear stability of high-temperature boundary layers is investigated under the assumption of chemical equilibrium and this gas model is labeled here as real gas model. In this model, the system of stability equations remains of the same order as for the perfect gas and the effect of chemical reactions is introduced only through mean flow and gas property variations. Calculations are performed for Mach 10 and 15 boundary layers and the results indicate that real gas effects cause the first mode instability to stabilize while the second mode is made more unstable. It is also found that the

second mode instability shifts to lower frequencies. There is a slight destabilizing influence of real gas on the Goertler instability as compared to the perfect gas results.

A91-36695#

ON THE IMPROVEMENT OF THE SUPERSONIC LIFTING LINE THEORY

I. JADIC (Institutul National pentru Creatie Stiintifica si Tehnica, Bucharest, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, Mar.-Apr. 1990, p. 75-88. refs

Two errors associated with the lifting line theory for supersonic linearized flows are pointed out. The first error results from the assumption of the constant chord distribution of vortices and can be corrected by correlating the control point position with the aspect ratio. The second error is related to the possibility of information transfer beyond the inverse Mach cone limit. This error is dealt with by using simple conical flow solutions whenever possible. The improved lifting line theory is validated by comparisons with the available theoretical and experimental data.

V.L.

A91-36699#

NEW METHODS IN THE THEORY OF SUBSONIC FLOWS PAST THIN AIRFOIL CONFIGURATIONS

L. DRAGOS (Bucharest, University, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, May-June 1990, p. 179-196. refs

The fundamental solution method is used to obtain integral equations of subsonic flow past various airfoil configurations, including identical or symmetrical airfoils in parallel, cascades, and different airfoils in tandem. By using Gaussian quadrature formulas, the integral equations are reduced to algebraic systems that can be readily programmed on a computer. Numerical results are presented for flat plates.

A91-36700#

WING CALCULATION IN SUPERSONIC FLOW BY MEANS OF THE SUPERSONIC LIFTING LINE THEORY

I. JADIC (Institutul National pentru Creatie Stiintifica si Tehnica, Bucharest, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, May-June 1990, p. 197-208. refs

An improved version of the supersonic lifting line theory, SLLT + C, is assessed by way of comparison with the available theoretical and experimental data. The cases considered include straight, triangular, and swept wings. The predictions of the theory correlate well with test data for conventional planforms. It is concluded that the improved supersonic lifting line theory provides useful approximations of the aerodynamic characteristics of wings without excessive errors even for Mach numbers close to 1. V.L.

A91-36724#

AERODYNAMIC CALCULATION OF TANDEM WINGS IN SUPERSONIC FLOW BY MEANS OF SLLT

I. JADIC (Institutul National pentru Creatie Stiintifica si Tehnica, Bucharest, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, July-Aug. 1990, p. 309-324. refs

An improved supersonic lifting line theory (SLLT) is used to calculate wing-tail interference for trandem wings. In contrast to previous, approaches, the loading on the wing is calculated by the lifting line procedure itself. The results obtained show that the accuracy of the proposed method is consistent with the linearized theory, making it possible to calculate the downwash with a moderate computational effort.

A91-37176

DISCONTINUOUS SOLUTIONS FOR A THREE-DIMENSIONAL HYPERSONIC BOUNDARY LAYER WITH INTERACTION [O RAZRYVNYKH RESHENIIAKH PROSTRANSTVENNOGO GIPERZVUKOVOGO POGRANICHNOGO SLOIA SO VZAIMODEISTVIEM]

V. V. MAKHAN'KOV Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Mar.-Apr. 1991, p. 19-26. In Russian. refs

Copyright

Three-dimensional flow of a viscous gas in a hypersonic boundary layer on a flat wing with a steplike leading edge is analyzed in the case where the boundary layer interacts with a slightly deflected flap on the wing. A linear solution to the problem is obtained assuming that the flap deflection angle is small and the difference of the plate lengths is of the order of one. It is shown that the formation of flow near the flap is determined to a large degree by pressure changes along the wing span due to the stepped shape of the leading edge. Although the displacement pressure and thickness are continuous functions of the transverse coordinates, the longitudinal and transverse components of the friction force become discontinuous.

A91-37181

ENTROPY EFFECTS OF HYPERSONIC FLOW PAST BLUNT DELTA WINGS [ENTROPIINYE EFFEKTY GIPERZVUKOVOGO OBTEKANIJA ZATUPLENNYKH TREUGOL'NYKH KRYL'EV]

S. A. GOROKHOV, V. V. EREMIN, and A. M. POLIAKOV Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Mar.-Apr. 1991, p. 178-181. In Russian. refs Copyright

Hypersonic flow past blunt delta wings is investigated analytically. It is shown that, for large wing spans, extreme flow regimes with essentially nonuniform gasdynamic parameters may realize in the shock layer at the windward wing surface. Flow patterns on the wing surface are determined for a wing with an angle of sweep of 75 degrees. For the same wing, the ranges of Mach numbers and angles of attack are determined which correspond to extreme flow conditions.

A91-37418#

MACH 4 TESTING OF SCRAMJET INLET MODELS

TEKASHI KANDA, TOMOYUKI KOMURO, GORO MASUYA, KENJI KUDO, ATSUO MURAKAMI (National Aerospace Laboratory, Kakuda, Japan) et al. Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 275-280. Previously cited in issue 20, p. 3083, Accession no. A89-47010. refs Copyright

A91-37419#

THREE-DIMENSIONAL FINITE ELEMENT METHOD ANALYSIS OF TURBULENT FLOW OVER SELF-PROPELLED SLENDER BODIES

RUSSELL H. THOMAS, JOSEPH A. SCHETZ (Virginia Polytechnic Institute and State University, Blacksburg), and DOMINIQUE H. PELLETIER (Ecole Polytechnique, Montreal, Canada) Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 281-287. U.S. Navy-supported research. Previously cited in issue 18, p. 2996, Accession no. A88-44753. refs Copyright

A91-37420#

EXPERIMENTAL INVESTIGATION OF LOADING EFFECTS ON COMPRESSOR TRAILING-EDGE FLOWFIELDS

DUANE C. MCCORMICK, ROBERT W. PATERSON (United Technologies Research Center, East Hartford, CT), and HARRIS D. WEINGOLD (Pratt and Whitney Commercial Engine Business, East Hartford, CT) Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 288-296. Previously cited in issue 07, p. 934, Accession no. A88-22267. refs (Contract N00014-83-C-0434)

A91-37421*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

COMPUTATIONAL ANALYSIS OF UNDEREXPANDED JETS IN THE HYPERSONIC REGIME

ANDREW T. HSU (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH) and MENG-SING LIOU (NASA,

Lewis Research Center, Cleveland, OH) Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 297-299. Previously cited in issue 21, p. 3483, Accession no. A88-50604. refs

Copyright

A91-37767#

FORWARD SWEEP - A FAVORABLE CONCEPT FOR A LAMINAR FLOW WING

G. REDEKER and G. WICHMANN (DLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 97-103. Previously cited in issue 22, p. 3634, Accession no. A88-51938. refs

Copyright

A91-37768#

MOVING SURFACE BOUNDARY-LAYER CONTROL AS APPLIED TO TWO-DIMENSIONAL AIRFOILS

V. J. MODI, F. MOKHTARIAN, M. S. U. K. FERNANDO (British Columbia, University, Vancouver, Canada), and T. YOKOMIZO (Kanto Gakuin University, Yokohama, Japan) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 104-112. Previously cited in issue 09, p. 1277, Accession no. A89-25253. refs (Contract NSERC-A-2181)

A91-37769*# Oklahoma Univ., Norman. PERFORMANCE OF AN AEROSPACE PLANE PROPULSION NOZZLE

GEORGE EMANUEL (Oklahoma, University, Norman) and YOON-YEONG BAE Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 113-122. Previously cited in issue 18, p. 2758, Accession no. A89-42103. refs (Contract NAG1-886) Copyright

A91-37770*# National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
EFFECT OF EXHAUST PLUME/AFTERBODY INTERACTION
ON INSTALLED SCRAMJET PERFORMANCE

T. A. EDWARDS (NASA, Ames Research Center, Moffett Field, CA) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 123-130. Previously cited in issue 09, p. 1271, Accession no. A89-25028. refs
Copyright

A91-37772#

ACT WIND-TUNNEL EXPERIMENTS OF A TRANSPORT-TYPE WING

T. UEDA, H. MATSUSHITA, S. SUZUKI, and Y. MIYAZAWA (National Aerospace Laboratory, Chofu, Japan) (ICAS, Congress, 16th, Jerusalem, Israel, Aug. 28-Sept. 2, 1988, Proceedings. Volume 1, p. 194-204) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 139-145. Previously cited in issue 03, p. 256, Accession no. A89-13525. refs

A91-37777#

AERODYNAMIC CHARACTERISTICS OF SLENDER WING-GAP-BODY COMBINATIONS

YUZO YAMAMOTO (Gifu National College of Technology, Japan), SHIGENORI ANDO (Nagoya University, Japan), and KAZUO MIKI (Toyota Central Research and Development Laboratories, Inc., Aichi, Japan) Japan Society for Aeronautical and Space Sciences, Transactions (ISSN 0549-3811), vol. 33, Feb. 1991, p. 154-175.

The aerodynamic characteristics of the slender wing-gap-body combinations are studied exactly within the frame of the slender body aerodynamic theory. Solutions are presented for slender configurations, in which the wings and the body have different incidences with respect to the free stream and arbitrary width chordwise gaps exist between the wings and the body. The expressions of the aerodynamic forces derived originally by Ward

02 AERODYNAMICS

(1949) and the relations between the complex velocity and a downwash on the body are extended to the case of multiply-connected cross sections. The most practical cases encountered by missile aerodynamicists may be covered, and the basic lift results agree with those obtained by Dugan and Hikido (1954).

A91-37780#

A COMPARISON BETWEEN COMPUTATION AND EXPERIMENT FOR FLOWS AROUND AIRFOIL WITH SLAT AND FLAP

MICHIRU YASUHARA, YOSHIAKI NAKAMURA, and WEI JIA (Nagoya University, Japan) Japan Society for Aeronautical and Space Sciences, Transactions (ISSN 0549-3811), vol. 33, Feb. 1991, p. 218-233. refs

The flows about an airfoil with a slat and a flap are investigated experimentally and numerically. The experiment measures aerodynamic coefficients and velocity distributions in the neighborhood of the slat slot exit and visualizes the flow field for various attack angles and flap angles, which include two cases: open and closed slat slot. The Reynolds number of the experiments is 160,000. A numerical simulation is conducted under the same conditions as the experiment, and comparison between experiment and calculation shows good agreement for aerodynamic coefficients, flow patterns, and velocity distributions, especially in the region influenced by the slat slot jet. Control of a flow separation by the jet is significant for improving the flow situation around an airfoil at large attack angles.

National Aeronautics and Space Administration. A91-37827*# Ames Research Center, Moffett Field, CA.

ASYMMETRIC VORTICES ON A SLENDER BODY OF REVOLUTION

G. G. ZILLIAC, D. DEGANI, and M. TOBAK (NASA, Ames Research Center, Moffett Field, CA) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 667-675. Previously cited in issue 08, p. 1102, Accession no. A90-22211. refs Copyright

A91-37829*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

INTERACTIVE THREE-DIMENSIONAL BOUNDARY-LAYER METHOD FOR TRANSONIC FLOW OVER SWEPT WINGS SHAWN H. WOODSON, JAMES F. CAMPBELL (NASA, Langley Research Center, Hampton, VA), and FRED R. DEJARNETTÉ (North Carolina State University, Raleigh) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 678, 679. Abridged. Previously cited in issue 09, p. 1272, Accession no. A89-25099. refs Copyright

A91-37830#

STRUCTURE OF THE COMPRESSIBLE TURBULENT SHEAR

DIMITRI PAPAMOSCHOU (California Institute of Technology, Pasadena) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 680, 681. Abridged. Research supported by Rockwell International Foundation. Previously cited in issue 09, p. 1273, Accession no. A89-25111.

(Contract N00014-85-K-0646) Copyright

A91-37832#

VARIABLE-PROPERTY EFFECTS IN SUPERSONIC WEDGE

A. POZZI (Napoli, Universita, Naples, Italy) and M. LUPO AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 686, 687. Abridged. Copyright

A study is presented on the variable-property effects on supersonic flow along a wedge, taking into account wall thermal resistance. The axis of the wedge is maintained either at a constant temperature or under adiabatic conditions. Viscosity and thermal conductivity coefficients are assumed to depend on temperature in a polynomial form. The problem governed by the isothermal condition on the axis does not admit similarity solutions and is solved by using two expansions, an initial one and an asymptotic one. The solution of the second problem can be obtained in similarity form. A discussion of the variable-property effects and the influence of thermal resistance of the wall on the Nusselt number friction coefficient, and temperature at the wall, for several values of the Mach number, ends the paper. Author

NUMERICAL STUDY OF HYPERSONIC DISSOCIATED AIR **PAST BLUNT BODIES**

ESWAR JOSYULA and JOSEPH S. SHANGE (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 704-711, refs

Nonequilibrium hypersonic flows past axisymmetric blunt bodies at zero incidence have been numerically simulated by the Navier-Stokes equations with finite-rate dissociation for both noncatalytic and fully catalytic surfaces. The high-temperature air mixture was described by the nonequilibrium Lighthill's dissociation gas model including the equilibrium vibrational excitation of diatomic gas molecules. The numerical results reproduced the detailed physics and the rate of heat transfer in the stagnation region, which agreed very well with the classic theories and experimental measurements. The limiting form of the governing equations used at the axis of symmetry alleviated the numerical bulge error that was frequently encountered for the axisymmetric blunt-body problem. Author

A91-37836#

BLOCK MULTIGRID IMPLICIT SOLUTION OF THE EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW

YORAM YADLIN and DAVID A. CAUGHEY (Cornell University, Ithaca, NY) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 712-719. Research supported by McDonnell Douglas Corp. and U.S. Army. Previously cited in issue 06, p. 754, Accession no. A90-19684. refs Copyright

A91-37838#

UNSTEADY WAVE STRUCTURE NEAR SEPARATION IN A **MACH 5 COMPRESSION RAMP INTERACTION**

DAVID S. DOLLING (Texas, University, Austin) and MEHMET E. ERENGIL AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 728-735. refs (Contract AF-AFOSR-86-0112)

Copyright

Fluctuating wall-pressure measurements have been made under the unsteady separation shock and the separated shear layer in a Mach 5 compression ramp-induced turbulent interaction. The freestream unit Reynolds number was 49.6 million/m and the turbulent boundary layer developed on the tunnel floor under approximately adiabatic wall-temperature conditions. Conditional sampling and 'variable-window' ensemble-averaging techniques have been used to determine ensemble-averaged pressure distributions for different separation shock-wave positions. The results show that (1) the region in which the separation shock foot translates is characterized by a compression system whose strength is a function of the separation shock position; (2) ensemble-averaged wall-pressure distributions for 'shock-upstream' and 'shock-downstream' conditions are characteristic of large- and small-scale separated flows, respectively, indicative of an expanding and contracting bubble; and (3) ensemble-averaged wall-pressure histories under the separated shear layer rise and fall as the separation shock translates downstream and upstream. respectively. Author

A91-37841*# Air Force Wright Aeronautical Labs.. Wright-Patterson AFB, OH.

THREE-DIMENSIONAL COMPOSITE VELOCITY SOLUTIONS FOR SUBSONIC/TRANSONIC FLOW

RAYMOND E. GORDNIER (USAF, Wright Aeronautical

Laboratories, Wright-Patterson AFB, OH) and STANLEY G. RUBIN AIAA Journal (ISSN 0001-1452), (Cincinnati, University, OH) vol. 29, May 1991, p. 750-757. Previously cited in Issue 18, p. 2755, Accession no. A89-42065. refs (Contract F49620-85-C-0027; NAG1-8)

A91-37842# Texas Univ., Arlington. INCEPTION LENGTH TO A FULLY DEVELOPED, FIN-GENERATED, SHOCK-WAVE, BOUNDARY-LAYER INTERACTION

FRANK K. LU (Texas, University, Arlington) and GARY S. SETTLES (Pennsylvania State University, University Park)

AIAA Journal AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 758-762. Previously cited in issue 18, p. 2757, Accession no. A89-42078. refs (Contract AF-AFOSR-86-0082; NCA2-192; NAG1-891) Copyright

A91-37859#

FOREBODY VORTEX CONTROL WITH THE UNSTEADY **BLEED TECHNIQUE**

D. R. WILLIAMS (Illinois Institute of Technology, Chicago) and H. PAPAZIAN AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 853-855.

(Contract F49620-86-C-0133)

Copyright

The asymmetric vortex systems generated by aircraft and missile forebodies at high angles of attack create powerful yaw moments that can overwhelm control surfaces. Attention is presently given to the unsteady base bleed technique for Karman vortex street formation control without the use of external appendages; it is shown that this technique can be used to change the asymmetrix flow around a cone-cylinder model at high angles of attack to a symmetric state. Flow visualization verifications of this symmetrization effect are presented and analyzed.

A91-38541#

NUMERICAL INVESTIGATION OF AIRFOIL/JET/FUSELAGE-UNDERSURFACE FLOWFIELDS IN **GROUND EFFECT**

C. J. HWANG (National Cheng Kung University, Tainan, Republic of China), S. Y. YANG, and J. L. LIU Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 161, 162. Abridged. Previously cited in issue 06, p. 760, Accession no. A90-19939. refs Copyright

National Aeronautics and Space Administration. A91-38544*# Langley Research Center, Hampton, VA.

CALCULATION OF STEADY AND UNSTEADY PRESSURES ON WINGS AT SUPERSONIC SPEEDS WITH A TRANSONIC SMALL-DISTURBANCE CODE

ROBERT M. BENNETT, SAMUEL R. BLAND, JOHN T. BATINA (NASA, Langley Research Center, Hampton, VA), MICHAEL D. GIBBONS (Lockheed Engineering and Sciences Co., Hampton, VA), and DENNIS G. MABEY (Royal Aerospace Establishment, Bedford, England) (Structures, Structural Dynamics and Materials Conference, 28th, Monterey, CA, Apr. 6-8, 1987 and AIAA Dynamics Specialists Conference, Monterey, CA, Apr. 9, 10, 1987, Technical Papers. Part 2A, p. 363-377) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 175-180. Previously cited in issue 14, p. 2102, Accession no. A87-33691. refs Copyright

A91-38545#

TIP VORTEX/AIRFOIL INTERACTION FOR A LOW REYNOLDS NUMBER CANARD/WING CONFIGURATION

F. A. KHAN (Boeing Commercial Airplanes Co., Seattle, WA) and T. J. MUELLER (Notre Dame, University, IN) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 181-186. Research supported by University of Notre Dame. Previously cited in issue 09, p. 1283, Accession no. A89-25430. refs (Contract N00014-83-K-0239) Copyright

A91-38677

DYNAMIC STALL OF AN OSCILLATING CIRCULATION **CONTROL AIRFOIL**

G. D. SHREWSBURY and L. N. SANKAR (Georgia Institute of Technology, Atlanta) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 15-22. refs

Copyright

A two-dimensional, time-accurate Navier-Stokes analysis method has been used to evaluate the dynamic airloads of a circulation control airfoil. Numerical data were acquired for a mean angle of attack of 4.0 degrees and pitching amplitudes of 2.0 and 4.0 degrees. Reduced frequencies of 0.100 and 0.300 were evaluated. For higher values of reduced frequency, dynamic stall produces a complex bimodal characteristic for the aerodynamic load coefficient histories at both values of pitching amplitude. At the lower values of pitching amplitude and reduced frequency, a multiple stall characteristic is observed. At the lower value of reduced frequency and a pitching amplitude of 4.0 degrees, the pitching cycle produces a single loop characteristic, similar to that observed for conventional airfoils, except that the dynamic stall is not nearly as abrupt, and occurs over a much greater portion of Author the cycle.

A91-38679 UNSTEADY FLOW PAST AN AIRFOIL PITCHED AT **CONSTANT RATE**

SHIH, L. LOURENCO, L. VAN DOMMELEN, and A. KROTHAPALLI (Florida Agricultural and Mechanical University; Florida State University, Tallahassee) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 41-50. USAF-supported research. Copyright

The particle image displacement velocimetry technique is used to investigate in a water towing tank the unsteady flow plast a NACA 0012 airfoil that is undergoing a constant-rate pitching up motion. The original technique is capable of providing, with great detail and accuracy, the instantaneous two-dimensional velocity and associated vorticity fields. Noticeable leading edge flow separation develops when alpha is greater than 20 deg, as a result of the local imbalance between vorticity generation and convection. The development of the leading edge vortex dominates the later flow behavior. Complete stall occurs after this vortex detaches from the airfoil and triggers the shedding of a counterrotating vortex near the trailing edge. A parallel computer simulation of the Navier-Stokes equations using a discrete vortex, random walk scheme is conducted, the global flow features predicted by the computation comparing well with the experiment.

A91-38680* Stanford Univ., CA. UNSTEADY AERODYNAMIC LOADING OF DELTA WINGS FOR LOW AND HIGH ANGLES OF ATTACK

H. ASHLEY, T. VANECK (Stanford University, CA), M. A. M. JARRAH (Jordan University of Science and Technology, Irbid), and J. KATZ (San Diego Sate University, CA) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 61-78, refs

(Contract NCC2-596; NCA2-287; AF-AFOSR-84-0099)

Experimental and theoretical investigations dealing with unsteady flow phenomena are surveyed, with the emphasis on the pattern of vortices which originate from flow separation at sharp leading edges. It is concluded that these vortices exhibit quasi-steady behavior when the alpha-vibrations are such that bursting instability does not occur above the wing surface. A selection of test results from Jarrah (1988) is presented and discussed. For sharp-edged delta models at low speeds, the aerodynamic loads which are plotted quantify the role of parameters AR and K for three ranges of alpha-variation. An extremely

approximate and empirical 'theory' is offered, with data on crossflow drag and burst location, to reproduce the behavior of these airloads up to 90 deg. Recent attempts to apply the more sophisticated tools of computational fluid dynamics to the combination of unsteadiness and very high alpha are shown to be deficient.

P.D.

A91-38681 COMPUTATION OF AXISYMMETRIC SLENDER BODIES ENCLOSING A JET EFFLUX IN PITCHING OSCILLATORY MOTION

M. H. LIN and M. J. SHEU (National Tsing Hua University, Hsinchu, Republic of China) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 79-86. refs

Copyright

A numerical method based on vortex lattice technique is developed to analyze the flow around an axisymmetric ogive-cylinder or ellipsoid-cylinder body, enclosing a jet efflux from the nozzle exit, undergoing harmonic pitching motion. When the body oscillates, the unsteady component of the circulation around the body changes with time. According to the Kelvin's circulation theorem, the total circulation around the oscillatory body must show up as shed vorticity in the wake. It is assumed that this shed vorticity is convected downstream along the body surface to infinity with the local velocity. Results of unsteady pressure distributions, lift and pitching moment for slender body undergoing a simple harmonic pitching oscillation are presented for a range of frequency parameters and several jet mass flow rates in order to study the influence of the frequency parameter, mean angle of incidence and jet mass flow rate on the aerodynamic properties.

A91-38683* Old Dominion Univ., Norfolk, VA.
NUMERICAL SIMULATION OF STEADY AND UNSTEADY
ASYMMETRIC VORTICAL FLOW

O. A. KANDIL, T.-C. WONG (Old Dominion University, Norfolk, VA), and C. H. LIU (NASA, Langley Research Center, Hampton, VA) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 99-108. refs

(Contract NAS1-18584)

Copyright

The unsteady, compressible, thin-layer, Navier-Stokes equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting, finite-volume scheme. Locally conical flows are assumed and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round and sharp-edged delta wing flows.

A91-38684* Jordan Univ. of Science and Technology, Irbid. VISUALIZATION OF THE FLOW ABOUT A DELTA WING MANEUVERING IN PITCH TO VERY HIGH ANGLE OF ATTACK M. A. M. JARRAH (Jordan University of Science and Technology, Irbid) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 109-116.

(Contract AF-AFOSR-84-0099; NCA2-287)

Copyright

An experimental program of unsteady aerodynamic measurements has been carried out in one of the 7 ft by 10 ft low-speed wind tunnels at NASA Ames Research Center. Flow-visualization measurements on a delta wing model of AR =

1.0 with sharp leading edges were carried out by means of a thin planar sheet of laser light fixed in the test section at a convenient angle to the flow direction. Smoke images of the fluid motion and vortex structure above the model were recorded photographically and later analyzed to determine such information as the positions of the cores and occurrence of bursting. Large amplitude transient motion involving post stall angle of attack excursions produced significant hysteresis in the vortex burst location and was reflected in the measured aerodynamic loads.

Author

A91-38686

ON SOME PHYSICAL ASPECTS OF AIRFOIL DYNAMIC STALL M. R. VISBAL (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 127-147. refs

Copyright

A discussion is presented concerning various physical aspects of the dynamic stall process of a two-dimensional pitching airfoil. The dynamic stall flow features are described for the case of laminar and turbulent conditions separately. Emphasis is given to the unsteady flow field structure during dynamic stall vortex formation. A discussion of the effects of pitch rate, pitch-axis location and compressibility on the stall process is also included.

Author

A91-38694 UNSTEADY SEPARATION ON AN IMPULSIVELY SET INTO MOTION CARAFOLI AIRFOIL

J. C. WILLIAMS, III and C.-G. CHEN (Auburn University, AL) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 291-301. Cray Research, Inc.-supported research.

Copyrigh

The effects of both body thickness and trailing edge radius on the development of unsteady separation on bodies impulsively set into motion are determined. The boundary layer development is calculated on a series of Carafoli airfoils with varying body thickness ratio and trailing edge radius. Computations show that as time progresses, the skin friction passes through zero and becomes negative on the rear portion of the airfoil while the displacement thickness and displacement velocity each have strong local maxima away from the trailing edge. These characteristics indicate that separation will occur spontaneously away from the rear stagnation point. The main effect of making the body thinner and/or reducing the trailing edge radius is movement of the local maximum in the displacement thickness, the local maximum in the displacement velocity, and the region of reverse flow toward the rear stagnation point. It is concluded that reducing the body thickness or trailing edge radius moves the separation point toward the rear stagnation P.D. point.

A91-38695 A NEW SYSTEM FOR UNSTEADY AERODYNAMICS OF MOVING WALL

C. MARESCA, D. FAVIER, and J. BELLEUDY (Institut de Mecanique des Fluides, Marseille, France) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 303-310. refs (Contract DRET-87-272)

Copyright

This paper describes the development of a new laser-Doppler anemometry technique, suited for unsteady boundary-layer measurements around a moving model. The measurement principle is based on an LDA optical fiber option using an optical head embedded inside the moving model. Instantaneous velocity profiles and boundary-layer characteristics are obtained in a reference frame linked with the motion of the model. The acquisition procedure and data reduction techniques are described and applied to the flow around a flat plate either at rest in the steady flow or

oscillating in fore-and-aft motion. Details of the steady and unsteady boundary-layer measurements are presented at different longitudinal distances along the plate. Unsteady boundary-layer measurements on the oscillating plate are also compared to existing experimental and calculated results obtained on a fixed model positioned in oscillatory flow. Author

A91-38699

DEEP STALL OF AN NACA 0012 AIRFOIL INDUCED BY PERIODIC AERODYNAMIC INTERFERENCE

J. M. PHILLIPS (USAF, Wright-Patterson AFB, OH), C. M. VACZY (General Electric Co., Lynn, MA), and E. E. COVERT (MIT, Cambridge, MA) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 339-350. Research supported by USAF and MIT. refs (Contract N00014-85-K-0513)

Copyright

An experiment was conducted to measure the deep stall surface pressure distribution on a stationary NACA 0012 airfoil in an unsteady flow field. Tests were conducted at Reynolds numbers of 125,000, 400,000 700,000, and 1,000,000, and at six half-chord reduced frequencies between 0.5 and 6.4. Airfoil angle of attack was varied from 0 to 18 deg, although only 10 deg (or greater) are important here. The pressure disturbance is modeled using a single or combination of convected single point vortices:

A91-38702 UNSTEADY PRESSURE FLUCTUATION ON A HIGHLY LOADED TURBINE BLADE ROW

S. H. CHEN, A. H. EASTLAND, and J. L. BOYNTON (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA) International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 369-375. refs

Copyright

A two-dimensional frequency domain source-doublet based potential paneling formulation is used to simulate the unsteady velocity and pressure fluctuation on a high loading turbine stator blade row due to blade-wake interaction. The wake profile developed by Lakshminarayana is employed here as the upstream wake which moves relative to the blades. The results show that a high fluctuating pressure occurred near the trailing edge with an amplitude many times of the inlet velocity head. In addition, the unsteady torsional moment is high. In this paper, the method of frequency domain computation and the cause of high dynamic pressure near the trailing edge of a high loading turbine stator vane are discussed.

A91-38710 HIGH SUBSONIC FLOW ABOUT A MOVING SPOILER IDENTIFYING A NOVEL PROBLEM OF WIND TUNNEL

S. AHMED and G. J. HANCOCK (Queen Mary College and Westfield IN: International Symposium on College, London, England) Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 477-486. refs

Copyright

A two-dimensional spoiler on a transonic tunnel floor is rotated from 0 deg to 45 deg in the order of 0.005 s over a range of subsonic Mach numbers. Transient pressures are measured on the tunnel floor in front of, and behind of, the spoiler. Physical explanations are given for this transient pressure behavior. In these experiments, initial transient flow responses about the spoiler settle down to an asymptotic steady state before the overall flow in the tunnel has time to respond. A novel problem is encountered at high Mach number. During the initial transient response, although static pressures far upstream of the spoiler change due to forward propagation of compression waves, the static pressures far downstream of the spoiler remain constant. Reasons for this phenomenon are still being sought. Author

A91-38736* Illinois Univ., Urbana. NUMERICAL STUDY OF TWIN-JET IMPINGEMENT UPWASH **FLOW**

W. J. PEGUES and S. P. VANKA (Illinois, University, Urbana) IN: Forum on Turbulent Flows - 1990; Joint CSME/ASME Spring Meeting, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 97-103. NASA-supported research. refs

Copyright

Two horizontally spaced jets impinging normally on a flat surface create a fountain upwash flow due to the collision of the radially flowing wall jets. This fountain flow is of importance to the dynamics and propulsion of STOVL aircraft. The fountain flow influences the lift forces on the aircraft and the ingestion of hot gases and debris by the engine inlet. In this paper, a multigrid based finite-difference numerical procedure has been applied to solve the equations governing this three-dimensional flow. The standard k-epsilon turbulence model has been used. Comparisons with experimental data reveal that while the mean velocities are predicted with reasonable accuracy, the turbulent kinetic energies are seriously in error. The reasons for this discrepancy could be the intense unsteadiness and large-scale structures of the flow in the near-wall region, which cannot be captured well by any Reynolds-averaged turbulence model. Author

STEADY FLOW IN A THREE-DIMENSIONAL RECTANGULAR CAVITY YAWED FROM THE FREESTREAM TURBULENT **BOUNDARY LAYER**

R. G. DIMICCO and P. J. DISIMILE (Cincinnati, University, OH) IN: Forum on Turbulent Flows - 1990; Joint CSME/ASME Spring Meeting, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 169-174.

Copyright

The nature of the flow phenomena produced within a three-dimensional rectangular cavity immersed in and yawed from the approaching low-speed turbulent boundary layer is examined. The steady pressure distributions in both the streamwise and spanwise directions are explored. The experiment was conducted in air at a nominal freestream velocity of 2.4 m/s with a corresponding Reynolds number, based on the cavity width, of 9951. The centerline and spanwise pressure distributions on the cavity floor compare well with past investigations. The spanwise 'cell' structure within the cavity is severely affected by the cavity rotation and leads to the growth of the upstream cell and compression of its downsteam counterpart. P.D.

A91-38787

A SIMPLIFIED AEROTHERMAL HEATING METHOD FOR **AXISYMMETRIC BLUNT BODIES**

J. B. KOUROUPIS (Johns Hopkins University, Laurel, MD) Heat transfer in space systems; Proceedings of the Symposium, AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18-20, 1990. New York, American Society of Mechanical Engineers, 1990, p. 49-53. refs

A simple procedure has been developed for use on a personal computer to calculate aerothermal heating of axisymmetric blunt bodies at angle of attack (AOA). Heating rates are correlated from boundary layer edge conditions, thermodynamically defined along the body using entropy and surface pressure. Surface pressure is calculated using a unique variation of the tangent cone method. Variable entropy at the boundary layer edge (due to curvature of the bow shock) is accounted for using a mass-balancing procedure. Streamline spreading for angle of attack cases is determined with a simplified axisymmetric analog technique. The present method is simpler than other hypersonic convective heating codes because it does not require a computational fluid dynamics flow field solution (either viscous or inviscid). The method predicts laminar and turbulent heating rates within 20 percent (usually within 10 percent) of experimental data, except for the leeward ray, in flows with freestream Mach 2-15 and incidence angles up to 30 deg.

A91-39048*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TEMPORALLY AND SPATIALLY RESOLVED FLOW IN A TWO-STAGE AXIAL COMPRESSOR. II - COMPUTATIONAL **ASSESSMENT**

K. L. GUNDY-BURLET, M. M. RAI (NASA, Ames Research Center, Moffett Field, CA), R. C. STAUTER, and R. P. DRING (United Technologies Research Center, East Hartford, CT) Transactions, Journal of Turbomachinery (ISSN 0889-504X), vol. 113, April 1991, p. 227-232. Previously announced in STAR as N90-14236, refs

(ASME PAPER 90-GT-299) Copyright

Fluid dynamics of turbomachines are complicated due to aerodynamic interactions between rotors and stators. It is necessary to understand the aerodynamics associated with these interactions in order to design turbomachines that are both light and compact as well as reliable and efficient. The current study uses an unsteady, thin-layer Navier-Stokes zonal approach to investigate the unsteady aerodyamics of a multistage compressor. Relative motion between rotors and stators is made possible by use of systems of patched and overlaid grids. Results have been computed for a 2 1/2-stage compressor configuration. The numerical data compares well with experimental data for surface pressures and wake data. In addition, the effect of grid refinement on the solution is studied.

A91-39223

STEADY LINEARISED AERODYNAMICS. III - TRANSONIC

D. HOMENTCOVSCHI (Polytechnic Institute, Bucharest, Rumania) Archiwum Mechaniki Stosowanej (ISSN 0373-2029), vol. 42, no. 1, 1990, p. 3-18. refs

Copyright

The application of the integral equation method to the study of steady transonic flow of inviscid fluid past an aerofoil is discussed. For the three-dimensional nonplanar aerofoil, the problem is reduced to that of solving a system of two singular nonlinear integral equations. In the plane case an integral equation is obtained whose kernel is expressed in terms of elementary functions only.

A91-39691#

A MODEL FOR THE EXPERIMENTAL STUDY OF CURVATURE EFFECTS ON TRANSITION OF THE BOUNDARY LAYER ON A SWEPT WING - PRELIMINARY RESULTS

H. PEERHOSSAINI (Nantes, Universite, France), H. BIPPES (DLR, Institut fuer experimentelle Stroemungsmechanik, Goettingen, Federal Republic of Germany), and D. STEINBACH (DLR, Institut fuer theoretische Stroemungsmechanik, Goettingen, Federal Republic of Germany) La Recherche Aerospatiale (English Edition) (ISSN 0379-380X), no. 6, 1990, p. 15-21. DLR-supported research. refs Copyright

A new concave-convex model has been designed and constructed to study the combined effect of curvature and sweep on a three-dimensional boundary layer. The preliminary results show that in swept boundary layer, spanwise variation of the streamwise velocity (due to the Goertler instability) is suppressed. These results agree with recent theoretical analysis of this problem. Author

A91-39708

ROTARY OSCILLATION CONTROL OF A CYLINDER WAKE

P. T. TOKUMARU and P. E. DIMOTAKIS (California Institute of Technology, Pasadena) Journal of Fluid Mechanics (ISSN 0022-1120), vol. 224, March 1991, p. 77-90. refs (Contract F49620-86-C-0134)

Exploratory experiments have been performed on circular cylinders executing forced rotary oscillations in a steady uniform flow. Flow visualization and wake profile measurements at moderate

Reynolds numbers have shown that a considerable amount of control can be exerted over the structure of the wake by such means. In particular, a large increase, or decrease, in the resulting displacement thickness, estimated cylinder drag, and associated mixing with the free stream can be achieved, depending on the frequency and amplitude of oscillation.

A91-39736* Tel-Aviv Univ. (Israel).

SECONDARY FREQUENCIES IN THE WAKE OF A CIRCULAR CYLINDER WITH VORTEX SHEDDING

SAUL S. ABARBANEL (Tel Aviv University, Israel), WAI SUN DON, DAVID GOTTLIEB (Brown University, Providence, RI), DAVID H. RUDY, and JAMES C. TOWNSEND (NASA, Langley Research Center, Hampton, VA) Journal of Fluid Mechanics (ISSN 0022-1120), vol. 225, April 1991, p. 557-574. DARPA-supported research. Previously announced in STAR as N90-22540. (Contract NAS1-18107; NAS1-18605; N00014-86-K-0754; AF-ARFOSR-90-0093; NSF DMS-88-10150)

A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers was conducted using three different numerical algorithms for solving the time-dependent compressible Navier-Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well-predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behavior.

A91-39738

FURTHER EXPERIMENTS ON VORTEX FORMATION AROUND AN OSCILLATING AND TRANSLATING AIRFOIL AT LARGE INCIDENCES

KAZUO OHMI (Osaka University, Japan), MADELEINE COUTANCEAU (Poitiers, Universite, France), OLIVIER DAUBE, and TA P. LOC (CNRS, Laboratoire d'Informatique pour la Mecanique et les Sciences de l'Ingenieur, Orsay, France) Journal of Fluid Mechanics (ISSN 0022-1120), vol. 225, April 1991, p. 607-630. DRET-supported research. refs

The starting flows past a two-dimensional NACA 0012 airfoil translating and oscillating at large incidences are investigated by visualization experiments and numerical calculations. The airfoil model is set in motion impulsively and subjected simultaneously to a constant translation and harmonic oscillation in pitch. The evolution of the vortex wake is followed in a sequence of streamline visualizations and the wake pattern generated is analyzed. The parameters varied in the visualization experiment are the Reynolds number ranging from 1500 to 10,000, the reduced frequency from 0.1 to 1.0, the mean incidence 30 deg or 15 deg and the angular amplitude 15 deg or 7 deg. There are also two additional parameters of special interest: the airfoil cross section and the pitching axis. The effects of these parameters are discussed in relation to the resultant wake patterns. Some comparison is made with the results of earlier experiments. Author

A91-39744

FLOW AROUND AN UNSTEADY THIN WING CLOSE TO **CURVED GROUND**

QIAN-XI WANG (University of Science and Technology of China, Hefei, People's Republic of China) Journal of Fluid Mechanics (ISSN 0022-1120), vol. 226, May 1991, p. 175-187. refs

The method of matched asymptotic expansions is applied to the flow analysis of a three-dimensional thin wing, moving uniformly in very close proximity to a curved ground surface. Four flow regions, i.e., exterior, bow, gap, and wake, are analyzed and matched in an appropriate sequence. The solutions in expansions

up to third order are given both in nonlinear and linear cases. It is shown that the flow above the wing is reduced to a direct problem, and the flow beneath it appears to be a two-dimensional channel flow. The wake assumes a vortex-sheet structure close to the curved ground, undulating with the amplitude of the ground curvature, and the flow beneath it is also two-dimensional channel flow. As a consequence, an equivalence is found between the extreme curved-ground effect and the corresponding flat-ground effect, which can be treated by the image method.

A91-39832

STREAM FUNCTIONS FOR THE HYPERSONIC FLOW AROUND QUASI-POINTED SLENDER BODIES AT LOW ANGLES OF ATTACK (FONCTIONS DE COURANT EN ECOULEMENT HYPERSONIQUE AUTOUR D'OGIVES QUASI POINTUES ET A FAIBLE INCIDENCE)

ALAIN MERLEN (ONERA; Lille I, Universite, France) Academie des Sciences, Comptes Rendus, Serie II - Mecanique, Physique, Chimie, Sciences de la Terre et de l'Univers (ISSN 0764-4450), vol. 312, no. 10, May 7, 1991, p. 1065-1070. In English and French. refs

Copyright

The stream functions are calculated analytically for the hypersonic flow around quasi-pointed axisymmetric power-law bodies at small angles of attack. The flow is determined in the framework of the nonsteady flow analogy taking the effect of the free-stream pressure into account as well as that of the quasi-pointed nose, using an entropy correction.

A91-39900

AERODYNAMICS AT THE SPEED OF SOUND

R. M. DENNING Aeronautical Journal (ISSN 0001-9240), vol. 95, April 1991, p. 132-137. refs Copyright

The existence of any examples of steady-state conditions in any free-flight or idealized infinite flow fields at Mach 1.0 is challenged. The steady-state theoretical fields often quoted as proof of the existence of such fields are examined, and their intrinsic anomalies and paradoxes are discussed. In view of the perspective thus developed, the accepted interpretation of the nonlinear transonic similarity rule at Mach 1.0 is also challenged. An alternative hypothesis is proposed in which free-flight Mach 1 flow fields must always be unsteady, and cannot be represented in a steady-flow wind tunnel; a method of calculating the forces on a body in such unsteady conditions is presented.

A91-39911

INVESTIGATIONS ON FLOW INSTABILITIES ON AIRFOILS BY MEANS OF PIEZOFOIL-ARRAYS

W. NITSCHE, P. MIROW, and T. DOERFLER (Berlin, Technische Universitaet, Federal Republic of Germany) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 129-135. Research supported by BMFT and MBB GmbH.

Copyright

Pressure sensitive piezofoil-arrays were applied in order to investigate the dynamic process of transition on airfoils in wind tunnel as well as in flight tests. First emphasis was on a dependable identification of laminar, transitional and turbulent flow regions on the basis of measured wall pressure fluctuations. Apart from this mainly practical application, more detailed analyzing methods were employed in order to examine more closely dynamic processes during transition. This includes, for example, the detection of TS-waves, investigations on the structure of turbulent spots, amplification rates of flow instabilities as well as probability density distributions of wall pressure fluctuations in transitional flows.

Author

A91-39919* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. TRANSITION RESEARCH IN LOW-DISTURBANCE HIGH-SPEED WIND TUNNELS I. E. BECKWITH (NASA, Langley Research Center, Hampton, VA), F.-J. CHEN, and M. R. MALIK (High Technology Corp., Hampton, VA) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 227-238. refs Copyright

The technical requirements and test data from the Mach 3.5 Pilot Low-Disturbance Tunnel are presented. This unique facility provides a test region with essentially zero-acoustic noise and simulates, for the first time, the low-disturbance conditions of atmospheric flight. Applications to the test results of linear stability theory with the e exp N method indicate that transition locations for both simple and complex flows are well predicted by using N of about 9 to 11.

A91-39922

ON THE INSTABILITY OF HYPERSONIC FLOW PAST A WEDGE

STEPHEN COWLEY (Imperial College of Science, Technology, and Medicine, London, England) and PHILIP HALL (Exeter, University, England) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 261-270. refs Copyright

The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. The shock is shown to have little effect on inviscid hypersonic modes for both Chapman and Sutherland Law fluids.

A91-39927

EXPERIMENTAL AND THEORETICAL ANALYSIS OF NATURAL TRANSITION ON 'INFINITE' SWEPT WING

D. ARNAL, G. CASALIS, and J. C. JUILLEN (ONERA, Centre d'Etudes et de Recherches de Toulouse, France) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 311-325. refs Copyright

The first part of this paper is concerned with a survey of the methods which can be used for predicting transition on swept wings in incompressible flow; simple transition criteria are presented, and possible extensions of the well known e exp n method to three-dimensional situations are discussed. Applications of these various techniques are given in the second part of the paper; comparisons between measured and predicted transition locations indicate that the key problem lies in the evolution of the stability characteristics from the crossflow direction to the streamwise direction.

A91-39929 High Technology Corp., Hampton, VA. CORRELATION OF BOUNDARY LAYER STABILITY ANALYSIS WITH FLIGHT TRANSITION DATA

F. S. COLLIER, JR. (High Technology Corp., Hampton, VA), D. W. BARTLETT, R. D. WAGNER, V. V. TAT (NASA, Langley Research Center, Hampton, VA), and B. T. ANDERSON (NASA, Flight Research Center, Edwards AFB, CA) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 337-346. refs

Recently, NASA completed a boundary-layer transition flight test on an F-14 aircraft which has variable-sweep capability. Transition data were acquired for a wide variety of sweep angles, pressure distributions, Mach numbers, and Reynolds numbers. In this paper, the F-14 flight test is briefly described and N-factor correlations with measured transition locations are presented for one of two gloves flown on the F-14 wing in the flight program; a thin foam and fiberglass glove which provided a smooth sailplane

02 AERODYNAMICS

finish on the basic F-14, modified NACA 6-series airfoil. For these correlations, an improved linear boundary-layer stability theory was utilized that accounts for compressibility and surface and streamline curvature effects for the flow past swept wings.

A91-39931

CROSS-FLOW INSTABILITY OF 3-D BOUNDARY LAYERS ON A FLAT PLATE

NOBUTAKE ITOH (National Aerospace Laboratory, Chofu, Japan) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 359-368. refs

Copyright

The earlier instability of three-dimensional boundary layers on a swept-back wing is primarily due to the existence of cross-flows perpendicular to outer potential flows. When a flat plate is placed in a uniform flow under a pressure gradient in the direction parallel to the leading edge, the boundary layer has a similar cross-flow, even if there is no sweep angle. Linear stability characteristics of such a class of flows are investigated on the basis of the Orr-Sommerfeld equation, and compared with those of the usual three-dimensional boundary layers where the cross-flow is induced by the pressure gradient in the direction normal to the leading Author edge in cooperation with the sweep angle of a wing.

National Aeronautics and Space Administration. A91-39932* Langley Research Center, Hampton, VA.

EXPERIMENTS ON SWEPT-WING BOUNDARY LAYERS

J. R. DAGENHART (NASA, Langley Research Center, Hampton, VA), WILLIAM S. SARIC, JON A. HOOS, and MARC C. MOUSSEUX (Arizona State University, Tempe) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 369-380, refs

(Contract NAG1-937; NAG1-1032)

Copyright

Three-dimensional boundary-layer experiments are currently being conducted on a 45-deg swept wing in the Arizona State University Unsteady Wind Tunnel. Crossflow-dominated transition is produced via a model with contoured end liners to simulate infinite swept-wing flow. Fixed-wavelength stationary and traveling crossflow vortices are observed. The stationary vortex wavelengths vary with Reynolds number as predicted by linear-stability theory, but with observed wavelengths which are about 25 percent smaller than theoretically predicted. The frequencies of the most amplified moving waves are in agreement with linear stability theory; however, traveling waves at higher frequencies than predicted are also observed. These higher-frequency waves may be harmonics of the primary crossflow waves generated by a parametric resonance phenomena. Boundary-layer profiles measured at several spanwise locations show streamwise disturbance profiles characteristic of Author the crossflow instability.

A91-39933* Analytical Services and Materials, Inc., Hampton,

ON THE STABILITY OF SWEPT WING LAMINAR BOUNDARY LAYERS INCLUDING CURVATURE EFFECTS

J. VIKEN (Analytical Services and Materials, Inc., Hampton, VA), F. S. COLLIER, JR. (High Technology Corp., Hampton, VA), R. D. WAGNER, and D. W. BARTLETT (NASA, Langley Research Center, IN: Laminar-turbulent transition; Proceedings of Hampton, VA) the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 381-388. refs

A linear stability analysis that encompasses curvature effects has been conducted in wind tunnel experiments on a swept NACA 64(2)-A015 wing, and published transition-onset results have been correlated with computed N-factor values. A strong stabilizing influence is noted upon the growth of the crossflow disturbance, when the flow is accelerated in regions of high body curvature. The maximum amplified crossflow disturbances were in all cases travelling waves; when TS waves reached their maximum, the N-factors at transition lay in the 9.9-13.8 range. Stabilization due to curvature effects was less pronounced in cases where acceleration occurred over a large portion of chord.

A91-39936* Analytical Services and Materials, Inc., Hampton, VA

BLUNT-NOSED SWEPT SUPERCRITICAL LFC WINGS WITHOUT NOSE FLAPS

W. PFENNINGER, C. S. VEMURU (Analytical Services and Materials, Inc., Hampton, VA), and F. COLLIER (High Technology Corp., Hampton, VA) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 401-415. refs (Contract NAS1-18599)

Copyright

To simplify the design of swept supercritical (SC) Laminar Flow Control (LFC) wings and maintain satisfactory low speed characteristics, blunt-nosed swept SC LFC wings without nose flaps and lower wing loadings were studied. Their boundary layer crossflow in the leading edge area is optimally controlled (1) by compensating the boundary layer crossflow of the front acceleration zone by an opposite crossflow in a downstream pressure rise area, (2) by maintaining a neutrally stable boundary layer crossflow by suction within a narrow spanwise suction strip located close to the wing attachment line in the front acceleration zone. The required suction massflow and power are then very small, especially considering the strongly stabilizing effect of surface and streamline curvature on crossflow stability.

A91-39937

INSTABILITY FEATURES APPEARING ON SWEPT WING CONFIGURATIONS

H. BIPPES (DLR, Institut fuer experimentelle Stroemungsmechanik, Goettingen, Federal Republic of Germany) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 419-430. refs

Copyright

In order to provide a more detailed physical understanding of transition on swept wing configurations, possible instability mechanisms are studied in basic experiments. The models are chosen such that the individual mechanisms can be investigated separately as far as practicable. Most emphasis is placed on the identification of the sources of streamwise vortices which in many experiments on swept wings have been observed as dominant instability. In the stagnation region, streamwise vortices only develop if a spanwise periodicity or a specific type of velocity fluctuations are superimposed upon the oncoming flow. In the unstable three-dimensional boundary layer, however, at turbulence levels less than 0.15 percent, the streamwise vortices have proved to be the most amplified disturbance mode, contrary to the prediction of linear stability theory. In the three-dimensional boundary layer on a concave surface nonstationary waves are Author found as dominant instability.

A91-39938

DEVELOPMENT AND INTERACTION OF INSTABILITIES IN THE CROSSFLOW FIELD

Y. KOHAMA, F. OHTA, and K. SEGAWA (Tohoku University, Sendai, Japan) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 431-440. refs

Systematic investigation has been performed to make clear the three-dimensional boundary-layer transition mechanism on a swept cylinder which gives fundamenntal transition informations for swept main wing of Airbus-class aircraft. Combined use of hot wire anemometer, smoke and liquid crystal film visualizations made it possible to clarify the quantitative spatial view of the transition process where two instabilities are interacting with each other, and the relation between the velocity field and the heat transfer field. The result shows that the crossflow vortex (stationary primary instability) is important to the turbulent transition process only secondarily in the sense that they deform the three-dimensional boundary-layer velocity field into inflectional one locally in streamwise direction. This condition directly produces the inflectional instability (traveling secondary instability) which is important primarily to the turbulent transition process.

A91-39940* Exeter Univ. (England). ON THE GOERTLER VORTEX INSTABILITY MECHANISM AT HYPERSONIC SPEEDS

P. HALL and Y. B. FU (Exeter, University, England) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 453-463. refs (Contract NAS1-18107; AF-AFOSR-89-0042) Copyright

The linear instability of the hypersonic boundary layer on a curved wall is considered. As a starting point real-gas effects are ignored and the viscosity of the fluid is taken to be related to the temperature either by Chapman's Law or by Sutherland's Law. It is shown that the flow is susceptible to Goertler vortices. If Chapman's Law is used the vortices are trapped in the logarithmically thin adjustment layer in which the temperature of the basic flow changes rapidly to its free stream value and the nonuniqueness of the neutral stability curve associated with incompressible Goertler vortices is shown to disappear at high Mach numbers if the appropriate 'fast' streamwise dependence of the instability is built into the disturbance flow structure. If, on the other hand. Sutherland's Law is used, the vortices are found to spread into an O(1) region and the concept of a unique neutral stability curve is not tenable because of the nonparallel effects. For both laws the leading order terms in the expansions of the Goertler number are independent of the wave number and are due to the curvature of the basic state. Author

A91-39941 VISUAL STUDY OF BOUNDARY LAYER TRANSITION ON ROTATING FLAT PLATE

S. MASUDA and M. MATSUBARA (Keio University, Yokohama, Japan) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 465-474. refs Copyright

The effect of Coriolis acceleration on transition of a rotating Blasius boundary layer has been visually investigated. A flat plate is installed in the small-size wind tunnel rotating around the axis parallel to the leading edge. The air flow is visualized by introducing paraffin mist from a wall slit. The transition of the low pressure side boundary layer was found to be characterized by the turbulent spot, while the pressure-side boundary layer was associated with the longitudinal vortex instability. The variation of the boundary layer parameters as well as the velocity fluctuation signals during transition can be well explained by the present visualization results.

A91-39944

THE EXPERIMENTAL INVESTIGATION OF STABILITY AND RECEPTIVITY OF A SWEPT-WING FLOW

IU. S. KACHANOV and O. I. TARARYKIN (AN SSSR, Institut Teoreticheskoi i Prikladnoi Mekhaniki, Novosibirsk, USSR) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 499-509. refs Copyright

The flow over a swept wing was simulated with the help of a flat-plate flow with a pressure gradient induced by a contoured wall bump. Complete agreement of the experimental data on the structure of both potential flow and boundary layer with calculations for the swept flow was obtained. An artificial generation in the boundary layer of controlled stationary instability waves permits, for the first time, to obtain all the main characteristics of the stability of the swept boundary layer and to carry out the direct comparison of the data obtained with the stability theory under

experimental conditions. The receptivity of the swept-wing flow to the surface uneveness of different magnitudes was also studied.

Author

A91-39950

THEORETICAL STUDY OF GOERTLER VORTICES - LINEAR STABILITY APPROACH

S. JALLADE, D. ARNAL (ONERA, Centre d'Etudes et de Recherches de Toulouse, France), and H. H. MINH (Ecole Nationale Superieure d'Electrotechnique, d'Electronique, d'Informatique et d'Hydraulique, Toulouse, France) IN: Laminarturbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 565-572. refs Copyright

Linear stability theory is presently used to calculate the stability of Goertler vortices. Attention is given to the fact that different values of the amplification rate can appear for the same Goertler number. While the application of theory to this problem yields an analytic dispersion relation, it is established that several assumptions of the linear theory are not valid at low wave numbers. Since the nonlinear effects which can affect the development of Goertler vortices are not yet well known, however, an effort has been made to develop a numerical simulation.

O.C.

A91-39957* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SECOND MODE INTERACTIONS IN SUPERSONIC BOUNDARY LAYERS

GORDON ERLEBACHER (NASA, Langley Research Center, Hampton, VA) and M. Y. HUSSAINI (NASA, Langley Research Center; ICASE, Hampton, VA) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 631-641. refs
Copyright

The nonlinear evolution of a two-dimensional second mode unstable wave in a Mach 4.5 wall-bounded flow is computed by solving the full time-dependent compressible Navier-Stokes equations. A highly accurate solution is obtained using spectral collocation methods. It is shown that departure from linearity first occurs in the critical layer due to the cubic nonlinearities in the momentum equation. This is a direct result of the large density perturbations in this regime. Time evolution studies of the growth rate as a function of normal distance from the plate suggests that the mode is evolving toward a nonlinear saturated state, and that this problem is possibly amenable to standard weakly nonlinear perturbation methods.

A91-39960

BOUNDARY LAYER TRIPPING IN SUPERSONIC FLOW

D. ARNAL, F. VIGNAU, and J. C. JUILLEN (ONERA, Centre d'Etudes et de Recherches de Toulouse, France) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 669-679. refs Copyright

This experimental study is concerned with the problem of boundary layer tripping by three-dimensional roughness elements in supersonic flow. Two series of experiments are reported: in the first one, the problem of the 'effective roughness height' is examined, and flat plate results are compared with the predictions deduced from the criterion proposed by Van Driest and Blumer. In the second series of measurements, attention is focused on attachment line problems, which are related with the appearance of leading edge contamination on swept models.

A91-39964

VISUALISATION OF BOUNDARY LAYER TRANSITION

L. GAUDET (Royal Aerospace Establishment, Bedford, England) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New

02 AERODYNAMICS

York, Springer-Verlag, 1990, p. 699-704.

Copyriant

A technique involving the use of liquid crystals which are solely sensitive to shear stress has been employed to visualize the fine detail in the transition process from laminar to turbulent flow in the boundary layer on wind tunnel models of various wing configurations. Examples are given of natural and forced transition in two-dimensional flow at subsonic speeds and the effects of isolated and distributed roughness elements are compared. In regions where the flow is highly three-dimensional, particularly at transonic speeds, the presence of laminar cross flow instabilities is well defined by parallel striations in the surface flow pattern which can lead to the development of tubulence.

A91-40126# SYNCHRONOUS ITERATIVE METHOD FOR COMPUTATION OF VORTEX FLOWS AT HIGH ANGLES OF ATTACK

ZHANG WU (Beijing University, People's Republic of China) and SHIJUN LUO (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 12, Jan. 1991, p. A1-A5. In Chinese, with abstract in English. refs

A robust iterative method suitable for the numerical simulation of vortex flows at high angles of attack is established based upon the multiple line-vortex model. Convergent solutions of vortical

the multiple line-vortex model. Convergent solutions of vortical flows over bodies of revolution for angles of attack up to 60 deg are obtained. Calculated values of the aerodynamical loads on a tangent-ogive forebody compare well with experimental data.

Author

A91-40137#

TRANSONIC ANALYSIS AND DESIGN USING AN IMPROVED GRID

XUESONG BAI and ZIQIANG ZHU (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 12, Jan. 1991, p. A75-A79. In Chinese, with abstract in English. refs

CO grid is generated by using an algebraic method. In this grid transonic full potential equation is solved by the finite volume method. The calculated results agree well with experimental data, while the computation time is reduced by a factor of 1/3-1/4 of the one required in CH grid. Transonic analysis and design using this improved grid can be made not only for large aspect ratio wings, but also for small aspect ratio wings without any difficulties.

Author

A91-40215*# Old Dominion Univ., Norfolk, VA. AIRFOIL TRANSITION AND SEPARATION STUDIES USING AN INFRARED IMAGING SYSTEM

EHUD GARTENBERG and A. S. ROBERTS, JR. (Old Dominion University, Norfolk, VA) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 225-230. refs

(Contract NAG1-735) Copyright

An infrared imaging system was used to detect the thermal signature of boundary-layer flow regimes on a NACA 0012 airfoil from zero angle of attack up to separation. The boundary-layer transition from laminar to turbulent flow and the onset of separation could be seen on the airfoil thermograms. The findings were compared against the behavior of aluminum foil tufts observable both visually and with the infrared imaging system. This arrangement offers the option of using the infrared imaging system both for flow regime detection through surface thermography and flow visualization by the aluminum foil tufts. Ultimately the surface temperature changes due to variation in the angle of attack of a lifting surface provide a means for interpretation of the boundary-layer flow regimes.

A91-40216*# Missouri Univ., Rolla. AERODYNAMIC CHARACTERISTICS OF SCISSOR-WING GEOMETRIES

BRUCE P. SELBERG, KAMRAN ROKHSAZ (Missouri-Rolla, University, Rolla), and CLINTON S. HOUSH Journal of Aircraft

(ISSN 0021-8669), vol. 28, April 1991, p. 231-238. refs (Contract NAG1-975)

Copyright

A scissor-wing configuration, consisting of two independently sweeping-wing surfaces, is compared with an equivalent fixed-wing geometry baseline over a wide Mach number range. The scissor-wing configuration is shown to have a higher total lift-to-drag ratio than the baseline in the subsonic region primarily due to the slightly higher aspect ratio of the unswept scissor wing. In the transonic region, the scissor wing is shown to have a higher lift-to-drag ratio than the baseline for values of lift coefficient greater than 0.35. It is also shown that, through the use of wing decalage, the lift of the two independent scissor wings can be equalized. In the supersonic regime, the zero lift wave drag of the scissor-wing at maximum sweep is shown to be 50 and 28 percent less than the zero lift wave drag of the baseline at Mach numbers 1.5 and 3.0, respectively. In addition, a pivot-wing configuration is introduced and compared with the scissor wing. The pivot-wing configuration is shown to have a slightly higher total lift-to-drag ratio than the scissor wing in the supersonic region due to the decreased zero lift wave drag of the pivot-wing configuration.

A91-40217°# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. EULER ANALYSIS OF A HIGH-SPEED CIVIL TRANSPORT CONCEPT AT MACH 3

JAMES L. PITTMAN, DARYL L. BONHAUS, SAMUEL M. DOLLYHIGH (NASA, Langley Research Center, Hampton, VA), and MICHAEL J. SICLARI (Grumman Aerospace Corp., Bethpage, NY) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 239-245. Previously cited in issue 21, p. 3261, Accession no. A89-49680. refs

Copyright

A91-40218# CALCULATION OF LOW REYNOLDS NUMBER FLOWS AT HIGH ANGLES OF ATTACK

T. CEBECI, H. H. CHEN (California State University, Long Beach), R. H. LIEBECK (Douglas Aircraft Co., Long Beach, CA), and M. MCILVAINE Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 246-252. Previously cited in issue 06, p. 759, Accession no. A90-19921. refs Copyright

A91-40219*# California Univ., Davis. AERODYNAMIC CHARACTERISTICS OF CRESCENT AND ELLIPTIC WINGS AT HIGH ANGLES OF ATTACK

C. P. VAN DAM (California, University, Davis), P. M. H. W. VIJGEN (High Technology Corp., Hampton, VA), and B. J. HOLMES (NASA, Langley Research Center, Hampton, VA) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 253-260. Previously cited in issue 08, p. 1102, Accession no. A90-22196. refs (Contract NAG1-732; NAS1-18240)

A91-40220*# Pennsylvania State Univ., University Park. EXPERIMENTS ON THE UNSTEADINESS ASSOCIATED WITH A GROUND VORTEX

J. M. CIMBALA, M. L. BILLET, D. P. GAUBLOMME, and J. C. OEFELEIN (Pennsylvania State University, University Park) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 261-267. refs

(Contract NAG2-484)

Copyright

The ground vortex formed by a jet impinging on the ground in the presence of a crossflow has been studied experimentally. High speed motion pictures and spectral measurements were obtained to study the unsteady features of this flowfield. A very low-frequency pulsation or 'puffing' instability was observed. Since this unsteadiness could not be correlated with any other oscillations in the flowfield, the low-frequency oscillations must come from the gross features of the ground vortex itself. Namely, jet fluid accumulates in the ground vortex until the vortex is so large that

the flowfield breaks up, the ground vortex is swept away, a new smaller vortex forms, and the process repeats itself. Measurements of the frequency of these oscillations are presented for the first time, and data on the vertical extent (height) of the ground vortex are also shown.

A91-40223*# San Diego State Univ., CA. STATIC MEASUREMENTS OF SLENDER DELTA WING ROLLING MOMENT HYSTERESIS

JOSEPH KATZ (San Diego State Univerity, CA) and DANIEL LEVIN (NASA, Ames Research Center, Moffett Field, CA) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 282, 283. refs (Contract NCC2-596)

Copyright

Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations. O.C.

A91-40225#

LOW-ORDER PANEL METHOD FOR INTERNAL FLOWS

K. SUDHAKAR and G. R. SHEVARE (Indian Institute of Technology, Bombay, India) Journal of Aircraft (ISSN 0021-8669), vol. 28, April 1991, p. 286-288. refs Copyright

A low-order panel method is proposed in order to minimize analysis errors for internal flows through complex three-dimensional ducts, as well as external and internal-external flows, using constant-source and doublet-on-flat-panel approximations of the geometry in question. This formulation is aimed at the a priori reduction of gradients in the unknown doublet distribution. Attention is given to the cases of a duct with lateral offset, a bifurcated duct, and an S-shaped duct.

A91-40373#

A NEW PSEUDO-POTENTIAL FUNCTION MODEL FOR ROTATIONAL FLOW AND ITS APPLICATION TO TRANSONIC-SUPERSONIC FLOW

GAOLIAN LIU (Shanghai Institute of Mechanical Engineering, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 12, Feb. 1991, p. 20-26. In Chinese, with abstract in English. refs

By means of the term-condensing method, a new general function, the pseudopotential function is introduced, being a simple and consistent generalization of the potential function to general rotational flow. It retains the advantages of the potential function, while removing the restriction of flow potentiality (namely homentropy and homrothalpy). The general formulations of rotational flow along S(1) and S(2) stream sheets in turbomachines are derived, and methods of solution are given with special attention to trans- and supersonic flow, providing a new physically consistent and computationally simple flow-model.

A91-40375#

COMPUTATION OF THREE-DIMENSIONAL FLOW FIELDS THROUGH COMPRESSOR BLADE ROWS

WEI NING, XINHAI ZHOU, and YONG LIU (Northwestern Polytechnical University, Xian, People's Republic of China) Journal of Engineering Thermophysics (ISSN 0253-231X), vol. 12, Feb. 1991, p. 42-45. In Chinese, with abstract in English. refs

An Euler solver has been set up for the calculation of the fully three-dimensional inviscid transonic flow in a blade passage of an axial compressor votor or stator. MacCormack's explicit time-marching method is used to solve the unsteady Euler equations on a finite difference mesh. Flows in a set of high-turning cascade and in a transonic compressor rotorblade rows have been analyzed and compared with experimental results; these comparisons have generally shown that this Euler solver is reliable

and practicable, and is expected to be used in the practical design computation of transonic compressors and gas turbines. Author

A91-40472#

ANALYSIS OF CIRCULAR ELASTIC MEMBRANE WINGS

TAKESHI SUGIMOTO Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 39, no. 447, 1991, p. 180-187. In Japanese, with abstract in English. refs

Membrane wings, such as sails of yachts and hang-gliders, have quite complicated aerodynamic characteristics owing to interactions between compliant wings and the flow around them. All the existing methods of solution for three-dimensional membrane wing theories contain iterative procedures to deal with the strong nonlinearity of the problem. The uniform tension is assumed to weaken this nonlinearity, so that the iterative procedures can be eliminated. This method is aplied to the problem of circular elastic membrane wings. Numerical results have been compared with experimental results. The consistency between the analysis and the experiment shows the validity of the method. The existence of two equilibria is also confirmed.

A91-40473#

MODELING FOR UNSTEADY AERODYNAMICS OF RECTANGULAR WING IN INCOMPRESSIBLE FLOW USING STEP RESPONSES

SHINJI SUZUKI and KOSYU KADOTA Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 39, no. 447, 1991, p. 188-194. In Japanese, with abstract in English. refs

This paper considers approximating unsteady aerodynamic forces acting on a rectangular wing in the time domain. Time responses of the aerodynamic forces caused by a step movement of a rectangular wing in incompressible flow are calculated by using the time domain vortex element method. Transient characteristics in the step responses can be represented by one decreasing function regardless of wing motions. By approximating the decreasing function with a set of exponential functions and by calculating apparent mass coefficients and steady state forces, a mathematical model for the aerodynamic forces in the form of first-order linear time-invariant differential equations (the state equations) is obtained. The results obtained for the example problems show that a good fit to the aerodynamic forces can be achieved with two exponential functions approximating the decreasing function. Author

A91-40498

ANALYSIS OF NUMERICAL SOLUTIONS FOR THREE-DIMENSIONAL LIFTING WING FLOWS

K. M. WANIE, E. H. HIRSCHEL, and M. A. SCHMATZ (MBB GmbH, Munich, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 15, no. 2, 1991, p. 107-118. BMFT-supported research. refs Copyright

Numerical solutions for three-dimensional lifting wing flows are analyzed with regard to their kinematic properties. For this purpose the various levels of modeling real flow and the corresponding governing equations are shortly reviewed. Physical principles and compatibility conditions inherent in these models are discussed. The degree of accordance of the numerical solutions with this physical basis is investigated. Results of this kind of analysis are both a better understanding of physical and numerical properties of the solutions and hints for the development and improvement of numerical solution procedures.

A91-40513

FLUID DYNAMICS FOR THE STUDY OF TRANSONIC FLOW

HEINRICH J. RAMM (Tennessee, University, Tullahoma) New York, Oxford University Press, 1990, 209 p. refs Copyright

The characteristics of transonic flow problems are explored in an introduction for engineering students. The fundamental principles of aerodynamics are reviewed, and particular attention is given to the theory of inviscid transonic flow, nonsteady transonic flow, lift slope and drag rise at sonic speed, analytical solutions of the transonic continuity equation, viscous transonic flow, numerical methods of transonic flow computation, steps toward the optimal transonic aircraft, and transonic wind-tunnel testing. Diagrams, graphs, photographs, and sample problems are provided. D.G.

A91-40557#

A VORTEX PANEL METHOD FOR CALCULATING AIRCRAFT DOWNWASH ON PARACHUTE TRAJECTORIES

T. L. FULLERTON, J. H. STRICKLAND, and W. D. SUNDBERG (Sandia National Laboratories, Albuquerque, NM) AIAA, Aerodynamic Decelerator Systems Technology Conference, 11th, San Diego, CA, Apr. 9-11, 1991. 9 p. (Contract DE-AC04-76DP-00789) (AIAA PAPER 91-0875) Copyright

This paper provides an overview of some recent work done to examine the effects of aircraft wakes on parachute system performance. Summaries of both the model used to predict velocites induced by the aircraft on the parachutes and the model used to predict the resulting parachute trajectories are given. Results show that the impact conditions may be affected significantly under certain conditions.

A91-40561*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH. HOT GAS INGESTION TEST RESULTS OF A TWO-POSTER

VECTORED THRUST CONCEPT WITH FLOW VISUALIZATION IN THE NASA LEWIS 9- BY 15-FOOT LOW SPEED WIND TUNNEL

ALBERT L. JOHNS, GEORGE NEINER, TIMOTHY J. BENCIC (NASA, Lewis Research Center, Cleveland, OH), JOSEPH D. FLOOD, KURT C. AMUEDO (McDonnell Aircraft Co., Saint Louis, MO) et al. AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 26th, Orlando, FL, July 16-18, 1990. 27 p. Previously announced in STAR as N91-21116. (AIAA PAPER 90-2268) Copyright

A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation. Author

A91-40562*# California Univ., Los Angeles. EULER CALCULATIONS OF UNSTEADY TRANSONIC FLOW IN CASCADES

ODDVAR O. BENDIKSEN (California, University, Los Angeles) AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference, 32nd, Baltimore, MD, Apr. 8-10, 1991. 11 p. NSF-supported research. refs (Contract NAS3-25574)

(AIAA PAPER 91-1104) Copyright

In the present paper, Euler calculations of unsteady transonic flow in cascades are presented. A finite volume scheme is used to discretize the equations, which are implemented on a blade-fitted deformable mesh. The space-discretized equations are integrated forward in time using a multistage Runge-Kutta scheme. Adaptive dissipation terms of the type proposed by Jameson and Baker

are added to capture shocks and to suppress nonphysical oscillations. Phase-shifted boundary conditions are used to reduce the computational domain to a single reference passage. No assumptions of small amplitudes or small flow deflections are made. Thus, the present code makes it possible to carry out aeroelastic calculations for cases where the shock strengths and oscillation amplitudes exceed the inherent limitations of potential flow codes. Author

N91-23078# Old Dominion Univ., Norfolk, VA.
AN EXPERIMENTAL STUDY OF AN AXISYMMETRIC
TURBULENT BOUNDARY LAYER DISTURBED BY A
PERIODIC FREESTREAM Ph.D. Thesis

CHITHRABHANU KOODALATTUPURAM Apr. 1990 212 p Avail: NTIS HC/MF A10

Behavior of an axisymmetric equilibrium turbulent boundary layer disturbed by a propeller wake in the freestream was investigated experimentally. Tests were conducted in a low speed wind tunnel and measurements of turbulence quantities were made using an x wire probe and a constant temperature anemometer. The boundary layer flow on a cylindrical body was characterized by measuring its gross parameters and comparing them with classical values. Propeller speed was measured using an electronic circuit whose output signal was also used to trigger the hot wire probe. Gross boundary layer characteristics of the disturbed boundary layer did not deviate appreciably from the classical two dimensional turbulent boundary layer except immediately behind the propeller. From conditional sampling, it was found that the near wall periodic Reynolds stress approached 30 percent of the conventional time averaged Reynolds stress. Turbulent kinetic energy, kinetic energy of the organized field, and various kinetic energy production terms responsible for exchange of turbulent kinetic energy between different flow fields were calculated from the experimental data. It was found that kinetic energy was being transferred from the organized flow field to the random turbulent flow field, as expected. The variation of both periodic and turbulent kinetic energy were governed by similar equations. A mechanism for the transport of turbulent kinetic energy was suggested.

Dissert. Abstr.

N91-23079# Federal Aviation Administration, Cambridge, MA.
AIRCRAFT WAKE VORTICES: AN ASSESSMENT OF THE
CURRENT SITUATION Final Report, Mar. - Aug. 1990

J. N. HALLOCK Jan. 1991 67 p.

J. N. HALLOCK Jan. 1991 67 p (AD-A231658; DOT-VNTSC-FAA-90-6; DOT/FAA/RD-90/29) Avail: NTIS HC/MF A04 CSCL 01/1

The state of knowledge about aircraft wake vortices in the summer of 1990 is summarized. With the advent of a new FAA wake vortex program, the current situation was assessed by answering five questions: (1) what is known about wake vortices, (2) what isn't known about wake vortices, (3) what are the requirements and limitations for operational systems to solve the wake vortex problems, (4) where does one go from here, and (5) why is there a need to collect more wake vortex data.

N91-23080*# Rockwell International Corp., Los Angeles, CA.
AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM 2. PART
1: THEORY

E. BONNER, W. CLEVER, and K. DUNN Apr. 1991 144 p (Contract NAS1-18015) (NASA-CR-182076; NAS 1.26:182076) Avail: NTIS HC/MF A07

CSCL 01/1

An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics

may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program

provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

Author

N91-23081*# Rockwell International Corp., Los Angeles, CA. AERODYNAMIC PRELIMINARY ANALYSIS SYSTEM 2. PART 2: USER'S MANUAL

G. SOVA, P. DIVAN, and L. SPACHT Apr. 1991 339 p (Contract NAS1-18015)

(NASA-CR-182077; NAS 1.26:182077) Avail: NTIS HC/MF A15 CSCL 01/1

An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.

N91-23082 California Univ., Berkeley. INTERFEROMETRIC INVESTIGATION OF SUPERSONIC FLOW FIELDS WITH SHOCK-SHOCK INTERACTIONS Ph.D. Thesis MARK PAUL LOOMIS 1990 127 p

Avail: Univ. Microfilms Order No. DA9103798

An experimental investigation of the two-dimensional interaction between an oblique shock wave generated by a wedge and the bow shock upstream of an cylinder placed in cross flow is presented. New interferometric techniques to provide density information on the entire flow field were compared to previous investigations. Results were compared with a concurrent numerical investigation. The data obtained are useful in documenting and understanding such complex flow fields as that occurring when oblique shocks impinge on the cowl inlet of a vehicle such as the National Aerospace Plane. Depending on the position of the impinging shock with respect to the bow shock, type 1, 2, and 3 interactions as defined by Edney were obtained. The experiments were performed in a 14 by 14 cm supersonic wind tunnel with a nominal Mach number of 2.4. The primary experimental emphasis was the development of interferometric techniques and the application of these techniques to provide interferometric data for the different types of interactions. Since the flow field was two dimensional, the global density was deduced from the interferograms. Two types of interferometers were constructed and used, holographic interferometry and dark central ground interferometry. Using holographic interferometry, interferograms were made by storing holographically two images of the test section, one at test conditions and one with no flow in the tunnel. By comparing the two images an interferogram was constructed after the test had taken place. The second interferometer used a relatively new technique called dark central ground interferometry. The method involved placing a spatial filter at the focal point of the system after the beam has passed through the test section. Since the technique produces real time interferograms it was found to have many advantages over holographic interferometry. The current study represents one of the first applications of this technique in routine wind tunnel testing. Dissert. Abstr.

N91-23083*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

NASA AEROPROPULSION RESEARCH IN SUPPORT OF PROPULSION SYSTEMS OF THE 21ST CENTURY

JOSEPH A. ZIEMIANSKI and EDWARD A. WILLIS (Sverdrup Technology, Inc., Brook Park, OH.) 1991 26 p Presented at the 36th International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, 3-6 Jun. 1991; sponsored by ASME

(NASA-TM-104403; E-6226; NAS 1.15:104403) Avail: NTIS HC/MF A03 CSCL 01/1

A review is given of the NASA's ongoing and planned research and technology programs leading to advanced air breathing propulsion systems of the next century. The primary focus is on efforts being performed or sponsored by NASA-Lewis, with emphasis on civil, subsonic, and supersonic transportation systems which should begin to enter service within 10 to 20 years. Subsonic transport propulsion program elements, including ducted UltraHigh Bypass (UHB) engines and high efficiency cores are discussed in terms of goals, technical issues and problems, approaches and plans. Similarly, The Supersonic Cruise Propulsion Program is reviewed via discussion of near term and far term goals; barrier issues such as NOx and noise reduction and the consequent Phase 1 (near term) research plans are described; and finally, emerging technologies such as the supersonic through-flow fan are considered for their potential long term impact.

N91-23084*# Minnesota Univ., Minneapolis. Dept. of Aerospace Engineering and Mechanics.

A STUDY OF THE NOISE MECHANISMS OF TRANSONIC BLADE-VORTEX INTERACTIONS Semiannual Technical Report

ANASTASIOS S. LYRINTZIS and Y. XUE 1990 37 p Presented at the AHS 46th Annual Forum, Washington, DC, 21-23 May 1990

(Contract NAG2-588; NAG2-646)

(NASA-CR-188199; NAS 1.26:188199) Avail: NTIS HC/MF A03 CSCL 01/1

Transonic blade-vortex interactions (BVI) are simulated numerically and the noise mechanisms are investigated. The two-dimensional high frequency transonic small disturbance equation is solved numerically (VTRAN2 code). An ADI scheme with monotone switches is used; viscous effects are included on the boundary, and the vortex is simulated by the cloud in cell method. The Kirchhoff method is used for the extension of the numerical two-dimensional near-field aerodynamic results to the linear acoustic three dimensional far field. The viscous effects (shock/boundary layer interactions) on BVI is investigated. The different types of shock motion are identified and compared. Two important disturbances with different directivity exist in the pressure signal and are believed to be related to the fluctuating lift and drag forces. Noise directivity for different cases is shown. The maximum radiation occurs at an angle between 60 and 90 degrees below the horizontal for an airfoil-fixed coordinate system and depends on the details of the airfoil shape. Different airfoil shapes are studied and classified according to the BVI noise produced.

Author

N91-23085# Sandia National Labs., Albuquerque, NM. A VORTEX PANEL METHOD FOR CALCULATING AIRCRAFT DOWNWASH ON PARACHUTE TRAJECTORIES

T. L. FULLERTON, J. H. STRICKLAND, and W. D. SUNDBERG 1991 8 p Presented at the 11th AIAA Aerodynamic Decelerator Systems Technology Conference, San Diego, 9-11 Apr. 1991 (Contract DE-AC04-76DP-00789)

(DE91-009764; SAND-90-2178C; CONF-9104171-7) Avail: NTIS HC/MF A02

A discussion is presented of a methodology of the paneled wing method for calculating aircraft induced wake velocities. This discussion includes a description of how an aircraft and its wake are represented by finite length vortex filaments, how the strength and location of these filaments are determined based upon aircraft characteristics and trajectory data, and how the induced velocity values are determined once the location and strength of the vortex filaments are known. Examples are presented showing comparisons between induced velocity values calculated using both the paneled wing method and Strickland's lifting line method. Comparison is also made between calculated results from the paneled wing method and wind tunnel data collected in the wake of a scale model aircraft. Additional examples show the effect of including aircraft downwash calculations in a trajectory analysis for a parachute-retarded store delivered via aircraft. DOF

National Aeronautics and Space Administration. N91-23086*# Lewis Research Center, Cleveland, OH.

SIMULATION OF ICED WING AERODYNAMICS

M. G. POTAPCZUK, M. B. BRAGG, O. J. KWON, and L. N. SANKAR (Georgia Inst. of Tech., Atlanta.) 1991 17 p Presented at the 68th Fluid Dynamics Panel Specialists Meeting, Toulouse, France, 29 Apr. 1 May 1991; sponsored by AGARD (NASA-TM-104362; E-6158; NAS 1 15:104362) Avail: NTIS HC/MF A03 CSCL 01/1

The sectional and total aerodynamic load characteristics of moderate aspect ratio wings with and without simulated glaze leading edge ice were studied both computationally, using a three dimensional, compressible Navier-Stokes solver, and experimentally. The wing has an untwisted, untapered planform shape with NACA 0012 airfoil section. The wing has an unswept and swept configuration with aspect ratios of 4.06 and 5.0. Comparisons of computed surface pressures and sectional loads with experimental data for identical configurations are given. The abrupt decrease in stall angle of attack for the wing, as a result of the leading edge ice formation, was demonstrated numerically and experimentally.

National Aeronautics and Space Administration. N91-23087*# Lewis Research Center, Cleveland, OH.

ICING SIMULATION: A SURVEY OF COMPUTER MODELS AND EXPERIMENTAL FACILITIES

M. G. POTAPCZUK and J. J. REINMANN 1991 29 p Presented at the 68th Fluid Dynamics Panel Specialists Meeting, Toulouse, France, 29 Apr. - 1 May 1991; sponsored by AGARD (NASA-TM-104366, E-6164; NAS 1.15:104366) Avail: NTIS HC/MF A03 CSCL 01/1

A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

Deutsche Forschungsanstalt fuer Luft- und N91-23088# Raumfahrt, Goettingen (Germany, F.R.). Hauptabt. Windkanaele.

PROCEDURE FOR DETERMINATION OF THREE-DIMENSIONAL WIND TUNNEL WALL INTERFERENCES AND WALL ADAPTATION IN COMPRESSIBLE SUBSONIC FLOW USING MEASURED WALL PRESURES Thesis - Technische Univ. HARMUT HOLST 11 Dec. 1990 171 p In GERMAN; ENGLISH

(DLR-FB-90-46; ISSN-0171-1342; ETN-91-99067) Avail: NTIS HC/MF A08; DLR, Wissenschaftliches Berichtswesen, VB-PL-DO, Postfach 90 60 58, 5000 Cologne, Fed. Republic of Germany, HC

Green's Theorem is applied to the problem of wall interferences in wind tunnels. The velocity components at the boundaries of the test section are the data required for the calculation. The computation of the wall adaptation is performed in a single step. Measurements in an adaptive test section show that the method can be used for the determination of wall interferences, wall adaptation, and residual interferences. Computations demonstrate that optimization of slot widths in test sections with longitudinally slotted walls and calculation of residual interferences can be performed using this method. The limitations of the method are discussed.

National Aeronautics and Space Administration. N91-23089*# Lewis Research Center, Cleveland, OH.

A STUDY OF THREE DIMENSIONAL TURBULENT BOUNDARY LAYER SEPARATION AND VORTEX FLOW CONTROL USING THE REDUCED NAVIER STOKES EQUATIONS

BERNHARD H. ANDERSON and SAEED FAROKHI (Kansas Univ., Lawrence.) 1991 8 p Presented at the Turbulent Shear Flow Symposium, Munich, Fed. Republic of Germany, 9-11 Sep. 1991 (NASA-TM-104407; E-6233; NAS 1.15:104407) Avail: NTIS HC/MF A02 CSCL 01/1

A reduced Navier Stokes (RNS) initial value space marching solution technique was applied to vortex generator and separated flow problems and demonstrated good predictions of the engine face flow field. This RNS solution technique using FLARE approximations can adequately describe the topological and topographical structure flow separation associated with vortex liftoff, and this conclusion led to the concept of a subclass of separations which can be called vorticity separations: separations dominated by the transport of vorticity. Adequate near wall resolution of vorticity separations appears necessary for good predictions of these flows.

N91-23092# Cranfield Inst. of Tech., Bedford (England). Dept. of Aerodynamics.

THE PERFORMANCE OF 60 DEG DELTA WINGS: THE EFFECTS OF LEADING EDGE RADIUS ON VORTEX FLAPS AND THE WING

B. K. HU and J. L. STOLLERY Mar. 1990 35 p (CRANFIELD-AERO-9004; ISBN-1-871564-05-0; ETN-91-99333) Avail: NTIS HC/MF A03

Low speed wind tunnel tests were conducted on 60 degree delta wings. The wings were tested with well rounded and sharp leading edge vortex flaps to estimate the effects of leading edge radius on the aerodynamic performance. The Reynolds number based on root chord was approx. 800,000. Results indicate that leading edge radius has little effect on the contribution of the vortex flap to lift/drag ratio on the 60 deg delta wing. The 60 deg delta wing with a well rounded leading edge and no vortex flap deflection has a higher lift/drag ratio over almost the entire lift coefficient range tested.

N91-23094# Lehigh Univ., Bethlehem, PA. UNSTEADY FLOW STRUCTURE FROM SWEPT EDGES SUBJECTED TO CONTROLLED MOTION Final Report, 1 May 1986 - 31 Oct. 1990

DONALD ROCKWELL 26 Dec. 1990 89 p (Contract AF-AFOSR-0177-86; AF PROJ. 2307) (AD-A232714; LU-AFOSR-FR-90; AFOSR-91-0139TR) Avail: NTIS HC/MF A05 CSCL 01/1

This program addresses the unsteady flow structure and loading of delta wings subjected to controlled pitching motion. Efforts are focussed on three primary areas: generation of computer-aided techniques for quantitative interpretation of flow structure; development of new types of experimental instrumental and facilities; and characterization of the unsteady flow structure on delta wings. Computer applications for quantitative visualization of the vortex structure involve tracking of hydrogen bubble timelines and particles illuminated by scanning lasers. These techniques are integrated with active control systems that generate prescribed pitching motion of delta wings. Characterization of the unsteady flow structure is concerned with the response of the vortex breakdown to the motion of the wing and with preliminary consideration of the instantaneous cross-sectional structure of the leading edge vortices. The phase lag of these features of the flow structure, relative to the wing motion, is a central consideration.

N91-23161# Cranfield Inst. of Tech., Bedford (England). Coll. of Aeronautics.

SOME ASPECTS OF SHOCK-WAVE BOUNDARY LAYER INTERACTION RELEVANT TO INTAKE FLOWS

In AGARD, Hypersonic Combined Cycle J. L. STOLLERY Propulsion 14 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Four main topics are discussed: (1) 2-D shock induced separation; (2) 3-D glancing interaction; (3) shock/shock boundary layer interaction; and (4) hypersonic viscous interaction. Wherever possible both laminar and turbulent flows are considered and reference is made to experimental data and to the results of mathematical modeling. Some thoughts on future research topics are presented along with the facilities needed to pursue them.

Autho

N91-23164# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Inst. fuer Antriebstechnik. AERODYNAMICS AND STABILIZATION OF COMBUSTION OF HYDROGEN JETS INJECTED INTO SUBSONIC AIRFLOW J. KOOPMAN, M. RACHNER, H. WIEGAND, and H. EICKHOFF In AGARD, Hypersonic Combined Cycle Propulsion 16 p Dec.

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The aerodynamics and stabilization of burning hydrogen jets, injected transversally into a subsonic airstream, were investigated. The structural behavior of deflecting cold and burning jets were studied by flow visualization. Experiments and numerical analysis on jet penetration were performed. Flame extinction limits of 'wake stabilized' flames were established and correlated. Author

N91-23174# Rome Univ. (Italy). Dipt. di Meccanica e Aeronautica.

REACTING SHOCK WAVES IN HYPERSONIC PROPULSION APPLICATIONS

M. ONOFRI In AGARD, Hypersonic Combined Cycle Propulsion 10 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Problems connected to the occurrence of finite rate chemical processes behind shock waves in hypersonic flow fields are analyzed and a numerical technique is proposed for their solution. The computational difficulties connected with the presence of large gradients of the species concentrations are considered. A method is proposed, based on a shock-fitting technique for the gas dynamic model and a variable step integration along the streamlines for the energy and species conservation equations. This approach provides the needed resolution where it is actually required, without becoming cumbersome elsewhere, and the relaxation layer behind shocks can be computed efficiently and precisely.

N91-23175*# Sverdrup Technology, Inc., Cleveland, OH. VISCOUS THREE-DIMENSIONAL ANALYSES FOR NOZZLES FOR HYPERSONIC PROPULSION

G. J. HARLOFF, D. R. REDDY, and H. T. LAI In AGARD, Hypersonic Combined Cycle Propulsion 18 p Dec. 1990 Previously announced as N90-17635

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive CSCL 01/1

A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, including wall pressures, velocity pressure, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external superonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center Author planes shows good agreement.

N91-24098*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

THE NASA LANGLEY LAMINAR-FLOW-CONTROL EXPERIMENT ON A SWEPT, SUPERCRITICAL AIRFOIL: SUCTION COEFFICIENT ANALYSIS

CUYLER W. BROOKS, JR., CHARLES D. HARRIS, and WILLIAM D. HARVEY Jun. 1991 19 p (NASA-TM-4267; L-16774; NAS 1.15:4267) Avail: NTIS HC/MF A03 CSCL 01/1

A swept supercritical wing incorporating laminar flow control at transonic flow conditions was designed and tested. The definition of an experimental suction coefficient and a derivation of the compressible and incompressible formulas for the computation of the coefficient from measurable quantities is presented. The suction flow coefficient in the highest velocity nozzles is shown to be overpredicted by as much as 12 percent through the use of an incompressible formula. However, the overprediction on the computed value of suction drag when some of the suction nozzles were operating in the compressible flow regime is evaluated and found to be at most 6 percent at design conditions.

N91-24099*# Texas A&M Univ., College Station. Dept. of Aerospace Engineering.

AN INITIAL INVESTIGATION INTO METHODS OF COMPUTING TRANSONIC AERODYNAMIC SENSITIVITY COEFFICIENTS

Semiannual Progress Report, Jul. - Dec. 1990 LELAND A. CARLSON Feb. 1991 108 p

(Contract NAG1-793)

(NASA-CR-188192; NAS 1.26:188192; TAMRF-5802-91-01)

Avail: NTIS HC/MF A06 CSCL 01/1

The three dimensional quasi-analytical sensitivity analysis and the ancillary driver programs are developed needed to carry out the studies and perform comparisons. The code is essentially contained in one unified package which includes the following: (1) a three dimensional transonic wing analysis program (ZEBRA); (2) a quasi-analytical portion which determines the matrix elements the quasi-analytical equations; (3) a method for computing the sensitivity coefficients from the resulting quasi-analytical equations; (4) a package to determine for comparison purposes sensitivity coefficients via the finite difference approach; and (5) a graphics package.

N91-24103 Georgia Inst. of Tech., Atlanta. AERODYNAMIC INTERACTIONS BETWEEN BODIES IN RELATIVE MOTION Ph.D. Thesis

OLIVIER SCHREIBER 1990 281 p

Avail: Univ. Microfilms Order No. DA9105464

The problem of aerodynamic interactions between bodies in arbitrary relative motion is considered, with emphasis on the aerodynamics of rotor with fuselage interactions. This problem is too complex to be analyzed using the full Navier-Stokes equations, and it has previously been shown that the dominant features of such flow field can be explained using ideal fluid flow concepts. Thus, an ideal fluid flow formulation, allowing complex unsteady interactions between arbitrary shaped bodies, is used. The computational scheme is time dependent and designed to handle several bodies moving with respect to each other, such as a rotor and fuselage. It is not specialized in its treatment of lifting versus nonlifting bodies or their motion characteristics. The wakes of the bodies are modeled by vortex particle. The handling of the Helmholtz equation, which governs vorticity convection and distortion and its interaction with the bodies, is simplified. Stability and convergence of the scheme are made by smearing the discrete point distribution over finite elementary volumes and using a multistep time marching integration method. A mix of boundary element methods is used simultaneously to solve the boundary Dissert. Abstr. value problem.

N91-24104 Georgia Inst. of Tech., Atlanta.
AN EFFICIENT HYBRID SCHEME FOR THE SOLUTION OF ROTATIONAL FLOW AROUND ADVANCED PROPELLERS Ph.D. Thesis

RAKESH SRIVASTAVA 1990 154 p Avail: Univ. Microfilms Order No. DA9105466

A free air propeller offers the highest propulsive efficiency. However, as the flight speed increases, the high tip speed of a conventional propeller leads to large compressibility losses. To overcome these losses and extend the flight Mach number to near transonic range, propellers were redesigned to have large tip sweep, twist, and very thin airfoils. The efficiency was further increased by using a counter-rotating row of blades to recover the swirl losses. One problem with these advanced propellers, however, is that some of the propellers have fluttered in wind tunnel tests. In order to be able to predict flutter, an accurate prediction of unsteady airloads is necessary. Also, as the propellers operate in the transonic Mach number range, compressibility effects important. In the present solution procedure, three-dimensional, unsteady, compressible Euler equations are solved. A directionally hybrid scheme is used to make the scheme computationally more efficient. The governing equations are cast in strong conservative form and solved in a body-fitted coordinate system using an approximate factorization scheme. Specifically, the solution procedure is applied to solve Euler equations around single and counter-rotating advanced propeller geometries to obtain airloads and integrated performance quantities. The solution procedure was also coupled with NASTRAN in an open loop fashion, to study the effects of blade flexibility on the performance of the single rotation advanced propeller. An attempt was also made to evaluate the possibility of reducing the number of grid points in the solution domain by using a fourth-order scheme.

Author

N91-24105*# Stanford Univ., CA. Dept. of Aeronautics and Astronautics.

NONLINEAR AERODYNAMICS AND THE DESIGN OF WING TIPS Final Report, 1 Apr. 1990 - 31 Mar. 1991

ILAN KROO May 1991 5 p (Contract NCC2-683)

(NASA-CR-188044; NAS 1.26:188044) Avail: NTIS HC/MF A01 CSCL 01/1

The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas.

N91-24106*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

THE COMPUTATION OF INDUCED DRAG WITH NONPLANAR AND DEFORMED WAKES

ILAN KROO (Stanford Univ., CA.) and STEPHEN SMITH In Stanford Univ., Nonlinear Aerodynanics and the Design of Wing Tips 9 p May 1991

Avail: NTIS HC/MF A01 CSCL 01/1

The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems,

even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.

Author

N91-24107*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

EULER FLOW PREDICTIONS FOR AN OSCILLATING CASCADE USING A HIGH RESOLUTION WAVE-SPLIT SCHEME

DENNIS L. HUFF, TIMOTHY W. SWAFFORD, and T. S. R. REDDY (Toledo Univ., OH.) 1991 19 p Presented at the 36th International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, 3-6 Jun. 1991; sponsored by ASME (NASA-TM-104377; E-5933; NAS 1.15:104377) Avail: NTIS HC/MF A03 CSCL 01/1

A compressible flow code that can predict the nonlinear unsteady aerodynamics associated with transonic flows over oscillating cascades is developed and validated. The code solves the two dimensional, unsteady Euler equations using a time-marching, flux-difference splitting scheme. The unsteady pressures and forces can be determined for arbitrary input motions. although only harmonic pitching and plunging motions are addressed. The code solves the flow equations on a H-grid which is allowed to deform with the airfoil motion. Predictions are presented for both flat plate cascades and loaded airfoil cascades. Results are compared to flat plate theory and experimental data. Predictions are also presented for several oscillating cascades with strong normal shocks where the pitching amplitudes, cascade geometry and interblade phase angles are varied to investigate nonlinear behavior. Author

N91-24108*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
SUCKDOWN, FOUNTAIN LIFT, AND PRESSURES INDUCED ON SEVERAL TANDEM JET V/STOL CONFIGURATIONS
DAVID C. BELLAVIA, DOUGLAS A. WARDWELL, VICTOR R. CORSIGLIA, and RICHARD E. KUHN (STO-VL Technology, San Diego, CA.) Mar. 1991 154 p
(NASA-TM-102817; A-90144; NAS 1.15:102817) Avail: NTIS HC/MF A08 CSCL 01/1

As part of a program to improve the methods for predicting the suckdown and hot gas ingestion for jet V/STOL aircraft in ground effect, a data base is being created that provides a systematic variation of parameters so that a new empirical prediction procedure can be developed. The first series of tests in this program was completed. Suckdown, fountain lift, and pressures induced on several two-jet V/STOL configurations are described. It is one of three reports that present the data obtained from tests conducted at Lockheed Aeronautical Systems-Rye Canyon Facility and in the High Bay area of the 40 by 80 foot wind tunnel complex at NASA Ames Research Center.

N91-24109*# Notre Dame Univ., IN. Dept. of Aerospace and Mechanical Engineering.

BREAKING DOWN THE DELTA WING VORTEX: THE ROLE OF VORTICITY IN THE BREAKDOWN PROCESS Ph.D. Thesis Final Report

ROBERT C. NELSON and KENNETH D. VISSER 1990 16 p Presented at AGARD Symposium on Vortex Flow Aerodynamics, Scheveningen, Netherlands, 1-4 Oct. 1990 (Contract NAG1-1156)

(NASA-CR-188235; NAS 1.26:188235) Avail: NTIS HC/MF A03 CSCL 01/1

Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution

scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single

N91-24110*# Notre Dame Univ., IN. Dept. of Aerospace and Mechanical Engineering.

AN EXPERIMENTAL ANALYSIS OF CRITICAL FACTORS INVOLVED IN THE BREAKDOWN PROCESS OF LEADING **EDGE VORTEX FLOWS Ph.D. Thesis**

KENNETH D. VISSER 30 May 1991 285 p

(Contract NAG1-1156)

(NASA-CR-188231; NAS 1.26:188231) Avail: NTIS HC/MF A13 CSCL 01/1

Experimental crosswire measurements of the flowfield above a 70 and 75 degree flat plate delta wing were performed at a Revnolds number of 250,000. Survey grids were taken normal to the platform at a series of chordwise locations for angles of attack of 20 and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core as well as on chordwise location was examined. The effects of nondimensionalization in comparison with other experimental data was made. The circulation distribution scales with the local semispan and grows approximately linearly in the chordwise direction. For regions of the flow outside of the vortex subcore, the circulation at any chordwise station was observed to vary logarithmically with distance from the vortex axis. The circulation was also found to increase linearly with angle of incidence at a given chordwise station. A reduction in the local circulation about the vortex axis occurred at breakdown. The spanwise distribution of axial vorticity was severely altered through the breakdown region and the spanwise distribution of axial vorticity present appeared to reach a maximum immediately preceding breakdown. The local concentration of axial vorticity about the vortex axis was reduced while the magnitude of the azimuthal vorticity decreased throughout the breakdown zone. The axial vorticity components with a negative sense, found in the secondary vortex, remained unaffected by changes in wing sweep or angle of attack, in direct contrast to the positive components. The inclusion of the local wing geometry into a previously derived correlation parameter indicated that the circulation of growing leading edge vortex flows were similar at corresponding radii from the vortex axis. It was concluded that the flow over a delta wing, upstream of the breakdown regions and away from the apex and trailing edge regions, is conical. In addition, the dominating factors leading to the onset of breakdown are felt to be the local circulation of the vortex and the accompanying pressure field. Author

Department of Transportation, Cambridge, MA. N91-24111# National Transportation Systems Center. AIRCRAFT WAKE VORTICES: AN ANNOTATED BIBLIOGRAPHY (1923-1990) Final Report, Jul. - Oct. 1990

J. N. HALLOCK Jan. 1991 392 p (AD-A233161; DOT-VNTSC-FAA-90-7; DOT/FAA/RD-90-30)

Avail: NTIS HC/MF A17 CSCL 01/1

This annotated bibliography consists of abstracts of publications of aircraft wake vortices. The material is arranged alphabetically by author(s) and then by month and year of publication. Experimental and theoretical articles are included and consider the formation, structure, motion, and decay of vortices and their effect on penetrating aircraft. GRA

N91-24112# Micro Craft, Inc., Tullahoma, TN. UNSTEADY NAVIER-STOKES SOLUTIONS FOR A LOW ASPECT RATIO DELTA WING Final Report, 1 Sep. 1989 - 1 Sep. 1990

RAYMOND E. GORDNIER Dec. 1990 33 p.

(Contract F33601-89-C-0045) (AD-A233201; WRDC-TR-90-3075) Avail: NTIS HC/MF A03

A numerical investigation of the flow field about a 76-degree leading edge sweep delta wing at 20.5 degree angle of attack is presented. The computational results are obtained using a Beam-Warming algorithm with a Newton-like subiteration procedure. For M = 0.2 and Re = 900,000 an unsteady flow field is obtained which is shown to be physical in nature. The unsteady behavior is a result of the existence of small-scale vortical structures that are associated with a Kelvin-Helmholtz type instability of the shear layer emanating form the leading edge of the delta wing. The computed results show qualitative agreement with other experimental and numerical findings. GRA

N91-24113# Vigyan Research Associates, Inc., Hampton, VA. CALCULATION OF HIGH ANGLE OF ATTACK AERODYNAMICS OF FIGHTER CONFIGURATIONS. VOLUME 1: STEADY Final Report, Aug. 1987 - Jan. 1990 C. E. LAN, H. EMDAD, SUEI CHIN, P. SUNDARAM, and S. C.

MEHROTRA Apr. 1991 82 p (Contract F33615-87-C-3616)

(AD-A233482; WL-TR-91-3033-VOL-1) Avail: NTIS HC/MF A05

A computational method for lateral-directional aerodynamics of fighter configuration is developed. The leading edge vortices are represented by free vortex filaments which are adjusted iteratively to satisfy the force-free condition. The forebody vortex separation, both symmetrical and asymmetrical, is calculated using slender body theory. Effect of boundary layer separation on lifting surfaces is accounted for using the effective sectional angles of attack. The latter are obtained iteratively by matching the nonlinear sectional lift with the computed resulted based on lifting surface theory. Results for several fighter configurations are employed for comparison with available data. It is shown that the present method produces reasonable results in predicting sideslip derivatives, while role and yaw rate derivatives do not compare very well with forced oscillation test data at high angles of attack. Industrial usage of this has produced mixed results. At this time, the use of these methods in a production manner is not recommended.

N91-24114# Vigyan Research Associates, Inc., Hampton, VA. CALCULATION OF HIGH ANGLE OF ATTACK **AERODYNAMICS OF FIGHTER CONFIGURATIONS. VOLUME** 2: USER MANUAL FOR VORSTAB-2 Final Report, Aug. 1987 -Jan. 1990

C. E. LAN, H. EMDAD, SUEI CHIN, P. SUNDARAM, and S. C. MEHROTRA Apr. 1991 173 p (Contract F33615-87-C-3616)

(AD-A233483; WL-TR-91-3033-VOL-2) Avail: NTIS HC/MF A08 **CSCL 01/1**

A computational method for lateral-directional aerodynamics of fighter configurations is developed. The leading-edge vortices are represented by free vortex filaments which are adjusted iteratively to satisfy the force-free condition. The forebody vortex separation, both symmetrical and asymmetrical, is calculated using slender body theory. The effect of boundary layer separation on lifting surfaces is accounted for using the effective sectional angles of attack. The latter are obtained iteratively by matching the nonlinear sectional lift with the computed results based on lifting-surface theory. Results for several fighter configurations are employed for comparison with available data. It is shown that the present method produces reasonable results in predicting sideslip derivatives, while roll- and yaw-rate derivatives do not compare very well with forced oscillation test data at high angles of attack. Industrial usage of this has produced mixed results. At this time, the use of these methods in a production manner is not recommended. **GRA**

N91-24115# Vigyan Research Associates, Inc., Hampton, VA. CALCULATION OF HIGH ANGLE OF ATTACK AERODYNAMICS OF FIGHTER CONFIGURATIONS. VOLUME 3: UNSTEADY Final Report, Aug. 1987 - Jan. 1990

02 AERODYNAMICS

C. E. LAN, H. EMDAD, SUEI CHIN, P. SUNDARAM, and S. C. MEHROTRA Apr. 1991 59 p (Contract F33615-87-C-3616) (AD-A233569; WL-TR-91-3033-VOL-3) Avail: NTIS HC/MF A04

A computational method for unsteady aerodynamics of fighter configurations at high angles of attack is developed. The leading-edge vortices are represented by free vortex filaments which are adjusted iteratively to satisfy the force-free condition. The small-disturbance, unsteady potential equation is solved in the frequency domain for motions in pitching, plunging, flapping, side movement, rolling, and yawing oscillation in compressible flow. Computed results in rolling moment coefficients due to side acceleration are compared with data for 60-deg and 80-deg delta wings. Lateral-directional characteristics for an F-106b configuration are also compared with data obtained in forced oscillation tests. It is shown that reasonable results can be obtained by the present unsteady flow method, but not by steady flow theory. Calculation of dynamic stall effects on a rectangular wing of aspect ratio 4 is demonstrated by using experimental section data. Although no data for the wing are available, the results appear plausible. Industrial usage of this has produced mixed results. At this time, the use of these methods in a production manner is recommended.

N91-24116# Dayton Univ., OH. Dept. of Chemistry. HYPERSONIC AERODYNAMICS FELLOWSHIPS Final Report, 15 Mar. 1986 - 15 Sep. 1989 JOHN D. ANDERSON, JR. 11 Feb. 1991 40 p (Contract DAAL03-86-G-0040) (AD-A233584; ARO-23758.2-EG-F) Avail: NTIS HC/MF A03 CSCL 20/4

This work resulted in: (1) a new approach to hypersonic waverider vehicles, which has lead to a family of waverider with exceptionally promising characteristics, and (2) the first data on the interaction of a vortex with a shock wave at hypersonic

N91-24118*# Boeing Commercial Airplane Co., Seattle, WA. DEVELOPING AND UTILIZING AN EULER COMPUTATIONAL METHOD FOR PREDICTING THE AIRFRAME/PROPULSION EFFECTS FOR AN AFT-MOUNTED TURBOPROP TRANSPORT. **VOLUME 1: THEORY DOCUMENT Final Report**

H. C. CHEN and N. Y. YU Mar. 1991 53 p

(Contract NAS1-18703)

(NASA-CR-181924-VOL-1; NAS 1.26:181924-VOL-1) Avail: NTIS

HC/MF A04 CSCL 01/1

An Euler flow solver was developed for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. This solver employs a highly efficient multigrid scheme, with a successive mesh-refinement procedure to accelerate the convergence of the solution. A new dissipation model was also implemented to render solutions that are grid insensitive. The propeller power effects are simulated by the actuator disk concept. An embedded flow solution method was developed for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine in the presence of a flow field induced by a complete aircraft. Results from test case analysis are presented. A user's guide for execution of computer programs, including format of various input files, sample job decks, and sample input files, is provided in an accompanying volume.

N91-24119*# Boeing Commercial Airplane Co., Seattle, WA. DEVELOPING AND UTILIZING AN EULER COMPUTATIONAL METHOD FOR PREDICTING THE AIRFRAME/PROPULSION EFFECTS FOR AN AFT-MOUNTED TURBOPROP TRANSPORT. **VOLUME 2: USER GUIDE Final Report**

H. C. CHEN, H. E. NEBACK, T. J. KAO, N. Y. YU, and K. KUSUNOSE Mar. 1991 71 p

(Contract NAS1-18703)

(NASA-CR-181924-VOL-2; NAS 1.26:181924-VOL-2) Avail: NTIS HC/MF A04 CSCL 01/1

This manual explains how to use an Euler based computational

method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment.

N91-24120*# Boeing Commercial Airplane Co., Seattle, WA. A GENERAL MULTIBLOCK EULER CODE FOR PROPULSION INTEGRATION. VOLUME 1: THEORY DOCUMENT Final Report H. C. CHEN, T. Y. SU, and T. J. KAO May 1991 47 p (Contract NAS1-18703)

(NASA-CR-187484-VOL-1; NAS 1.26:187484-VOL-1) Avail: NTIS HC/MF A03 CSCL 01/1

A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

N91-24121*# Boeing Commercial Airplane Co., Seattle, WA. A GENERAL MULTIBLOCK EULER CODE FOR PROPULSION INTEGRATION. VOLUME 2: USER GUIDE FOR BCON. PRE-PROCESSOR FOR GRID GENERATION AND GMBE Final

T. Y. SU, R. A. APPLEBY, and H. C. CHEN May 1991 71 p. (Contract NAS1-18703)

(NASA-CR-187484-VOL-2; NAS 1.26:187484-VOL-2) Avail: NTIS HC/MF A04 CSCL 01/1

The BCON is a menu-driven graphics interface program whose input consists of strings or arrays of points generated from a computer aided design (CAD) tool or any other surface geometry source. The user needs to design the block topology and prepare the surface geometry definition and surface grids separately. The BCON generates input files that contain the block definitions and the block relationships required for generating a multiblock volume grid with the EAGLE grid generation package. The BCON also generates the block boundary conditions file which is used along with the block relationship file as input for the general multiblock Euler (GMBE) code (GMBE, volumes 1 and 3). Author

N91-24122*# Boeing Commercial Airplane Co., Seattle, WA. A GENERAL MULTIBLOCK EULER CODE FOR PROPULSION INTEGRATION. VOLUME 3: USER GUIDE FOR THE EULER **CODE Final Report**

H. C. CHEN, T. Y. SU, and T. J. KAO May 1991 46 p (Contract NAS1-18703)

(NASA-CR-187484-VOL-3; NAS 1.26:187484-VOL-3) Avail: NTIS HC/MF A03 CSCL 01/1

This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.

North Carolina State Univ., Raleigh. Dept. of N91-24123*# Mechanical and Aerospace Engineering THEORETICAL EVALUATION OF ENGINE AUXILIARY INLET

DESIGN FOR SUPERSONIC V/STOL AIRCRAFT Final Report MICHAEL A. BOLES and RICHARD L. HEAVNER Cleveland. OH NASA May 1991 97 p (Contract NAG3-608)

(NASA-CR-187098; NAS 1.26:187098) Avail: NTIS HC/MF A05 CSCL 01/1

A higher order panel method is used to evaluate the potential flow of a 2-D supersonic V/STOL inlet. A nonsymmetric analytical inlet model is developed to closely match a wind tunnel model tested at NASA-Lewis. The analytical inlet used is analyzed for flow characteristics around the lower cowl lip and auxiliary inlets. The results for this analysis are obtained for the output of a computer program produced by the McDonnell Douglas Corp. This program is based on the Hess Panel Method which determines source strengths of panel distributed over a 3-D body. The analytical model was designed for the implementation of a drooped/translated cowl lip and auxiliary inlets as flow improvement concepts. A 40 or 70 deg droop lip can be incorporated on the inlet to determine if these geometry changes result in flow improvements which may reduce the propensity for flow separation on the interior portion of the lip. Auxiliary inlets are used to decrease the mass flow over the inlet lip; thus, the peak flow velocity is reduced at the lip which also lessens the likelihood of flow separation on the interior portion of the lip. A 2, 4, and 6 in. translated lip can be used to also decrease mass flow over the inlet lower lip in the same manner.

Institute for Computer Applications in Science N91-24125*# and Engineering, Hampton, VA.

IMPLICIT SOLVERS FOR UNSTRUCTURED MESHES Final Report

V. VENKATAKRISHNAN (Computer Sciences Corp., Moffett Field, CA.) and DIMITRI J. MAVRIPLIS May 1991 24 p (Contract NAS1-18605)

(NASA-CR-187564; NAS 1.26:187564; ICASE-91-40) Avail: NTIS HC/MF A03 CSCL 01/1

Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively Author generated meshes.

National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA FLOW VISUALIZATION STUDY OF A 1/48-SCALE AFTI/F111 MODEL TO INVESTIGATE HORIZONTAL TAIL FLOW **DISTURBANCES**

35 p Original contains color LISA J. BJARKE Jun. 1991 illustrations

(NASA-TM-101698; H-1547; NAS 1.15:101698) Avail: NTIS

HC/MF A03; 24 functional color pages CSCL 01/1
During flight testing of the AFTI/F111 aircraft, horizontal tail buffet was observed. Flutter analysis ruled out any aeroelastic instability, so a water-tunnel flow visualization study was conducted to investigate possible flow disturbances on the horizontal tail which might cause buffet. For this study, a 1/48-scale model was used. Four different wing cambers and one horizontal tail setting were tested between 0 and 20 deg angle of attack. These wing cambers corresponded to the following leading training edge deflections: 0/2, 10/10, 10/2, and 0/10. Flow visualization results in the form of still photographs are presented for each of the four wing cambers between 8 and 12 deg angle of attack. In general, the horizontal tail experiences flow disturbances which become more pronounced with angle of attack or wing trailing-edge deflection. Author

National Aeronautics and Space Administration. N91-24130*# Lewis Research Center, Cleveland, OH. THE 3-D NAVIER-STOKES ANALYSIS OF CROSSING, GLANCING SHOCKS/TURBULENT BOUNDARY LAYER INTERACTIONS

Presented at the 22nd Fluid D. R. REDDY 1991 14 p Dynamics, Plasma Dynamics and Lasers Conference, Honolulu, HI, 24-26 Jun. 1991; sponsored by AIAA (NASA-TM-104469; E-6318; NAS 1.15:104469; AIAA-91-1758) Avail: NTIS HC/MF A03 CSCL 01/1

Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications

Author

National Aeronautics and Space Administration. N91-24131*# Lewis Research Center, Cleveland, OH.

A DESIGN STRATEGY FOR THE USE OF VORTEX GENERATORS TO MANAGE INLET-ENGINE DISTORTION USING COMPUTATIONAL FLUID DYNAMICS

BERNHARD H. ANDERSON and RALPH LEVY (Scientific Research Associates, Inc., Glastonbury, CT.) 1991 36 p Presented at the 27th Joint Propulsion Conference, Sacramento, CA, 24-27 Jun. 1991; sponsored by AIAA, SAE, ASME, and the American Society for Electrical Engineers

(NASA-TM-104436; E-6275; NAS 1.15:104436; AIAA-91-2474) Avail: NTIS HC/MF A03 CSCL 01/1

A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence,

02 AERODYNAMICS

the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.

N91-24132*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

TRANSONIC SYMPOSIUM: THEORY, APPLICATION AND EXPERIMENT, VOLUME 2

JEROME T. FOUGHNER, JR., comp. Apr. 1989 241 p Symposium held in Hampton, VA, 19-21 Apr. 1988 (NASA-CP-3020-VOL-2; L-16502-VOL-2; NAS 1.55:3020-VOL-2) Avail: NTIS HC/MF A11 CSCL 01/1

Papers presented at the Transonic Symposium are compiled. The following subject areas are covered: National Transonic Facility status; transonic aerodynamics of slender wing-body configuration; laminar flow flight experiments; laminar flow wind tunnel experiments; computational support of X-29A flight experiment; transition location on a clean-up glove installed on a F-14 aircraft; and design studies for a laminar glove for the X-29 aircraft.

N91-24134*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

REYNOLDS NUMBER EFFECTS ON THE TRANSONIC AERODYNAMICS OF A SLENDER WING-BODY CONFIGURATION

JAMES M. LUCKRING, CHARLES H. FOX, JR., and JEFFREY S. CUNDIFF (George Washington Univ., Hampton, VA.) In its Transonic Symposium: Theory, Application and Experiment, Volume 2 p 41-58 Apr. 1989

Avail: NTIS HC/MF A11 CSCL 01/1

Aerodynamic forces and moments for a slender wing-body configuration are summarized from an investigation in the Langley National Transonic Facility (NTF). The results include both longitudinal and lateral-directional aerodynamic properties as well as slideslip derivatives. Results were selected to emphasize Reynolds number effects at a transonic speed although some lower speed results are also presented for context. The data indicate nominal Reynolds number effects on the longitudinal aerodynamic coefficients and more pronounced effects for the lateral-directional aerodynamic coefficients. The Reynolds number sensitivities for the lateral-directional coefficients were limited to high angles of attack.

N91-24135*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LAMINAR-FLOW FLIGHT EXPERIMENTS

RICHARD D. WAGNER, DAL V. MADDALON, D. W. BARTLETT, F. S. COLLIER, JR., and A. L. BRASLOW (Analytical Services and Materials, Inc., Hampton, VA.) *In its* Transonic Symposium: Theory, Application and Experiment, Volume 2 p 59-104 Apr. 1989

Avail: NTIS HC/MF A11 CSCL 01/1

The flight testing conducted over the past 10 years in the NASA laminar-flow control (LFC) will be reviewed. The LFC program was directed towards the most challenging technology application, the high supersonic speed transport. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time. Author

N91-24136*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LAMINAR-FLOW WIND TUNNEL EXPERIMENTS

WILLIAM D. HARVEY, CHARLES D. HARRIS, WILLIAM G. SEWALL, and JOHN P. STACK In its Transonic Symposium: Theory, Application and Experiment, Volume 2 p 105-145 Apr. 1989

Avail: NTIS HC/MF A11 CSCL 01/1

Although most of the laminar flow airfoils recently developed at the NASA Langley Research Center were intended for general aviation applications, low-drag airfoils were designed for transonic speeds and wind tunnel performance tested. The objective was to extend the technology of laminar flow to higher Mach and Reynolds numbers and to swept leading edge wings representative of transport aircraft to achieve lower drag and significantly improved operation costs. This research involves stabilizing the laminar boundary layer through geometric shaping (Natural Laminar Flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (Laminar-Flow Control, LFC), either through discrete slots or perforated surface. Results show that extensive regions of laminar flow with large reductions in skin friction drag can be maintained through the application of passive NLF boundary-layer control technologies to unswept transonic wings. At even greater extent of laminar flow and reduction in the total drag level can be obtained on a swept supercritical airfoil with active boundary layer-control.

N91-24139*# Boeing Commercial Airplane Co., Seattle, WA. VARIABLE SWEEP TRANSITION FLIGHT EXPERIMENT (VSTFE): UNIFIED STABILITY SYSTEM (USS). DESCRIPTION AND USERS' MANUAL Report, Oct. 1985 - May 1990 ROZENDAAL and ROXANNA BEHBEHANI Jun. 1990 124 p (Contract NAS1-15325)

(NASA-CR-181918; NÁS 1.26:181918; D6-54961) Avail: NTIS HC/MF A06 CSCL 01/1

NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

03

AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A91-38527
AIR TRAVEL - SYSTEM RELATING FLIGHT SAFETY,
AIRCRAFT, AND AIRPORTS [DIE LUFTFAHRT - SYSTEM
ZWISCHEN FLUGSICHERUNG, FLUGZEUG UND FLUGHAFEN]
JUERGEN LANG and HUBERT FLECKENSTEIN (MBB
GmbH/Deutsche Aerospace AG, Munich, Federal Republic of
Germany) Ortung und Navigation (ISSN 0474-7550), no. 1, 1991,
p. 91-105. In German. refs
Copyright

Measures for coping with the ever growing traffic density involved in air travel are discussed. The interaction of aircraft and airport in enhancing air traffic safety is emphasized. Simulation tests of various safety-promoting systems are reviewed. C.D.

A91-38543*# Wichita State Univ., KS.
WATER DROPLET IMPINGEMENT ON AIRFOILS AND
AIRCRAFT ENGINE INLETS FOR ICING ANALYSIS
MICHAEL PAPADAKIS (Wichita State University, KS), R.
ELANGOVAN, GEORGE A. FREUND, JR., and MARLIN D, BREER
(Boeing Military Airplanes, Wichita, KS) Journal of Aircraft (ISSN
0021-8669), vol. 28, March 1991, p. 165-174. FAA-supported

research. refs (Contract NAG3-566) Copyright

This paper includes the results of a significant research program for verification of computer trajectory codes used in aircraft icing analysis. Experimental water droplet impingement data have been obtained in the NASA Lewis Research Center Icing Research Tunnel for a wide range of aircraft geometries and test conditions. The body whose impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper and then exposed to an airstream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips by measuring the optical reflectance of the dye deposit on the strips with an automated reflectometer. Impingement characteristics for all test geometries have also been calculated using two recently developed trajectory computer codes. Good agreement is obtained with experimental data. The experimental and analytical data show that maximum impingement efficiency and impingement limits increase with mean volumetric diameter for all geometries tested. For all inlet geometries tested, as the inlet mass flow is reduced, the maximum impingement efficiency is reduced and the location of the maximum impingement shifts toward the inlet inner cowl.

A91-39384 AN UPDATE ON SKAD (SURVIVAL KIT AIR DROPPABLE) SYSTEMS

P. D. JOHNSON (Irvin Industries Canada, Ltd., Fort Erie) Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 89-95. Copyright

The status of current SKAD systems, their requirements, and potential future applications are discussed. Tables show sea SKAD test data in terms of 170 KIAS and SKAD survival kit contents, and diagrams illustrate the sea SKAD sequence of operation, the SKAD cross-section, the SKAD container, and container stresses.

A91-39393 RECENT ESCAPE SYSTEM PARACHUTE EFFORTS AT **DOUGLAS AIRCRAFT COMPANY**

ROBERT B. CALKINS (McDonnell Douglas Corp., Long Beach, CA) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 176-180.

Copyright

Recent recovery-parachute development and feasibility programs are described. The programs include the development of the MINNIPAC II recovery-parachute system and the feasibility of a twin-chute personnel-recovery system. The MINIPAC II was found to provide a rapid and reliable pilot-chute deployment upon seat separation, and no hesitations occurred in pilot-chute opening because the chute is deployed outside of the pilot's wake. Studies showed, that with the novel twin-chute system, injuries could be reduced to 2 percent. The design and development of a solid-state data recorder to acquire parachute drop-test data are also discussed. Photographs are provided of the MINIPAC II seat pan with parachute and survival pouches, a packed 26-foot conical in a deployment bag, a bag with three-ring riser releases, a jumper during deployment (with the pilot chute in the low-speed mode), and a dummy in free-fall at 25,000 ft, (with the pilot chute in the high-speed mode).

A91-40558# LOW ALTITUDE HIGH SPEED CARGO PARACHUTE SYSTEM **DEVELOPMENT - A STATUS REPORT**

W. D. SUNDBERG, THOMAS H. ALSBROOKS, KENNETH L. RONQUILLO (Sandia National Laboratories, Albuquerque, NM), JAMES E. SADECK, and CALVIN K. LEE (U.S. Army, Research, Development, and Engineering Center, Natick, MA) Aerodynamic Decelerator Systems Technology Conference, 11th, San Diego, CA, Apr. 9-11, 1991. 16 p. refs (AIAA PAPER 91-0880) Copyright

A Low Altitude High Speed Cargo (LAHSC) parachute is being developed for deployment at velocities up to 250 knots at 300 ft altitude. The LAHSC parachute will decelerate and turnover a load to a 40 to 60 ft/sec vertical velocity at first vertical at approximately 30 ft AGL. The acceleration limit is 5 g's. Main chute cargo extraction will be necessary. A single parachute will be utilized for a 7500 lb load, and clusters will be used for larger loads. The 64-gore, 70-ft-dia parachute has a ring-slot/solid construction with a flare at the skirt to aid the inflation. This paper describes the parachute, the design process and testing to date. Model parachutes have been tested in wind tunnels and in free flight. A single full-scale parachute has been tested at low speeds with conventional load extraction, and with a vertical trajectory at deployment.

A91-40559# DEPLOYMENT OPTIMIZATION AND HUMAN FACTORS CONSIDERATIONS FOR LOW-ALTITUDE TROOP **PARACHUTES**

JOHN W. WATKINS (U.S. Army, Research, Development, and Engineering Center, Natick, MA) AlAA, Aerodynamic Decelerator Systems Technology Conference, 11th, San Diego, CA, Apr. 9-11, 1991, 14 p.

(AIAA PAPER 91-0889)

On of the major objectives in the development of troop parachutes is to reduce the jump altitude. This requires faster parachute deployment, inflation, and stabilization. At this time, it has not been possible to make significant reductions in jump altitude through improvements in deployment and stabilization. Faster inflation and a corresponding reduction in altitude loss was achieved through the development of special reefing techniques, but testing showed that opening forces could exceed human factors limits. An investigation was done to verify and more closely define the presently accepted human factors limits. These limits have remained the same. The results from tests of a wide variety of parachutes were then compiled to determine the potential for meeting the jump altitude requirement without exceeding the human factors limits. This investigation showed that while it would be possible, careful optimization of the reefing technique used to speed up inflation is required.

National Aeronautics and Space Administration. N91-23095*# Ames Research Center, Moffett Field, CA.

AIRBORNE RESCUE SYSTEM Patent Application LEONARD A. HASLIM, inventor (to NASA) 6 Oct. 1989 17 p (NASA-CASE-ARC-11909-1; NAS 1.71:ARC-11909-1;

US-PATENT-APPL-SN-418320) Avail: NTIS HC/MF A03 CSCL

01/3

The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

N91-23096 California Univ., Berkeley. NEAR MIDAIR COLLISIONS AS AN INDICATOR OF GENERAL AVIATION COLLISION RISK Ph.D. Thesis

H. PAUL SHUCH 1990 225 p

Avail: Univ. Microfilms Order No. DA9103873

Conventional wisdom suggests aircraft midair collisions to be random events, governed by the laws of Brownian Motion, and best analyzed by stochastic methods. An alternative hypothesis, that such accidents are deterministic in nature, and that specific factors leading to midair collisions can be identified and mitigated, is discussed. A predictive model using case control theory is developed for assessing Risk Index, a criterion measure of midair collision likelihood, for any General Aviation flight, actual or hypothetical. Generating the model requires statistical validation of two independent near midair collision data bases, and identifying within them those aircraft, aircrew and airspace characteristics most closely associated with collision risk.

Dissert. Abstr.

N91-23097# Boeing Commercial Airplane Co., Seattle, WA. Advanced Programs-Payloads.

AIRCRAFT COMMAND IN EMERGENCY SITUATIONS (ACES). PHASE 1: CONCEPT DEVELOPMENT Final Report

THOMAS L. REYNOLDS, GREGORY E. GRIMSTAD, and CHARLES D. ANDERSON Apr. 1991 136 p (Contract DTFA03-89-C-00061)

(DOT/FAA/CT-90/21) Avail: NTIS HC/MF A07

Two conceptual approaches for an advanced smoke/fire detection system for commercial passenger jet aircraft are defined that would provide for accurate, timely guidance to the flight crew for their use in responding to possible and/or actual inflight smoke and fire events within the pressurized fuselage. The motivation for this was the computerization of the modern commercial jet aircraft flight deck, the evolution toward the two-man crew, and documented times taken to locate and implement the appropriate emergency procedure. The primary objective of the Aircraft Command in Emergency Situations (ACES) System concepts are to provide the capability to reduce the time required for the flight deck crew to make a decision to land the aircraft.

N91-23098*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ENGINE TECHNOLOGY CHALLENGES FOR A 21ST CENTURY HIGH SPEED CIVIL TRANSPORT

ROBERT J. SHAW 1991 13 p Proposed for presentation at the 10th International Symposium on Air Breathing Engines, Nottingham, England, 1-6 Sep. 1991; sponsored by AIAA (NASA-TM-104363; E-6159; NAS 1.15:104363) Avail: NTIS HC/MF A03 CSCL 01/3

Recent NASA funded studies by Boeing and Douglas suggest an opportunity exists for a 21st Century High Speed Civil Transport (HSCT) to become part of the international air transportation system. However, before this opportunity for high speed travel can be realized, certain environmental and and economic barrier issues must be overcome. These challenges are outlined. Research activities which NASA has planned to address these barrier issues and to provide a technology base to allow U.S. manufacturers to make an informed go/no go decision on developing the HSCT are discussed.

N91-23099*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA. MICROWAVE LANDING SYSTEM MODELING WITH

MICROWAVE LANDING SYSTEM MODELING WITH APPLICATION TO AIR TRAFFIC CONTROL

M. M. POULOSE Apr. 1991 23 p (NASA-TM-102832; A-90184; NAS 1.15:102832) Avail: NTIS HC/MF A03 CSCL 01/3

Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

Author

N91-23100# Army Aeromedical Research Lab., Fort Rucker, AL.

A TEST OF THE AMERICAN SAFETY FLIGHT SYSTEMS, INC. PREBREATHER/PORTABLE OXYGEN SYSTEM Final Report ROBERT L. STEPHENS, FRANCIS S. KNOX, ROBERT A. MITCHELL, and VADANKUMAR M. PATEL Jan. 1991 27 p (Contract DA PROJ. 3E1-62787-A-878) (AD-A232723; USAARL-91-5) Avail: NTIS HC/MF A03 CSCL 14/2

In response to a request from the Aviation Life Support Equipment Product Manager (ALSE-PM) of the Aviation Systems Command (AVSCOM), the U.S. Army Aeromedical Research Laboratory (USAARL) conducted an investigation and evaluation of the Prebreather/Portable Oxygen System (P/POS) manufactured by American Safety Flight Systems, Inc. A test of the P/POS was conducted in the hypobaric chamber at the U.S. Army School of Aviation Medicine. Four crews of four subjects each and one crew of three (the last crew had only three because one subject had a middle ear infection) prebreathed 100 percent chamber oxygen for 30 minutes. Then they switched to the P/POS while the chamber was depressurized to 18,000 feet MSL at a rate of 500 fpm. They remained at this altitude pressure until they reduced the P/POS pressure from 1800 psi to 200 psi. Following this, the chamber was repressurized to sea level at a rate of 4000 fpm. Mission durations, percent oxygen saturation and cognitive performance were measured for each subject. The average mission duration was 2 hr 28 min with a standard deviation of 13.9 min. The study indicated the P/POS will meet the needs of all helicopter missions for the Army that do not require prebreathing.

N91-24140°# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

AIRBORNE WIND SHEAR DETECTION AND WARNING SYSTEMS: THIRD COMBINED MANUFACTURERS' AND TECHNOLOGISTS' CONFERENCE, PART 2

DAN D. VICROY, comp., ROLAND L. BOWLES, comp., and HERBERT SCHLICKENMAIER, comp. (Federal Aviation Administration, Washington, DC.) Jan. 1991 464 p Conference held in Hampton, VA, 16-18 Oct. 1990 Prepared in cooperation with Federal Aviation Administration, Washington, DC (NASA-CP-10060-PT-2; NAS 1.55:10060-PT-2;

DOT/FAA/RD-91/2-PT-2) Avail: NTIS HC/MF A20 CSCL 01/3
The Third Combined Manufacturers' and Technologists'
Conference was held in Hampton, Va., on October 16-18, 1990.
The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

N91-24141*# Lockheed Missiles and Space Co., Palo Alto, CA. CLASS: COHERENT LIDAR AIRBORNE SHEAR SENSOR. WINDSHEAR AVOIDANCE

RUSSELL TARG In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 509-526 Jan 1991

(LMSC-F-415048) Avail: NTIS HC/MF A20 CSCL 01/3

The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a

predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.

N91-24142*# Ophir Corp., Lakewood, CO. CONTINUOUS WAVE LASER FOR WIND SHEAR DETECTION LOREN NELSON In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 527-554 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

Details of the design and development of a continuous-wave heterodyne carbon dioxide laser which has wind shear detection capabilities are given in viewgraph form. The goal of the development was to investigate the lower cost CW (rather than pulsed) lidar option for look-ahead wind shear detection from aircraft. The device has potential utility for ground based wind shear detection at secondary airports where the high cost of a Terminal Doppler Weather Radar system is not justifiable.

National Aeronautics and Space Administration. N91-24143*# Langley Research Center, Hampton, VA.

STATUS OF 2 MICRON LASER TECHNOLOGY PROGRAM

MARK STORM In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists Conference, Part 2 p 555-576 Jan. 1991 Avail: NTIS HC/MF A20 CSCL 01/3

The status of 2 micron lasers for windshear detection is described in viewgraph form Theoretical atmospheric and instrument system studies have demonstrated that the 2.1 micron Ho:YAG lasers can effectively measure wind speeds in both wet and dry conditions with accuracies of 1 m/sec. Two micron laser technology looks very promising in the near future, but several technical questions remain. The Ho:YAG laser would be small, compact, and efficient, requiring little or no maintenance. Since the Ho:YAG laser is laser diode pumped and has no moving part, the lifetime of this laser would be directly related to the diode laser lifetimes which can perform in excess of 10,000 hours. Efficiencies of 3 to 12 percent are expected, but laser demonstrations confirming the ability to Q-switch this laser are required. Coherent laser operation has been demonstrated for both the CW and Q-switched lasers.

N91-24144*# Litton Aero Products, Moorpark, CA. AVIONIC LASER MULTISENSOR PROGRAM AT LITTON AERO **PRODUCTS**

ROD BENOIST and FARZIN AMZAJERDIAN In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 577-586 Jan. 1991 Avail: NTIS HC/MF A20 CSCL 01/3

Information on the Avionic Laser Multisensor program at Litton Aero Products is given in viewgraph form. Included are project goals, potential avionic applications, and future work.

National Aeronautics and Space Administration. N91-24145*# Langley Research Center, Hampton, VA.

STATUS OF NASA'S IR WIND SHEAR DETECTION RESEARCH

In NASA. Langley Research Center, BURNELL MCKISSICK Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 589-608 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

The status of NASA's wind shear detection research is reported in viewgraph form. Information is given on early experience, FLIR detectors, quantities measured by Airborne Warning and Avoidance System 1 (AWAS 1), the time series model for Flight 551, conclusions from NASA 737 flights, conclusions on Orlando 7-7-90, Author and AWAS 3 mnemonics.

N91-24146*# Turbulence Prediction Systems, Boulder, CO. STATUS OF TURBULENCE PREDICTION SYSTEM'S AWAS 3 PAT ADAMSON In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 609-635 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

The status of the Airborne Warning and Avoidance System 3 (AWAS 3) is reported in viewgraph form. Information is given on flight tests and FAA certification. Included is a description of the flight test of a passive infrared system that achieved the first ever advanced warning of an in-flight windshear encounter. The infrared system recorded the detection of the windshear with a 35 second advance warning. The data recorded in-flight by the infrared system was later compared to and found to agree with the data recorded by the Terminal Doppler Weather Radar (TDWR) and the in-situ Author air data.

N91-24147*# Colorado State Univ., Fort Collins. AN AIRBORNE FLIR DETECTION AND WARNING SYSTEM FOR LOW ALTITUDE WIND SHEAR

PETER C. SINCLAIR and PETER M. KUHN (Aries Corp., McLean, In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 637-677 Submitted for publication

Avail: NTIS HC/MF A20 CSCL 01/3

It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter. Author

Westinghouse Defense and Electronic Systems N91-24149*# Center, Baltimore, MD. Radar Systems Engineering. SABERLINER FLIGHT TEST FOR AIRBORNE WIND SHEAR

FORWARD LOOKING DETECTION AND AVOIDANCE RADAR SYSTEMS

BRUCE D. MATHEWS In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 713-754 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.

Author

N91-24151*# Rockwell International Corp., Cedar Rapids, IA. Air Transport Div.

WIND SHEAR RADAR PROGRAM FUTURE PLANS

in NASA. Langley Research Center, ROY E. ROBERTSON Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 767-781 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

The status of the Windshear Radar Program at the Collins Air Transport Division of Rockwell International is given in viewgraph form. Topics covered include goals, modifications to the WXR-700 system, flight test plans, technical approaches, considerations, system considerations, certification, and future Author

National Aeronautics and Space Administration. N91-24152*# Langley Research Center, Hampton, VA.

CLUTTER MODELING OF THE DENVER AIRPORT AND SURROUNDING AREAS

STEVEN D. HARRAH, VICTOR E. DELMORE, and ROBERT G. ONSTOTT (Environmental Research Inst. of Michigan, Ann Arbor.) In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 783-836 Avail: NTIS HC/MF A20 CSCL 01/3

To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described. Author

N91-24153*# Research Triangle Inst., Newport News, VA RADAR SIMULATION PROGRAM UPGRADE AND ALGORITHM DEVELOPMENT

CHARLES L. BRITT In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 839-867

(Contract NAS1-18925)

Avail: NTIS HC/MF A20 CSCL 01/3

The NASA Radar Simulation Program is a comprehensive calculation of the expected output of an airborne coherent pulse Doppler radar system viewing a low level microburst along or near the approach path. Inputs to the program include the radar system parameters and data files that contain the characteristics of the microbursts to be simulated, the ground clutter map, and the discrete target data base which provides a simulation of the moving ground clutter. For each range bin, the simulation calculates the received signal amplitude level by integrating the product of the antenna gain pattern and the scattering source amplitude and phase of a spherical shell volume segment defined by the pulse width, radar range, and ground plane intersection. A series of in-phase and quadrature pulses are generated and stored for further processing if desired. In addition, various signal processing techniques are used to derive the simulated velocity and hazard measurements, and store them for use in plotting and display programs.

N91-24154*# Clemson Univ., SC. Radar Systems Lab. SIGNAL PROCESSING TECHNIQUES FOR CLUTTER FILTERING AND WIND SHEAR DETECTION

ERNEST G. BAXA, JR. and MANOHAR D DESHPANDE NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 869-911 Jan. 1991 Avail: NTIS HC/MF A20 CSCL 01/3

An extended Prony algorithm applicable to signal processing techniques for clutter filtering and windshear detection is discussed. The algorithm is based upon modelling the radar return as a time series, and appears to offer potential for improving hazard factor estimates in the presence of strong clutter returns.

National Aeronautics and Space Administration. N91-24155*# Langley Research Center, Hampton, VA.

AIRBORNE RADAR SIMULATION STUDIES OF THE DENVER JULY 11, 1988 MICROBURST

CHARLES L. BRITT (Research Triangle Inst., Newport News, VA.) and E. M. BRACALENTE In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 913-936 Jan. 1991 Avail: NTIS HC/MF A20 CSCL 01/3

In the simulation program, a wind shear detection Doppler radar was placed in UAL 395 and 236 aircraft and flown along their landing flight paths. The microburst was placed at the appropriate location and intensity corresponding to each aircraft's landing approach time. A baseline set of radar design parameters were used in the simulation. Output display information and wind shear detection processing was produced as the aircraft approached the microburst. Information on the results of the simulation study are given in graphical form.

National Aeronautics and Space Administration. N91-24156*# Langley Research Center, Hampton, VA.

DESCRIPTION, CHARACTERISTICS AND TESTING OF THE NASA AIRBORNE RADAR

W. R. JONES, O. ALTIZ, P. SCHAFFNER, J. H. SCHRADER (Research Triangle Inst., Newport News, VA.), and H. J. C. BLUME In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 2 p 937-978 Jan. 1991

Avail: NTIS HC/MF A20 CSCL 01/3

Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

Author

N91-24157# Wichita State Univ., KS. National Inst. for Aviation

PROGRAM PLANS FOR AVIATION SAFETY RESEARCH

WILLIAM H. WENTZ, JOHN J. HUTCHINSON, BEHNAM BAHR, WAYNE BECKER, WALTER BERNHART, RANDALL M. RICHARD CHANDLER (Federal Aviation CHAMBERS, Administration, Atlantic City, NJ.), THOMAS K. DELILLO, DAVID ELLIS, JAMES HO et al. Dec. 1990 62 p (Contract DTFA03-90-C-00050)

(NIAR-90-32) Avail: NTIS HC/MF A04

The National Institute for Aviation research at the Wichita State University is conducting research in aviation safety for the Federal Aviation Administration (FAA). The research activities are in the three major areas of aging aircraft, crashworthiness and structural integrity, and human factors. Specific topics include crack detection in aircraft structures, scratch effects on fatigue of new alloys, crash analysis of aircraft seats, paint removal for composite aircraft structures, freeze/thaw damage to composites, and single pilot instrument flight rules (IFR) operations.

N91-24161# Wichita State Univ., KS. **CRASHWORTHINESS EXPERIMENTS** WAYNE BERNHART, HOWARD SMITH, RICHARD CHANDLER, and JOSEPH MITCHELL In its Program Plans for Aviation Safety Dec. 1990 Research 6 p Avail: NTIS HC/MF A04

The Wichita State University purchased a horizontal impact sled. The sled is currently being subjected to various acceptance tests. The primary objective of this research program is to complete the development of a total dynamic test capability to support elements of the aircraft industry in meeting future and present FAA regulatory standards. The FAA has developed these regulatory standards for seats and restraint systems and is expected to issue new standards for various aircraft components. It is anticipated that the FAA will conduct various dynamic tests in this laboratory in support of their own program in crashworthiness.

National Aeronautics and Space Administration. N91-24166*# Langley Research Center, Hampton, VA.
AIRBORNE WIND SHEAR DETECTION AND WARNING

SYSTEMS: THIRD COMBINED MANUFACTURERS' AND TECHNOLOGISTS' CONFERENCE, PART 1

DAN D. VICROY, comp., ROLAND L. BOWLES, comp., and HERBERT SCHLICKENMAIER, comp. (Federal Aviation Administration, Washington, DC.) Jan. 1991 490 p Conference held in Hampton, VA, 16-18 Oct. 1990 Prepared in cooperation with FAA, Washington, DC

(NASA-CP-10060-PT-1; NAS 1.55:10060-PT-1;

DOT/FAA/RD-91/2-PT-1) Avail: NTIS HC/MF A21 CSCL 14/2 Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

Office National d'Etudes et de Recherches N91-24167*# Aerospatiales, Paris (France).

LIDAR STUDIES ON MICROBURSTS

Y. AURENCHE and J. L. BOULAY In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 29-35 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 14/2 p 29-35

Preliminary analysis of requirements for future airborne windshear detection systems is presented. The following topics are covered: flight mechanics; microbursts modeling; microburst detection with airborne systems (LIDAR, radar, passive IR sensors); microbursts prediction with ground systems (VHF interferometry). A short overview of these studies is presented and some results Author are discussed.

Service Technique de la Navigation Aerienne, N91-24168*# Paris (France).

RADAR PERFORMANCE EXPERIMENTS

C. LEROUX, F. BERTIN, and H. MOUNIR (Centre National d'Etudes des Telecommunications, Saint Maur des Fosses, France) NASA, Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 37-54 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 14/2

Theoretical studies and experimental results obtained at Coulommiers airport showed the capability of Proust radar to detect wind shears, in clear air condition as well as in presence of clouds or rain. Several examples are presented: in a blocking highs situation an atmospheric wave system at the Brunt-Vaisala frequency can be clearly distinguished; in a situation of clouds without rain the limit between clear air and clouds can be easily seen; and a windshear associated with a gust front in rainy conditions is shown. A comparison of 30 cm clear air radar Proust and 5 cm weather Doppler radar Ronsard will allow to select the best candidate for wind shear detection, taking into account the low sensibility to ground clutter of Ronsard radar. Author N91-24169*# Remtech, S.A., Paris (France).

MEGASODAR EXPERIMENT

ALAIN DONZIER In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 57-59 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 14/2

SODAR application to wind shear and wake vortex detection is described. A commercial phase array SODAR line was developed and operated at Roissy International Airport for a few days. Some radial wind data are presented. Even though this system was not optimized for such application, it showed ranges of about 800 m for an averaging time of 10 min and an elevation angle of 20 deg. Some strong echo regions are present in the data and seem to be related to wake vortex.

N91-24172*# Massachusetts Inst. of Tech., Cambridge. MICROBURST AVOIDANCE SIMULATION TESTS

JOHN HANSMAN In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 107-141 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

Implementation issues for uplinked microburst alerts are presented in the form of view-graphs. The following topics are and presentation evaluation, transmission, ground-based Doppler weather radar derived information through a limited bandwidth digital data link; electronic cockpit presentation of uplinked wind shear alerts (pilot opinion survey, part-task simulation experiment); presentation modes (verbal, textual, and graphical); and ground evaluation of ground-measures wind shear Author

N91-24173*# Flight Safety Foundation, Inc., Arlington, VA. WIND SHEAR TRAINING APPLICATIONS FOR 91/135

ED ARBON In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 143-152 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

The requirement for wind shear training of all pilots has been demonstrated too often by the accident statistics of past years. Documents were developed to train airline crews on specific aircraft and to teach recognition of the meteorological conditions that are conducive to wind shear and microburst formation. A Wind Shear Author Training Aid program is discussed.

N91-24174*# Honeywell, Inc., Phoenix, AZ. Commercial Flight Systems Group

INTEGRATION OF WEATHER SENSING DEVICES

JIM DAILY In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 177-199

Avail: NTIS HC/MF A21 CSCL 01/3

The state of airborne atmospheric sensing is continually evolving as devices are developed which further enhance the detection of meteorological phenomena. Assuming that these technologies prove to be feasible, the greatest long-term benefit would be attained by effective integration of the various sensors. A system which could accomplish this goal would conceivably provide enhanced atmospheric analysis, coherent display capability, and would allow for the development of expert system to predict weather conditions. The existing and developing weather detection technologies are presented, followed by an overview of what issues must be dealt with in the creation of an integrated system. A framework of a basic system is also presented which identifies some of the potential applications that exist.

N91-24175*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA

NAŠA LANGLEY FLIGHT TEST PROGRAM

MIKE LEWIS In its Airborne Wind Shear Detection and Warning

03 AIR TRANSPORTATION AND SAFETY

Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 201-224 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 01/3

General overview of NASA/Langley Research Center wind shear flight project is presented in the form of view-graphs. The following subject areas are covered: program elements (hazard characterization, sensor technology, and flight management systems); flight test objective; facility; flight requirements; flight operations; and status/schedule.

National Aeronautics and Space Administration. N91-24176*# Langley Research Center, Hampton, VA.

TOWR INFORMATION ON THE FLIGHT DECK

DAVE HINTON In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 227-242 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 01/3

TDWR information on the flight deck is presented in the form of view-graphs. The following subject areas are covered: air/ground wind shear information integration research; wind shear detection/warning and avoidance system; initial experiment; and future plans. Author

N91-24177*# Massachusetts Inst. of Tech., Lexington. Lincoln

ORLANDO EXPERIMENT

STEVE CAMPBELL In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 243-262 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

FAA terminal Doppler weather radar program and NASA/FAA airborne wind shear program are presented in the form of view-graphs. The following topics are included: TDWR testbed radar performance; cockpit display system; flight operations; analysis workstation; and future work.

N91-24178*# National Center for Atmospheric Research, Boulder, CO

INTEGRATION OF THE TOWR AND LLWAS WIND SHEAR **DETECTION SYSTEM**

LARRY CORNMAN In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 263-297

Avail: NTIS HC/MF A21 CSCL 01/3

Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for Integrating ground and airborne wind shear detection systems are briefly examined.

Author

N91-24179*# Mitre Corp., McLean, VA.
THERMODYNAMIC ALERTER FOR MICROBURSTS (TAMP)

PETER J. ECCLES In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 351-363 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

The following subject areas are covered: microburst detection, location and measurement, thermal alerter for microbursts prototypes (TAMP); sensor-transmitters (Senstrans) design; TAMP Author installation; and DAPAD software.

N91-24180*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

STATUS OF HEAVY RAIN TESTS

GAUDY BEZOS In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 367-393 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 01/3

The heavy rain effects program is presented in the form of the view-graphs. The following topics are covered: rain effects on airfoil performance; two-phase flow dynamics; wind tunnel test results; issues; large-scale results; and summary. Author

N91-24182*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA

ESTIMATE OF HEAVY RAIN PERFORMANCE EFFECT

DAN D. VICROY In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' Technologists' Conference, Part 1 p 425-450 Jan. 1991 Avail: NTIS HC/MF A21 CSCL 01/3

The aerodynamic effect of heavy rain on airplane performance is presented in the form of view-graphs. The following subject areas are covered: review of heavy rain airfoil tests; development of heavy rain aerodynamic model for a twin-jet transport; performance analysis with heavy rain effects; numeric simulation of wet microburst encounter; and summary of results and future

N91-24183*# Sundstrand Data Control, Inc., Redmond, WA. STATUS OF SUNDSTRAND RESEARCH

DON BATEMAN In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 453-477 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

Wind shear detection status is presented in the form of view-graphs. The following subject areas are covered: second generation detection (Q-bias, gamma bias, temperature biases, maneuvering flight modulation, and altitude modulation); third generation wind shear detection (use wind shear computation to augment flight path and terrain alerts, modulation of alert thresholds based on wind/terrain data base, incorporate wind shear/terrain alert enhancements from predictive sensor data); and future research and development.

N91-24184*# Honeywell, Inc., Phoenix, AZ. Commercial Flight Systems Div.

TEMPERATURE LAPSE RATE AS AN ADJUNCT TO WIND SHEAR DETECTION

TERRY ZWEIFIL In NASA. Langley Research Center, Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 479-495 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 01/3

Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System. Author

N91-24185# Computer Resource Management, Inc., Herndon,

NATIONAL AIRSPACE SYSTEM. COMMUNICATIONS **OPERATIONAL CONCEPT NAS-SR-136**

WILLIAM TRENT, THOMAS PICKERELL, and HAROLD NELSON May 1991 68 p

(Contract DTFA01-91-Y-01004)

(DOT/FAA/SE-91/1) Avail: NTIS HC/MF A04

A requirement of the National Airspace System (NAS) is to provide for communications, as identified in the NAS Requirement Specification, NAS-SR-1000 (NASSRS). A concept of operation for air-ground, ground-ground communications connectivity and capability, and national emergency communications is presented. This concept describes the capabilities and shows the relationships between subsystems, facilities, information, and operators/users. It is intended to provide a common perspective for personnel involved in communication activities, assist in determining whether communications meet formal requirements, and support coordination among the organizations involved. This concept is one of eight operational concepts. The remaining yet to be written concepts will complete the description of the system requirements as detailed in the NASSRS.

Royal Aerospace Establishment, Farnborough N91-24186# (England).

LIGHTNING PROTECTION REQUIREMENTS FOR AIRCRAFT: A PROPOSED SPECIFICATION

G. A. M. ODAM, A. W. HANSON, and R. H. EVANS (Halarose Ltd., England) 25 Oct. 1990 147 p Revised (RAE-TM-FS(F)-632-ISSUE-1-REV; BR116373; ETN-91-99331; AD-A233712) Copyright Avail: NTIS HC/MF A07

A Royal Aerospace recommendation for a specification to define the United Kingdom Ministry of Defense (UK MOD) requirements for the lightning protection of aircraft is presented. It is an appendix to a JAC paper proposing changes to the lightning content of DEF STAN 00-970. This issue covers background and advisory material, certification, design, and testing requirements. It applies to all fixed and rotary wing aircraft.

N91-24187# Army Aeromedical Research Lab., Fort Rucker,

THE AIRBAG AS A SUPPLEMENT TO STANDARD RESTRAINT SYSTEMS IN THE AH-1 AND AH-64 ATTACK HELICOPTERS AND ITS ROLE IN REDUCING HEAD STRIKES OF THE COPILOT/GUNNER, VOLUME 2 Final Report

NABIH M. ALEM, DENNIS F. SHANAHAN, and JOHN V. BARSON Jan. 1991 162 p

(AD-A232907; USAARL-91-6-VOL-2) Avail: NTIS HC/MF A08 CSCL 01/3

Accident investigation records of U.S. Army helicopter crashes show injuries of pilots due to striking a structure inside the cockpit outnumber those due to excessive accelerations by a five-to-one ratio. This two-volume report presents the results of a study of the effectiveness of airbags in reducing the severity of contact injury to the gunner when striking the gunsight. Airbag systems were installed on the gunsights in simulated Cobra and Apache cockpits, then sled tested at 7 and 25 g. The tests indicated airbags reduced head accelerations by 65 percent, head injury criteria by 77 percent, and head angular acceleration by 76 percent in the Cobra tests. In the Apache tests, the airbags reduced those same indicators by 68, 52, and 83 percent. An airbag system, the report concludes, is likely to prevent severe or fatal head and chest injuries in an Apache or Cobra crash. Volume 1 of the report describes the tests and discusses the results. Volume 2 consists of Appendixes A, B, and C of the report and contains processed signal graphs of all sled tests.

N91-24188# Army Aeromedical Research Lab., Fort Rucker,

THE AIRBAG AS A SUPPLEMENT TO STANDARD RESTRAINT SYSTEMS IN THE AH-1 AND AH-64 ATTACK HELICOPTERS AND ITS ROLE IN REDUCING HEAD STRIKES OF THE COPILOT/GUNNER, VOLUME 1 Final Report

NABIH M. ALEM, DENNIS F. SHANAHAN, JOHN V. BARSON, and WILLIAM H. MUZZY, III Jan. 1991 50 p (Contract DA PROJ. 3M1-62787-A-878)

(AD-A233349; USAARL-91-6-VOL-1) Avail: NTIS HC/MF A03

CSCL 01/3 Accident investigation records of U.S. Army helicopter crashes

show injuries of pilots due to striking a structure inside the cockpit outnumber those due to excessive accelerations by a five-to-one

ratio. This two-volume reports presents the results of a study of the effectiveness of airbags in reducing the severity of contact injury to the gunner when striking the gunsight. Airbag systems were installed on the gunsights in simulated Cobra and Apache cockpits, then sled tested at 7 and 25 g. The tests indicated airbags reduced head accelerations by 65 pct. head injury criteria by 77 pct. and head angular acceleration by 76 pct. in the Cobra tests. In the Apache tests, the airbags reduced those same indicators by 68, 52, and 83 pct. It is concluded that an airbag system works very well. Volume 1 of the report describes the tests and discusses the results.

04

AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

A91-37094 RELATIVE EFFECTIVENESS OF 2-D VS. 1-D HIGH RESOLUTION MICROWAVE IMAGEING

BERNARD D. STEINBERG and BONGSOON KANG (Pennsylvania, University, Philadelphia) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 142-147. Research supported by USAF and U.S. Army. refs Copyright

The relative effectiveness of two-dimensional and one-dimensional high-resolution microwave imaging is evaluated, with preliminary comparison results presented for the Boeing 727 and the widebodied L-1011. Data were obtained at X-band as the aircraft were flying into Philadelphia International Airport. The data-acquisition radar was a low-power 1250-W-peak short-pulse fully coherent radar. The results indicate that it is as yet unwarranted to conclude that one-dimensional imaging is relatively useless for target identification.

A91-37101 **EVOLUTION OF CLUTTER SUPPRESSION TECHNIQUES FOR** AIR TRAFFIC CONTROL AND SURVEILLANCE RADAR

GASPARE GALATI (Roma II, Universita, Rome, Italy) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 257-262. refs

Copyright

The problem of suppressing clutter while maintaining the detection capability of aircraft targets is of paramount importance for air traffic control radars. This paper deals with the most popular suppression method, i.e., discriminating clutter from moving targets by Doppler filtering. The development of valuable clutter filtering techniques and of the pertinent processing schemes is reviewed. Some pitfalls related to incorrect use of intuition (instead of the well-established theory corroborated by field experience) are also described. The overall evolution of the ATC radar is also reviewed, including future trends.

A91-37107 ALL SOLID-STATE ASR WITH ADAPTIVE PULSE DOPPLER PROCESSING

HIROSHI NAKAMURA, and TOSHIHIKO EliCHI KIUCHI, HAGISAWA (NEC Corp., Radio Application Div., Fuchu, Japan) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 293-298.

Copyright

An all solid-state ASR employing a pulse Doppler processor

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION

adaptable to each clutter area and capable of supplying analog video with smoothed blips has been developed. The high subclutter visibility provided by pulse Doppler processing is combined with the azimuth accuracy of a conventional MTI. The new ASR promises better target detectability for small aircraft in a clutter environment, with better reliability and maintainability than conventional radars.

A.F.S.

A91-37121

SSR SIGNAL DISCRIMINATION FROM GARBLED REPLIES

KAKUICHI SHIOMI and TORAO ISHIBASHI (Ministry of Transport, Electronic Navigation Research Institute, Mitaka, Japan) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 397-402. Copyright

A new method for discriminating garbled SSR (Secondary Surveillance Radar) replies is described. By using two SSR receiving stations and analyzing received signals from aircraft, the SSR identification of aircraft is made for the garbled replies. The results of the simulation show that aircraft has been identified about 90 percent of cases by this method when two replies are garbled.

Author

A91-37139

ADAPTIVE AIRBORNE TRACK WHILE SCAN

DAVID CALUGI and ALDO RICCOBONO (Segnalamento Marittimo ed Aereo S.p.A., Florence, Italy) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 596-601.

This paper presents the track while scan (TWS) systems adopted on airborne radar for tracking of naval targets. The filter adopted is an adaptive Kalman, which permits it to support the tracking of targets that are either in a steady state or maneuvering. This TWS technique gives accurate estimations of both the start and termination of target maneuvers as it can select the proper bandwidth of the estimator filter according to the relation between the maneuver and noise intensity. To evaluate both the filtering efficiency and the plot extractor, the geometric operative environment and the radar processing chain are simulated on VAX computers.

A91-37145

EVALUATION OF THE PERFORMANCE OF A RISC BASED REAL TIME DATA PROCESSOR IN AIR TRAFFIC CONTROL RADAR APPLICATIONS

PIERCARLO GIUSTINIANI (Selenia S.p.A., Rome, Italy) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 638-643. Copyright

A RISC based architecture developed to perform radar management, parameter extraction, adaptivity control, and clutter/interference rejection in ATC systems is described. Relevant parameters, design criteria, HW/SW allocation of the implemented functions and the SW algorithms are analyzed. This architecture is optimized to process the detections created by a thresholding system applied to a filtered video, but it can be readily utilized in different processing models. The utilization of processor resources in terms of data and program memory occupations and computing power for the different radar functions is shown.

A91-37200

CHARACTERISTICS OF THE RECEPTION BY THE ANTENNA SYSTEMS OF A DESCENDING AIRCRAFT OF SIGNALS FROM RADIO-BEACON LANDING SYSTEMS [OSOBENNOSTI PRIEMA ANTENNYMI SISTEMAMI SNIZHAIUSHCHEGOSIA LETATEL'NOGO APPARATA SIGNALOV OT POSADOCHNYKH RADIOMAIACHNYKH SISTEM]

A. G. KRAVCHENKO and O. K. SHKURUPII Radiotekhnika

(Kharkov) (ISSN 0485-8972), no. 91, 1989, p. 100-106. In Russian. refs

Copyright

A theoretical model is developed for characterizing the reception by the antennas of a descending aircraft of radio-beacon signals. It is shown that the intensity of fields arising due to reflection from the ground and the aircraft is significant. The intensity of these fields is directly proportional to the conductivity of the underlying surface and the size of the aircraft.

A91-38215

AIR TRAFFIC CONTROL TODAY AND TOMORROW

THOMAS STONOR (National Air Traffic Services, London, England) Journal of Navigation (ISSN 0373-4633), vol. 44, May 1991, p. 143-151.

Copyright

An overview is presented of the current ATC situation in and around the UK and how the constantly growing congestion, with its attendant route and airport complications, is being addressed. Among the new systems being introduced, consideration is given to the Microwave Landing System, the Advanced Air Traffic Services system, Mode-S radar technology, Navstar, and the Global Navigation Satellite System. Some of the key issues addressed are the research, development and evaluation of air-ground data link technology, the analysis of improved route structures, airspace sectorization and air traffic procedures, and evaluation for wider application of conflict alert facilities and operational trials of the independent 'last ditch' airborne collision avoidance system.

R.E.P.

A91-38217

EUROPEAN STUDIES TO INVESTIGATE THE FEASIBILITY OF USING 1000 FT VERTICAL SEPARATION MINIMA ABOVE FL 290. I

M. E. COX (Eurocontrol, Brussels, Belgium), J. M. TEN HAVE (National Aerospace Laboratory, Amsterdam, Netherlands), and D. A. FORRESTER (Meteorological Office, Bracknell, England) Journal of Navigation (ISSN 0373-4633), vol. 44, May 1991, p. 171-183. refs

Copyright

In response to airline pressures for fuel economies, ICAO established a study program early in the 1980's to determine the feasibility of halving the vertical separation minimum (VSM) utilized above flight level (FL) 290 to 1000 ft. This paper describes a European contribution to this program. The aims and organization of the experimental work are outlined; the choice of methodology available to measure height-keeping errors is described; and an indication of the measurement accuracy achieved is given. It is shown that, whereas it would be technically feasible to introduce a 1000-ft VSM in the North Atlantic region, other measures would be necessary prior to using it in continental airspace.

A91-38322

CURRENT STATUS AND FUTURE PROSPECTS OF AIR TRAFFIC CONTROL [SITUATION ACTUELLE ET FUTURE DU CONTROLE DE LA CIRCULATION AERIENNE]

BERNARD MIALLIER (Eurocontrol, Brussels, Belgium) Navigation (Paris) (ISSN 0028-1530), vol. 39, April 1991, p. 201-209. In French.

Copyright

A review of the current problems confronting air traffic control and the requirements for alleviating this situation is presented. ATC today is significantly constrained by current communication, navigation and surveillance limitations, most of which are the result of unreliable HF communication, line of sight propagation, voice communication that is not conducive to the exchange of diverse and complex data. Planning and coordination for correcting these problems are discussed. It is indicated that improvements between air and ground units can be realized, and an adaptation to traffic demand where automated assistance will help in reducing the control workload per aircraft can be achieved.

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION

A91-38526

ORIENTATION MEASUREMENTS AND TRANSMISSION VIA MODE S AT AIRPORTS [MESSUNGEN ZUR ORTUNG UND UEBERTRAGUNG DURCH MODE S AUF FLUGHAEFEN]

WOLFGANG DETLEFSEN (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) Ortung und Navigation (ISSN 0474-7550), no. 1, 1991, p. 80-90. In German.

Copyright

The development of an electronic takeoff roll safety system using Mode S is discussed. Test measurements of the system are reported. The effect of the radio field load on the system is addressed.

C.D.

A91-38577*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

FLIGHT TESTS SHOW POTENTIAL BENEFITS OF DATA LINK AS PRIMARY COMMUNICATION MEDIUM

CHARLES H. SCANLON and CHARLES E. KNOX (NASA, Langley Research Center, Hampton, VA) International Aeronautical Telecommunications Symposium on Data Link Integration, McLean,

VA, May 20-23, 1991, Paper. 13 p.

Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.

A91-39187

FUNCTIONAL-ADAPTIVE DATA PROCESSING IN AIRBORNE RADIO NAVIGATION AND LANDING SYSTEMS [FUNKTSIONAL'NO-ADAPTIVNAIA OBRABOTKA INFORMATSII V BORTOVYKH USTROISTVAKH RADIOSISTEM NAVIGATSII I POSADKI SAMOLETOV]

A. K. BERNIUKOV (Vladimirskii Politekhnicheskii Institut, Vladimir, USSR) Elektronnoe Modelirovanie (ISSN 0204-3572), vol. 13, Mar.-Apr. 1991, p. 8-13. In Russian. refs

Copyright

A method is presented for the functional adaptation of the time-pulse radio navigation and landing systems of aircraft to signal-like and stochastic multibeam reflections from localized and distributed reflectors in airports. The method makes it possible to improve the quality of navigation data with limited a priori noise statistics. An approach to the synthesis of an automatic functional-adaptive digital processor is presented, and synthesis procedures are described.

A91-39433#

ANGLE-ONLY TRACKING FILTER IN MODIFIED SPHERICAL COORDINATES

DAVID V. STALLARD Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 694-696. refs

Copyright

The process of choosing an efficient coordinate system for angle-only tracking is extended to three dimensions with modified spherical coordinates. The modified spherical coordinates filter has six state variables: two angles, their derivatives, inverse range, and range rate over range, which are transformable into Cartesian position and velocity. The six-state filter successfully estimates the equivalents of position and velocity in three dimensions for a nonmaneuvering target, using only moderate accelerations of the tracking aircraft. Although the particular application is for 'track-while-scan' by an aircraft, the algorithm could also be used by a homing missile with a faster data rate.

A91-39756 PULSE DOPPLER SIGNATURE OF A ROTARY-WING AIRCRAFT

BARRY D. BULLARD and PATRICK C. DOWDY (Georgia Institute of Technology, Atlanta) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 6, May 1991, p. 28-30. Copyright

Field measurements of a modified Sikorsky S-55 helicopter target were carried out to investigate rotary-wing aircraft Doppler radar signature phenomenology. The results of the data analysis with regard to classification and identification of the aircraft based on its signature are presented. It was found that using the Doppler radar return and appropriate feature extraction techniques, the helicopter's design features can be estimated. Target backscatter from the main rotor blades, tail rotor blades, or hub can be used for target detection, acquisition, and classification as a rotary-wing aircraft. The extraction of configuration and blade count features can further define the helicopter for identification.

A91-39776 HIGH GAIN AIRBORNE ANTENNA FOR SATELLITE COMMUNICATIONS

SHINICHI TAIRA, MASATO TANAKA, and SHINGO OHMORI (Communications Research Laboratory, Kashima, Japan) IEEE Transactions on Aerospace and Electronic Systems (ISSN 0018-9251), vol. 27, March 1991, p. 354-360. refs Copyright

The performance of an airborne phased-array antenna, which was developed and evaluated onboard a commercial aircraft using the Engineering Test Satellite V (ETS-V), is reported. The system requirements and the antenna configuration that satisfies them are described. The radiation pattern, gain and axial ratio, noise temperature and ratio of gain to noise temperature, and environmental characteristics are presented. The results obtained by the flight experiments demonstrate that the performance of the antenna is the same as that on the ground, so that the antenna is suitable for installation in an aircraft for satellite communications.

A91-39778

406 MHZ ELT SIGNAL SPECTRA FOR SARSAT

GARY VRCKOVNIK (Defence Research Establishment Ottawa, Canada) and CHARLES R. CARTER (McMaster University, Hamilton, Canada) IEEE Transactions on Aerospace and Electronic Systems (ISSN 0018-9251), vol. 27, March 1991, p. 388-407, NSERC-supported research. refs

Copyright

The signal format and spectral properties of the 406-MHz emergency locator transmitter (ELT) used in the search and rescue satellite aided tracking (Sarsat) system are examined. The ELT improves location estimate accuracies and can relay information about the particular aircraft and its problem, by means of the digitally modulated message fields. It is shown that due to the RF signal frequency characteristics and the Doppler shift, processing must be performed over a frequency band of approximately 25 kHz. Through the use of the fast Fourier transformation (FFT), the frequency spectrum of the ELT is analyzed, taking account of effects due to noise, multiple simultaneously received signals, and Doppler shift. It is demonstrated that the FFT provides an effective means for detecting and recognizing the presence of one or more ELT signals over this 25-kHz frequency band. Some recommendations are made to improve the spectral characteristics and the performance of the ELT. I.E.

N91-23103# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Forschungsbereich Fluomechanik/Fluofuehrung.

FLIGHT MECHANICS/AIR NAVIGATION RESEARCH FIELD. A 1990 SCIENTIFIC REPORT OF THE GERMAN AIR AND SPACE RESEARCH ORGANIZATION Annual Report, 1990 [FORSCHUNGSBEREICH FLUGMECHNIK/FLUGFUEHRUNG, WISSENSCHAFTLICHER BERICHT, STAND 1990] DOROTHEA KOCH-PETERS, MARIANNE SALEIN, and

ADALBERT TIMME 1990 143 p In GERMAN Original contains color illustrations

(ISSN-0720-7808; ETN-91-99079) Avail: NTIS HC/MF A07

The tasks and aims of both institutes are defined and presented. Flight test data acquisition and analysis, system identification, wind tunnel simulation, real time signal processing are focused upon. The pilot/automatic systems relationship, the design of automatic systems and the improvement of the required sensors are the main concern of air navigation research. The flight safety problems are considered to be solved only when the different navigation aspects on board and on the ground are fully integrated. The Institute of Flight Medicine is described and its aims defined, as well as the Department of Traffic Research, and the Institute for the Dynamics of Flight Systems.

N91-23105# Technische Univ., Brunswick (Germany, F.R.). Inst. fuer Verkehr, Eisenbahnwesen und Verkehrssicherung.
AIRBORNE COLLISION AVOIDANCE SYSTEM (ACAS) IN CONTROLLED AIR TRAFFIC. ASPECTS OF RECIPROCAL INFLUENCE IN SECONDARY SURVEILLANCE RADAR (SSR) RADIO LOADS [BORDKOLLISIONSSCHUTZSYSTEME IM KRONTROLLIERTEN LUFTVERKEHR ASPEKTE GEGENSEITIGER BEEINFLUSSUNG IM SSR FUNKFELD]
ANDREAS HERBER and ROLAND MALLWITZ Nov. 1990 45 p In GERMAN

(ETN-91-99253) Avail: NTIS HC/MF A03

The aim was a qualitative and quantitative evaluation of potential reciprocal influences in secondary surveillance radar (SSR) radio loads. This was made possible by an interpretation of the results of the radio load measurements and by an analysis of existing specifications for the various airborne collision avoidance system (ACAS). Definitive statements are impossible on account of the continuously changing boundary conditions, such as the number of active ground stations. It was shown by the algorithms contained in all II/III ACAS for interference limitations, that the performance realized additionally in the radio loads by all instruments for a maximum of 280 interrogations is limited within a perimeter of 30 nautical miles. It appears differently for ACAS I instruments, where this system is hardly active on account of high interrogation numbers. The observation area is limited to 5 nautical miles. It was concluded that the actions of ACAS II/III on the air traffic control are possible with secondary radar.

N91-23106# Federal Aviation Administration, Atlantic City, NJ. DIFFERENTIAL GPS TERMINAL AREA TEST RESULTS
Technical Report, Nov. 1989 - Nov. 1990
L. F. PERSELLO Nov. 1990 61 p

(AD-A232668; DOT/FAA/CT-TN90/48) Avail: NTIS HC/MF A04 CSCL 17/7

This report describes flight tests conducted by the Federal Aviation Administration (FAA) Technical Center to examine the performance of the Differential Global Positioning System (DGPS) in the terminal area. The tests employed a Convair 580 (CV-580) and a pair of Motorola Eagle Mini Rangers. With the advent of a maturing Global Positioning System (GPS) constellation, the FAA is assuming a more intensive stance in addressing the many questions/problems associated with GPS. These DGPS tests investigated the obtainable accuracy under static and dynamic conditions. The static tests employed survey points as a baseline. The dynamic tests incorporated terminal area flight profiles and nonprecision approaches using a laser tracker as a base line. The accuracy performance of DGPS showed an order of magnitude improvement in the static environment and a 4 to 5 fold improvement in the dynamic environment over stand alone GPS. The DGPS tests were conducted in an effort to build an FAA DGPS data base to aid in addressing GPS questions/problems.

GRA

N91-23150# Honeywell, Inc., Minneapolis, MN. Systems and Research Center.

NAVIGATION, GUIDANCE, AND TRAJECTORY OPTIMIZATION FOR HYPERSONIC VEHICLES

R. L. SCHULTZ, M. J. HOFFMAN, A. M. CASE, and S. I. SHEIKH

In AGARD, Hypersonic Combined Cycle Propulsion 22 p
1990 Sponsored in part by AF

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A computationally efficient, real time trajectory optimization and guidance approach for hypersonic aircraft is described. The optimization algorithms compute, in-flight, minimum fuel trajectories within constraints from the current aircraft position to its final destination. In-flight trajectory computation can provide a high degree of vehicle autonomy which could greatly reduce aircraft ground support costs. The optimization approach is based on Euler-Lagrange theory and energy state approximations. A 3-D, spherical earth, aircraft motion model, with constraints on temperature, dynamic pressure and stall, is used. An exact optimal iterative solution and an approx, closed form feedback solution method are developed. In the exact approach, solutions are computed by iteration on adjoint constants. Each iteration requires a complete forward trajectory integration. In the approx. closed form feedback approach, the adjoint constants are expressed in terms of the states. No forward trajectory calculations are required. thus, the computations are minimal. Minimum fuel climb to orbit, powered abort, and unpowered abort trajectories are computed with both methods. The approx. closed form feedback solution closely matches the optimal iterative solution. A computationally efficient method for generating unpowered descent footprints is also described. Footprints are used to identify candidate landing sites under an engine failure or other emergency conditions, and to initiate final descent. A hypersonic vehicle guidance, navigation, and control configuration using the optimal closed form feedback guidance and the footprint generator is described.

N91-24189# Federal Aviation Administration, Washington, DC. AVIATION SYSTEM CAPITAL INVESTMENT PLAN Annual Report

Dec. 1990 355 p

(PB91-150268) Avail: NTIS HC/MF A16 CSCL 17/7

The plan describes the policies and strategies that the FAA will pursue in addressing key concerns of the National Airspace System (NAS). The plan addresses safety, efficiency, traffic demands, aging equipment and facilities, and airspace use. The Capital Investment Plan (CIP) was developed to prepare the NAS for new developments. The plan makes the approach to air traffic modernization more precise, flexible, understandable, and dynamic. It distinguishes among near-term (1991-1995), mid-term (1996-2000), and far-term (2001-2005) planning.

N91-24190# Federal Aviation Administration, Atlantic City, NJ.
MLS MATHEMATICAL MODEL VALIDATION STUDY USING
AIRBORNE MLS DATA FROM ATLANTIC CITY
INTERNATIONAL AIRPORT BOEING 727 ELEVATION
SHADOWING FLIGHT TESTS Technical Report, Dec. 1988 Dec. 1990

JESSE D. JONES Apr. 1991 49 p (DOT-FAA/CT-TN90/55) Avail: NTIS HC/MF A03

The performance of the Microwave Landing System (MLS) mathematical model is evaluated by comparing the results of the model's simulation errors along a flight path with actual flight check measurements. The data collected for this study were designed specifically to evaluate the shadowing aircraft computations of the model. The results showed that there was some agreement between measured and modeled data, but it was concluded that further development of the shadowing aircraft computations is required.

05

AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes aircraft simulation technology.

A91-36354#

A320 - FIRST OF THE COMPUTER-AGE AIRCRAFT

DIDIER PUYPLAT (Airbus Industrie, Blagnac, France) Aerospace America (ISSN 0740-722X), vol. 29, May 1991, p. 28-30. Copyright

The development of the A320 fly-by-wire primary controls that drive the aircraft's ailerons and elevator and the secondary controls that drive the flaps, slats, and spoilers on the wing are described. FBW controls practically eliminate the mechanical arrangement of cable-run controls that drive up airframe weight and maintenance costs and keep pilots within the speed and maneuver limitations of the aircraft's flight envelope. Introduction and development of the sidestick controller that provides an electrical input to the FBW computers, replacing the traditional control column, are discussed. A centralized fault display system that automatically records any in-flight problems and can be used to interrogate and test the aircraft's systems is also described.

A91-36357

ROTOR-FUSELAGE DYNAMICS OF HELICOPTER AIR AND GROUND RESONANCE

ROBERT A. ORMISTON (U.S. Army, Aeroflightdynamics Directorate, Moffett Field, CA) American Helicopter Society, Journal (ISSN 0002-8711), vol. 36, April 1991, p. 3-20. refs Copyright

An analytical investigation of the air- and ground-resonance characteristics of simplified hingeless-rotor helicopter configurations was undertaken. The objectives were to identify and interpret the unique characteristics of coupled rotor-body modes that determine air-resonance stability characteristics, as contrasted to ground-resonance phenomena. The study examined the influence on air-resonance stability of unusual rotor-body modal characteristics such as nonoscillatory body modes. The results indicate that air-resonance instability does not require distinct coalescences of lead-lag and rotor-body modal frequencies, and unusual rotor-body frequency characteristics do not significantly alter the occurrence of air-resonance instability or the effectiveness of aero-elastic couplings. The character of air-resonance and flap-lag instabilities was found to change significantly at high rotor speeds for high-Lock number and low-inertia configurations. It was found that the rotor-body modes that participate in both air and ground resonance can be related to one another. Author

A91-36360 GROUND RESONANCE OF A HELICOPTER WITH INTER-CONNECTED BLADES

A. ROSEN (Technion - Israel Institute of Technology, Haifa) and N. M. SELA American Helicopter Society, Journal (ISSN 0002-8711), vol. 36, April 1991, p. 82-85. refs Copyright

The ground resonance problem of a helicopter with a rotor incorporating interconnected blades is analyzed. The blades are interconnected with springs and dampers. In analyzing such a problem, terms not found in rotors without interblade coupling are encountered. The classic Multiblade Coordinate Transformation cannot deal with these terms, and a Modified Multiblade Coordinate Transformation is derived. The set of constant coefficient equations is obtained, using the modified transformation. Examination of the equations reveals that the interconnecting springs and dampers are more effective than blade-to-hub springs and dampers, for most existing rotors.

A91-36940

THE DESIGN, MANUFACTURE, AND TEST OF A ONE-PIECE THERMOPLASTIC WING RIB FOR TILTROTOR AIRCRAFT

E. J. SHAHWAN (Bell Helicopter Textron, Inc., Fort Worth, TX) Society of Manufacturing Engineers, Conference on Fabricating Composites '90, Arlington, TX, Oct. 8-11, 1990. 22 p. (SME PAPER EM90-665) Copyright

Existing tiltrotor aircraft wing ribs, fabricated from carbon/epoxy thermoset materials, use five stiffeners and two cords attached to the rib web by approximately 150 mechanical fasteners. This program aims to reduce aircraft weight and cost by designing a one-piece thermoplastic wing rib. Full-scale thermoplastic ribs are made using various processes, then structurally tested to validate the design concept. To reduce weight and cost, a cost-sharing program was implemented between Bell Helicopter Textron, incorporated and four major thermoplastic fabricators; this consists of designing, fabricating, and testing a thermoplastic wing rib. This paper addresses design concept, material characterization, proposed tooling and manufacturing approach, structural testing, and preliminary cost and weight savings to support program objectives.

A91-36942

SPOT WELDED THERMOPLASTIC COMPOSITE ACCESS DOOR

J. SCHWARZ and M. SANDNES (Lockheed Aeronautical Systems Co., Burbank, CA) Society of Manufacturing Engineers, Conference on Composites in Manufacturing 9, San Diego, CA, Jan. 15-18, 1990. 9 p.

(SME PAPER EM90-489) Copyright

This paper describes the design philosophy, and design details, structural tests, (including static and fatigue of ultrasonic spot-welds), and final manufacture and assembly of lower engine access doors. Two doors were installed on operational aircraft for an extended flight evaluation. A third door was fabricated for testing to verify the structural design with process characteristics.

Author

A91-37050

TOWARD ENHANCED FIGHTER COMBAT EFFECTIVENESS

Aerospace Engineering (ISSN 0736-2536), vol. 11, May 1991, p. 8-12.

Copyright

A continuing USAF development program concentrates on integrating and demonstrating critical technologies that will improve fighter aircraft survivability during air combat engagements. Emphasis of the Integrated Control and Avionics for Air Superiority (ICAAS) program is centered on beyond-visual-range multiple target attack capability, with provisions for effective transition to close-in combat. ICAAS development is divided into five primary functions: tactics, attack management, attack guidance, defensive assets manager, and performance monitor. Each of these functions is discussed along with total system integration. A specific ICAAS approach has been developed, and the software/hardware components have been incorporated into the system.

A91-38127

COMMERCIAL AIRCRAFT FUEL EFFICIENCY POTENTIAL THROUGH 2010

DAVID L. GREENE (Oak Ridge National Laboratory, TN) IN: IECEC-90; Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, Aug. 12-17, 1990. Vol. 4. New York, American Institute of Chemical Engineers, 1990, p. 106-111. Previously announced in STAR as N91-12671. refs Copyright

Aircraft are second only to motor vehicles in the use of motor fuels, and air travel is growing twice as fast. Since 1970 air travel has more than tripled, but the growth of fuel use has been restrained by a near doubling of efficiency, from 26.2 seat miles per gallon (SMPG) in 1970 to about 49 SMPG in 1989. This paper explores the potential for future efficiency improvements via the replacement of existing aircraft with '1990's generation' and 'post 2000' aircraft incorporating advances in engine and

airframe technology. Today, new commercial passenger aircraft deliver 50 to 70 SMPG. New aircraft types scheduled for delivery in the early 1990's are expected to achieve 65 to 80 SMPG. Industry and government researchers have identified technologies capable of boosting aircraft efficiencies to the 100 to 150 SMPG range. Under current industry plans, which do not include a post-2000 generation of new aircraft, the total aircraft fleet should reach the vicinity of 65 SMPG by 2010. A new generation of 100 to 150 SMPG aircraft introduced in 2005 could raise the fleet average efficiency to 75 to 80 SMPG in 2010. In any case, fuel use will likely continue to grow at from 1 to 2 percent per yr. hrough 2010.

A91-38548*# Continuum Dynamics, Inc., Princeton, NJ. OPTIMIZATION OF ROTOR PERFORMANCE IN HOVER USING A FREE WAKE ANALYSIS

T. R. QUACKENBUSH, D. A. WACHSPRESS, and A. E. KAUFMAN (Continuum Dynamics, Inc., Princeton, NJ) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 200-207. Previously cited in issue 11, p. 1610, Accession no. A90-28175. refs (Contract NAS2-12789)

A91-38549#

FULL-SCALE DEMONSTRATION TESTS OF CABIN NOISE REDUCTION USING ACTIVE VIBRATION CONTROL

M. A. SIMPSON, T. M. LUONG (Douglas Aircraft Co., Long Beach, CA), C. R. FULLER (Virginia Polytechnic Institute and State University, Blacksburg), and J. D. JONES (Purdue University, West Lafayette, IN) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 208-215. Previously cited in issue 13, p. 1943, Accession no. A89-33719. Copyright

A91-38550*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. AIRFOIL DESIGN METHOD USING THE NAVIER-STOKES EQUATIONS

J. B. MALONE (NASA, Langley Research Center, Hampton, VA), J. C. NARRAMORE (Bell Helicopter Textron, Inc., Fort Worth, TX), and L. N. SANKAR (Georgia Institute of Technology, Atlanta) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 216-224. Research supported by Bell Helicopter Textron, Inc. and U.S. Army. Previously announced in STAR as N90-20981. refs Copyright

An airfoil design procedure is described that was incorporated into an existing 2-D Navier-Stokes airfoil analysis method. The resulting design method, an iterative procedure based on a residual-correction algorithm, permits the automated design of airfoil sections with prescribed surface pressure distributions. The inverse design method and the technique used to specify target pressure distributions are described. It presents several example problems to demonstrate application of the design procedure. It shows that this inverse design method develops useful airfoil configurations with a reasonable expenditure of computer resources.

A91-38752 DESIGNING WITH COMPOSITES - A STUDY OF DESIGN PROCESS

S. R. SHANKAR, A. SHARKAWY, C. P. BURGER, and D. G. JANSSON (Texas A & M University, College Station) IN: Composite material technology 1990; Proceedings of the Symposium, 13th ASME Annual Energy-Sources Technology Conference and Exhibition, New Orleans, LA, Jan. 14-18, 1990. New York, American Society of Mechanical Engineers, 1990, p. 1-6. refs

Utilizing a detailed examination of the numerous design decisions in the design of a complex composite aircraft part, it is shown that the dependence of the design process on manufacturing issues is uniquely strong in the design of composite parts and assemblies. Although this dependence is true for design in general, it is amplified by the high degree of coupling between functional

and production requirements which characterize the utilization of composite materials. The findings presented in this paper point to a methodology for designing with composites. Furthermore, a model for study of other design activity is suggested by the useful insights developed by this approach.

A91-39377

DEMONSTRATION OF A LASER ORDNANCE INITIATION SYSTEM IN AN F-16 SLED

JOHN A. COBBETT and MURPHY J. LANDRY (Scot, Inc., Downers Grove, IL) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 1-3.

A feasibility study demonstrating certain key aspects of the Laser Ordnance Initiation System is presently conducted. To demonstrate its potential for aircrew egress, a static F-16 sled at Holloman AFB is utilized. The Laser Ordnance Initiation System will jettison the canopy by an initial mechanical actuation of two pyrolasers. Laser energy produced by each pyrolaser is transmitted through a fiber-optic circuit to four different initiation points. At each initiation point, an existing ordnance device inherent to the F-16 is activated redundantly and the canopy is jettisoned. Prior to this demonstration, breadboard tests were conducted utilizing electrical, high-pressure gas, and mechanically actuated pyrolasers in a test setup similar to the sled.

A91-39380 DEVELOPMENT AND DEMONSTRATION OF CREST SUBSYSTEMS

D. E. SWANSON (Boeing Military Airplanes, Seattle, WA) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 14-18. Copyright

The designs and tests for each of the major CREST program subsystems are described. The subsystems include a graphite epoxy seat structure, controllable thrust catapult, windblast protection system capable of protection up to 700 KEAS, and an avionics system that includes advanced sensors and high-speed microprocessors. Results from structural proof load tests, windblast tests, wind tunnel tests, seat/man separation tests, and catapult dynamic tests are presented. The adaptive performance of components for an advanced ejection seat including windblast protection, adaptive restaint, digital flight control, and advanced sensors was demonstrated. The findings provide the engineering data required to proceed to full-scale ejection tests during the next phase of the CREST program.

A91-39382

FIGHTER ESCAPE SYSTEM - THE NEXT STEP FORWARD

BRIAN A. MILLER (Martin-Baker Aircraft Co., Ltd., Higher Denham, England) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 53-57. Previously announced in STAR as N90-20059. Copyright

Ejection seats have become increasingly complex, heavier and bulkier in recent years. This growth in response to the increasing demands for greater performance, under more severe conditions. It is also due to the relocation onto the seat of equipment which was previously aircraft mounted such as anti-g valve, oxygen regulator, NBC equipment, and OBOGS auxiliary oxygen equipment. In the Tornado, the Mk10A ejection seat even gained outlets for the cabin conditioning system, becoming the world's first air conditioned ejection seat. This trend has persisted for some 15 years, but now new design derivers are becoming dominant with an increasing and urgent need for lightweight and low cost. The Martin-Baker developments of the past 15 years are briefly reviewed and the new trends which are shaping future Fighter Escape Systems discussed.

A91-39385 EJECTION SEAT ROCKET CATAPULT DESIGN FOR REDUCED G FIELD INFLUENCE

CRAIG WHEELER and FRANK COSTIGAN (U.S. Navy, Naval Ordnance Station, Indian Head, MD) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 108-113.

Copyright

Modern aircraft with high G maneuverability require an aircrew ejection seat that can perform under high G-loads. Analytical methods were used to study design methods that could decrease the influence of high G on catapult performance. Computer simulations of an existing catapult and theoretical designs were performed. The computer program's accuracy was validated by comparing the results to static firings at normal and high Gs. Simulations were performed at various G loads, temperatures, and seat weights. The study showed that the propellant burning rate exponent contributed significantly towards the sensitivity of the catapult performance at high impressed Gs. Low-pressure catapult designs provide advantages over high-pressure designs by permitting the use of a low exponent propellant burning rate that reduces temperature and G-field sensitivity.

A91-39390

THE MINIPAC II EJECTION SEAT PROGRAM

ROBERT B. CALKINS (McDonnell Douglas Corp., Long Beach, CA) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p.

Copyright

The Minipac II ejection seat was developed to provide a lightweight, compact, and inexpensive ejection seat for smaller, low-speed aircraft such as turbo trainers and helicopters. This paper describes the design and performance of the Minipac II seat. By limiting the maximum speed to 380 keas, performance close to that of ACES II was achieved without resorting to expensive sequencing. The seat envelope is from zero altitude-zero speed to 380 keas at 50,000 feet. High aft visibility and long scheduled maintenance intervals are the features. Manual over-the-side bailout is an option that is still available.

A91-39394 HARDWARE-IN-THE-LOOP TESTING OF THE CREST **EJECTION SEAT CONTROL SYSTEM**

G. J. BURMEISTER and B. M. FRITCHMAN (Boeing Co., Advanced Systems Div., Seattle, WA) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 181-186.

Copyright

The purpose of the Crew Escape Technologies (CREST) program is to demonstrate new technologies for ejection seats. These seats must be capable of meeting new expanded escape envelope requirements being established by the high-performance capabilities of existing and planned fighter aircraft. These requirements include active attitude and trajectory control of the ejection seat, catapult-acceleration control, propulsion-acceleration control, wind-blast protection, adaptive pilot restraints, and the parachute-deployment attitude and timing. Control system software for control of the CREST ejection seat was written during the current phase IIB of the CREST contract. This software will be used in phase III sled track tests at Holloman Air Force Base.

Author

A91-39395

NORTHROP ADVANCED FIGHTER CREW PROTECTION SYSTEM. I - ENGINEERING DEVELOPMENT. II - SYSTEM

DEVELOPMENT, TEST AND EVALUATION

JOHN DAMRON (ILC Dover, Frederica, DE) and SAM PUMA (Northrop Corp., Aircraft Div., Hawthorne, CA) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 187-194.

Copyright

The present paper describes the development of an advanced fighter crew protection system, an integrated crew system that protects from hostile environments (altitude, acceleration, ejection, thermal, chemical, biological, nuclear, directed radiation, and

munitions) while enhancing mission performance. Descriptions of the following system components are provided: suit assembly, helmet assembly, partial pressure suit, composite assembly, microclimate conditioning subsystem, portable ventilation system, and also portable test equipment. Preliminary results are reported from tests conducted to prove the concept: windblast, explosive atmosphere, heat load, chemical agent simulant, centrifuge, altitude chamber, cockpit compatibility, water immersion, and flight test.

P.D.

A91-39398

CANOPY BREAKING SYSTEM FOR NON-DELAY PILOT RESCUE

RALPH KOCH (Dornier GmbH, Friedrichshafen, Federal Republic of Germany) and HARTMUT GEHSE (Dornier Luftfahrt GmbH, Friedrichshafen, Federal Republic of Germany) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 207-210.

Copyright

Technology for the accelerated rescue of a pilot from his cockpit is discussed. Consideration is given to the development of a new canopy-breaking system which does not impair the pilot's view and offers the following advantages: rescue time in uncontrollable aircraft is shortened; bird strike risk is reduced; splintered glass is avoided when the canopy is fragilized and opened and fractured glass is removed from the pilots' ejection path in a defined way; and the ejection path is immediately opened while an optimally controlled transparency structure is maintained. Schemes illustrate the trial and future setup of cutting-cord installation; calculated stress curves for two critical points and crack formation observed during testing; the position and time dependence of calculated stress lines within the transparency half; and the cutting cord P.D. arrangement.

A91-39420#

APPLICATION OF MULTIPLE-INPUT/SINGLE-OUTPUT ANALYSIS PROCEDURES TO FLIGHT TEST DATA

J. K. SRIDHAR (National Aeronautical Laboratory, Bangalore, India) and G. WULFF (DLR, Institut fuer Flugmechanik, Brunswick, Federal Republic of Germany) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 645-651. refs

Copyright

A computer program for the analysis of correlated multiple-input/single-output systems has been developed using the techniques of Bendat. This iterative procedure allows spectral separation to enable sequential as well as combined inspection of input/output relationships. The analogy of conditioning of spectral density functions to that of Gaussian elimination has been used for efficient realization of the algorithm. Described are the method and its applications to flight test data of two research vehicles, a helicopter and a new in-flight simulator. The examples show the detection of extraneous noise at the output caused by a fewer number of inputs together with the investigation of the control buildup in the helicopter case, and in the other case the influence of the autotrim system of the in-flight simulator on its direct lift control flaps. The results and conclusions are drawn based on the investigation of spectra and coherence functions.

Author

A91-40156#

AIR SURVEYING AND DATA ANALYSIS FOR DYNAMIC RESPONSE OF MISSILES AT SWEPT-BACK WING TIP

ZEMIN HUANG (Shenyang Aircraft Corp., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A565-A569. In Chinese, with abstract in

The dynamic response of missiles mounted at the tip of a swept-back aircraft wing to typical loads is measured in flight tests at altitudes 600-10,100 m and velocities up to 1080 km/h. The data are presented in tables and briefly characterized. Conditions examined include wake effects, gusts, unsteady flow, landing collision, high speed at low altitude, overloading, acrobatic maneuver, and high-Mach-number level flight. D.G.

A91-40158#

THE NONLINEAR DYNAMIC RESPONSE ANALYSIS OF THE FRONT WINDSHIELD OF Y12 UNDER 'BIRD-IMPACT' LOADS

JIAN WEN (Aircraft Structure Strength Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A573-A577. In Chinese, with abstract in English.

The finite element analysis program system VEP is used to carry out the numerical analysis of nonlinear dynamic response of the aircraft Y12's front windshield at three points B, C, and D under bird impact condition. The weight of the bird is 0.91 kg, and the velocity is 56-61 m/s. The calculated results are compared with the experimental results; it is found that the results are in good agreement except at the point D.

A91-40160#

APPLICATION OF ACOUSTICALLY TREATED HONEYCOMB SANDWICH PANELS IN NOISE CONTROL OF AIRCRAFT CABIN

WENCHAO HUANG (Aircraft Structure Strength Research Institute, Acta Aeronautica et Astronautica People's Republic of China) Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A584-A588. In Chinese, with abstract in English.

The acoustic treatment of honeycomb sandwich panels to reduce low-frequency cabin noise in propeller aircraft cabins is described. The theoretical basis of the treatment method is discussed, and results from transmission-loss measurements on treated and untreated sidewall panels at 63-8000 Hz are presented in graphs. The effectiveness of the treatment is demonstrated.

D.G.

A91-40161#

NUMERICAL ANALYSIS OF SOLID-FUEL INTERACTIVE VIBRATION ON AN AIRCRAFT INTEGRAL TANK

ZHISHANG MAO and JUEMIN YANG (Nanchang Aircraft Manufacturing Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A589-A594. In Chinese, with abstract in English. refs

The vibration induced in an aircraft tank by solid-fuel interactions is studied by means of numerical calculations, applying an extended pseudoelastic method in combination with a generalized FEM software package. A complex geometry of C-shaped cross section is considered, and the results are compared with published experimental data in graphs. Procedures are developed to detect and eliminate spurious frequencies which arise due to discretization

A91-40162#

CALCULATION AND EXPERIMENTAL STUDY ON SONIC FATIGUE LIFE OF AIRCRAFT STRUCTURAL PANELS

SEN GE and ZHILUN ZHOU (Aircraft Structure Strength Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A595-A598. In Chinese, with abstract in English.

The response of 1.2-mm-thick rectangular Al-alloy panels to acoustic fatigue loading at 149-163 dB and 109 Hz is measured experimentally. The experimental setup and procedures are described; the data are presented in tables and graphs; and a detailed comparison is made with the results of calculations using the so-called DSR method.

A91-40165#

VIBRATION PROBLEMS IN AN AIRCRAFT DESIGN

RONGMING SHI (Shenyang Aircraft Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A612-A614. In Chinese, with abstract in English.

A brief overview of the problems posed by vibration in experimental aircraft is given. The negative effects of vibrations are recalled; the technology of vibration suppression and control is discussed; and a step-by-step approach to the solution of vibration problems in the aircraft design and development process is outlined.

A91-40170#

IDENTIFICATION OF NACELLE MODES FROM AIRPLANE GVT RESULTS

FENGSHAN WANG (Aircraft Structure Strength Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A630-A636. In Chinese, with abstract in English.

An algorithm for identifying nacelle vibrational modes on the basis of data from ground vibration tests (GVTs) is developed and demonstrated. The derivation is given in detail; a flow chart is shown; and results obtained using typical GVT data are presented in tables.

A91-40171#

A STUDY ON SONIC LOAD OF THE VERTICAL TAIL OF F-7

XUEZHEN NING (Chengdu Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893). vol. 11, Nov. 1990, p. A637-A640. In Chinese, with abstract in English.

Results are reported from ground and flight acoustic loading tests on the vertical tail structure of the Chinese F-7 fighter aircraft. The data are presented in tables and briefly characterized. It is shown that the acoustic pressures obtained on the ground can be substituted for the flight-test values as long as the sensors are placed 5 cm or less from the tail surface.

A91-40172#

FLEXURE VIBRATION TEST METHOD OF AVIATION TUBE XU CHEN and JIN LIU (Xian Aircraft Industry Co., People's Republic Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A641-A643. In Chinese, with abstract in English. refs

Two standard procedures for flexural-vibration testing of aircraft hydraulic tubing are discussed: ISO TC 20/SC 10 N836 and N925 (1985) and U.S. MIL-F 18280D and 18280E supplements (1983 and 1986). The crucial importance of tubing reliability is emphasized, and particular attention is given to cantilever-beam vs simple-beam testing, specimen length estimation, the transformation of static strain to oil-pressure-induced stress, strain or stress control, measurement errors related to specimen diameter, and errors due to strain-gage size and position.

A91-40174#

A NUMERICAL METHOD FOR SIMULATING DROP TEST OF **LANDING GEARS**

XUEREN NI (Xian Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A647-A649. In Chinese, with abstract in English.

The theoretical basis and implementation of an algorithm for estimating the discharge coefficient of an aircraft landing gear without the need for conventional drop testing are described. The derivation of the method is outlined, and typical results are presented in graphs. The usefulness of the method in the aircraft design phase is also indicated. D.G.

A91-40203

LANDING GEAR DROP TESTING

Aerospace Engineering (ISSN 0736-2536), vol. 11, June 1991, p. 42-44.

Preliminary research has indicated that applying active-control technology to the landing gears could reduce ground loads applied to the airframe. Utilizing the drop test apparatus, researchers dropped the nose gear vertically with lift at 1.37 m/s in both active and passive modes. A 1-g lift simulation was obtained by employing crushable aluminum honeycomb to stop the drop carriage (upper mass) vertical acceleration. It is concluded that based on the drop tests, the concept derived can reduce significantly the loads transmitted by the gear to the airframe during landing and ground operations.

A91-40254#

COMANCHE - TOMORROW'S HIGH-TECH HELICOPTER

STEVEN ASHLEY Mechanical Engineering (ISSN 0025-6501), vol. 113, June 1991, p. 40-45.

Copyright

The RAH-66 Comanche helicopter for whose production the U.S. Army has recently signed a \$34 billion contract is a two-crewmember armed scout helicopter, comparable in weight to the AH-1 Cobra helicopter gunship, whose armaments are primarily oriented to the destruction of ground forces. Air-to-air capabilities are also an intrinsic element of the design, making this the first U.S. rotary wing aircraft thus equipped. Unique features of the Comanche include a damage-resistant all-composite airframe, a maneuverable optimized fan-in-fin tail rotor system, and cockpit volumes that are pressurized for protection against chemical and biological warfare. Retractable weapons carriage and landing gear systems enhance stealth performance. Power is furnished by two 1200-shp T800 turboshaft engines.

A91-40495

EFFECTS OF CANARD POSITION ON THE AERODYNAMIC CHARACTERISTICS OF A CLOSE-COUPLED CANARD CONFIGURATION AT LOW SPEED

D. HUMMEL (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) and H.-CHR. OELKER (Dornier Luftfahrt GmbH, Friedrichshafen, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 15, no. 2, 1991, p. 74-88. Previously announced in STAR as N90-28519. refs

(Contract DFG-HU-254/8)

Copyright

Comprehensive wing-tunnel investigations were carried out on a close-coupled A = 2.31 delta-canard configuration at low speed. Based on three-component, surface pressure, and flowfield measurements as well as on oilflow patterns, the flow about the coplanar normal configuration may be regarded as well understood. Three parameters describing the position of the canard relative to the wing were varied systematically within certain limits: vertical distance (3 locations: high, coplanar, low), longitudinal distance (3 locations: front, mid, rear), and canard setting angle (-12 deg is less than or equal to epsilon is less than or equal to 12 deg). The results of three-component measurements are presented and the corresponding flow structure is analyzed by means of pressure distribution measurements and oilflow patterns. For a large variety of parameter combinations in the vicinity of the normal configuration the same state of the flow with two separate vortex systems for canard and wing was found, and the effects of different canard positions relative to the wing on the aerodynamic coefficients could be explained by this mechanism. For low canard positions and large setting angles, however, the formation of vortices on the lower surface of the wing as well as the merging of the canard vortices with the wing vortex system on the upper surface was observed. This flow structure leads to abrupt changes in the aerodynamic coefficients which are unacceptable for practical flight conditions. Author

A91-40501

VECTORED PROPULSION, SUPERMANEUVERABILITY AND ROBOT AIRCRAFT

BENJAMIN GAL-OR (Technion - Israel Institute of Technology, Haifa) Research sponsored by Teledyne CAE, General Electric Co., USAF, and General Dynamics Corp. New York, Springer-Verlag, 1990, 276 p. refs

Copyright

The emergence of digital flight control/engine control systems affords airframe and propulsion system designers opportunities for much higher degrees of integration between propulsion and aerodynamics, yielding revolutionary levels of performance. The present work offers a comprehensive consideration of these possibilities in the case of vectorable-thrust propulsion systems in which aircraft agility is enhanced by multiaxis thrust vectoring and reaction-control; attention is given to the application of such

systems to not only piloted, but also remotely piloted and robotic aircraft. The consequences of external and internal (nozzle-integral) methods of thrust vectoring are discussed.

O.C.

A91-40511

AIRCRAFT PERFORMANCE

DONALD LAYTON (U.S. Naval Postgraduate School, Monterey, CA) Chesterland, OH, Weber Systems, Inc., 1988, 234 p. refs

A comprehensive introduction to the factors determining the performance of subsonic fixed-wing aircraft is presented, ranging over atmospheric conditions, drag and thrust characteristics, climb performance, range and endurance criteria, maneuvering characteristics, and takeoff and landing behavior. Attention is given to airspeed instrumentation, the induced drag and profile drag components of total drag, altitude effects on aircraft performance, reciprocating and turbine engine propulsion system effects on performance, and the determinants of climb rate for a given aircraft.

and the most frequently used tests of aircraft performance. O.C.

N91-23107# Israel Aircraft Industries Ltd., Ben-Gurion Airport.

Also treated is the effect of weight on turbine and propeller aircraft ranges, the parameters affecting takeoff and landing performance,

Engineering Div.

REAL TIME ESTIMATION OF AIRCRAFT ANGULAR ATTITUDE

G. SHADMON Apr. 1987 16 p

(IAITIC-87-1004; ITN-88-85003) Avail: NTIS HC/MF A03

A new method is presented for estimating aircraft angular attitude under real time conditions. The basis for the estimation is the requirement of best possible compatibility between the current estimate and the time history of the past measurements. The characteristics of the estimation technique are: (1) use of the quaternion formalism on characterizing the rotational motion; (2) adoption of the Least Square (LS) method as the tool of extracting the estimated quaternion out of the foregoing requirement; and (3) incorporation of the fading memory technique as a means of reducing the sensitivity to modelling errors. The main advantage of that method is its extremely small computation burden. This is reflected by a lack of the usual operations of matrix inversion and matrix propagation in time. Included are the review of the pertinent quaternion properties, the derivation of the estimation method, and the application to a real case.

N91-23108# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Flight Mechanics Panel.

FLYING QUALITIES

Feb. 1991 379 p In ENGLISH and FRENCH Symposium held in Quebec City, Quebec, 15-18 Oct. 1990 (AGARD-CP-508; ISBN-92-835-0602-2) Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The purpose of this symposium was to review flying quality issues of today and to report progress towards their resolution. The following topic areas were covered: (1) flying qualities experiences and contemporary aircraft; (2) application of flying qualities specifications; (3) flying qualities research; and (4) flying qualities at high incidence.

N91-23109# Thomas (Dieter), Fuerstenfeldbruck (Germany, F.R.).

THE ART OF FLYING QUALITIES TESTING

DIETER THOMAS In AGARD, Flying Qualities 12 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A veteran test pilot discusses the need for flight test engineers to listen to test pilot opinion in designing cockpits and flight control systems. Through personal experiences, the test pilot illustrates the practical evaluation of good flying qualities and techniqes used in this evaluation for the promotion of air safety through the expression of pilot opinion.

K.S.

N91-23110# McDonnell-Douglas Helicopter Co., Mesa, AZ.
ADFCS AND NOTAR (TRADEMARK): TWO WAYS TO FIX
FLYING QUALITIES

CHANNING S. MORSE In AGARD, Flying Qualities 13 p Feb 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The development, flight tests, and flying qualities of the Advanced Digital Flight Control System (ADFCS) and No Tail Rotor (NOTAR) System for military helicopters are reviewed. Emphasis is placed on some of the directional control problems faced on the ADFCS program in left sideward flight and the potential for the NOTAR system to improve the flying qualities of an advanced, highly augmented rotorcraft.

N91-23111# Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH.

MIL-STD-1797 IS NOT A COOKBOOK

DAVID B. LEGGETT and G. THOMAS BLACK (Aeronautical Systems Div., Wright-Patterson AFB, OH.) In AGARD, Flying Qualities 19 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Despite many years of experience, some confusion still exists concerning the nature, purpose, and application of the flying qualities specifications. Much of this confusion stems from the form of the requirements themselves. A question frequently raised is whether flying qualities are pilot-oriented properties or whether they are the parameters defined in the requirements of the flying qualities specification. This question arises from the fact that most of the objective criteria in the specification are not closed-loop (pilot-in-the-loop) performance criteria or pilot acceptance criteria, but rather are criteria on open-loop (pilot-out-of-the loop) characteristics of the augmented aircraft. Another source of confusion concerns the role of the specification itself: is it only a contractual document, or is it also a design guide. If the latter, is it equally effective in both roles. Consideration of the above questions leads to yet another. If the specification is intended as a design guide and the criteria are open-loop properties instead of closed-loop properties, which is more important: pilot satisfaction with closed-loop performance or compliance with the open-loop requirements? These questions are addressed by reviewing the background of the United States military flying qualities specifications. The advantages and disadvantages of different types of requirements are discussed. The way the specification is used by the USAF Aeronautical Systems Division Program offices is described.

N91-23112# Aeritalia S.p.A., Turin (Italy). Flight Mechanics Group.

FLYING QUALITIES EXPERIENCE ON THE AMX AIRCRAFT
BAVA RENZO In AGARD, Flying Qualities 20 p Feb. 1991
Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The AMX is a subsonic ground attack aircraft with a fly-by-wire flight control system (FCS) built into a digital flight control computer. From the flight mechanics point of view, it was designed against the MIL-F87985-C requirement. For some specific flight tasks, the need of more demanding requirements was envisaged. Modern handling qualities criteria were applied in the area of longitudinal and lateral-directional precision tracking task and pilot-induced oscillation (PIO) tendencies to cope with operational problems. High incidence criteria were used in the design and evaluation of control modifications which improve the flying qualities in the stall and post stall regions. Comparisons between analytical predictions, manned simulation, and in-flight results were made. Indications of agreement or disagreement with data and new criteria are presented.

N91-23115# Aeronautical Systems Div., Wright-Patterson AFB, OH

DO CIVIL FLYING QUALITIES REQUIREMENTS ADDRESS MILITARY MISSIONS FOR OFF-THE-SHELF PROCUREMENT

G. THOMAS BLACK, WALTER A. GRADY (Test Wing, 4950th, Wright-Patterson AFB, OH), and DANN C. MCDONALD In AGARD, Flying Qualities 8 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Off-the-shelf procurement of civil aircraft for use by the military services is a tradition dating back to the earliest days of aviation. This relieves the military of the responsibility for development costs, takes advantage of civil designs already in existence, and has resulted in the development of many capable military aircraft. However, while civil aircraft missions have remained relatively unchanged for over half a century, new military mission have continued to evolve. Yet, the military services still procure civil certified aircraft to accomplish these demanding missions. In the United States, Federal Aviation Regulations 23 and 25 and their predecessors are the certification standards for civil aircraft. The primary objective of these regulations is to insure a minimum standard of airworthiness. Flying qualities requirements make up only a small portion of these regulations, and address primarily static stability characteristics. This has sometimes led to undesirable flying qualities when attempting to perform demanding military mission with civil certificated aircraft. The unique military missions are addressed in the U.S. military flying qualities specification, MIL-STD-1797A, and its predecessors (MIL-F-8785 series). These military specification requirements are compared to the civil requirements to substantiate their applicability to off-the-shelf procurement. Specifically, where military and civil missions differ, military flying qualities requirements should be invoked. To illustrate this, several examples are examined. Finally, the future of off-the-shelf procurement is contemplated, some implications discussed, and recommendations made.

N91-23118# Pisa Univ. (Italy). Dipartimento di Ingregneria Aerospaziale.

METRICS FOR ROLL RESPONSE FLYING QUALITIES
MARIO INNOCENTI In AGARD, Flying Qualities 11 p Feb.
1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Roll characteristics of highly augmented aircraft during compensating tasks such as tracking and landing are shown to present degraded flying qualities and unstable oscillations similar to those observed in the pitch axis. The ideas behind Gibson's method are extended to develop handling qualities criteria for the roll axis control system. The analysis is performed using an existing data base for highly augmented class IV aircraft and parameters such as roll time constant, systems delay, and loop sensitivity are considered for designing for good handling qualities and to evaluate control systems performance. Levels of flying qualities are determined in the time domain as well as in the frequency domain for both tracking and landing tasks. The presence of pilot induced oscillations and roll ratcheting are identified.

N91-23120# Calspan Advanced Technology Center, Buffalo, NY. Flight Research Dept.

THE FLYING QUALITIES INFLUENCE OF DELAY IN THE FIGHTER PILOT'S CUING ENVIRONMENT

RANDALL E. BAILEY *In* AGARD, Flying Qualities 25 p Feb.

(Contract F33615-83-C-3603)

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Flight testing has amply demonstrated the serious flying qualities deficiencies that can occur from excessive control system delay. Delay outside of the control system, yet within the pilot's cuing environment, can be potentially as deleterious as control system delay effects. Summarized here are the results of flight tests to evaluate the effect on flying qualities on time delay in the pilot's cuing environment introduced outside the flight control system. These delays were introduced in the tactile cuing, head-up display visual cuing, and the motion and visual cuing during the simulation of fighter aircraft.

N91-23122# National Aeronautical Establishment, Ottawa (Ontario). Flight Research Lab.

AN INITIAL STUDY INTO THE INFLUENCE OF CONTROL STICK CHARACTERISTICS ON THE HANDLING QUALITIES OF A FLY-BY-WIRE HELICOPTER

J. MURRAY MORGAN *In* AGARD, Flying Qualities 13 p Feb. 1991 Sponsored in part by Department of National Defence, Ottawa, Ontario

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A piloted experiment was flown using the Institute for Aerospace Research Bell 205A variable stability helicopter. The experimental variables were the static and dynamic characteristics of a conventional center-mounted cyclic controller. The cyclic controller characteristics were changed by varying the mass and spring gradient to provide five basic cases, while for each case the dynamics of the stick were varied to provide critically damped, underdamped, and overdamped models. Two pilots were asked to fly a variety of tasks designed to exercise three fundamental modes of helicopter flight, high frequency stabilization, gross single axis tasks with off axis stabilization and simultaneous multi axis control. The stick sensitivity was adjusted in proportion to the spring gradient to give constant static sensitivity with respect to applied force. A first order filter was incorporated on an optional basis to reduce the command response bandwidth of the roll channel to the Level 1/Level 2 boundary of the ADS-33C criterion for divided attention operation. The results achieved indicate that cyclic stick characteristics are of considerably less importance than had been previously thought, that large values of overdamping can be tolerated even in low frequency sticks, but that underdamped sticks should be avoided especially if the resonant frequency of the stick is close to an undesirable and easily excited aircraft mode. There was a suggestion that a boundary based on undamped natural frequency also existed. The results did not support the contention that inertia alone is enough to specify an acceptable/unacceptable boundary for stick design. Author

N91-23126# Test Squadron (6510th), Edwards AFB, CA. B-1B HIGH AOA TESTING IN THE EVALUATION OF A STALL INHIBITOR SYSTEM

MARK S. SOBOTA In AGARD, Flying Qualities 21 p Feb 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

High angle-of-attack (AOA) B-1B flight tests were conducted to evaluate a flight control Stall Inhibitor System/Stability Enhancement Function (SIS/SEF). The SIS/SEF system was integrated into the basic B-1B flight control system because of an inherent stability problem in the B-1 aircraft design. The problem lies in the fact that aerodynamically the B-1 was stability limited and not lift limited. This resulted in a lack of longitudinal stability while operating at high AOA conditions with no warning or natural cues to the pilot that the aircraft was approaching an unstable region. To safely utilize all the available AOA at the higher gross weights demanded, some means of providing 'apparent' stability was essential to provide cues to the pilot of these stability limitations. Significant test results of the SIS/SEF flight test program are presented.

N91-23127*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA.

FLYING QUALITIES OF THE X-29 FORWARD SWEPT WING AIRCRAFT

LAWRENCE A. WALCHLI (Wright Research Development Center, Wright-Patterson AFB, OH.) and ROGERS E. SMITH *In* AGARD, Flying Qualities 13 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive CSCL 01/3

An overview of the X-29 Forward Swept Wing Technology Demonstrator traces its development and test path during past years. Brief descriptions of the aircraft and its flight control system provide insight for evaluating this unique vehicle. The baseline flight control system provided a starting point for safe concept evaluation and envelope expansion for the aircraft. Subsequent up-dates resulted in performance levels favorably comparable to current fighter aircraft. Efforts are described for the current expansion of the X-29's capabilities into the high angle-of-attack (AOA) regime of flight. Control law changes have permitted all axis maneuvering to 40 deg AOA with pitch excursions to 66 deg, thereby exploiting the full potential of the X-29 forward swept wing configuration.

N91-23128# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugmechanik. HANDLING QUALITIES EVALUATION FOR HIGHLY AUGMENTED HELICOPTERS

HEINZ-JUERGEN PAUSDER and WOLFGANG VONGRUENHAGEN In AGARD, Flying Qualities 14 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The realization and utilization of the helicopter airborne simulator ATTHeS (Advanced Technology Testing Helicopter System) are described. The explicit model following control system which is designed for ATTHeS is briefly presented. The potential is reviewed of the simulation system which is illustrated by the overall system performance identified from flight test data. Due to the implemented explicit model following systems, the in-flight simulation facility is provided with the capability of a flexible and broad variation of stability and control characteristics. Finally, results of a bandwidth phase delay study are presented and the influence of coupling on handling qualities evaluation is discussed.

N91-23129# Naval Air Development Center, Warminster, PA. Flight Dynamics Branch.

AĞİLİTY: A RATIONAL DEVELOPMENT OF FUNDAMENTAL METRICS AND THEIR RELATIONSHIP TO FLYING QUALITIES C. J. MAZZA In AGARD, Flying Qualities 7 p Feb. 1991 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The results of the first phase of a three year agility program are presented. A highly valuable approach was produced for developing a rational concept of agility and for relating agility to the flight dynamics, maneuvering performance, and to the design of the aircraft. The flight mechanics of a rigid aircraft in three-space maneuvering flight are examined with respect to total velocity, acceleration, and the time-rate-of-change of accleration. The terms of the expanded 'agility vector' are interpreted with regard to their potential for providing a rational basis for the evaluation of any given set of agility metrics and for suggesting, directly, a new set of metrics. A potential form of agility is offered for which a readily acceptable relationship is traced to both flying qualities and maneuvering performance.

N91-23130# British Aerospace Public Ltd. Co., Preston (England). Military Aircraft Div.

A REVIEW OF HIGH ANGLE OF ATTACK REQUIREMENTS FOR COMBAT AIRCRAFT

K. MCKAY and M. J. WALKER In AGARD, Flying Qualities 12 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Design of an aircraft for use at high angles of attack can have major implications on the configuration which is chosen. The objective is to review the implications of designing for high angle of attack on configuration. This naturally leads onto consideration of agility and the criteria which could be used in the early design stages to ensure an aircraft is adequately agile.

Author

N91-23131# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.).

X-31A AT FIRST FLIGHT

W. B. HERBST In AGARD, Flying Qualities 8 p Feb. 1991 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

The X-31A accomplished its first flight on October 11, 1990. A summary is presented about objectives of this international experimental flight test development program, its status, and follow-on planning.

N91-23132 Stanford Univ., CA. A NEW ARCHITECTURE AND EXPERT SYSTEM FOR AIRCRAFT DESIGN SYNTHESIS Ph.D. Thesis MASAMI TAKAI 1990 223 p

Avail: Univ. Microfilms Order No. DA9102359 Described here is a new program architecture which satisfies the requirement that preliminary design tools accommodate unprecedented extendability in both the sets of variables used to describe the design and the set of analysis routines. In this architecture, a set of procedural modules are compiled separately and linked with the main executive program. Unlike conventional programs, the subroutines and order of execution are selected by the system during the computation, based on the desired output and on the currently available results in the database. The method can greatly improve the efficiency of aircraft design optimization by generating the computational path for a given objective function and avoiding redundant calculations made by conventional methods with rigid program structures. The quasi-procedural architecture is enhanced by a rule-based expert system. The expert system warns of problems with the current design and suggests solutions to make the design feasible. For design optimization, the expert system can identify the active constraints and suggest a set of design variables to satisfy the constraints while best retaining the

N91-23133*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA. BUFFET INDUCED STRUCTURAL/FLIGHT-CONTROL SYSTEM INTERACTION OF THE X-29A AIRCRAFT

DAVID F. VORACEK and ROBERT CLARKE Apr. 1991 15 p Presented at the 32nd AIAA Structures, Structural Dynamics, and Materials Conference, Baltimore, MD, 8-10 Apr. 1991 Previously announced in IAA as A91-32012

(NASA-TM-101735; H-1687; NAS 1.15:101735; PAPER-91-1053) Avail: NTIS HC/MF A03 CSCL 01/3

High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

Author

Dissert, Abstr.

N91-23134# Systems Control Technology, Inc., Arlington, VA. AIR AMBULANCE HELICOPTER OPERATIONAL ANALYSIS **Final Report**

ROBERT NEWMAN May 1991 168 p (Contract DTFA01-87-C-00014) (DOT/FAA/RD-91/7) Avail: NTIS HC/MF A08

This study of visual flight rules (VFR) weather minimums and operational areas for helicopter emergency medical service operators is based on operator responses to a questionnaire. The national average VFR operational weather minimums for all respondents was determined. Also, an estimate of the percentage of time that each respondent can not fly because of ceiling and/or visibility below their VFR operating minimums was determined, as was the average percentage of time all responders can not fly. Analysis of the data indicated that on the average the operators have voluntarily adopted stricter minimums than recommended in the current FAA Advisory Circular (AC) 135-14, 'Emergency Medical Services/Helicopter (EMS/H).' Furthermore, the analysis indicated that on the average the operators have more restrictive daylight minimums than those in the proposed change to AC 135-14 and less restrictive night minimums than those in the proposed change. Some general observations about minimums for operations in mountainous areas are also provided. The coverage areas reported by the operators were plotted on two maps of the United States, one for the local coverage areas and one for the cross country coverage areas. From these maps, the percentage of coverage for the conterminous United States, each FAA region, and each state were determined. The weather data were also averaged over each state and used to determine the percentage of time that coverage is available in areas where EMS/H service is provided. The FAA is in the process of determining if there is an economic justification for the improvement of low altitude communication, navigation, and surveillance services within the National Airspace System (NAS). A recent FAA survey, Rotorcraft Low Altitude CNS Benefit/Cost Analysis (DOT/FAA/DS-89-11, Sept. 1989) found that the helicopter ambulance mission is a source of significant social benefit. The results of the Air Ambulance Helicopter Operational Analysis provides data which will support further analysis of the benefits of air ambulance helicopters in an IFR environment.

National Aeronautics and Space Administration. N91-23135*# Langley Research Center, Hampton, VA. APPLICATION OF MULTIDISCIPLINARY OPTIMIZATION METHODS TO THE DESIGN OF A SUPERSONIC TRANSPORT J.-F. M. BARTHELEMY, P. G. COEN, GREGORY A. WRENN, M. F. RILEY, AUGUSTINE R. DOVI, and L. E. HALL (Unisys Corp., Detroit, Ml.) Mar. 1991 7 p Presented at the North Atlantic Treaty Organization-AGARD Structures and Materials Panel Meeting, Bath, England, 1-2 May 1991 (NASA-TM-104073; NAS 1.15:104073) Avail: NTIS HC/MF A02 CSCL 01/3

An optimization design method is discussed. This method is based on integrating existing disciplinary analysis and sensitivity analysis techniques by means of generalized sensitivity equations. A generic design system implementing this method is described. The system is being used to design the configuration and internal structure of a supersonic transport wing for optimum performance. This problem combines the disciplines of linear aerodynamics, structures, and performance. Initial results which include the disciplines of aerodynamics and structures in a conventional minimum weight design under static aeroelastic constraints are presented.

N91-23136*# McDonnell-Douglas Helicopter Co., Mesa, AZ. TECHNOLOGY NEEDS FOR HIGH-SPEED ROTORCRAFT JOHN RUTHERFORD, MATTHEW OROURKE, CHRISTOPHER MARTIN, MARC LOVENGUTH, and CLARK MITCHELL 1991 245 p (Contract NAS2-13070)

(NASA-CR-177578; NAS 1.26:177578; L9KVAE-FR-91001) Avail: NTIS HC/MF A11 CSCL 01/3

A study to determine the technology development required for

objective value.

high-speed rotorcraft development was conducted. The study begins with an initial assessment of six concepts capable of flight at, or greater than 450 knots with helicopter-like hover efficiency (disk loading less than 50 pfs). These concepts were sized and evaluated based on measures of effectiveness and operational considerations. Additionally, an initial assessment of the impact of technology advances on the vehicles attributes was made. From these initial concepts a tilt wing and rotor/wing concepts were selected for further evaluation. A more detailed examination of conversion and technology trade studies were conducted on these two vehicles, each sized for a different mission.

N91-23137# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Hauptabt. Verkehrsforschung.

THE LIMITS OF THE LANDING PROCESS OF AIRCRAFT HANNS-JUERGEN PETERS Apr. 1990 120 p in GERMAN; ENGLISH summary

(DLR-FB-90-49; ISSN-0939-2963; ETN-91-99069) Avail: NTIS HC/MF A06; DLR, Wissenschaftliches Berichtswesen, VB-PL-DO, Postfach 90 60 58, 5000 Cologne, Fed. Republic of Germany, HC 45 DM

A Monte Carlo model is used for examining the aircraft landing process. Distributions of arrivals in Terminal Maneuvering Area (TMA) and admissible minimal distances in final approach are the input data. The arrival distribution of some airports are replaced by the Poisson distribution, which is modified by variation of its parameter lambda. In the model, the aircraft distances can be changed by integer steps of one minute. Different distances are necessary to meet German special safety rules, with respect to air vortices caused by preflying aircraft. Results yielded are the maximal numbers of aircrafts in final approach, average rates of landings per hour depending on lambda, and aircraft distances.

ESA

N91-23138# Aeronautical Research Inst. of Sweden, Stockholm. Structures Dept.

LONG TIME MEASUREMENTS OF LANDING GEAR LOADS ON SAAB SF-340 COMMUTER AIRCRAFT

A. I. GUSTAVSSON, A. F. BLOM, and L. HELMERSSON (Saab-Scania, Linkoping, Sweden) Dec. 1990 27 p Sponsored by Swedish Board for Technical Development; Swedish Civil Aviation Administration; and Saab-Scania, Linkoeping, Sweden (FFA-TN-1990-53; ETN-91-99107) Avail: NTIS HC/MF A03

Strain gauge measurements of forces acting on the nose gear and main gears of the commuter aircraft SAAB SF-340 are reported. During initial flight tests, forces in the longitudinal, transversal, and vertical directions were measured for various maneuvers such as takeoff, landing, taxling, and towing. The investigation revealed high transversal loads at the main gears at touch down. The nose gear is most severely strained when steering during taxiing run and when the aircraft is towed connected to a tractor with a tow bar. The results from such initial measurements formed the basis for a subsequent investigation with on line data acquisition of landing gear loads on a commuter aircraft in service at Swedair AB. The data acquisition system and the data analysis methods are described. The data acquisition was continuously carried out during nearly six months including various parameters such as different aircraft weight and static landing gear loads. Results from these measurements are presented as cumulative exceedances of longitudinal, transversal, and vertical loads obtained from the rainflow count analyses performed online during the measurements.

N91-23140# Cranfield Inst. of Tech., Bedford (England). Dept. of Aerodynamics.

THE PERFORMANCE OF 60 DEG DELTA WINGS: THE EFFECTS OF LEADING EDGE RADIUS AND VORTEX FLAPS B. K. HU and J. L. STOLLERY Nov. 1989 24 p (CRANFIELD-AERO-9002; ISBN-1-871564-03-4; ETN-91-99332) Avail: NTIS HC/MF A03

Low speed wind tunnel tests were conducted on sharp edge flat 60 deg delta wing, the wing with leading edge vortex flap deflected 30 deg and 60 deg delta wing with well rounded leading edge to estimate the effects of leading edge vortex flap and leading edge radius on the aerodynamic performance of 60 deg delta wings. Results indicate that the leading edge vortex flap can increase lift/drag ratio of up to 19 pct., well rounded leading edge can increase further lift/drag ratio of up to 39 pct.

N91-23141# Army Engineer Waterways Experiment Station, Vicksburg, MS. Environmental Lab.

ANALYTICAL STUDY OF THE EFFECTS OF WEIGHT ON LIGHT HELICOPTER (LH) EXPOSURE TO GROUND-BASED WEAPONS Final Report, Aug. 1989 - Apr. 1990

CHARLES D. HAHN and KEN G. HALL Jan. 1991 151 p (AD-A232024; WES/TR/EL-91-2) Avail: NTIS HC/MF A08 CSCL 01/3

In support of the U.S. Army Light Helicopter (LH) Program, the U.S. Army Engineer Waterways Experiment Station (WES) was directed by the U.S. Army Laboratory Command Survivability Management Office (SMO) to simulate typical LH missions using the WES Helicopter Mission Survivability (HELMS) Model and to determine the effect of increasing weight on aircraft exposure to ground-based weapons. This report describes the HELMS model and the missions simulated as well as the terrain used for the simulations. Simulation data are presented as well as the results of the study.

N91-23143# Naval Postgraduate School, Monterey, CA. DESIGN AND CONSTRUCTION OF A COMPOSITE AIRFRAME FOR UAV RESEARCH M.S. Thesis

JEFFREY L. ELLWOOD Jun. 1990 86 p (AD-A232422) Avail: NTIS HC/MF A05 CSCL 01/3

A half-scale Unmanned Aerial Vehicle (UAV) was designed and constructed from composite materials for the Flight Research Lab at the Naval Postgraduate School. The vehicle was designed as a technology demonstrator for two studies. First, the Tilted Ducted Fan (TDF) vertical flight capability engine and its stability and control systems, and second, for the tail configuration testing for longitudinal and lateral-directional stability enhancement of an existing tailless Unmanned Aerial Vehicle. Completion of these research and test objectives should provide the configuration requirements for a full-scale development vehicle with vertical takeoff and landing with transition to the forward flight mode.

GRA

N91-23144# Wright State Univ., Dayton, OH.
A COMPUTER AIDED MULTIVARIABLE CONTROL SYSTEMS
DESIGN TECHNIQUE WITH APPLICATION TO AIRCRAFT
FLYING QUALITIES Final Report, Aug. 1987 - Aug. 1990
L. R. PUJARA Jan. 1991 175 p

(Contract F33615-87-C-3615)

(AD-A232549; WRDC-TR-90-3069) Avail: NTIS HC/MF A08 CSCL 01/3

A computer aided multivariable control system design technique is developed for matching the frequency response of a compensated loop system with a given desired transfer function matrix over a frequency interval of interest. Two examples of application of the technique are provided as well as a simple robustness analysis of one the application examples.

N91-24137*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

COMPUTATIONAL SUPPORT OF THE X-29A ADVANCED TECHNOLOGY DEMONSTRATOR FLIGHT EXPERIMENT

E. G. WAGGONER and B. L. BATES (Vigyan Research Associates, Inc., Hampton, VA.) *In its* Transonic Symposium: Theory, Application and Experiment, Volume 2 p 147-166 Apr. 1989 Avail: NTIS HC/MF A11 CSCL 01/3

Issues and questions associated with the forward swept wing and closely coupled canard are addressed. The primary focus will be on research questions which must be addressed to obtain high quality ground and flight test data. These data will be used in conjunction with computational predictions to complement the

analyses required to comprehensively understand the interacting technologies.

N91-24138*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

RESULTS OF CORRELATIONS FOR TRANSITION LOCATION ON A CLEAN-UP GLOVE INSTALLED ON AN F-14 AIRCRAFT AND DESIGN STUDIES FOR A LAMINAR GLOVE FOR THE X-29 AIRCRAFT ACCOUNTING FOR SPANWISE PRESSURE GRADIENT

S. H. GORADIA (Vigyan Research Associates, Inc., Hampton, VA.), P. J. BOBBITT, H. L. MORGAN, J. C. FERRIS, and WILLIAM D. HARVEY *In its* Transonic Symposium: Theory, Application and Experiment, Volume 2 p 167-227 Apr. 1989

Avail: NTIS HC/MF A11 CSCL 01/1

Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9. Author

N91-24158# Wichita State Univ., KS. FEASIBILITY STUDY IN CRACK DETECTION IN AIRCRAFT STIFFENED PANELS BY PULSE PROBING AND DECONVOLUTION

JORGE E. TALIA, BEHNAM BAHR, and HAMID M. LANKARANI In its Program Plans for Aviation Safety Research 6 p Dec. 1990

Avail: NTIS HC/MF A04

The main objective is to assess the use of changes in dynamic characteristics of a structure or its spectroscopy to detect crack formation. The first approach is to excite the structure harmonically over a range of frequencies and recover the natural frequencies of vibration and modal damping parameters from the analysis of the steady state responses. The preferred approach is to excite the structure with an appropriate pulse and extract the dynamic Green's function from the corresponding transient response.

Author

N91-24195*# Douglas Aircraft Co., Inc., Long Beach, CA. THE 1989 HIGH-SPEED CIVIL TRANSPORT STUDIES
Washington NASA May 1991 103 p
(Contract NAS1-18378)
(NASA-CR-4375; NAS 1.26:4375) Avail: NTIS HC/MF A06
CSCL 01/3

The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced

technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.

N91-24196*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A SYSTEM APPROACH TO AIRCRAFT OPTIMIZATION

JAROSLAW SOBIESZCZANSKI-SOBIESKI Mar. 1991 17 p

Presented at the NATO-AGARD Structures and Materials Panel

Meeting, Bath, England, 28 Apr. - 5 May 1991

(NASA-TM-104074; NAS 1.15:104074) Avail: NTIS HC/MF A03

CSCL 01/3

Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools.

N91-24197# Air Force Flight Dynamics Lab., Wright-Patterson

THE EFFECTS ON AERODYNAMIC PERFORMANCE OF DESIGNING SUPERSONIC WINGS FOR LAMINAR FLOW CONTROL Interim Report

CARL P. TILMANN 30 Jan. 1991 90 p (AD-A233040; WL-TM-91-303) Avail: NTIS HC/MF A05 CSCL

A preliminary technique has been developed for the design of wings to be used with supersonic hybrid method laminar flow control systems. This technique has been used to evaluate the effects on aerodynamic performance of designing supersonic wings for laminar flow control. In this design method, a wing is cambered such that it produces and upper-surface streamwise pressure distribution which is favorable for use in a hybrid laminar flow control (HLFC) system, while maintaining a spanwise lifting distribution which will minimize drag-due-to-lift. An existing linear-theory computer program is used to calculate the wing camber definition that produces a desired pressure distribution on the upper surface of the wing with a specified thickness profile. This method was applied to an array of arrow-wings varying in aspect ratio and taper ratio. Each wing planform was then camber-optimized for minimum cruise drag-due-to-lift using current preliminary wing design methods, which optimize the wing's camber of lifting load distribution without regard to the boundary layer type. The total drag of each wing is then estimated by the superposition of zero-lift wave drag, skin friction drag, and drag-due-to-lift. The true effectiveness of laminar flow control wings could then be evaluated by weighing the benefit of the reduced friction drag against the penalty of increased drag-due-to-lift which would be displayed by a wing designed for a laminar flow control

N91-24198*# Advanced Technologies, Inc., Newport News, VA. SOFT HUB FOR BEARINGLESS ROTORS

PETER G. C. DIXON Jun. 1991 98 p (Contract NAS2-13157)

(NASA-CR-177586; A-91158; NAS 1.26:177586) Avail: NTIS HC/MF A05 CSCL 01/3

Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional astructural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart

hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

N91-24199*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EVALUATION OF CLOUD DETECTION INSTRUMENTS AND PERFORMANCE OF LAMINAR-FLOW LEADING-EDGE TEST ARTICLES DURING NASA LEADING-EDGE FLIGHT-TEST **PROGRAM**

RICHARD E. DAVIS, DAL V. MADDALON, RICHARD D. WAGNER, DAVID F. FISHER, and RONALD YOUNG (National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA.) Apr. 1989 58 p (NASA-TP-2888; L-16509; NAS 1.60:2888) Avail: NTIS HC/MF

A04 CSCL 01/3

Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

N91-24200*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

NASA-LARC FLIGHT-CRITICAL DIGITAL SYSTEMS **TECHNOLOGY WORKSHOP**

C. W. MEISSNER, JR., ed., J. R. DUNHAM, ed., and G. CRIM, ed. Apr. 1989 191 p Workshop held in Hampton, VA, 13-15

(NASA-CP-10028; REPT-412U-3181-29; NAS 1.55:10028) Avail: NTIS HC/MF A09 CSCL 01/3

The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation support tools to enable engineering of with highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).

06

AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

FIRE DETECTION SYSTEM FOR AIRCRAFT CARGO BAYS

MICHAEL L. PARSONS, PETER HUTCHINS, and VINCENT Y. TSENG (Pacific Scientific Co., HTL/Kin-Tech Div., Duarte, CA) IN: Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1990, p. 312-324.

Copyright

The paper presents a fire detection system meeting the FAA regulations, based on infrared detection technology coupled with a Fresnel scanning optical system. The system utilizes a dual-computer controller unit, and its sensor is responsive to either overheating or fire conditions. Attention is given to such system components as a thermal imaging module, scan motor, infrared detector, amplifier, decision and fault-detection logic, and interfaces. Controller functions and communications are outlined as well as system timing. Performance characteristics and compliance with the FAA regulations are discussed.

A91-38542#

VELOCITY SENSOR FOR AN AIRBORNE OPTICAL AIR DATA SYSTEM

ANTHONY E. SMART (Spectron Development Laboratories, Costa Mesa, CA) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 163, 164. Copyright

The feasibility of an optical air data sensor (OADS) based on sheet-pair transit-time velocimetry has been demonstrated on an F-16 from sea level to 50,000 ft and up to supersonic speeds during exposure to bright sunlight, clouds, and smoke. Measurements corresponded well with conventional pneumatic airspeed and attitude measurements, with significantly better response time and data rates exceeding 100/s. The prototype system proved reliable on all flights and retained acceptable calibration.

A91-39387

ADVANCED AIRBORNE OXYGEN SENSORS

M. W. HARRAL (Normalair-Garrett, Ltd., Yeovil, England) Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989. Proceedings. Newhall, CA, SAFE Association, 1990, p. 129-134. Copyright

This paper discusses the development of an advanced oxygen sensor. A study of the available technology was undertaken and solid-electrolyte (zirconia) sensors were indentified as the most suitable candidates for aircraft applications. Following a program of laboratory tests, a potentiometric type of sensor was selected for use in a flight-weight prototype monitor. This unit has completed safety-of-flight testing and will be flown in late 1989 on the British Aerospace Experimental Aircraft Programme demonstrator aircraft.

A91-39873*# Lockheed Missiles and Space Co., Palo Alto, CA. COHERENT LIDAR AIRBORNE WINDSHEAR SENSOR -PERFORMANCE EVALUATION

RUSSELL TARG (Lockheed Missiles and Space Co., Inc., Palo Alto, CA), MICHAEL J. KAVAYA, R. MILTON HUFFAKER (Coherent Technologies, Inc., Boulder, CO), and ROLAND L. BOWLES (NASA, Langley Research Center, Hampton, VA) Applied Optics (ISSN 0003-6935), vol. 30, May 20, 1991, p. 2013-2026. refs (Contract NAS1-18029)

Copyright

As part of the NASA/FAA National Integrated Windshear Program, a measurable windshear hazard index has been defined that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions along the flight path. A technology analysis and end-to-end performance simulation measuring signal-to-noise ratios and resulting wind velocity errors for competing coherent laser radar (lidar) systems have been carried out. The results show that a Ho:YAG lidar at a wavelength of 2.1 microns and a CO2 lidar at 10.6 microns can give the pilot information about the line-of-sight component of a windshear threat from his present position to a region extending 2-4 km in front of the aircraft. This constitutes a warning time of 20-40 s, even in conditions of moderately heavy precipitation. **Author**

A91-39890

MODEL FOR IR SENSOR PERFORMANCE EVALUATION -**APPLICATIONS AND RESULTS**

W. T. KREISS (Horizons Technology, Inc., San Diego, CA), A. TCHOUBINEH (U.S. Navy, Pacific Missile Test Center, Point Mugu, CA), and W. LANICH (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: Infrared imaging systems: Design, analysis, modeling, and testing; Proceedings of the Meeting, Orlando, FL, Apr. 16-18, 1990. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1990, p. 190-207. Research sponsored by USAF and U.S. Navy. Copyright

This paper presents the results of initial testing of a computer simulation model which has been designed for use by persons not necessarily expert in all or any of the disciplines involved in signature analysis, and which can be utilized for evaluating sensor system performance and prediction of sensor acquisition ranges. The ATIMS III airborne turret infrared measurement system, flight experiments, and the IASPM simulation model are described. Analysis of preliminary results comparing experimental data with simulated data for the 2 - 5 and 8 - 12 micron IR bands reveal the potential of the model for simulating a multitude of sensor-observed phenomena. Model strengths and shortcomings are discussed.

A91-40550

ALONG FOR THE RIDE?

Scientific American (ISSN 0036-8733), vol. 265, GARY STIX July 1991, p. 94-99, 102, 104, 106. refs

The expanded role of computers in the newest generation of jet aircraft is discussed. The development of automation in aircraft from the early 20th century to the present is reviewed, and the need for further automation is pointed out. The effect of extensive automation on the cockpit crew is assessed.

N91-23145# Naval Postgraduate School, Monterey, CA. AN ENGINEERING STUDY OF ALTITUDE DETERMINATION **DEFICIENCIES OF THE SERVICE AIRCRAFT** INSTRUMENTATION PACKAGE (SAIP) M.S. Thesis

STEVEN R. EASTBURG 1991 125 p (AD-A232055) Avail: NTIS HC/MF A06 CSCL 01/4

Altitude determination errors of the U.S. Navy's Service Aircraft Instrumentation Package (SAIP), an airborne positioning pod, were examined in a multifaceted study involving in-flight evaluations, wind tunnel testing, and pressure sensitivity experiments. The original objectives of the research related to identifying aerodynamic sources of pod static pressure inaccuracies and recommending specific remedies to alleviate these errors. After an extensive evaluation, results revealed that the problem exists not in the aerodynamic measurement performance of the probe, but in the electronic circuitry residing within the Air Data Unit (ADU). The ADU houses multiple pressure transducers, each associated with different static and dynamic pressure ports, in a single module. This circuit configuration leads to electrical interference and an attendant degradation of the static pressure output voltage. Accurate static pressure voltages, which can be subsequently converted into appropriate SAIP barometric altitudes, are obtained by electrically isolating the three ADU dynamic pressure transducers from the single operative static pressure transducer and remaining ADU circuitry.

N91-23146# United Technologies Corp., West Palm Beach, FL. Sikorsky Aircraft Div.

MECHÁNICAL COMPONENT DIAGNOSTIC SYSTEM Final Report, Oct. 1987 - May 1990 R. A. SEWERSKY Jan. 1991 56 p

(Contract DAAJ02-87-C-0015)

(AD-A232126; SER-701-640; AVSCOM-TR-90-D-24) Avail: NTIS HC/MF A04 CSCL 01/3

The Mechanical Component Diagnostic System (MCDS) research and development (R and D) program was designed to investigate and demonstrate the benefits of onboard data

recording/processing and rotor tuning equipment for monitoring and diagnosis of mechanical subsystems on rotorcraft. The payoffs for such a concept include reduced aircraft vibration levels (with extended MTBF of electronics and mechanical systems as well as reduced crew fatigue), reduced maintenance flights, and early warning of component failures. This program demonstrates an approach to a practical, automated system which monitors certain mechanical subsystems, provides inflight vibration and control system status, and prescribes corrective actions to the maintainer. Various monitoring components were developed and integrated to demonstrate the concept.

07

AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

A91-37593* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SENSOR FAILURE DETECTION FOR JET ENGINES

WALTER C. MERRILL (NASA, Lewis Research Center, Cleveland, IN: Control and dynamic systems. Vol. 33 - Advances in aerospace systems dynamics and control systems. Pt. 3. San Diego, CA, Academic Press, Inc., 1990, p. 1-34. Previously announced in STAR as N89-13432. refs Copyright

The use of analytical redundancy to improve gas turbine engine control system reliability through sensor failure detection, isolation, and accommodation is surveyed. Both the theoretical and application papers that form the technology base of turbine engine analytical redundancy research are discussed. Also, several important application efforts are reviewed. An assessment of the state-of-the-art in analytical redundancy technology is given.

Author

A91-38007 ADVANCED AIRCRAFT SECONDARY POWER SYSTEM DESIGN

J. WOODS, I. S. MEHDI (Boeing Co., Seattle, WA), and C. S. RUBERTUS (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: IECEC-90; Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, Aug. 12-17, 1990. Vol. 1. New York, American Institute of Chemical Engineers, 1990, p. 505-510. USAF-supported research. Copyright

The requirements, the secondary power system design, and the results of a trade study for an advanced aircraft secondary power system design (AASPSD) are described. The aircraft selected for this study was a Mach 6 vehicle. The three AASPSD configurations studied were a conventional system with hydraulic actuation and turbine-driven fuel pumps, a more-electric system with electromechanical actuators (EMAs) and turbine-driven fuel pumps, and an all-electric system with EMAs and electrically driven fuel pumps. The electrical system for each of the configurations utilized a three-channel architecture feeding electrical load management centers (ELMCs). The trade study results on these three system configurations included comparison of weight, volume, reliability, redundance, cost, and performance. It is concluded that the three systems investigated in the detailed design phase of contract will provide adequate redundancy, reliability, survivability, and performance. The more-electric system is shown to have a definite advantage in weight and cost, and the highest score in the trade study. The all-electric system provides a lower overall mean time between failure. This should be reflected in lower maintenance costs and better flight readiness over the life of the aircraft.

A91-38037

AIRCRAFT ELECTRICAL SYSTEM COMPUTER SIMULATION

IN: IECEC-90; E. J. WOODS (Boeing Co., Seattle, WA) Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, Aug. 12-17, 1990. Vol. 2. New York, American Institute of Chemical Engineers, 1990, p. 84-89. refs

Copyright

Computer simulation results are presented for a single channel of an aircraft electrical system with rectified power loads. The computer model included a generator, ac load with resistance and inductance, and a resistive dc load. Generator models included a wound field model with field control and direct and quadrature axis damper windings, a simplified permanent magnet generator with mutual inductance between stator windings, and a simplified wound field model with mutual inductances and field control. The simulation was implemented on EASY5, a modeling program which utilizes both standard components and user-generated FORTRAN components. The rectifier and some generator models were implemented as FORTRAN components. Steady-state computer runs for the system included various ac and dc load levels. Loads were switched to produce transient conditions. The results are presented in the form of computer-generated plots which show system response.

A91-38178 PRISMATIC SEALED NI-CD BATTERY FOR AIRCRAFT **POWER**

MENAHEM ANDERMAN (Acme Advanced Energy Systems, Tempe, AZ), GABOR BENCZUR-URMOSSY, and FRIEDRICH HASCHKA (Deutsche Automobilgesellschaft mbH, Esslingen, Federal Republic of Germany) IN: IECEC-90; Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, Aug. 12-17, 1990. Vol. 6. New York, American Institute of Chemical Engineers, 1990, p. 143-148.

Copyright

A fast-charging high-power prismatic sealed Ni-Cd battery with a fiber structured electrode has been developed. The battery is designed to exceed essentially all performance attributes of a vented sintered plate aircraft battery, yet it will not require any maintenance. The flexible integrity of the fiber structure electrode supports thousands of deep cycles without electrode degradation. Over 5000 cycles have been measured on vented fiber nickel-cadmium (FNC) cells at a typical 60 percent depth of discharge test. Data obtained to date suggest that the sealed FNC cells may match this performance. Of particular interest to aircraft applications is the ability of the cell to withstand thousands of short high-current loads during the start of an aircraft engine. Data obtained in such tests are discussed.

A91-38203# **EXPERIMENTAL INVESTIGATION ON SUPERSONIC** COMBUSTION

XINGZHOU LIU, JINGHOU LIU, YUREN WANG, YUNQI GE, and LIXIN YANG (31st Research Institute, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1991, p. 1-8. In Chinese, with abstract in English. refs

An experimental investigation with a model scramiet combustor which consists of a rearward-facing step and a diverging duct was carried out by using electric arc-heated air to simulate combustor inlet Mach number 2.1, total pressure 0.7 MPa, and total temperature 1200 K. The fuel was injected parallel or perpendicular to the airstream. Both kerosene and hydrogen can burn steadily within a wide range of fuel-air equivalence ratio, and their combustion state was compared. Author

A91-38207#

CYCLE ANALYSIS FOR A SUPERSONIC THROUGH FLOW **FAN ENGINE**

PENG SHAN and DEPING TAO (Beijing University of Aeronautics and Astronautics, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1991, p. 31-39. In Chinese, with abstract in English. refs

A computer program for evaluating supersonic throughflow (STF) fan engine thermodynamic quality and optimizing the cycle variables has been developed. Results from applying the program to an STF fan engine equipped for transport with cruise Mach number 2.7 are reported. At cruise conditions, the specific fuel consumption is 2 percent or more lower in the STF fan engine than in the conventional turbofan engine and 8 percent or more lower than in the turbojet engine. At takeoff conditions, the STF fan engine has lower specific fuel consumption than the other types. When the entrance area of the STF fan inlet is designed at the takeoff state for a transport mission profile, the mass flow at other mission states can be fully obtained.

A91-38209#

ON DIGITAL ELECTRONIC CONTROL SYSTEM OF AIRCRAFT ENGINE

JUNXIANG LIANG (MAS, Research Institute of Technology and Economics, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), April 1991, p. 46-52. In Chinese, with abstract in English. refs

A full-authority digital electronic control system research program with WP-13 as a technology demonstrator was established to provide advanced technology for coming airbreathing engine control systems. The scope of the research program includes theory and methodology, real-time control system simulation, automated fault detection, isolation, and reconfiguration algorithm, built-in digital electronic engine controller with functional and hardware redundancy, sensing and actuating systems, and full governing hydromechanical backup control. The paper presents an outline of the program: the motivation of the research, general system description, the goals and technology needs and progress, and the prospects. Author

A91-39201

DESIGN AND DEVELOPMENT OF AVIATION GAS TURBINE **ENGINES (KONSTRUKTSIIA I PROEKTIROVANIE** AVIATSIONNYKH GAZOTURBINNYKH DVIGATELEI]

SERGEI A. V'IUNOV, IURII I. GUSEV, ALEKSEI V. KARPOV, A. E. KOVALEVSKAIA, IU. M. NIKITIN et al. Moscow, Izdatel'stvo Mashinostroenie, 1989, 568 p. In Russian. refs Copyright

The fundamentals of the design and development of aviation gas turbine engines are presented from the standpoint of the complex solution of design, layout, and engineering problems. The discussion covers the principal design requirements and specifications of gas turbine engines, the main stages of engine design and development, computer-aided design, and the principles of modular design. Attention is also given to the principles governing the design of the main components of gas turbine engines, including compressors, rotors, blading, blade-cooling systems, combustion chambers, nozzles, drives, and lubrication systems.

N91-23147# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Propulsion and Energetics Panel.

HYPERSONIC COMBINED CYCLE PROPULSION

Dec. 1990 474 p In ENGLISH and FRENCH Symposium held in Madrid, Spain, 28 May - 1 Jun. 1990 (AGARD-CP-479; ISBN-92-835-0594-8) Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The proceedings of the symposium are presented. The symposium was arranged in the following sessions: (1) Technical review of hypersonic propulsion/mission requirements; (2) Propulsion concepts; (3) Air intake flow; (4) Turbomachinery; (5) Combustion and ram/scramjets; (6) Nozzle flow; and (7) High temperature materials. The present status in the broad subject of contributing to hypersonic combined cycle propulsion is discussed. Considerable progress in design and analysis, using computational fluid dynamics techniques are reported.

N91-23148# Sener S.A., Madrid (Spain). HYPERSONIC PROPULSION: PAST AND PRESENT C. SANCHEZTARIFA In AGARD, Hypersonic Combined Cycle Propulsion 24 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The change in the concept of hypersonic speed with time is briefly discussed. The evolution of the hypersonic propulsion is restricted to the history of the ramjets. Considering the abundance of literature on the subject, only the most remarkable achievements are reviewed. Less divulged historical events, such as the propulsion of helicopters by ramjets, are discussed in more detail, and special attention is given to the contributions of Spain to supersonic combustion. The present state of the hypersonic propulsion is examined. Some of the most demanding problems facing the propulsion system of the Aerospace Plane and the Hypersonic Cruise Aircraft are reviewed.

N91-23149# Office National d'Etudes et de Recherches Aerospatiales, Modane (France).

A STUDY OF SUPERSONIC AND HYPERSONIC RAMJET ENGINES IN FRANCE FROM 1950 TO 1974 (APPLICATION ON COMBINED CYCLE AIRCRAFT ENGINES) [L'ETUDE DU STATOREACTEUR SUPERSONIQUE ET HYPERSONIQUE EN FRANCE DE 1950 A 1974 (APPLICATION AUX MOTEURS COMBINES AEROBIES)]

ROGER MARGUET, PIERRE BERTON, and FRANCIS HIRSINGER //n AGARD, Hypersonic Combined Cycle Propulsion 16 p Dec. 1990 In FRENCH

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

France has the potential for theoretical and experimental research on the ramjet engine which would allow its operational programs such as ASMP (Air Surface Medium Range by nuclear stress). The direction of these studies evolved trends for the future, especially in the area of very high speed and the use of combined engines. This is due in large part to significant national action on the ramjet engine during the period of 1951 to 1972, during which a number of flight tests or ground tests has proven the concepts of the conventional ramjet engine and the combined turbo-ramjet, as well as the dual mode hypersonic ramjet, the latter comes from a subsonic combustion after supersonic. These fixed point tests, on a large scale, were done in the ONERA wind tunnel at Modane. At the request of the organizers of the symposium, the status, main work, and results are reviewed which was conducted during this period in France. An analysis is made of the data. It is hoped that it will lead to more research on the hypersonic propulsion ramjet engine. Transl. by E.R.

N91-23151# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Inst. fuer Antriebstechnik. TRAJECTORY OPTIMIZATION CONSIDERATIONS FOR RAMJET ENGINES

FRANS G. J. KREMER In AGARD, Hypersonic Combined Cycle Propulsion 12 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

For supersonic and hypersonic flight conditions with ramjets, trajectory calculations have to be coupled with the engine performances. In space transportation systems ramjet will be used in a relatively wide range of Mach numbers, and therefore not always near the optimum design point. Optimization of several physical parameters along the trajectory will be inevitable. Some of these parameters are discussed along with their importance for an ascent trajectory, having a minimum fuel requirement. Author

N91-23152# Societe Europeenne de Propulsion, Suresnes (France).

COMPARATIVE STUDY OF DIFFERENT SYSTEMS OF COMBINED CYCLE PROPULSION

PHILIPPE RAMETTE, DOMINIQUE SCHERRER, and MICHEL DOUBLIER (Societe Nationale d'Etude et de Construction de Moteurs d'Aviation, Suresnes, France) In AGARD, Hypersonic Combined Cycle Propulsion 11 p Dec. 1990 In FRENCH;

ENGLISH summary

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Since 1986 the French Space Agency, CNES, is sponsoring some comparative studies of different concepts of combined cycle engines made jointly by SNECMA, SEP, and ONERA. SNECMA and SEP recently joined their efforts in combined cycle propulsion by creating a common Joint Venture named HYPERSPACE. The recent progress of comparative studies of different combined cycle engine systems is presented focusing on the following concepts: (1) the turborocket family including the turbo rocket-ramjet and the turbo expander-ramjet; (2) the turbojet family with the turbofan-ramjet and the turboramjet; (3) the rocket-ramjet; (4) the liquefied air rocket; (4) the cooled air rocket; and (5) the scramjet which is also presently in progress. The comparison of these concepts include their theoretical performance, some design considerations and an approximate evaluation of the technological difficulties with each concept.

N91-23153*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

HYPERSONIC PROPULSION: STATUS AND CHALLENGE

R. WAYNE GUY In AGARD, Hypersonic Combined Cycle Propulsion 19 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive CSCL 21/5

Scientists in the U.S. are again focusing on the challenge of hypersonic flight with the proposed National Aerospace Plane (NASP). This renewed interest has led to an expansion of research related to high speed airbreathing propulsion, in particular, the supersonic combustion ramjet, or scramjet. The history is briefly traced of scramjet research in the U.S., with emphasis on NASA sponsored efforts, from the Hypersonic Research Engine (HRE) to the current status of today's airframe integrated scramjets. The challenges of scramjet technology development from takeover to orbital speeds are outlined. Existing scramjet test facilities such as NASA Langley's Scramjet Test Complex as well as new high Mach number pulse facilities are discussed. The important partnership role of experimental methods and computational fluid dynamics is emphasized for the successful design of single stage to orbit vehicles.

N91-23154# Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.).

AIRBREATHING PROPULSION FOR SPACE TRANSPORT: NEW CONCEPTS, SPECIAL PROBLEMS AND ATTEMPTS AT SOLUTIONS

H. KUENKLER In AGARD, Hypersonic Combined Cycle Propulsion 14 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The design requirements of airbreathing propulsion for space transport application strongly depend on the particular mission demands and differ markedly from those of conventional airbreathing propulsion systems. Especially the low thrust densities and high thermal loads at high Mach numbers demands a systematic approach to design and selection of possible propulsion concepts. Main problems of propulsion system concepts and of their development as well as to present attempts for possible solutions are discussed.

N91-23155# Wright Research Development Center, Wright-Patterson AFB, OH. Turbine Engine Div.
TURBOJET POTENTIAL FOR HYPERSONIC FLIGHT
JEFFREY M. STRICKER and DOUGLAS J. ESSMAN In AGARD, Hypersonic Combined Cycle Propulsion 11 p Dec. 1990

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGAD/Scientific Publications Executive

Over the past few years, interest in manned hypersonic flight has increased significantly. The disadvantages of a three mode propulsion system (turbojet/ramjet/scramjet) are the complexity, weight, and costs which accompany it. Inlet and exhaust geometry

variations required for proper integration play a major role. The utilization is explored of the turbine engine for aircraft propulsion up to the scramjet transition. Examination of the uninstalled cycle performance is presented as well as an assessment of installed engine operation in a hydrogen fueled aircraft. Both non-afterburning and afterburning turbine engines are compared to turboramjet and air turboramjet (ATR) engines for a Mach 5 long duration cruise mission along with a pure acceleration mission, i.e., the turbomachinery is used to accelerate the vehicle to a Mach number where the scramjet can take over. From this assessment, a baseline engine configuration/cycle is defined for feasibility studies and critical technology identification. A discussion of the feasibility of the perferred concept from an engine component by component standpoint is provided as well as a discussion of technology risk compared to the state of the art. Author

N91-23156# Fiat Aviazione S.p.A., Turin (Italy). AIRBREATHING PROPULSION FOR TRANSATMOSPHERIC FLIGHT

G. ANDREI, U. BORIO, and M. MAIURANO In AGARD, Hypersonic Combined Cycle Propulsion 11 p Dec. 1990 Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The application of airbreathing propulsion systems to winged launchers is examined. The characteristics of ramjet based, LH2 fueled, powerplants are analyzed. The main ramjet design parameters are highlighted. Options (rockets, turboengines) for the boost phase from takeoff to ramjet mode transition are described, and their potential applicability to Single Stage to Orbit (SSTO) and Two Stage to Orbit (TSTO) launcher is discussed.

N91-23157# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

COMPACT HEAT EXCHANGER FOR AN INVERSE COMPONENTS ENGINE [ECHANGEUR COMPACT POUR MONTEUR A COMPOSANTS INVERSES (MCI)]

YVES RIBAUD /n AGARD, Hypersonic Combined Cycle Propulsion 10 p Dec. 1990 In FRENCH; ENGLISH summary Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A presizing study on a counter current heat exchanger fitted for the inverse components engine (ICE) was performed first using analytical calculations and then with a calculation code. The first calculation results show that the heat exchanger integration on the engine axis seems to be possible without a too great penalty on weight and length. The future main research purpose will be directed towards the reduction of the turbine exhaust section.

Author

N91-23158# Aerojet TechSystems Co., Sacramento, CA. Aeropropulsion.

DESIGN CONSIDERATIONS FOR COMBINED AIR BREATHING-ROCKET PROPULSION SYSTEMS

DAVID L. KORS *In* AGARD, Hypersonic Combined Cycle Propulsion 13 p Dec. 1990 Previously announced in IAA as A91-14442

(AIAA-90-0098) Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Combined air breathing rocket propulsion systems have been studied and carried through proof of principle demonstrations during the last three decades. Currently, a number of countries are studying and in some cases actually starting development of demonstrator vehicles for hypersonic flight which use combinations of air breathing and rocket propulsion. A summary of this activity including the propulsion options being studied is discussed. This type of propulsion is much more revolutionary in nature than most previous propulsion developments and thus results in technology challenges that are even more severe than those faced by either conventional air breathing propulsion or rocket designers. These include: (1) propulsion/vehicle integration; (2) engine stability over a wide operating range; (3) high performance over a wide operating range; (4) system level thermal management; and (5) advanced

materials. A discussion of these technical issues including the impact of underachieved development goals on system level performance is also included.

N91-23160# Office National d'Etudes et de Recherches Aerospatiales, Paris (France).

SUPERSONIC-HYPERSONIC INLET STUDIES FOR AEROSPACEPLANE

C. SANS, P. CHAMPIGNY, P. DUVEAU, and C. GINOVART In AGARD, Hypersonic Combined Cycle Propulsion 11 p Dec. 1990 In FRENCH; ENGLISH summary

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Recent improvements in technology have allowed the design of rockets to launch satellites. Reusable shuttles were then used to limit launch costs. A new stage is needed for horizontal takeoff and landing aerospace planes. These single or two stage vehicles will need new propulsion systems, able to provide enough thrust in the whole flight corridor. Mixed propulsion systems seem to be well adapted to this need. During atmospheric flight air breathing engines are necessary to improve performances. Thus inlets will have to be installed. The success of this project will depend on the choice of the inlets, for which mass flow ratios is a paramount objective. Pressure recovery seems to be of less importance at high Mach numbers because of structural stresses. Current design methods are examined which are based on: (1) semiempirical predictions, using experimental data bases, shock boundary layer interaction laws, shock and side overflow losses; (2) 2-D and 3-D Euler codes taking into account the internal bleed effects; and (3) Navier-Stokes codes for specific problems. Some examples of inlet design are presented for rocket ramrocket engines. Problems of inlet integration are presented. Author

N91-23166# Johns Hopkins Univ., Laurel, MD. Applied Physics

DESIGN TECHNIQUES FOR DUAL MODE RAM-SCRAMJET COMBUSTORS

F. S. BILLIG, S. CORDA, and P. P. PANDOLFINI In AGARD, Hypersonic Combined Cycle Propulsion 20 p Dec. 1990 Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A disciplined analytical method that describes the different engine operating modes and internal flow structures in dual mode ram-scramjet combustors is presented. Solutions for physical systems are dependent on empirical data bases from unit process experiments which include shock trains, jet penetration, and mixing. A synopsis of an experimental data base is presented and the method by which it is embodied in the analytical models is discussed. The models are then applied to develop design procedures for combustor-inlet isolators, discrete hole injectors, controlled shear layer mixing, and establishes the efficacy of sudden expansion steps for anchoring shock trains.

N91-23168# Toronto Univ., Downsview (Ontario). Inst. for Aerospace Studies.

PERFORMANCE CHARACTERISTICS OF HYPERSONIC DETONATION WAVE RAMJETS

T. M. ATAMANCHUK and J. P. SISLIAN *In* AGARD, Hypersonic Combined Cycle Propulsion 13 p Dec. 1990 Previously announced in IAA as A90-42188

Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

One method of heat addition to a supersonic flow is by means of shock-induced combustion or in this particular study a detonation wave. In order to assess the performance potential of a propulsion utilizing such a mode of heat addition a first order inviscid computational scheme based on Godunov's method was developed. This computational method was chosen since it allows the tracking of flow-field discontinuities such as shocks and slipstreams, thus making it possible to generate a vehicle geometry operating at design conditions for given freestream conditions. This same code was also used to determine the flow-field generated by a given body geometry at off-design conditions. Pressures acting

on these planar and axisymmetric bodies were calculated and used to determine various performance parameters over a range of Mach numbers. Two configurations consisting of multiple shock external and internal inlet compression, followed by an oblique Chapman-Jouquet detonation wave, were considered. Aerodynamic performance of planar multiple external shock inlet compression acting as lifting-propulsive bodies engine-airframe configurations) were also investigated. Off-design performance of these geometries was evaluated by varying the heat addition to the flow in order to obtain the desired thrust-to-dray ratio. For most body geometries operating at flight Mach numbers less than the design Mach number, it was found that no value of heat addition would maintain the design thrust-to-drag ratio. However, for flight Mach numbers greater than the design Mach number it was found that there usually existed at least two values, and in some cases three, of heat addition which would give the design thrust-to-drag ratio.

N91-23169*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS OF THE OBLIQUE DETONATION WAVE ENGINE CONCEPT
GENE P. MENEES, HENRY G. ADELMAN, and JEAN-LUC CAMBIER (Eloret Corp., Moffett Field, CA.) In AGARD, Hypersonic Combined Cycle Propulsion 15 p Dec. 1990
Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

N91-23170# Prins Maurits Lab. TNO, Rijswijk (Netherlands). THEORETICAL AND EXPERIMENTAL PERFORMANCE OF A SOLID FUEL RAMJET COMBUSTION CYCLE FOR HYPERSONIC FLIGHT CONDITIONS

P. J. M. ELANDS, P. A. O. G. KORTING, R. G. VERAAR, and P. DIJKSTRA (Technische Univ., Delft, Netherlands) *In* AGARD, Hypersonic Combined Cycle Propulsion 11 p Dec. 1990 Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A research program was performed to validate a numerical simulation of the flow and combustion process in the combustion chamber of a solid fuel ramjet with experimental results. Operating conditions were chosen to represent a sustained missile flight at Mach 4 at an altitude of 13 km. Experimental data were obtained by burning cylindrical fuel grains made of polyethylene and hydroxyl terminated polybutadiene in a solid fuel ramjet using a connected pipe facility. For numerical simulation a computer code was developed, describing rotational symmetric steady-state turbulent reacting flows through channels with and without a sudden expansion. Calculations were performed using polyethylene as a fuel. For the validation emphasis was laid on the regression rate. The results show that the computer code predicts the mean regression rate with reasonable accuracy. The value for the effective heat of gasification is found to be very important. The

experiments and the calculations performed show the feasibility to apply a solid fuel ramjet for sustained hypersonic flight at these conditions.

Author

N91-23176# Motoren- und Turbinen-Union Muenchen G.m.b.H. (Germany, F.R.).

THE 2-D SUPERSONIC NOZZLE DESIGN

MICHAEL GOEING and JOERG HEYSE /n AGARD, Hypersonic Combined Cycle Propulsion 10 p Dec. 1990 Copyright Avail: NTIS HC/MF A20; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

A method based on the theory of characteristics is presented for two-dimensional, supersonic nozzle design. Individual nozzle configurations for different applications are obtained by combining the geometric attributes of the symmetric, single expansion ramp, and Prandtl-Meyer type expansion nozzles. Corresponding to the design criteria, such as minimum length and optimum thrust efficiency, relations between desired properties of the flow field and nozzle geometry parameters are found, and a family of length-optimized, two-dimensional, supersonic nozzles is defined. The method can be applied for the design of wind tunnel and steam turbine nozzles as well as for thrust nozzle design of high Mach number aircraft.

N91-23179*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

EFFECTS OF INLET DISTORTION ON THE DEVELOPMENT OF SECONDARY FLOWS IN A SUBSONIC AXIAL INLET

COMPRESSOR ROTOR Ph.D. Thesis - Toledo Univ., OH

ALBERT K. OWEN Apr. 1991 340 p Prepared in cooperation with Army Aviation Systems Command, Cleveland, OH Original contains color illustrations

(Contract DA PROJ. 1L1-61102-AH-45)

(NASA-TM-104356; E-5583; NAS 1.15:104356;

AVSCOM-TR-90-C-012) Avail: NTIS HC/MF A15; 16 functional

color pages CSCL 21/5

Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex. Author

N91-23180*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MULTI-HEAT ADDITION TURBINE ENGINE Patent Application
LEO C. FRANCISCUS, inventor (to NASA) and THEODORE A.
BRABBS, inventor (to NASA) (Sverdrup Technology, Inc., Brook
Park, OH.) 30 Jan. 1991 12 p
(NASA-CASE-LEW-15094-1; NAS 1.71:LEW-15094-1;
US-PATENT-APPL-SN-647902) Avail: NTIS HC/MF A03 CSCL

A multi-heat addition turbine engine (MHATE) incorporates a plurality of heat addition devices to transfer energy to air and a plurality of turbines to extract energy from the air while converting it to work. The MHATE provides dry power and lower fuel consumption or lower combustor exit temperatures. NASA

N91-23182# National Aerospace Lab., Tokyo (Japan).
RESEARCH ON AERODYNAMIC CONTROL OF BLADE TIP
CLEARANCE FLOW IN AIR-COOLED TURBINE
H. USUI, S. INOUE, M. MINODA, and H. NOSE May 1990
20 p In JAPANESE
(DE91-764223; NAL-TM-620) Avail: NTIS HC/MF A03

07 AIRCRAFT PROPULSION AND POWER

Nowadays, cooling measurements are being made of the increase in inlet temperature. In order to increase the gas turbine efficiency, it is necessary to take into consideration the influence of cooling air outlet, which cools the turbine blade, on the main flow. A newly designed rotating unit is used to test the aerodynamics of the air-cooled turbine. The influence of cooling the air outlet from the shroud ring at the moving blade tip on the performance was investigated. Also, the influence of the outlet angle, moving blade tip clearance, etc. were investigated. Some of the conclusions made from the results are as follows: (1) with increase in blade tip clearance, the flow rate at the turbine entrance almost uniformly increases at an arbitrary expansion ratio; (2) the thermal isolation efficiency, as defined by use of main flow only, uniformly increases at an arbitrary expansion ratio, in the case where cooling air exists; and (3) the thermal isolation efficiency, where cooling air is also regarded as an operating fluid, is equal regardless of whether or not cooling air exists, while the existence of the cooling air outlet produced a similar effect given the reduction in blade tip clearance.

N91-23183*# National Aeronautics and Space Administration.
Lewis Research Center, Cleveland, OH.
ADVANCED ICE PROTECTION SYSTEMS TEST IN THE NASA

ADVANCED ICE PROTECTION SYSTEMS TEST IN THE NASA LEWIS ICING RESEARCH TUNNEL

THOMAS H. BOND, JAIWON SHIN, and GEERT A. MESANDER (Oklahoma City Air Logistics Center, Tinker AFB, OK.) 1991 12 p Presented at the 47th Annual Forum and Technology Display, Phoenix, AZ, 6-8 May 1991; sponsored by American Helicopter Society

(NASA-TM-103757; E-6013; NAS 1.15:103757) Avail: NTIS HC/MF A03 CSCL 21/5

Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

N91-23184*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MODEL ROTOR ICING TESTS IN THE NASA LEWIS ICING RESEARCH TUNNEL

ROBERT J. FLEMMING, RANDALL K. BRITTON (Sverdrup Technology, Inc., Brook Park, OH.), and THOMAS H. BOND 1991 27 p Presented at the 68th Meeting of the Fluid Dynamic Panel Specialists Meeting on the Effects of Adverse Weather on Aerodynamics, Toulouse, France, 29 Apr. - 1 May 1991; sponsored by AGARD

(NASA-TM-104351; E-6136; NAS 1.15:104351) Avail: NTIS HC/MF A03 CSCL 21/5

Tests of a lightly instrumented two-bladed teetering rotor and a heavily instrumented sub-scale articulated main rotor were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in August 1988 and September and November 1989. The first was an OH-58 tail rotor which had a diameter of 1.575 m and a blade chord of 0.133 m, and was mounted on a NASA designed test rig. The second, a four bladed articulated rotor, had a diameter of 1.83 m with 0.124 m chord blades specially fabricated for the experiment. This rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The models were exposed to variations in temperature, liquid water content, and medium droplet diameter, and were operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed), and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still,

video, and high speed photography, ice profile tracing, and ice molds. Presented here are the sensitivity of the model rotors to the test parameters and a comparison of the results to theoretical predictions.

Author

N91-23185*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A CFD STUDY OF JET MIXING IN REDUCED FLOW AREAS FOR LOWER COMBUSTOR EMISSIONS

C. E. SMITH, M. V. TALPALLIKAR (CFD Research Corp., Huntsville, AL.), and J. D. HOLDEMAN 1991 17 p Presented at the 27th Joint Propulsion Conference, Sacramento, CA, 24-27 Jun. 1991; sponsored by AIAA, SAE, ASME, and ASEE Original contains color illustrations (Contract NAS3-25967)

The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has the potential of significantly reducing NO(x) emissions in combustion chambers of High Speed Civil Transport aircraft. Previous work on RQL combustors for industrial applications suggested the benefit of necking down the mixing section. A 3-D numerical investigation was performed to study the effects of neckdown on NO(x) emissions and to develop a correlation for optimum mixing designs in terms of neckdown area ratio. The results of the study showed that jet mixing in reduced flow areas does not enhance mixing, but does decrease residence time at high flame temperatures, thus reducing NO(x) formation. By necking down the mixing flow area by 4, a potential NO(x) reduction of 16:1 is possible for annual combustors. However, there is a penalty that accompanies the mixing neckdown: reduced pressure drop across the combustor swirler. At conventional combustor loading parameters, the pressure drop penalty does not appear to be excessive.

N91-23187# Aerospatiale, Toulouse (France). INTEGRATION OF PROPULSIVE SYSTEMS: SELECTION AND COMPROMISE [INTEGRATION DES SYSTEMES PROPULSIFS: CHOIX ET COMPROMIS]

ALAIN GARCIA 1991 36 p In FRENCH Presented at AAF-ONERA Colloque Aeropropulsion, Paris, France, 20-21-May 1990

(REPT-911-111-101; ETN-91-99265) Avail: NTIS HC/MF A03

Emphasis is on a high percentage of dilute ion engines. It is shown that a solution allowing the best performances may be conflicting, particularly for the motor position in the plane, the safety, and the acoustic nuisances. Motor manufacturers have consistently exchange their views, while taking into account their own interests, in order to reach the best compromise. Original solutions result from economic necessity. More and more performing design tools are being developed in order to meet with the requirements of program leaders. Computer alded design plays an important part in shape creation. Composite materials are widely used. Airborne computer operated jet engines are being introduced. It is shown that competition is a factor of progress, with the example of thrust inverters. Improvements were realized in the integration of high dilution engines, with regard to mass, fuel consumption, power plant drag and acoustic nuisance.

N91-23188# Aerospatiale, Toulouse (France). THE CERTIFICATION OF THE AIRCRAFT INTEGRATED PROPULSIVE SYSTEM [LA CERTIFICATION DU SYSTEME PROPULSIF INTEGRE SUR AVION]

PHILIPPE MARTIN and MARTINE SAINTE-MARIE 1991 35 p In FRENCH Presented at AAF-ONERA Colloque Aeropropulsion 90, Paris, France, 20-21 Mar. 1990

(REPT-911-111-102; ETN-91-99266) Avail: NTIS HC/MF A03

The propulsive system of an Airbus type aircraft is described. It includes the Full Authority Digital Electronic Control (FADEC) which is integrated with the aircraft, in order to realize the automatic control for thrust level, starting sequence, and thrust reversal sequence. The global certification process is presented, which includes the propulsive system certification. Airworthiness certification is given by the authorities for the aircraft. Differences

07 AIRCRAFT PROPULSION AND POWER

between engine and aircraft regulations are outlined for various aspects such as motor fatigue, composite materials, thunder, and electromagnetic radiation protection. Engine and aircraft regulations are sometimes interpreted differently for subjects like icing protection and motor bursting. It is concluded that a better harmonization of such regulations is desired, while maintaining present safety levels.

N91-24201*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

STATIC PERFORMANCE TESTS OF A FLIGHT-TYPE STOVL **EJECTOR**

WENDY S. BARANKIEWICZ 1991 12 p Presented at the 27th Joint Propulsion Conference, Sacramento, CA, 24-27 Jun. 1991; cosponsored by AIAA, SAE, ASME, and the American Society for Electrical Engineers

(NASA-TM-104437; E-6131; NAS 1.15:104437; AIAA-91-1902) Avail: NTIS HC/MF A03 CSCL 21/5

The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.

N91-24202*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.
MIXING OF MULTIPLE JETS WITH A CONFINED SUBSONIC

CROSSFLOW. SUMMARY OF NASA-SUPPORTED EXPERIMENTS AND MODELING

JAMES D. HOLDEMAN 1991 49 p Presented at the 27th Joint Propulsion Conference, Sacramento, CA, 24-27 Jun. 1991; sponsored by AIAA, SAE, ASME and the American Socienty for **Electrical Engineers**

(NASA-TM-104412; E-6239; NAS 1.15:104412; AIAA-91-2458)

Avail: NTIS HC/MF A03 CSCL 21/5

Experimental and computational results on the mixing of single. double, and opposed rows of jets with an isothermal or variable temperature mainstream in a confined subsonic crossflow are summarized. The studies were performed to investigate flow and geometric variations typical of the complex 3-D flowfield in the dilution zone of combustion chambers in gas turbine engines. The principal observations from the experiments were that the momentum-flux ratio was the most significant flow variable, and that temperature distributions were similar (independent of orifice diameter) when the orifice spacing and the square-root of the momentum-flux ratio were inversely proportional. The experiments and empirical model for the mixing of a single row of jets from round holes were extended to include several variations typical of gas turbine combustors. Combinations of flow and geometry that gave optimum mixing were identified from the experimental results. Based on results of calculations made with a 3-D numerical model, the empirical model was further extended to model the effects of curvature and convergence. The principle conclusions from this study were that the orifice spacing and momentum-flux relationships were the same as observed previously in a straight duct, but the jet structure was significantly different for jets injected from the inner wall wall of a turn than for those injected from the outer wall. Also, curvature in the axial direction caused a drift of the jet trajectories toward the inner wall, but the mixing in a turning and converging channel did not seem to be inhibited by the convergence, independent of whether the convergence was radial or circumferential. The calculated jet penetration and mixing in an annulus were similar to those in a rectangular duct when the orifice spacing was specified at the radius dividing the annulus Author into equal areas.

N91-24203*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

FUEL-RICH, CATALYTIC REACTION EXPERIMENTAL **RESULTS**

R. JAMES ROLLBUHLER 1991 23 p Presented at the 27th Joint Propulsion Conference, Sacramento, CA, 24-27 Jun. 1991; sponsored by AIAA, SAE, ASME, and the American Society for **Electrical Engineers**

(NASA-TM-104423; E-6256; NAS 1.15:104423; AIAA-91-2463)

Avail: NTIS HC/MF A03 CSCL 21/5

Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

N91-24204*# Avco Lycoming Div., Stratford, CT... SMALL ENGINE COMPONENT TECHNOLOGY (SECT) STUDY. **PROGRAM REPORT Final Report**

E. ALMODOVAR, T. EXLEY, H. KAEHLER, and W. SCHNEIDER Mar. 1986 161 p

(Contract NAS3-24545; DA PROJ. 1L1-61101-AH-45) (NASA-CR-175077; LYC-86-11; NAS 1.26:175077;

AVSCOM-TR-86-C-12) Avail: NTIS HC/MF A08 CSCL 21/5

The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At \$1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At \$2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals. Author

N91-24205*# Garrett Turbine Engine Co., Phoenix, AZ. SMALL ENGINE COMPONENT TECHNOLOGY (SECT) Final

M. EARLY, R. DAWSON, P. ZEINER, M. TURK, and K. BENN Mar. 1986 470 p

(Contract NAS3-24544; DA PROJ. 1L1-61101-AH-45) (NASA-CR-175078; NAS 1.26:175078; AVSCOM-TR-86-C-11; GARRETT-21-5776-2A) Avail: NTIS HC/MF A20 CSCL 21/5

A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent.

The study further shows that cruise missile range can be increased

by as much as 200 percent (320 percent with slurry fuels) for a

year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.

Author

N91-24206*# Williams International, Walled Lake, MI.
SMALL ENGINE COMPONENT TECHNOLOGY (SECT)
STUDIES Final Report

P. K. MEYER and L. HARBOUR Mar. 1986 139 p (Contract NAS3-24543; DA PROJ. 1L1-61101-AH-45) (NASA-CR-175080; NAS 1.26:175080; AVSCOM-TR-86-C-9; FSCM-24235; REPT-074-021-M-005) Avail: NTIS HC/MF A07 CSCL 21/5

A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented. Author

N91-24207*# General Motors Corp., Indianapolis, IN. Allison Gas Turbine Div.

SMALL ENGINE COMPONENT TECHNOLOGY (SECT) STUDY Final Report

T. R. LARKIN Mar. 1986 156 p (Contract NAS3-24542; DA PROJ. 1L1-61101-AH-45) (NASA-CR-175081; EDR-12422; NAS 1.26:175081; AVSCOM-TR-86-C-8) Avail: NTIS HC/MF A08 CSCL 21/5

The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery Author cycle.

N91-24208*# Teledyne CAE, Toledo, OH. SMALL ENGINE COMPONENT TECHNOLOGY (SECT) STUDY Final Report

B. SINGH Mar. 1986 102 p Prepared for Army Aviation

Systems Command, Cleveland, OH (Contract NAS3-24541; DA PROJ. 1L1-61101-AH-45) (NASA-CR-175079; NAS 1.26:175079; AVSCOM-TR-86-C-10; TELEDYNE-CAE-2224) Avail: NTIS HC/MF A06 CSCL 21/5

Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

Author

N91-24292# Teledyne CAE, Toledo, OH.

MODEL 320-2: A COMPACT ADVANCED UAV TURBOJET

ELI H. BENSTEIN, BRIAN CASSEM, and KATHY ELLIOTT In

Johns Hopkins Univ., The 1990 JANNAF Propulsion Meeting,

Volume 1 p 285-294 Oct. 1990

Avail: NTIS HC/MF A20

The Model 320-2 is a 355 lb. thrust, outgrowth/up-rating of the family of small turbojets. It follows the thrust growth pattern of its predecessor J69 engines: a 40 percent increase is achieved by supercharging the simple centrifugal stage of the basic 320 turbojet with a high pressure ratio transonic axial stage, without change of engine diameter or core flowpath. The turbine was predesigned to allow for the increased work level without excessive efficiency loss. The engine retains the simple/low parts count design of the new family, which leads to very low production cost targets. Thus, for the intended expendable or limited life/reusable applications, a compact, high-performance, high-technology missile or unmanned air vehicle (UAV) powerplant results. aerodynamic gas path is presented. The origins of the Model 320-2 is outlined, including its subsystems, the source for the down-scaled supercharging axial, and the approach to deletion of an inlet bleed valve at the 7.85:1 pressure ratio of the compressor. Engine test data are presented in comparison to model predictions, and projections are made for future directions for development.

Author

08

AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

A91-36358 STABILITY OF HINGELESS ROTORS IN HOVER USING THREE-DIMENSIONAL UNSTEADY AERODYNAMICS

OH J. KWON, DEWEY H. HODGES, and LAKSHMI N. SANKAR (Georgia Institute of Technology, Atlanta) American Helicopter Society, Journal (ISSN 0002-8711), vol. 36, April 1991, p. 21-31. refs

(Contract DAAG29-82-K-0094; DAAL03-88-C-0003) Copyright

The effect of three-dimensional lifting surface aerodynamics on coupled flap-lag-torsion aeroelastic stability and response of two-bladed rotor models in the hovering flight conditions is analyzed using a three-dimensional unsteady panel method aerodynamic model coupled to a structural dynamic model of a hingeless ror with elastic blades. For a simplified rotor, three-dimensional tip and realistic wake effects are found to have a nonnegligible effect on the steady equilibrium deflections. A correlation with experimental results demonstrates the improved capability of the

unsteady three-dimensional panel method aerodynamic model to predict the lead-lag damping of the two-bladed hingeless rotor model throughout the ranges of thrust, precone, droop, and pitch flexibility considered.

A91-36722#

THE INFLUENCE OF ALTITUDE AND SPEED VARIATIONS OVER THE AIRCRAFT FLIGHT CONTROL RESPONSE DURING THE LONGITUDINAL NONLINEAR MANOEUVRES

I. TAPOSU (Institutul National pentru Creatie Stiintifica si Tehnica, Bucharest, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, July-Aug. 1990, p. 275-294. refs

The response of an aircraft to symmetrical deflection of flaps, elevators, and/or air brakes surfaces in longitudinal maneuvers with significant variations of altitude and speed is determined. The analysis is based on the nonlinear components of the aerodynamic and inertial loads established in the work of Taposu (1989). L.M.

A91-37051#

A NEW METHOD FOR ESTIMATING AIRSPEED, ATTACK ANGLE AND SIDESLIP ANGLE

REN DA (Northwestern Polytechnical University, Xian, People's Republic of China) and R. BROCKHAUS (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) Northwestern Polytechnical University, Journal (ISSN 1000-2758), vol. 9, April 1991, p. 125-130. In Chinese, with abstract in English. refs

A nonlinear Kalman filter (NLKF) is presently used in place of a state observer in order to estimate aircraft airspeed, attack angle, and sideslip angle, on the basis of inertial navigation system information on aircraft rotation speed, attitude, and acceleration. A detailed analysis is conducted of NLKF errors by comparing simulated aircraft motions with NLKF estimates. NLKF performance is also compared with real flight test data. Airspeed estimation error is established to be less than 1 m/sec, while attack-angle and sideslip-angle estimation errors are of less than 1 deg. O.C.

A91-37595

DECOUPLED FLIGHT CONTROL VIA A MODEL-FOLLOWING TECHNIQUE USING THE EULER OPERATOR

PETER N. NIKIFORUK (Saskatchewan, University, Saskatoon, Canada), NORIYUKI HORI (McGill University, Montreal, Canada), and KIMIO KANAI (National Defense Academy, Yokosuka, Japan) IN: Control and dynamic systems. Vol. 33 - Advances in aerospace systems dynamics and control systems. Pt. 3. San Diego, CA, Academic Press, Inc., 1990, p. 59-87. refs

The improved design of a model-following controller is described for the linear time-invariant MIMO case. Particular attention is given to a discrete-time system which is expressed in the Euler operator and which has the same number of points and outputs. An application of this model-following scheme to a CCV aircraft is considered and longitudinal motions are studied in detail. K.K.

A91-37597

METHODOLOGY FOR THE ANALYTICAL ASSESSMENT OF AIRCRAFT HANDLING QUALITIES

RONALD A. HESS (California, University, Davis) IN: Control and dynamic systems. Vol. 33 - Advances in aerospace systems dynamics and control systems. Pt. 3. San Diego, CA, Academic Press, Inc., 1990, p. 129-149. refs

Copyright

A theory for aircraft handling qualities is proposed and interpreted in terms of structural model of the human pilot. This methodology was developed based on the data from manned simulations involving 35 aircraft configurations in both single and multiloop tasks. It is noted that this methodology provides a framework within which to interpret the pilot's preference for an optimum control system sensitivity.

A91-37598* California Univ., Davis.

IDENTIFICATION OF PILOT-VEHICLE DYNAMICS FROM SIMULATION AND FLIGHT TEST

RONALD A. HESS (California, University, Davis) IN: Control and dynamic systems. Vol. 33 - Advances in aerospace systems dynamics and control systems. Pt. 3. San Diego, CA, Academic Press, Inc., 1990, p. 151-175. NASA-supported research. refs Copyright

The paper discusses an identification problem in which a basic feedback control structure, or pilot control strategy, is hypothesized. Identification algorithms are employed to determine the particular form of pilot equalization in each feedback loop. It was found that both frequency- and time-domain identification techniques provide useful information.

K.K.

A91-37771#

SIMPLIFICATION OF NONLINEAR INDICIAL RESPONSE MODELS - ASSESSMENT FOR THE TWO-DIMENSIONAL AIRFOIL CASE

JERRY E. JENKINS (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 131-138. USAF-supported research. Previously cited in issue 21, p. 3273, Accession no. A89-49056. refs

A91-37773#

EQUATION DECOUPLING - A NEW APPROACH TO THE AERODYNAMIC IDENTIFICATION OF UNSTABLE AIRCRAFT HARALD PREISSLER and HORST SCHAEUFELE (MBB GmbH, Munich, Federal Republic of Germany) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 146-150. Previously cited in issue 14, p. 2135, Accession no. A90-33900. refs Copyright

A91-37778# RE-ENTRY FLIGHT CONTROL OF SPACE PLANE USING APPROXIMATE PERFECT SERVO

TADASHI SATO, TATSUO CHUBACHI (Iwate University, Morioka, Japan), SHOKICHI KANNO (Ichinoseki National College of Technology, Japan), and HIROBUMI OHTA (Nagoya University, Japan) Japan Society for Aeronautical and Space Sciences, Transactions (ISSN 0549-3811), vol. 33, Feb. 1991, p. 176-190. refs

The flight control system for reentry flight of a space plane is designed in this paper using the approximate perfect servo. The plane is sometimes almost unstable under the effect of shock wave. The term 'approximate perfect servo' means that the input/output transfer matrix is approximately equal to unit matrix. This system is effective to eliminate the effects of strong nonlinearity of angular velocity transformation matrix in the dynamics of three-dimensional motions of aircraft. The method is simple and easy to implement, and does not need any computation of aircraft dynamics. The designed system is robust and stable irrespective of the change of flight conditions and the variation of aircraft dynamics. Simulation studies on the reentry flight of space plane are given to substantiate the proposed method.

A91-37779# IMPROVEMENT OF ATMOSPHERIC FLIGHT PERFORMANCE OF A SPACE VEHICLE THROUGH SENSITIVITY MINIMIZATION

YUKINOBU NAKAMURA (Nissan Motor Co., Ltd., Tokyo, Japan), MAKOTO KOBAYAKAWA (Kyoto University, Japan), and HIROYUKI IMAI (Setsunan University, Osaka, Japan) Japan Society for Aeronautical and Space Sciences, Transactions (ISSN 0549-3811), vol. 33, Feb. 1991, p. 191-203. refs

This paper considers the problem of improving controlled atmospheric flight performance of a winged space vehicle. The problem is shown to be formulated as an H(infinity)-sensitivity minimization problem. It is shown that if the weighting function satisfies a certain condition the optimization problem can be solved easily and the resulting optimal sensitivity function turns out to be proportional to the inverse of the weighting function. Through a

discussion on a geometric relationship between the sensitivity and the complementary sensitivity functions, a guideline is presented for choosing the weighting function. This guideline provides a good design tradeoff between those sensitivity functions only through sensitivity minimization. A numerical simulation is carried out for demonstrating the proposed method.

A91-38547# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

EFFECTS OF HORIZONTAL TAIL ICE ON LONGITUDINAL AERODYNAMIC DERIVATIVES

R. J. RANAUDO, A. L. REEHORST, T. H. BOND (NASA, Lewis Research Center, Cleveland, OH), J. G. BATTERSON (NASA, Langley Research Center, Hampton, VA), and T. M. O'MARA (George Washington University, Washington, DC) Journal of Aircraft (ISSN 0021-8669), vol. 28, March 1991, p. 193-199. Previously cited in issue 10, p. 1441, Accession no. A89-28454. refs

Copyright

A91-39401#

EVOLUTION OF AIRPLANE STABILITY AND CONTROL - A DESIGNER'S VIEWPOINT

JAN ROSKAM (Kansas, University, Lawrence) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 481-491. refs

Stability and control developments affecting aircraft design are reviewed. The paper consists of three sections covering years before and through World War I, years between World War I and World War II, and years since World War II. The works of Draper, Combs, Cayley, Bryan, and other related to stability and control issues are highlighted, and emphasis is placed on Routh's stability criteria. The effect of lateral and directional stability on the dynamic stability behavior is discussed, and examples of control-surface, tab, and bob-weight applications are presented. The effects of configuration on the fuselage-induced shift of the aerodynamic center, and aeroelasticity and wheel-control force on roll performance are outlined. Roll coupling stability boundaries, the equivalent stability derivative concept, and the pitch break behavior as a function of the horizontal tail location are covered.

A91-39410#

INTEGRATION OF FOUR-DIMENSIONAL GUIDANCE WITH TOTAL ENERGY CONTROL SYSTEM

ISAAC KAMINER and PATRICK O'SHAUGHNESSY (Boeing Co., Seattle, WA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 564-573. Previously cited in issue 21, p. 3492, Accession no. A88-50177. refs Copyright

A91-40133#

THE DESIGN AND SIMULATION OF AN INTELLIGENT FLIGHT CONTROL SYSTEM

CHANGSHENG JIANG and ZHONGHAN HU (Nanjing Aeronautical Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 12, Jan. 1991, p. A46-A53. In Chinese, with abstract in English. refs

The design of an intelligence automatic flight control system is discussed. The basic structure of the system, the basic rule of intelligence control for simulating human behavior, the division of a characteristic model, and the construction of intelligence control laws are suggested. Based on the principles mentioned above, the knowledge base, the data base, the rule base, and inference mechanism of the system are designed. It is demonstrated by digital simulation for some kinds of aircraft that this system has excellent control performance, strong robustness and adaptability, and good decoupling function.

A91-40164#

FURTHER RESEARCH ON MECHANICAL MODEL FOR 'GROUND RESONANCE' OF HELICOPTERS

ZHONGGUAN GU and ZHONG LI (Nanjing Aeronautical Institute,

People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A605-A611. In Chinese, with abstract in English.

The equations of vibrational motion for a helicopter on the ground are derived, employing a three-dimensional model in which the rotors have two degrees of freedom and the landing-gear response is frequency-dependent. The steps in the analysis are described in detail, and sample numerical calculations demonstrating the validity of the approach are presented in tables and graphs.

A91-40166#

SIMILARITIES AND DIFFERENCES BETWEEN ENVIRONMENT TESTS AND RELIABILITY TESTS IN VIEW OF VIBRATION

QINGXIANG GONG (Nanchang Aircraft Manufacturing Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A615-A617. In Chinese, with abstract in English.

The relationship between aircraft environmental vibration tests and reliability test is examined theoretically, considering the procedures called for by military standards 810D and 781D (1982 and 1986). Particular attention is given to such factors as the test aims, the testing situations, the test duration, and the failure criteria applied.

D.G.

A91-40167#

APPLICATION OF IDENTIFICATION METHOD OF MODAL PARAMETERS TO FLIGHT FLUTTER TEST

JIANZHONG QU and CHANGAN SHA (China Academy of Flight Test, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A618-A622. In Chinese, with abstract in English.

The mathematical basis of a technique for processing flutter data from aircraft flight tests is outlined. Frequency-domain and time-domain approaches to the identification of modal frequency and damping parameters are described, and procedures are developed (1) to eliminate the negative effects of low signal/noise ratios and (2) shorten the computation time.

D.G.

A91-40168#

INTEGRATION OF VIBRATION TEST AND FLUTTER ANALYSIS - A BRIEF INTRODUCTION TO 'A REAL-TIME FLUTTER ANALYSIS SYSTEM'

PIQIAN QI, ZUDE GE, BINGGONG LI, and GUANGQI XU (Aircraft Structure Strength Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A623-A625. In Chinese, with abstract in English. refs

The theoretical basis and implementation of an algorithm for aircraft flutter analysis on the basis of data from ground vibration tests are briefly discussed. The flutter analysis takes two different approaches, one involving direct application of the (orthogonalized) mode vectors and one based on the use of test data to improve the aircraft dynamic model. Also outlined is an inverse branch-mode-synthesis scheme to facilitate the modification of aircraft substructures.

A91-40169#

TRANSONIC FLUTTER ANALYSIS OF 2-D AIRFOILS WITH 2 DEGREES OF FREEDOM

YUFENG YAO (Shanghai Aircraft Design and Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A626-A629. In Chinese, with abstract in English.

A numerical solution procedure for two-dimensional inviscid nonlinear unsteady transonic flows is developed analytically under the small-disturbance assumption and applied to the flutter analysis of a NACA 64A006 airfoil with pitching and plunging degrees of freedom. The flow equations are split into nonlinear steady and time-linearized unsteady parts and solved by the Carlson and integral methods, respectively, and the flutter eigenvalue equations are treated using a conventional v-g approach. Flutter speeds

and flutter-reduced frequencies are calculated for Mach 0.7, 0.8, and 0.85 and presented in tables, good agreement with the results of Yang et al. (1978) is demonstrated.

A91-40175#

PREDICTION OF TEST SPECTRUM FOR GUNFIRE VIBRATION BAOLU WANG (Chengdu Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A650-A652. In Chinese, with abstract in English.

A numerical technique for estimating the spectrum of aircraft vibration induced by the firing of guns is briefly described. The derivation of the governing equations is outlined; typical parameter values are indicated; and sample results are presented in graphs.

A91-40202

TESTING THE TILTROTOR FLIGHT CONTROL SYSTEM

Aerospace Engineering (ISSN 0736-2536), vol. 11, June 1991, p. 37-40.

Copyright

A review is presented of the V-22 tiltrotor's fly-by-wire digital flight control system (FCS) and the test system used, beginning at the lowest possible level, and again at each succeeding level, until the complete system is assembled on the aircraft for first flight. Extensive verification testing was performed on the FCS software to ensure that it operates in accordance with the detailed functional requirements established in the program performance specification for each computer program. The primary reason for validating the FCS was to successfully integrate the separate pieces of hardware (hydraulic components, computers, sensors, electrical system) into a fully functional whole. Additional details are provided R.E.P. for testing performed on the specific systems.

A91-40517#

FLIGHT MANAGEMENT SYSTEMS

SAMUEL B. FISHBEIN Washington, DC, National Air and Space Museum, 1990, 67 p. refs

A historical overview is presented of aviation electronics and instrumentation, the evolution to automated systems and their integration, and the role of the pilot in this environment. Also reviewed are the major instrumented elements comprising the flight management system and their evolution and operation. Attention is given to those ground and space-based systems influencing the design of the airborne systems and discusses the digitization of information and its influence over the design of the cockpit configuration.

N91-23113# British Aerospace Public Ltd. Co., Preston (England). Military Aircraft Div.

THE DEVELOPMENT OF ALTERNATE CRITERIA FOR FBW HANDLING QUALITIES

J. C. GIBSON In AGARD, Flying Qualities 13 p Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Provision of robust flight control systems and structural mode stability margins and carefree handling in highly unstable combat aircraft with a wide range of store loading requires new methods for handling qualities optimization. The possibilities for new control modes and task-tailored handling were greatly enhanced by modern controls. This has led to development of many alternate criteria which were tried and tested in two digital fly by wire (FBW) research aircraft, the Experimental Aircraft Program (EAP) and Jaguar FBW, and were further developed for use in European fighter aircraft (EFA). They cover the field of flight path and attitude bandwidth, tracking dynamics and sensitivity, pilot-induced oscillation (PIO) prevention, and enhanced lateral directional damping. Derived as design guidelines with the facility to design for optimum rather than merely acceptable handling, more research is needed into formal boundaries for levels 1, 2, and 3 specifications. The criteria are reviewed and some are illustrated by example. Author

Deutsche Forschungsanstalt fuer Luft- und N91-23114# Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugmechanik. DEVELOPMENT OF MIL-8785C INTO A HANDLING QUALITIES SPECIFICATION FOR A NEW EUROPEAN FIGHTER **AIRCRAFT**

E. BUCHACKER, H., GALLEITHNER, R. KOEHLER, and M. MARCHAND In AGARD, Flying Qualities 16 p Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

For the development of the Tornado, which started in the sixties, a draft version of MIL 8785B was used as a guideline and specification for the flying qualities the airplane should have. No consideration was given at that time to the fact that requirements, which were based on mathematical models of the airplane, only considered the flight mechanics of the bare airframe. In most cases, a new airplane is sold on performance promises. The fact that a pilot has to be able to fly an airplane safely and efficiently in order to achieve full performance, especially in a combat airplane, is often forgotten. The Armed Forces are repeatedly disappointed with their aircraft when it becomes clear that it is impossible to achieve the promised performance for reasons of conflicting flying qualities issues which demand other than performance optimal trim schedules. This, coupled with the fact that there was not a lot of flying qualities research within the nations participating in the Tornado program, led to the situation that it is was more or less only during flight tests that the user realized the problems involved with full authority full time flight control systems. In the meantime, however, some research efforts have been initiated by government and industry that have provided some second thoughts on flying qualities requirements for highly augmented airplanes with a basically unstable pitch axis. Together with industry, the four nations involved in the European Fighter Aircraft (EFA) Program decided to initiate an effort to generate a flying qualities specification for EFA based on the MIL-F-8785C. Some of the issues discussed include the following: the equivalent system approach, high order requirements for the pitch axis, the carefree handling issue, roll performance, small lateral directional inputs, air combat, and stall and spin.

N91-23116# Dornier System G.m.b.H., Friedrichshafen (Germany,

HANDLING QUALITIES OF HIGHLY AUGMENTED UNSTABLE AIRCRAFT SUMMARY OF AN AGARD-FMP WORKING GROUP **EFFORT**

HORST WUENNENBERG In AGARD, Flying Qualities 6 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Methods and criteria which were found to be useful as design guides and for the evaluation of handling qualities of highly augmented aircraft are presented. It was the unanimous opinion of the members of the working group that no one method or criterion is adequate by itself, and that several or even all of the recommended criteria should be checked. Experience has shown that one metric may not show a deficiency that will be exposed by other criteria. Alternately, a configuration that passes several of the proposed criteria has a high probability of being accepted as desirable by most pilots. The major topics covered by the Author working group's report are listed.

Wright Research Development Center, Wright-Patterson AFB, OH.

THE HANDLING QUALITIES OF THE STOL AND MANEUVER TECHNOLOGY DEMONSTRATOR FROM SPECIFICATION TO FLIGHT TEST

DAVID J. MOORHOUSE, KEVIN D. CITURS, RICHARD W. THOMAS, and MARK R. CRAWFORD (Air Force Flight Test Center, Edwards AFB, CA.) In AGARD, Flying Qualities 9 p 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The STOL and Maneuver Technology Demonstrator (S/MTD) development from the initial specification through current flight

test results is discussed. Lessons learned with respect to individual specification criteria and design methodology are presented. Two areas are identified in which it is considered that the current criteria are inadequate: pitch axis requirements as a function of touchdown dispersion and the directional axis requirement for target tracking.

Author

N91-23119# Royal Aerospace Establishment, Bedford (England).

HANDLING QUALITIES GUIDELINES FOR THE DESIGN OF FLY-BY-WIRE FLIGHT CONTROL SYSTEMS FOR TRANSPORT AIRCRAFT

O. P. NICHOLAS, H. T. HUYNH, W. P. DEBOER, J. A. J. VANENGELEN, and D. SHAFRANEK (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick, Germany, F.R.) *In* AGARD, Flying Qualities 12 p Feb. 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The work of the GARTEUR Flight Mechanics Action Group 01 is summarized. The objectives, which concentrated on longitudinal control, are outlined. The flight control systems and the simulator trials are discussed. Existing handling qualities criteria and the Action Group's tentative proposals for handling qualities measures which can be applied to flight path control and system changeover are assessed. Finally, the Group's guidelines and recommendations for further work are reviewed.

N91-23123# National Aeronautical Establishment, Ottawa (Ontario). Flight Research Lab.

AN INVESTIGATION INTO THE USE OF SIDE-ARM CONTROL FOR CIVIL ROTORCRAFT APPLICATIONS

S. W. BAILLIE and S. KERELIUK In AGARD, Flying Qualities 12 p Feb. 1991 Prepared in cooperation with FAA, Atlantic City, NJ

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

An evaluation of the handling qualities of civil rotorcraft incorporating force or displacement sensing side-arm controllers with varying degrees of control integration was carried out on the NAE Bell 205 Airborne Simulator. Evaluators were certification pilots from the FAA and Transport Canada. The results indicate that integrated 4-axis side-arm control is a viable option for civil rotorcraft operations, even when used in conjunction with very low levels of stability and control augmentation.

N91-23124# National Aeronautical Establishment, Ottawa (Ontario).

DETERMINATION OF DECISION-HEIGHT WINDOWS FOR DECELERATING IMC APPROACHES IN HELICOPTERS

ROGER H. HOH (Hoh Aeronautics, Inc., Lomita, CA.), S. W. BAILLIE, S. KERELIUK, and JOSEPH J. TRAYBAR *In* AGARD, Flying, Qualities 17 p Feb. 1991 Prepared in cooperation with Federal Aviation Administration, Atlantic City, NJ

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The basic limitations were defined of the pilot plus rotorcraft in making the transition from a very low decision height to a steady hover over the helipad. The term 'decision-height window' is defined as the limits of glideslope/localizer tracking errors, and groundspeed variations, that can exist at breakout to allow a safe visual transition to hover. The dimensions of the decision-height window can have a significant impact on the required rotorcraft handling qualities, and for setting autopilot coupler and flight director performance standards for decelerating instrument approaches in rotorcraft.

N91-23125# Dornier System G.m.b.H., Friedrichshafen (Germany, F.R.).

INTÉGRATION OF HANDLING QUALITY ASPECTS INTO THE AERODYNAMIC DESIGN OF MODERN UNSTABLE FIGHTERS PETER MANGOLD In AGARD, Flying Qualities 30 p Feb 1991

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The following subject areas are covered: flightmechanical design of unaugmented stable configurations; design criteria for modern configurations with unstable characteristics in pitch; development of specific criteria for modern fighter configurations; and aerodynamic/flightmechanical pecularities of configurations.

Author

N91-23190 California Univ., Los Angeles. INTEGRATED MULTIDISCIPLINARY OPTIMIZATION OF ACTIVELY CONTROLLED FIBER COMPOSITE WINGS Ph.D. Thesis

ELIEZER LIVNE 1990 432 p

Avail: Univ. Microfilms Order No. DA9105834

The synthesis of actively controlled fiber composite wings is formulated as a multidisciplinary design optimization problem. An integration of analysis techniques spanning the disciplines of structures, aerodynamics, and controls is described. A rich variety of behavior constraints can be treated including stress, displacement, control surface travel and hinge moment, natural frequency, aeroservoelastic stability, gust response, and handling quality constraints as well as performance measures in terms of drag/lift coefficients, drag polar shape, required load factor on roll rate, and wing mass. The design space includes a simultaneous treatment of structural, aerodynamic, and control system design variables. Capabilities and accuracy of the analysis and related behavior sensitivity analysis are discussed. Applicability of approximation concepts to the multidisciplinary optimization problem is examined by studying typical aeroservoelastic stability, gust response, and performance related constraints. The high computational efficiency of the combined analysis and sensitivity as well as the good quality of key behavior constraint approximations set the stage for the optimization of actively controlled fiber composite wings in a practical preliminary design context. Design studies of different wing configurations demonstrate the power of the new technology and offer better understanding of the multidisciplinary interactions inherent to this complex problem.

N91-23191# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Abt. Flaechenflugzeuge. EVALUATION TECHNIQUES FOR HIGHLY AUGMENTED AIRCRAFT

KNUT WILHELM and ANTON M. H. NIEUWPOORT (Fokker B.V., Schipol-Oost, Netherlands) Nov. 1990 51 p (DLR-FB-90-35; ISSN-0939-2963; ETN-91-99063) Avail: NTIS HC/MF A04; DLR, Wissenschaftliches Berichtswesen, VB-PL-DO, Postfach 90 60 58, 5000 Cologne, Fed. Republic of Germany, HC 20.50 DM

The handling qualities evaluation is a very important part of the overall flight control system development process. For determining the flight characteristics of highly augmented aircraft there are basically two methods: evaluation using pilots under operational conditions and numerical handling qualities evaluation using mathematical models of the aircraft. Both methods are addressed with main emphasis laid on those techniques suitable for handling qualities analysis of highly augmented aircraft. The important role of system identification in the handling qualities evaluation process is presented.

N91-23192# Aerospatiale, Toulouse (France). THE ELECTRICAL FLIGHT CONTROL SYSTEM OF A320 AIRBUS: A FAULT TOLERANT SYSTEM [LES COMMANDES DE VOL ELECTRIQUES DE L'AIRBUS A320: UN SYSTEME TOLERANT AUX FAUTES]

DOMINIQUE BRIERE and PASCAL TRAVERSE 1991 6 p In FRENCH; ENGLISH summary Presented at 7th International Conference on Reliability and Maintenance, Brest, France, 1990 (REPT-911-111-103; ETN-91-99267) Avail: NTIS HC/MF A02

The A 320 Airbus is the first civil aircraft equipped with an electrical flight control system. This system is based on very stringent dependability constraints, both in terms of safety and

availability. The basic building blocks are control and monitoring computers. The control channel is in charge of the function of the computer, for instance, to slave a control surface. The monitoring channel is used to detect a possible failure of the control channel. A high level of redundancy is built in the system Particular attention is drawn to possible external stresses. The system is built to tolerate both hardware and software design faults.

N91-24209*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SIMULATION EVALUATION OF A SPEED-GUIDANCE LAW FOR HARRIER APPROACH TRANSITIONS

VERNON K. MERRICK, ERNESTO MORALEZ, MICHAEL W. STORTZ, GORDON H. HARDY, and RONALD M. GERDES (SYRE Corp., Moffett Field, CA.) Apr. 1991 34 p (NASA-TM-102853; A-90247; NAS 1.15:102853) Avail: NTIS HC/MF A03 CSCL 01/3

An exponential-deceleration speed guidance law is formulated which mimics the technique currently used by Harrier pilots to perform decelerating approaches to a hover. This guidance law was tested along with an existing two-step constant deceleration speed guidance law, using a fixed-base piloted simulator programmed to represent a YAV-8B Harrier. Decelerating approaches to a hover at a predetermined station-keeping point were performed along a straight (-3 deg glideslope) path in headwinds up to 40 knots and turbulence up to 6 ft./sec. Visibility was fixed at one-quarter nautical mile and 100 ft. cloud ceiling. Three Harrier pilots participated in the experiment. Handling qualities with the aircraft equipped with the standard YAV-8B rate damped attitude stability augmentation system were adequate (level 2) using either speed guidance law. However, the exponential deceleration speed guidance law was rated superior to the constant-deceleration speed guidance law by a Cooper-Harper handling qualities rating of about one unit independent of the level of wind and turbulence. Replacing the attitude control system of the YAV-8B with a high fidelity model following attitude flight controller increased the approach accuracy and reduced the pilot workload. With one minor exception, the handling qualities for the approach were rated satisfactory (level 1). It is concluded that the exponential deceleration speed guidance law is the most cost effective.

N91-24210*# Sparta, Inc., Laguna Hills, CA. NATIONAL REMOTE COMPUTATIONAL FLIGHT RESEARCH

HERMAN A. REDIESS Sep. 1989 85 p (Contract NAS2-12211)

(NASA-CR-179432; H-1489; NAS 1.26:179432) Avail: NTIS HC/MF A05 CSCL 01/3

The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

09

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

A91-37775# ONE-ON-ONE HELICOPTER COMBAT SIMULATED BY CHESS-TYPE LOOKAHEAD

AMNON KATZ and ARTHUR ROSS (McDonnell Douglas Helicopter

Co., Mesa, AZ) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 158-160. Previously cited in issue 21, p. 3279, Accession no. A89-48421. refs Copyright

A91-37881#

DEVELOPMENT OF B-1 ANTENNA MEASUREMENT TEST BED SIGMUND S. GRUDZINSKI (USAF, Rome Air Development Center, Griffiss AFB, NY) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 6, April 1991, p. 7-11.

The establishment of a B-1 test bed is chronicled from identification of the requirement to the initial measurements program. Disassembly, modification, and reassembly of the airframe are covered. Future modifications and measurements are previewed. The facilities at which the B-1 test bed is located are briefly discussed.

A91-39396 SIMULATION OF G(X) FORCES USING HORIZONTAL IMPULSE ACCELERATORS

RICHARD P. WHITE, JR. and MARTIN G. VOGEL (Systems Research Laboratories, Inc., Dayton, OH) IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 195-201. Copyright

The success achieved in the development of effective ejections systems is attested by the number of lives these systems have saved. During the development of these life-saving systems, many tests are conducted on the subsystems to ensure their adequacy of performance in the dynamic environment associated with a high speed ejection. The dynamic loadings which the systems are designed to resist are generally based on the limits on the human body. The establishment of these human limits has been gained from data obtained during tests conducted on humans up to safe G(x) levels and by the use of human analogs at the G(x) levels that are anticipated during high speed ejections. Analysis of these data, in association with physiological data of the human body, has led to a set of guidelines that is used to design the dynamic and structural characteristics of ejection seats and the restraint system. Author

A91-40556# AN INTRODUCTION TO TESTING PARACHUTES IN WIND TUNNELS

J. M. MACHA (Sandia National Laboratories, Albuquerque, NM) AlAA, Aerodynamic Decelerator Systems Technology Conference, 11th, San Diego, CA, Apr. 9-11, 1991. 11 p. refs (Contract DE-AC04-76DP-00789) (AIAA PAPER 91-0858)

This paper reviews some of the technical considerations and current practices for testing parachutes in conventional wind tunnels. Special challenges to the experimentalist caused by the fabric construction, flexible geometry, and bluff shape of parachutes are discussed. In particular, the topics of measurement technique, similarity considerations, and wall interference are addressed in a summary manner. Many references are cited which provide detailed coverage of the state of the art in testing methods.

N91-23194# Israel Aircraft Industries Ltd., Ben-Gurion Airport.
Materials and Process Engineering.
IAI HYPERSONIC WIND TUNNEL

L. Y. JACOBI and M. ZILBERMAN May 1987 18 p Presented at the 67th Semiannual STA Meeting, Arnold AFS, TN, 13-15 Apr. 1987; sponsored by Calspan Corp./AEDC Div. (IAITIC-87-1006; ITN-88-85005) Avail: NTIS HC/MF A03

IAI (Israel Aircraft Industries) has initiated a program to have its own capability in experimental hypersonic aerodynamics. It is planning to reconstruct and operate the Hypersonic Wind Tunnel, purchased in 1978 from General Dynamics, together with its Tri-sonic Wind Tunnel to complement its Low Speed and High Speed Wind Tunnels. The air supply system, air heater, by-pass valve, nozzles, test chamber and diffuser-ejector system of the Hypersonic Wind Tunnel are described and its operational

characteristics and experience presented. The purpose of the presentation is to invite participants' suggestions for future development of hypersonic vehicles.

N91-23195*# MCAT Inst., San Jose, CA. DEVELOPMENT OF A QUIET SUPERSONIC WIND TUNNEL WITH A CRYOGENIC ADAPTIVE NOZZLE Annual Progress Report, May 1990 - Apr. 1991 STEPHEN D. WOLF Feb. 1991 106 p

(Contract NCC2-604)

(NASA-CR-186769; NAS 1.26:186769) Avail: NTIS HC/MF A06 CSCL 14/2

The main objectives of this work is to demonstrate the potential of a cryogenic adaptive nozzle to generate quiet (low disturbance) supersonic flow. A drive system was researched for the Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT) using a pilot tunnel. A supportive effort for ongoing Proof of Concept (PoC) research leading to the design of critical components of the LFSWT was maintained. The state-of-the-art in quiet supersonic wind tunnel design was investigated. A supersonic research capability was developed within the FML.

N91-23198# Federal Aviation Administration, Washington, DC. Systems Research and Development Service.

PRECISION RUNWAY MONITOR DEMONSTRATION REPORT **Final Report**

Feb. 1991 133 p

(AD-A232671; DOT/FAA/RD-91/5) Avail: NTIS HC/MF A07 CSCL 01/5

This report is prepared as the result of a development and demonstration project to increase landing capacity on closely spaced parallel runways. The project developed new equipment and procedures, and demonstrated them in a variety of ways at two different airports. The new monitoring equipment consists of radars and displays. The systems installed at Raleigh, NC included an electronically scanned antenna capable of half-second update intervals, while the Memphis, TN installation provided a mechanically rotating back-to-back antenna with a 2.4-second update interval. In addition, both sites provided enhanced high-resolution color ATC display systems. The purpose of the report is to present findings relevant to a decision concerning whether or not the current standard for runway separation of 4,300 ft can be reduced to 3,400 ft when the precision runway monitor equipment is utilized. The 3,400-ft separation was the spacing demonstrated most often in both simulations and flight tests. The demonstration produced a broad recognition that both systems could be used to monitor parallel runways spaced at 3400 feet apart.

N91-23199# Army Engineer Waterways Experiment Station, Vicksburg, MS. Geotechnical Lab.

LITERATURE REVIEW ON GEOTEXTILES TO IMPROVE **PAVEMENTS FOR GENERAL AVIATION AIRPORTS Final** Report

DEWEY W. WHITE, JR. Feb. 1991 61 p (AD-A232871; WES/MP/GL-91-3) Avail: NTIS HC/MF A04 **CSCL 13/2**

This report covers a literature search and review to obtain information on geotextile applications related to pavement construction. Applicable information from this study would be used to prepare guidelines on design application, material specifications, performance criteria, and construction procedures for improving subgrade support with geotextiles in general aviation airport pavements. The study revealed that there are numerous design procedures available for using geotextiles in aggregate surfaced pavements and flexible pavement road construction. However, there is no generally accepted procedure for either type construction. The state-of-the-art has not advanced to the point where design procedures for using geotextiles in paved airport construction are available. Construction/installation procedures are available for using geotextiles in aggregate surfaced pavements

and flexible pavements for roads, and these may be used as an aid in recommending procedures for airport construction.

National Aeronautics and Space Administration. N91-24133*# Langley Research Center, Hampton, VA.

NATIONAL TRANSONIC FACILITY STATUS

L. W. MCKINNEY, W. E. BRUCE, JR., and B. B. GLOSS In its Transonic Symposium: Theory, Application and Experiment, Volume Apr. 1989

Avail: NTIS HC/MF A11 CSCL 14/2

The National Transonic Facility (NTF) was operational in a combined checkout and test mode for about 3 years. During this time there were many challenges associated with movement of mechanical components, operation of instrumentation systems, and drying of insulation in the cryogenic environment. Most of these challenges were met to date along with completion of a basic flow calibration and aerodynamic tests of a number of configurations. Some of the major challenges resulting from cryogenic environment are reviewed with regard to hardware systems and data quality. Reynolds number effects on several configurations are also discussed.

N91-24211*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ADVANCED HYPERVELOCITY AEROPHYSICS FACILITY WORKSHOP

ROBERT D. WITCOFSKI, comp. and WILLIAM I. SCALLION, comp. May 1989 170 p Workshop held in Hampton, VA, 10-11 May 1988

(NASA-CP-10031; NAS 1.55:10031) Avail: NTIS HC/MF A08 **CSCL 14/2**

The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

10

ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

A91-36625 **ACCENT ON HYPERSONIC**

GILBERT SEDBON Flight International (ISSN 0015-3710), vol. 139, April 23, 1991, p. 28-30. Copyright

A review is presented of research and development being conducted by France in the field of hypersonic propulsion. Current studies are involved in building a database on aerodynamics, engine/airframe integration, stage separation, composite materials and structures. Consideration is given to different engine propulsion concepts, including turborocket-ramjet, turboexpander-ramjet, turbofan-ramjet, turbo-ramjet, rocket-ramjet, liquid air rocket, cooled air rocket, and supersonic-combustion ramjet. Economic benefits, technological spin-offs, and possible multinational cooperation are R.E.P. discussed.

A91-40555#

A DYNAMIC ANALYSIS OF THE SRB PARACHUTE SYSTEM D. F. WOLF (Sandia National Laboratories, Albuquerque, NM) AIAA, Aerodynamic Decelerator Systems Technology Conference,

11th, San Diego, CA, Apr. 9-11, 1991. 9 p. refs

(AIAA PAPER 91-0838) Copyright

A computer-aided dynamic analysis of a parachute and payload system is described which models an arbitrary number of individual parachutes in the cluster and their combined effects on the motion of the attached payload. The three-dimensional motions of the parachute and payload system are displayed using computer generated drawings of the objects. Photographs and simulated motion drawings are presented for the two-body SRB and drogue parachute and the four-body SRB and main parachute cluster Author systems.

Wright Research Development Center, N91-24289# Wright-Patterson AFB, OH.

AN EXPERIMENTAL EVALUATION OF COMBUSTOR LINER MATERIALS FOR SOLID FUEL RAMJET TESTING

In Johns Hopkins Univ., The 1990 JANNAF J. Volume 1 p 227-234 Oct. 1990 J. B. OPPELT Propulsion Meeting, Volume 1 p 227-234 Avail: NTIS HC/MF A20

The investigation determined the survivability and effect on combustion efficiency of several candidate liner materials for ramjet solid fuel screening tests. A liner is necessary both to protect the combustor walls and to reduce heat loss from the combustion chamber. This heat loss can result in incomplete combustion and poor performance. Both a hydrocarbon and a boron fuel were used to compare the liner's effect on the combustion of these fuel types. A finite element heat conduction model constructed prior to testing indicated that the boron nitride (BN) liner would allow nearly the heat loss of stainless steel, and thus, result in poor measured performance compared to a better insulated combustor. The results of the testing show this to be true for the hydrocarbon fuel. Slag deposits on the liner walls from the boron fuel help insulate the liners and reduced their effect on measured performance. A ceramic liner of a boron nitride/aluminum nitride composition (BN/AIN) withstood the thermal environment and insulated well. Measured combustion efficiency was higher for the BN/AIN liner than for DC 93-104, the accepted liner of choice for ramjet testing. This showed that the choice of liner material can affect performance results, and in the case of DC 93-104, indicated care must be taken to use an adequate thickness of insulator.

Author

11

CHEMISTRY AND MATERIALS

Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; and propellants and fuels.

A91-37182 DETECTION OF TRACES OF WATER IN AVIATION KEROSENES BY GAS CHROMATOGRAPHY [OPREDELENIE SLEDOV VODY V AVIATSIONNYKH KEROSINAKH METODOM **GAZOVOI KHROMATOGRAFII]**

V. L. ZHEREBTSOV and T. V. TIMOFEEVA (NPO Gosudarstvennyi Institut Prikladnoi Khimii, Leningrad, USSR) Khimiia i Tekhnologiia Topliv i Masel (ISSN 0023-1169), no. 3, 1991, p. 33. In Russian. refs

Copyright

A highly sensitive method for detecting trace amounts of water in aviation kerosenes using direct gas chromatography is demonstrated for T-6 and T-1 fuels and naphthyl. The chromatographic analysis was carried out under the following optimal conditions: gas (helium) flow rate, 40 cu cm/min; evaporator temperature, 300 C; column temperature, 100 C; detector temperature, 120 C; detector current, 120 mA; and sample volume, 0.1-0.2 ml. Typical chromatograms of the aviation kerosenes are presented. The sensitivity of the method is 0.0001 percent by mass or better; the results are reproducible to within 10 percent.

A91-38129 METHANOL - AN ENVIRONMENTALLY ATTRACTIVE ALTERNATIVE COMMERCIAL AVIATION FUEL

ROBERT O. PRICE (Harmsworth Associates, Laguna Hills, CA) IN: IECEC-90; Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, Reno, NV, Aug. 12-17, 1990. Vol. 4. New York, American Institute of Chemical Engineers, 1990, p. 331-336. refs

Copyright

Southern California's reliance on petrolium-fueled transportation has resulted in significant air pollution problems within the South Coast Air Basin. To deal with this issue, recently enacted state legislation has proposed mandatory introduction of clean alternative fuels into ground transportation fleets operating within this area. The commercial air transportation sector, however, also exerts a significant impact on regional air quality which may result in exceeding emission gains achieved in the ground transportation sector. The author addresses the potential, through the implementation of methanol as a commercial aviation fuel, to improve regional air quality within the Basin. This perceived benefit has formed the basis for a proposal, recently submitted to the California Energy Commission, to flight test and demonstrate methanol as an environmentally preferable fuel in aircraft turbine

A91-38802 MODELING OF CREEP-FATIGUE INTERACTION EFFECTS ON **CRACK GROWTH**

KENNETH R. BAIN (General Electric Co., Cincinnati, OH) and REGIS M. PELLOUX (MIT, Cambridge, MA) IN: Elevated temperature crack growth; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990. New York, American Society of Mechanical Engineers, 1990, p. 1-6. refs

The accurate prediction of fatigue crack growth rates at elevated temperature has become a critical problem in the design of advanced gas turbine engines. A typical mission for gas turbine materials has significant cyclic loads combined with both high temperature and extended holds at load. Performing a matrix of tests which allows interpolative modeling of these parameters can be very expensive and the models themselves may have limited effectiveness. A model based on linear superposition of creep crack growth and fatigue crack growth will not only allow accurate prediction of fatigue crack growth rates for a wide variety of cycling conditions, but will reduce the number of tests required to estimate the behavior of a material to only three tests. A mechanistic model for predicting the effects of R-ratio, hold time, frequency, and temperature on fatigue crack growth has been developed which accurately predicts all of these effects. Author

A91-38809 FATIGUE CRACK GROWTH IN MONOLITHIC TITANIUM **ALUMINIDES**

F. K. HAAKE, D. P. DELUCA, K. P. HOLLAND (Pratt and Whitney Group, West Palm Beach, FL), and G. C. SALIVAR (Florida Atlantic University, Boca Raton) IN: Elevated temperature crack growth; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990. New York, American Society of Mechanical Engineers, 1990, p. 79-86. (Contract F33615-85-C-5029)

Copyright

Tactical aircraft engine designs depend on advanced materials technology to meet performance and durability goals. Monolithic titanium aluminides are currently being developed for potential use in gas turbine engine components where they offer strength and stiffness advantages at temperatures above conventional titanium alloy capabilities. The primary limitations of these alloys have been low ductility at low temperatures and uncertainty about fatigue and fracture capabilities. This paper will address fatigue crack growth of alpha-2 titanium aluminides. The effects of temperature, stress ratio, and frequency on fatigue crack growth rates will be reviewed. Some observations on crack closure in the near-threshold region will be presented. The crack growth behavior of these alloys will be compared to conventional titanium alloys. Finally, some conclusions will be drawn about the potential use of these materials in future engines.

A91-38812 FATIGUE CRACK GROWTH MODELING AT ELEVATED TEMPERATURE USING FRACTURE MECHANICS

T. NICHOLAS (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: Elevated temperature crack growth; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990. New York, American Society of Mechanical Engineers, 1990, p. 107-112. refs (Contract AF PROJECT 2302P1)

Copyright

Crack growth rates at elevated temperature are represented at the sum of cycle- and time-dependent terms. Parameters are introduced to account for environmental degradation as well as the blunting effect due to creep or stress relaxation under sustained-load hold times. A new model is shown to have sufficient flexibility to represent a wide variety of elevated temperature crack growth rate behavior. Growth rates in a nickel-base superalloy and a titanium aluminide alloy are well represented by the model which uses the linear elastic fracture mechanics parameter, K. Numerical examples are presented which illustrate the various **Author** features of the model.

A91-38819* General Electric Co., Cincinnati, OH. APPLICATION OF PATH-INDEPENDENT INTEGRALS TO **ELEVATED TEMPERATURE CRACK GROWTH**

K. S. KIM and R. H. VAN STONE (GE Aircraft Engines, Cincinnati, OH) IN: Elevated temperature crack growth; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990. New York, American Society of Mechanical Engineers, 1990, p. 155-167. refs

(Contract NAS3-23940)

Copyright

The applicability of the J-integral in elasto-plastic fracture mechanics is limited to isothermal, monotonic loading conditions from the theoretical viewpoint, while in many applications, for instance gas turbine engines, crack growth occurs in the presence of cyclic inelastic loading, thermomechanical loading and temperature gradients. A number of path-independent (P-I) integrals have been proposed which do not have the restrictions of the J-integral. A review indicates that four of these integrals, although they are not the classical conservation integrals, path-independent under these complex loading conditions. This paper describes a combined analytical and experimental effort to evaluate the ability of these four P-I integrals to correlate the crack growth data of Alloy 718 at elevated temperatures. Results for uniform temperature, 538 C, cases indicate that all these integrals are capable of correlating the crack growth data over a wide range of cyclic plasticity.

A91-39302

TITANIUM ALUMINIDES FOR AEROSPACE APPLICATIONS

JAMES M. LARSEN, KATHERINE A. WILLIAMS, STEPHEN J. BALSONE, and MONICA A. STUCKE (USAF, Materials Laboratory, Wright-Patterson AFB, OH) IN: High temperature aluminides and intermetallics; Proceedings of the 1st Symposium, Indianapolis, IN, Oct. 1-5, 1989. Warrendale, PA, Minerals, Metals and Materials Society, 1990, p. 521-556. refs

(Contract AF PROJECT 2302P101)

Copyright

The Integrated High Performance Turbine Engine Technology (IHPTET) Initiative and the development of manned hypersonic vehicles represent major new requirements for materials having high weight-specific properties and good environmental resistance at elevated temperatures. In their monolithic form, and as a matrix material for continuous fiber composites, titanium aluminides are important candidates to fill these needs in the intermediate-temperature regime of 600 C to 1000 C. Before these materials can become flight worthy, however, they must demonstrate reliable mechanical behavior over the range of anticipated service conditions. This paper outlines current trends toward utilization of titanium aluminides in aerospace structures, and a summary of a broad range of mechanical properties characteristic of various titanium aluminide materials is presented. Finally, the mechanical properties of monolithic and composite titanium aluminide materials are compared and contrasted with properties of a competing state-of-the-art titanium alloy and a nickel-base superalloy.

A91-39389* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.
HELICOPTER IN-FLIGHT STORES JETTISON

LAURENCE J. BEMENT (NASA, Langley Research Center, Hampton, VA), DIRCK JAHSMAN (Teledyne McCormick Selph, Hollister, CA), and MORRY L. SCHIMMEL (Schimmel Co., Saint IN: Annual SAFE Symposium, 27th, New Orleans, LA, Dec. 5-8, 1989, Proceedings. Newhall, CA, SAFE Association, 1990, p. 154-159.

Copyright

A helicopter emergency external-stores jettison system accommodating an experimental simplified mounting system is presented. The system's conceptual approach is described, including store interface, attachment, functional mechanisms, and system initiation. It is novel both in the stores' mounting interface logic and in the modifications to existing technology for the components. Two nonfragmenting 'ridge cut' explosive bolts were mounted in each 600-pound store to interface with a simple plate on the aircraft. Starting designs with proven technology and functional margins were demonstrated by analysis and test through the design and development. Design details of the system's components, from the explosive bolt to the initiation handle, are described.

A91-39690# KINETIC STUDY OF A HOMOGENEOUS PROPELLANT PRIMARY FLAME, WITH AND WITHOUT ADDITIVE

F. FADDOUL (Scientific Research Center, Alep, Syria), J. M. MOST, and P. JOULAIN (CNRS, Laboratoire de Chimle Physique de la Combustion, Mignaloux-Beauvoir, France) La Recherche Aerospatiale (English Edition) (ISSN 0379-380X), no. 6, 1990, p. 1-13. refs

Copyright

A pseudo-detailed mechanism is presented as an initial kinetic scheme, which is then reduced to three reactions, a homogeneous one summarizing the different reactions between the gaseous species, and two heterogeneous reactions describing the consumption of solid carbon particles in the flow. The mass fraction of NO2 is considered as the degree of progress of the reaction and the heat production rate is expressed as a function of the mass fraction of NO2 and the power 0.4 of the pressure. Comparison of the results obtained when taking or not taking mass and thermal diffusions into account demonstrates the validity of the simplified approach employed to determine the solution of a kinetic problem applied to the study of a premixed flame stabilized on a double base solid propellant grain.

A91-40178 NON METALLIC MATERIALS FOR GAS TURBINE ENGINES -ARE THEY REAL?

CHESTER T. SIMS (Rensselaer Polytechnic Institute, Troy, NY) Advanced Materials and Processes (ISSN 0882-7958), vol. 139, June 1991, p. 32-39. refs Copyright

Since the thrust efficiency of gas turbines is maximized with increasing turbine inlet temperature, efforts are underway to achieve the 2200 C stoichiometric combustion temperature of commercial jet fuels, which is about 500 C above current temperatures; such

11 CHEMISTRY AND MATERIALS

an operating temperature, however, entails improvements in turbine structural materials' performance levels which have for several years been addressed by research with low-density ceramics and intermetallics. Typical monolithic nonoxide ceramics investigated have been Si3N4, SiC, and Si-Al-O-N, while oxides encompass Al2O3 and ZrO2, and intermetallics include the Ni and Nb aluminides. It is judged that all such efforts have fallen far short of expectations, and that higher combustion temperatures will more easily and economically be accommodated by more refined use of superalloy blading and ceramic thermal-barrier coatings.

A91-40425

NKK PREMIUM QUALITY TITANIUM MASTER ALLOY

TAKANORI ONO, TOSHIO NAYUKI, TOSHIAKI ISHIDA, KEIICHI NAKAGAWA, IEHISA TAKEZAWA (NKK Corp., Advanced Materials Div., Toyama, Japan) et al. NKK Technical Review (ISSN 0915-0544), April 1991, p. 66-74.

Copyright

The aluminothermic reduction process has been combined with vacuum-induction melting to produce master alloys of the exceptional quality required for Ti-alloy-based aerospace propulsion components. The master alloy compositions are Al-V, Al-Mo, Al-V-Sn, Al-Mo-V, V-Cr-Al, V-Fe-Al, and Al-Nb-Ta; representative Ti alloys thus produced encompass Ti-6Al-4V, Ti-8Al-1Mo-1V, Ti-6Al-6V-2Sn, and Ti-10V-2Fe-3Al. A development history is presented for the master alloy production facilities used. The quality assurance system for the master alloys involved the control of raw material suppliers, maintenance of traceability, and extensive use of standard reference samples.

N91-23248# Aerospatiale, Toulouse (France).
OBSERVATORY OF NEW MATERIALS. EVOLUTION PERSPECTIVES FOR THE MATERIALS USED IN CIVIL TRANSPORTATION AIRCRAFT [OBSERVATOIRE DES MATERIAUX NOUVEAUX. PERSPECTIVES D'EVOLUTION DES MATERIAUX UTILISES DANS LES AVIONS DE TRANSPORT

A. FERRAN 31 Jan. 1991 48 p In FRENCH (REPT-911-111-107; ETN-91-99271) Avail: NTIS HC/MF A03

It is shown that, in aeronautics, each material innovation is the cause of reactions in other competitive materials. The evolution of metallic and organic materials is considered. Aluminum alloys improvements were made with regard to fatigue strength, corrosion behavior, and damage tolerances. Newly developed aluminum lithium alloys showed a 9 pct. mass gain potential. New aluminum alloys, new titanium alloys, and new steels are presented. Titanium alloys are discussed. Titanium superplastic forming and diffusion bonding is illustrated. Landing gear steels and structural steel properties are given. Metallic Matrix Composite (MMC) evolution is presented. Aluminum matrix material characteristics are given. New materials for civil aircrafts are presented. A marked evolution towards composite material utilization is focused.

N91-23251# Aerospatiale Aguitaine, Saint-Medard en Jalles (France). Strategic and Space Div. OXIDATION RESISTANT CARBON/CARBON MATERIALS

O. FRANC and JEAN-LUC MACRET 1991 5 p (REPT-911-430-105; ETN-91-99277) Avail: NTIS HC/MF A01

A research and development program in Ceramic Matrix Composites (CMC) and oxidation resistant Carbon/Carbon (C/C lnox) is discussed. The proposal for C/C lnox to be used for the nose cap and wing leading edge of the Hermes Spaceplane is discussed. The fabrication of C/C material (weaving and densification) and C/C PAO (Protection Against Oxidation) including silicidation and PAO for leading edges and nose caps are described. C/C is concluded to have an excellent stability of properties in temperatures up to 3000 C but due to oxidation sensitivity a PAO is needed for application on space planes.

Aerospatiale Aquitaine, Saint-Medard en Jalles N91-23262# (France). Strategic and Space Div. HOW TO KNOW CMC

F. ALBUGUES and P. PERES 1991 13 p Previously announced as N91-11865

(REPT-911-430-130; ETN-91-99302) Avail: NTIS HC/MF A03

Thermostructural development of CMC (Ceramic Matrix Composites) is summarized. Nondestructive test methods, mechanical characterization and mathematical modeling are discussed. Production of structural composite materials for use in wing leading edges and nose caps of reusable space vehicles is addressed. Mechanical test validity of test sample, fracture behavior modeling and mechanical tests related to microstructure are described. The synergy of the different approaches presented is concluded to give much information and elements of behavior understanding for the 'young materials' that are CMC.

N91-23270 Stanford Univ., CA.

THE EFFECTS OF CONTROLLING VORTEX FORMATION ON THE PERFORMANCE OF A DUMP COMBUSTOR Ph.D. Thesis KEITH ROBERT MCMANUS 1990 223 p

Avail: Univ. Microfilms Order No. DA9102314

The use of flow control methods to improve the performance of air breathing combustors, specifically with respect to controlling both volumetric energy release and combustion instability, is investigated. The flow control techniques were chosen for their ability to control vortex formation near the inlet of the combustor. Periodic spanwise forcing of the inlet boundary layer was used to control the spanwise vortex shedding process in the combustor. Delta wing vortex generators and vortex generator jets were used to introduce streamwise vorticity into the flow. These control strategies were applied separately and together to a laboratory-scale dump combustor, and the effects on combustor performance were determined. The effect of spanwise forcing on both nonreacting and reacting flowfields was to modulate the formation of spanwise coherent vortex structures just downstream of the flow separation. In the nonreacting flowfield, the shear layer spreading rate was increased when forcing was applied. In the reacting flow, forcing caused a modulation of the flame structure. Dissert. Abstr.

N91-24358*# Boeing Commercial Airplane Co., Seattle, WA. ENVIRONMENTAL EXPOSURE EFFECTS ON COMPOSITE MATERIALS FOR COMMERCIAL AIRCRAFT Final Report, 22

Nov. 1977 - 31 Dec. 1990 DANIEL J. HOFFMAN and WILLIAM J. BIELAWSKI Jan. 1991

(Contract NAS1-15148)

(NASA-CR-187478; NAS 1.26:187478) Avail: NTIS HC/MF A07 **CSCL 11/4**

A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects Author are considered.

N91-24451*# Ford Motor Co., Dearborn, Ml. IMPROVED SILICON CARBIDE FOR ADVANCED HEAT **ENGINES Final Technical Report** THOMAS J. WHALEN May 1989

(Contract NAS3-24384) (NASA-CR-182289; NAS 1.26:182289) Avail: NTIS HC/MF A04 CSCL 11/3

The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

N91-24453# Sandia National Labs., Albuquerque, NM.
ADVANCED THERMALLY STABLE JET FUELS
DEVELOPMENT PROGRAM ANNUAL REPORT. VOLUME 3:
FUEL LUBRICITY Interim Technical Report, Jun. 1989 - Oct.
1990

JOHN P. CUELLAR, JR. 15 Jan. 1991 28 p (Contract DE-AC04-76DP-00789; FY1455-89-N-0635) (AD-A232793; WRDC-TR-90-2079-VOL-3) Avail: NTIS HC/MF A03 CSCL 21/4

A program to evaluate the effects of additives on JP-8 fuel lubricity at high temperatures is described. Operating temperatures up to 163 C were examined, with a subsequent program goal of 315 C. Baseline data were obtained using the Ball-on-Cylinder Lubricity Evaluator (BOCLE). High-temperature data were obtained with an apparatus known as the Cameron-Plint High Frequency Reciprocating Machine. The most significant effect of variables observed was a consequence of a change in wear specimen material from 52100 steel to M-50 steel--the latter considered to be representative of advanced fuel system designs. Use of M-50 wear coupons resulted in considerably reduced wear levels with only slight separation between neat or additized fuels. M-50 specimen roughness was a major influence in wear level. At finalized test conditions, a dibasic acid ester, di(2-ethylhexyl) adipate, was found to give the lowest wear values when used as an additive in clay-treated JP-8, although distinctions between the various additized fuels were not large.

12

ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A91-36450* Syracuse Univ., NY.
AN ISENTROPIC COMPRESSION-HEATED LUDWEIG TUBE TRANSIENT WIND TUNNEL

PATRICK J. MAGARI and JOHN E. LAGRAFF (Syracuse University,

NY) Experimental Thermal and Fluid Science (ISSN 0894-1777), vol. 4, May 1991, p. 317-332. refs (Contract NAG3-621) Copyright

Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.

A91-36698# NEW DEVELOPMENTS IN THE DYNAMIC AEROELASTIC STABILITY STUDY OF ROTOR BLADES

V. GIURGIUTIU, L. GAITA (Institutul National pentru Creatie Stiintifica si Tehnica, Bucharest, Rumania), and F. ONCESCU (Polytechnic Institute, Bucharest, Rumania) Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee (ISSN 0035-4074), vol. 35, Mar.-Apr. 1990, p. 137-146. refs

Improvements to a method originally developed for the analysis of the dynamic aeroelastic stability of rotor blades are discussed. These include the capability to handle hinge-blade boundary conditions, rotating torsion models, cone angle correction, and the use of lag damper. A two-point boundary problem is used as an example. The problem is solved using the shooting method and the Galerkin expansion with rotating torsion modes.

A91-36896

ROBOTIC SENSORS FOR AIRCRAFT PAINT STRIPPING

RICHARD J. WENIGER (Southwest Research Institute, San Antonio, TX) Society of Manufacturing Engineers, Conference on Aerospace Automation and Fastening, Arlington, TX, Oct. 9-11, 1990. 12 p.

(Contract F33615-86-C-5044)

(SME PAPER MS90-282) Copyright

Aircraft of all types need to have paint routinely removed from their outer surfaces. Any method needs to be controlled to remove all the paint and not damage the surface of the aircraft. Human operators get bored with the monotonous task of stripping paint from an aircraft and thus do not control the process very well. This type of tedious operation tends itself to robotics. A robot that strips paint from aircraft needs to have feedback as to the state of the stripping process, its location in respect to the aircraft, and the availability of stripping material. This paper describes the sensors used on the paint stripping robot being developed for the United States Air Force's Manufacturing Technology Program. Particular attention is given to the paint sensor which is the feedback element for determining the state of the stripping process.

A91-36943 AUTOMATED CAD DESIGN FOR SCULPTURED AIRFOIL SURFACES

S. D. MURPHY and S. R. YEAGLEY (Textron, Inc., Danville, PA) Society of Manufacturing Engineers, Conference on Autofact '90, Detroit, MI, Nov. 12-15, 1990. 12 p.

(SME PAPER MS90-744) Copyright

The design of tightly tolerated sculptured surfaces such as those for airfoils requires a significant design effort in order to machine the tools to create these surfaces. Because of the quantity of numerical data required to describe the airfoil surfaces, a CAD approach is required. Although this approach will result in productivity gains, much larger gains can be achieved by automating the design process. This paper discusses an application which resulted in an eightfold improvement in productivity by automating the design process on the CAD system.

A91-37052#

THE PLANAR ELEMENTS METHOD FOR COMPUTING THE SCATTERING FIELD OF FLIGHT VEHICLE

GUOZHONG MA and JIADONG XU (Northwestern Polytechnical University, Xian, People's Republic of China) Northwestern Polytechnical University, Journal (ISSN 1000-2758), vol. 9, April 1991, p. 140-144. In Chinese, with abstract in English. refs

In order to both improve the accuracy and reduce the computation time of the EM scattering field of an electrically conductive body, a novel 'planar elements' method is proposed which allows the curved surface to be represented by a set of planar elements; the sum of these planar elements' field is taken to be the approximation of scattering characteristics for the entire body. This fast and accurate method can systematically employ the planar-elements information of aerodynamics calculations to compute a low radar cross-section vehicle's optimal configuration.

A91-37106

MEASUREMENT OF CLUTTER SUPPRESSION USING A **QUADRAHEDRAL**

JOSEPH A. BRUDER (Georgia Institute of Technology, Atlanta) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 287-292.

Copyright

Sophisticated radar processing techniques for clutter suppression primarily rely upon the Doppler produced from a moving target to separate it from clutter. Actual measurements of a Doppler-producing target of known radar cross section (RCS) are necessary to fully evaluate the clutter rejection of a radar. This paper discusses the development of the 'Quadrahedral' reflector that provides an ideal 'moving target' Doppler-shifted return and includes the results of the moving target indication (MTI) improvement factor measurements performed in June of 1988 on the U.S. Customs SOWRBALL Aerostat Radar.

A91-37141

TRACK INITIATION USING MHT IN DENSE ENVIRONMENTS
HISAO IWAMA, YOSHIO KOSUGE, TOSHIKI AIBA, and
HIROMICHI KAWAZOE (Mitsubishi Electric Corp., Kamakura IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 608-613.

Copyright

The use of a new method, multiple hypothesis tracking (MHT), to improve the performance of track initiation in dense environments is discussed. The MHT uses the detection and false alarm statistics of the sensor, the expected density of a new target, and the accuracy of the target estimates to obtain posterior probabilities for each observation. A number of candidate hypotheses are generated, and the posterior probabilities of the hypotheses are calculated recursively using the Bayes rule. Results of a computer simulation are presented to demonstrate the efficiency of the method.

RESIDUAL STRESS CONTROL IN DEVELOPING PROCESSES FOR THE MANUFACTURE OF COMPRESSOR BLADES FOR GAS TURBINE ENGINES [KONTROL' OSTATOCHNYKH NAPRIAZHENII PRI OTRABOTKE TEKHNOLOGICHESKIKH PROTSESSOV IZGOTOVLENIIA LOPATOK KOMPRESSOROV GTD]

V. A. BOGUSLAEV (Proizvodstvennoe Ob'edinenie Motorostroitel', Zaporozhe, Ukrainian SSR) Problemy Proch 0556-171X), March 1991, p. 30-33. In Russian. refs Problemy Prochnosti (ISSN

Methods for generating and controlling residual surface stresses in compressor blades of titanium alloys are examined with reference to production experience in the manufacture of compressor blades of VT3-1 and VT8 alloys. It is shown that residual stresses have

a noticeable effect on the fatigue strength of the blade foil. The fatigue strength of the blades can be substantially improved by using manufacturing processes that create residual compressive stresses in the blade surface layer.

A91-37375

FABRICATION OF ENGINEERING CERAMICS BY INJECTION MOLDING

MOHAN J. EDIRISINGHE (Brunel University, Uxbridge, England) American Ceramic Society Bulletin (ISSN 0002-7812), vol. 70, May 1991, p. 824-828. SERC-supported research. refs

The injection molding of ceramic-polymer suspensions allows the automated near-net-shape fabrication of complex shapes, such as advanced gas turbine rotors. Here, the principal stages and general features of a ceramic injection molding process are discussed, as are the most important process parameters. Some typical injection molding defects and their underlying causes are examined.

A91-37410# AIRBLAST ATOMIZATION AT CONDITIONS OF LOW AIR

A. H. LEFEBVRE (Purdue University, West Lafayette, IN), T. R. KOBLISH (Textron Corp., Walled Lake, MI), and J. E. BECK Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 207-212. Previously cited in issue 09, p. 1346, Accession no. A89-25191. refs Copyright

A91-37414# SUBSONIC AND SUPERSONIC COMBUSTION USING **NONCIRCULAR INJECTORS**

E. GUTMARK, K. C. SCHADOW, and K. J. WILSON (U.S. Navy, Naval Weapons Center, China Lake, CA) Journal of Propulsion and Power (ISSN 0748-4658), vol. 7, Mar.-Apr. 1991, p. 240-249.

Nonreacting and combustion tests were performed for subsonic, sonic, and supersonic conditions using noncircular injectors in a gas generator combustor. The noncircular injectors, including square, equilateral-, and isosceles-triangular nozzles, were compared to a circular injector. The flowfields of the jets were mapped with hot-wire anemometry and visualized using spark schlieren photography. The combustion characteristics were visualized by high-speed photography and thermal imaging, and the temperature distribution was measured by a rake of thermocouples. The present tests conducted at high Reynolds and Mach numbers confirmed earlier results obtained for the low range of these numbers, i.e., the combination of large-scale mixing at the flat sides with the fine-scale mixing at the vertices is benefical for combustion. Large-scale structures provide bulk mixing between the fuel and air, whereas fine-scale mixing contributes to the reaction rate and to better flameholding characteristics.

A91-37774#

ANALYTICAL STUDIES ON STATIC AEROELASTIC BEHAVIOR OF FORWARD-SWEPT COMPOSITE WING STRUCTURES

LIVIU LIBRESCU and SUROT THANGJITHAM (Virginia Polytechnic Institute and State University, Blacksburg) (Structures, Structural Dynamics and Materials Conference, 29th, Williamsburg, VA, Apr. 18-20, 1988, Technical Papers. Part 1, p. 28-36) Journal of Aircraft (ISSN 0021-8669), vol. 28, Feb. 1991, p. 151-157. Previously cited in issue 12, p. 1902, Accession no. A88-32180. refs Copyright

National Aeronautics and Space Administration. A91-37834*# Langley Research Center, Hampton, VA. CELL CENTERED AND CELL VERTEX MULTIGRID SCHEMES FOR THE NAVIER-STOKES EQUATIONS

R. C. SWANSON (NASA, Langley Research Center, Hampton, VA) and R. RADESPIEL (DLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) AIAA Journal (ISSN

0001-1452), vol. 29, May 1991, p. 697-703. Previously cited in issue 09, p. 1350, Accession no. A89-25440. refs

A91-37845*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

STUDY OF THERMAL-EXPANSION-MOLDED,

GRAPHITE-EPOXY HAT-STIFFENED SANDWICH PANELS DAWN C. JEGLEY (NASA, Langley Research Center, Hampton,

VA) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 778, 779. Abridged. Previously cited in issue 12, p. 1861, Accession no. A89-30878.

Copyright

A91-37846#

ASYMPTOTIC THEORY OF BENDING-TORSION FLUTTER OF HIGH ASPECT RATIO WING IN THE TORSION CONTROLLED DOMAIN

GABRIEL KARPOUZIAN (U.S. Naval Academy, Annapolis, MD) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 780, 781. Research supported by U.S. Naval Academy. Copyright

An asymptotic theory of bending-torsion flutter of a high aspect ratio wing with a unit-order bending-torsion stiffness ratio is developed. Two distinct (high and low) frequency domains are identified. For illustration, detailed analysis is carried out only in the high-frequency domain. The methodology is general and may be applicable to various wing configurations. To substantiate its adequacy, the classical case of a uniform unswept cantilever wing in an incompressible airflow is treated as a case study. The asymptotic results for flutter eigenvalues and mode shapes compare favorably with those obtained by a more exact treatment.

A91-37847#

SUPERSONIC FLUTTER ANALYSIS OF CLAMPED SYMMETRIC COMPOSITE PANELS USING SHEAR DEFORMABLE FINITE ELEMENTS

IN LEE (Korea Advanced Institute of Science and Technology, Seoul, Republic of Korea) and MAENG-HYO CHO AlAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 782, 783. Abridged. Copyright

The flutter analysis of composite panels in supersonic flow has been performed by the finite element method based on the first-order shear deformable theory. The computational results of the vibration and flutter analysis agree well with the results given in the available references. Flutter boundaries have been obtained for both cross-ply and angle-ply composite plates. Also, the flutter analysis has been performed for both rectangular and trapezoidal plates with clamped edges. The plate aspect ratio, flow direction, and fiber orientation affect greatly the flutter boundaries. Author

A91-37851#

DESIGN OF AIRCRAFT WINGS SUBJECTED TO GUST LOADS - A SAFETY INDEX BASED APPROACH

J.-S. YANG (Aerostructures, Inc., Arlington, VA) and E. NIKOLAIDIS (Virginia Polytechnic Institute and State University, Blacksburg) AIAA Journal (ISSN 0001-1452), vol. 29, May 1991, p. 804-812. refs

Copyright

A method for system reliability based design of aircraft wings is presented. The advanced first-order, second-moment (AFOSM) method is employed in evaluating reliability. A wing of a commuter aircraft designed by the FAA regulations is compared to one designed by system reliability optimization. Two cases are considered for which the correlation between failure modes is neglected or is accounted for, respectively. The results demonstrate the potential of system reliability optimization and the benefits from employing the AFOSM method. Furthermore, they allow us to identify the limitations of simple methods utilizing the first-order Ditlevsen bounds for evaluating system reliability and to assess the advantages of more sophisticated system reliability based methods that account for the correlation between the failure modes.

It is shown that, if a penalty function method is employed for optimization, the upper Ditlevsen bound can be used to approximate the system reliability without encountering any problems due to the discontinuity of the derivatives of the constraints.

Author

A91-37880

RADIATION TRANSMISSION IN ADVERSE WEATHER

STUART W. GREENWOOD (University Research Foundation, Greenbelt, MD) IEEE Aerospace and Electronic Systems Magazine (ISSN 0885-8985), vol. 6, April 1991, p. 3-6. refs

Copyright

A simplified practical approach to determining the effects of weather on the transmission of radiation at visible, infrared (IR), and millimeter (MM) wavelengths, with particular reference to the aircraft landing problem, is outlined. Passive landing systems are studied. Landing categories related to visibility are defined. An extinction coeffcient used to relate the effect of the atmosphere on the radiation detected by the human eye (or an imaging sensor onboard the aircraft) to the landing category and the calculation of this coefficient are discussed. The approach makes use of data from openly available literature. Results have been found useful in indicating the effects of adverse weather on Imaging sensor performance for an enhanced vision aircraft-mounted landing system. As an example of the technique, the method of determining the extinction coefficients in fog for infrared radiation is outlined.

A91-38689

VORTEX SHEDDING AND LOCK-ON IN BLUFF BODY WAKES

O. M. GRIFFIN (U.S. Navy, Naval Research Laboratory, Washington, DC) and M. S. HALL (Science Applications International Corp., McLean, VA) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 209-218. U.S. Navy-supported research.

Copyright

The results of recent experiments demonstrate that the phenomenon of vortex shedding resonance or lock-on is observed also when a bluff body is placed in a superimposed mean plus periodic incident flow. This form of vortex shedding and lock-on exhibits a particularly strong resonance between the flow perturbations and the vortices, and provides one promising means for modification and control of the basic formation and stability mechanisms in the near-wake of a bluff body. Examples are also given of recent direct numerical simulations of the vortex lock-on in the oscillatory flow, and also flow modification using a passive device such as a splitter plate. Both agree well with the results of experiments. The lock-on phenomenon is discussed in the overall context of active and passive wake control on the basis of these and other recent results.

A91-38693

THE EFFECT OF STREAMWISE VORTICES ON A TURBULENT BOUNDARY LAYER EXPOSED TO AN UNSTEADY ADVERSE PRESSURE GRADIENT

W. W. HUMPHREYS (USAF, Colorado Spring, CO) and W. C. REYNOLDS (Stanford University, CA) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 285-290. refs

(Contract F49620-86-K-0020)

Copyright

This experiment studied the effect of streamwise vortices on a turbulent boundary-layer exposed to an unsteady adverse pressure gradient in a water tunnel at a momentum thickness Reynolds number of 1840. The streamwise vortices were created by three pairs of half-delta wing vortex generators, while impulsively initiated opposite-wall suction created a strong adverse pressure gradient. The time response of the freestream velocity is characterized by two time scales, an initial fast response throughout the boundary layer which is unaffected by the presence of vortex generators,

12 ENGINEERING

followed by a slow or convective response, the magnitude of which is substantially modified by the presence of the vortex generators.

A91-38697* Cincinnati Univ., OH.
ANALYSIS AND CONTROL OF LOW-SPEED FORCED
UNSTEADY FLOW

U. GHIA and K. N. GHIA (Cincinnati, University, OH) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 321-328. McDonnell Douglas Corp.-supported research.

(Contract AF-AFOSR-87-0074; NAG1-753)

Copyright

A capability for numerically simulating 2-D flows in temporally deforming geometries is described, with emphasis on flow with forced unsteadiness, particularly on the simulation and analysis of these flows. The simulation of forced unsteady flows makes the examination of fundamental unsteady flow mechanisms, such as dynamic stall and unsteady separation, possible. A turbulence model is being incorporated into the analysis so as to obtain solutions for the higher Reynolds numbers used in the experiments. The analysis is also of utility in studying fluid-structure interactions, free surfaces, metal-forming, and bio-fluid mechanics involving flow through passages with flexible walls.

A91-38698* Cairo Univ. (Egypt).
HEAT TRANSFER IN OSCILLATING FLOWS

F. EL-MEHLAWY (Cairo University, Egypt) and R. R. MANKBADI (NASA, Lewis Research Center, Cleveland, OH; Cairo University, Egypt) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 329-337. refs

Copyright

The heat transfer in a sudden-expansion flow subjected to upstream periodic disturbances is investigated. In order to study the unsteady turbulent flow for the present symmetrical sudden-expansion flow, the phase-averaging technique of Hussain and Reynolds (1970) is used to derive the governing equations. The imposed periodic disturbances are found to increase the turbulent kinetic energy and the heat transfer rates at the wall. The phenomenon is discovered to be sensitive to the frequency of the imposed disturbances. At the optimum frequency and at a 3 percent disturbance level, the time-averaged heat transfer rate near the reattachment point can be increased by as much as 14 percent.

A91-38706 APPLICATION OF VORTEX DYNAMICS TO SIMULATIONS OF TWO-DIMENSIONAL WAKES

D. T. MOOK and B. DONG (Virginia Polytechnic Institute and State University, Blacksburg) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 435-448. refs

(Contract AF-AFOSR-86-0090)

Copyright

The wake generated by a pitching airfoil is considered and a method for simulating flows past solid bodies and their wakes is described. Vorticity panels are used to represent the body, and vortex blobs are used to represent the wake. The rate at which vorticity is shed from the trailing edge is determined by simultaneously requiring the pressures along the upper and lower surface streamlines to approach the same value at the trailing edge and the circulation around the airfoil and its wake to remain constant. The numerical simulation reveals that the wake, which is originally smooth, eventually coils, or wraps, around itself, primarily under the influence of the velocity it induces on itself, and forms regions of relatively concentrated vorticity, called vortical structures. The computed spacing of the structures and the circulations around them are in good agreement with the

experimental results. A simulation of the interaction between vorticity in the oncoming stream and a stationary airfoil is considered as well.

P.D.

A91-38775

ACTUAL STRESSES IN NOTCHES - HOW APPLICABLE ARE THE COMMON STRESS CONCENTRATION FACTORS?

J. T. PINDERA (Waterloo, University, Canada) and X. LIU (Waterloo, University, Canada; Tsinghua University, Beijing, People's Republic of China) IN: Composite material technology 1990; Proceedings of the Symposium, 13th ASME Annual Energy-Sources Technology Conference and Exhibition, New Orleans, LA, Jan. 14-18, 1990. New York, American Society of Mechanical Engineers, 1990, p. 253-260. refs

(Contract NSERC-A-2939)

Copyright

The empirical evidence presented in this paper has been produced using the resistance strain gages and isodyne techniques. This evidence shows that in regions of notches and cracks in plates, all components of a three-dimensional stress state exist and depend also on the thickness coordinate. The actual stresses and their major functions are 20-30 percent higher than generally assumed. A new concept of the three-dimensional stress concentration factor for plates is suggested.

Author

A91-38776* Texas A&M Univ., College Station.
FLEXURAL WAVES INDUCED BY ELECTRO-IMPULSE
DEICING FORCES

P. H. GIEN (Texas A & M University, College Station) IN: Composite material technology 1990; Proceedings of the Symposium, 13th ASME Annual Energy-Sources Technology Conference and Exhibition, New Orleans, LA, Jan. 14-18, 1990. New York, American Society of Mechanical Engineers, 1990, p. 267-271. refs

(Contract NAG3-284)

Copyright

The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

A91-38869

FLUID MACHINERY FORUM - 1990; ASME SPRING MEETING, UNIVERSITY OF TORONTO, CANADA, JUNE 4-7, 1990, PROCEEDINGS

UPENDRA S. ROHATGI, ED. (Brookhaven National Laboratory, Upton, NY) Forum sponsored by ASME. New York, American Society of Mechanical Engineers, 1990, 57 p. For individual items see A91-38870 to A91-38875.

Copyright

The present conference discusses aspects of radial loading in centrifugal pumps, the animation of LDV measurements in a centrifugal pump, unsteady flow phenomena in a reversible Francis pump turbine, secondary flow inside a centrifugal pump impeller and its consequent performance, and measurements of the rotordynamic shroud forces for centrifugal pumps. Also discussed are a finite element analysis of the flow in a Francis turbine's labyrinth seal, the shape of a theoretical head-capacity curve for an impeller with a finite number of blades, the automated design of centrifugal impellers, and three-dimensional models of cavitation in rocket engine inducers.

A91-38874
TOWARD AUTOMATING THE DESIGN OF CENTRIFUGAL
IMPELLERS

S. N. J. AL-ZUBAIDY (United Arab Emirates University, Al Ain) IN: Fluid Machinery Forum - 1990; ASME Spring Meeting, Toronto,

Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 41-47. refs

The paper describes a general method for the design of centrifugal compressor impellers. The proposed design procedure reduces the designer's interruption to the design process. This was achieved by coupling a quasi-three-dimensional flow analysis program with an optimization algorithm for solving nonlinear constraint programming problems, so that to ensure an acceptable diffusion schedule along the flow path. The design optimization was accomplished by a comparative sequence with a targeted distribution which was specified by the designer from the start. The resulting schedule matched relatively well the prescribed profile. The final calculated geometry showed the designed impeller to be well proportioned and not to be difficult to manufacture.

Autho

A91-39144

EVALUATION OF THE PHASE DISTORTIONS OF THE INPUT SIGNAL OF A SYNTHETIC-APERTURE RADAR [OTSENKA FAZOVYKH ISKAZHENII VKHODNOGO SIGNALA RLS S SINTEZIROVANNOI APERTUROI]

V. I. PRIKLONSKAIA Radiotekhnika (ISSN 0033-8486), March 1991, p. 6-8. In Russian. refs Copyright

The paper presents an algorithm for modeling the phase distortions of the input signal of an SAR due to trajectory instabilities of the flight vehicle. Using onboard measurement data, the present approach can evaluate changes in the radar image associated with such instabilites.

L.M.

A91-39230

SENSITIVITY ANALYSIS, OPTIMIZATION, AND DATA SUPPORT IN FINITE ELEMENT SYSTEMS [ANALIZ CHUVSTVITEL'NOSTI, OPTIMIZATSIIA I IKH INFORMATSIONNOE OBESPECHENIE V MKE-SISTEMAKH]

V. A. ZARUBIN Raschety na Prochnost' (ISSN 0234-1905), no. 32, 1990, p. 151-168. In Russian. refs Copyright

Methods of sensitivity analysis and structural optimization are examined with particular reference to a finite element system for the design of aircraft structures, RIPAK. The discussion focuses on the use of data bases and expert systems for increasing the efficiency of software implementations of the above methods. Particular attention is given to the use of optimality criteria and mathematical programming methods.

A91-39585

A GENERAL METHOD FOR ROTORDYNAMIC ANALYSIS

K.-H. BECKER and E. STEINHARDT (MTU Motoren- und Turbinen-Union Muenchen GmbH, Munich, Federal Republic of Germany) IN: Vibration and wear in high speed rotating machinery; Proceedings of the NATO Advanced Study Institute on Vibration and Wear Damage in High Speed Rotating Machinery, Troa, Portugal, Apr. 10-22, 1989. Dordrecht, Kluwer Academic Publishers, 1990, p. 263-277. refs

Copyright

A general method has been developed for rotordynamic analysis which employs FEM codes, modal-analysis results, and a postprocessing program, with a view to advanced aircraft gas turbine design. Attention is given to the program modules, which encompass (1) a squeeze-film damper, (2) the squeeze-film forces, (3) unbalance forces, (4) gyroscopic terms, and (5) rubs. Checks conducted with the reduced structures exhibit good accuracy, especially in the critically important lower frequencies. The large variety of reduction methods allows individual treatment of each component. Due to the modular organization of the program, its capabilities can be easily extended.

A91-39590 THE CONTROL OF ROTOR VIBRATION USING SQUEEZE-FILM DAMPERS

R. HOLMES (Southampton, University, England) IN: Vibration

and wear in high speed rotating machinery; Proceedings of the NATO Advanced Study Institute on Vibration and Wear Damage in High Speed Rotating Machinery, Troa, Portugal, Apr. 10-22, 1989. Dordrecht, Kluwer Academic Publishers, 1990, p. 399-412. Copyright

A squeeze-film is an annulus of oil supplied between the outer race of a rolling-element bearing (or the bush of a sleeve bearing) and its housing. It is used as a multidirectional damping element for the control of rotor vibrations. This lecture describes the following roles of a squeeze-film damper when used in gas turbine and compressor applications as a means of reducing vibration and transmitted force due to unbalance; as an element in series with the stiffness of the bearing pedestal, and as an element in parallel with a soft spring in a vibration isolator. The effects of cavitation on performance are elucidated and the dangers of jump phenomena and subsynchronous response are discussed. Experimental work is described in which both roles of the squeeze-film damper are investigated and the results are compared with theoretical predictions.

A91-39694#

QUANTITATIVE ANALYSIS OF FLOW VISUALIZATIONS IN ONERA WATER TUNNELS

H. WERLE La Recherche Aerospatiale (English Edition) (ISSN 0379-380X), no. 6, 1990, p. 49-72. refs Copyright

Liquid and gas tracer visualizations in the water tunnels at Chatillon can in certain cases be used in quantitative analysis of steady and unsteady flows, to specify the velocity field or profile. The examples presented in this paper illustrate some of the possibilities of these methods, which can be analyzed in greater depth now by image procession. These examples reveal the broad applications of the methods, not only to boundary layers, separations, vortices and wakes, but also to a wide variety of plane, axisymmetrical and three-dimensional flows.

A91-39901

LAMINAR-TURBULENT TRANSITION; PROCEEDINGS OF THE IUTAM SYMPOSIUM, ECOLE NATIONALE SUPERIEURE DE L'AERONAUTIQUE ET DE L'ESPACE, TOULOUSE, FRANCE, SEPT. 11-15, 1989

D. ARNAL, ÉD. (ONERA, Centre d'Etudes et de Recherches de Toulouse, France) and R. MICHEL, ED. (Ecole Nationale Superieure de l'Aeronautique et de l'Espace; ONERA, Centre d'Etudes et de Recherches de Toulouse, France) Symposium sponsored by IUTAM, DRET, ONERA, et al. Berlin and New York, Springer-Verlag, 1990, 739 p. For individual items see A91-39902 to A91-39965. Copyright

present conference discusses such topics in The laminar-turbulent transition phenomena as the TS instability in similar boundary layer flows affected by an adverse pressure gradient, flight tests of a swept wing with suction, piezofoil arrays for airfoil flow instability investigations, the breakdown of a wave packet disturbance in a laminar boundary layer, a stability theory for chemically reacting flows, the subharmonic instability of compressible boundary layers, and wall turbulence in Blasius flow. Also discussed are stability-based methods for transition in three-dimensional flows, blunt-nosed swept supercritical LFC wings without nose flaps, the Goertler vortex instability mechanism at hypersonic speeds, wavy vortices in rotating channel flow, large-eddy simulations of mixing layers, boundary-layer tripping in supersonic flow, and visualizations of the boundary-layer O.C. transition.

A91-39902

DIALOGUE ON PROGRESS AND ISSUES IN STABILITY AND TRANSITION RESEARCH

M. V. MORKOVIN (Illinois Institute of Technology, Chicago) and E. RESHOTKO (Case Western Reserve University, Cleveland, OH) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 3-29. refs Copyright

12 ENGINEERING

A development status evaluation is presented for experimental, analytical, and computational methods in flow stability and transition phenomena. Quiet supersonic wind tunnels constitute a major advancement in experimental methods, in conjunction with the simultaneous monitoring of numerous data channels. Recent analytical methods allow the characterization of convective, absolute, and global instabilities in terms of both degree of predictability and strange attractor-related behavior. Attention is given to advancements in the control of transition for drag reduction through pressure-gradient shaping, suction, cooling or heating, and wave cancellation.

A91-39904 ON THE DEVELOPMENT OF TURBULENT SPOTS IN PLANE POISEUILLE FLOW

B. KLINGMANN and P. H. ALFREDSSON (Royal Institute of Technology, Stockholm, Sweden) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 43-52. refs

Copyright

Results from an experimental study of the development of turbulent spots in plane Poiseuille flow is presented. Spots were triggered at a Reynolds number of 1600 by a loudspeaker-induced jet of high velocity. The initial disturbance was found to undergo a first stage of rapid expansion, in which sharp internal shear layers form, and subsequently break down to turbulence. This was first observed at locations away from the symmetry plane. After an initial development phase, the spot gets a self-similar shape. Oblique Tollmien-Schlichting waves were found at the wing-tips of the spot, where they reach amplitudes of more than 15 percent of the undisturbed centerline velocity.

A91-39909 BOUNDARY LAYER CONTROL BY A LOCAL HEATING OF THE WALL

A. V. DOVGAL', V. IA. LEVCHENKO, and V. A. TIMOFEEV (AN SSSR, Institut Teoreticheskoi i Prikladnoi Mekhaniki, Novosibirsk, USSR) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 113-121. refs

Copyright

The possibility of delaying natural transition in a boundary layer flow by means of heating, in order to obtain an extended laminar region, is experimentally investigated for the cases of two-dimensional flow over a flat plate, and three-dimensional flow corresponding to the conic flow over a swept wing. An account is given of conditions under which leading-edge heating delays transition to turbulent flow. Laminarization is obtainable after a decrease of the pressure gradient on the plate, which suppresses the cross-flow instability and thereby leaves the TW wave mechanism as the sole stimulus for transition.

A91-39928 AN EVALUATION OF STABILITY-BASED METHODS FOR TRANSITION OF THREE-DIMENSIONAL FLOWS

H. H. CHEN and TUNCER CEBECI (California State University, Long Beach) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 327-336. refs

Copyright

The current eigenvalue procedures, which assume the relationship between the two wave numbers alpha and beta in the Orr-Sommerfeld equation to predict transition in three-dimensional flows, are evaluated against the saddle-point method of Cebeci and Stewartson (1980) which computed this relationship by requiring functional determinant alpha/functional determinant beta to be real. Studies for an infinite swept wing indicate that all procedures agree well with the experimental data. The results for a prolate spheroid, however, indicate that the saddle-point method leads to satisfactory results, whereas that based on an assumed relationship between alpha and beta does not.

A91-39945

RECEPTIVITY AND STABILITY OF THE BOUNDARY LAYER AT A HIGH TURBULENCE LEVEL

G. R. GREK, V. V. KOZLOV, and M. P. RAMAZANOV (AN SSSR, Institut Teoreticheskoi i Prikladnoi Mekhaniki, Novosibirsk, USSR) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 511-521. refs

Copyright

The results of experimental studies on the boundary layer stability in gradient flow at high turbulence level are presented. The question is considered on the possibility of artificial generation, further development, and influence on laminar-turbulent transition of instability waves (Tollmien-Schlichting waves) in the boundary layer of the airfoil when the level of turbulence in the onflow constitutes 1.75 percent of the onflow velocity; the flow receptivity to disturbances and their control using the suction of the boundary layer are studied. Results of the investigations on the modeling of a turbulent spot generated from the solitary nonlinear wave packet are shown, and the characteristics of the development turbulent spot are presented at onflow turbulence degrees higher than that in earlier papers.

A91-39956* National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
DIRECT NUMERICAL STUDY OF CROSSFLOW INSTABILITY

P. R. SPALART (NASA, Ames Research Center, Moffett Field, CA) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 621-630. refs

Copyright

Disturbances in the swept Hiemenz flow are calculated by solving the Navier-Stokes equations. The spatially-evolving base flow is treated exactly, allowing a check of the 'local' stability theories. Different types of disturbances such as random noise, waves, and wave packets, are input near the attachment line, develop in space, and exit through an outflow boundary. They all generate streamwise vortices. The effect of the Reynolds number, of the time-dependence of the noise, and of nonlinearity, are investigated.

A91-39959

THE EFFECT OF ISOLATED ROUGHNESS ELEMENTS ON TRANSITION IN ATTACHMENT-LINE FLOWS

D. I. A. POLL (Manchester, Victoria University, England) IN: Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Toulouse, France, Sept. 11-15, 1989. Berlin and New York, Springer-Verlag, 1990, p. 657-667. refs

Current knowledge concerning the tripping to turbulence of an attachment-line boundary-layer flow under low-speed conditions is summarized and compared with criteria for tripping in the incompressible, zero pressure-gradient, flat-plate flow. Important similarities and significant differences are illustrated and discussed.

Author

A91-40130#

THE TRANSIENT DYNAMIC PERFORMANCES OF A ROTOR-SFDB SYSTEM DURING PASSAGE THROUGH RESONANCE

JIANKANG XU (Xian Jiaotong University, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 12, Jan. 1991, p. A25-A30. In Chinese, with abstract in English. refs

An experimental and theoretical investigation on the transient dynamic performances of a flexible rotor-SFDB system during passage through resonance is presented. The relationship among the boundary conditions of oil-film pressure, unbalanced load, speed range, and jump phenomenon is discussed and a parameter of critical unbalanced load for jump phenomenon, mu(cr), is introduced. The parameter mu(cr) should be considered as the limit value of unbalance load of the rotor system in engineering designs.

A91-40157#

MODAL ANALYSIS FOR FIBRE-CARBON COMPOSITE PARTS OF AN AIRPLANE

HAIYAN FENG (Beijing Aeronautical Manufacturing Technology Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Nov. 1990, p. A570-A572. In Chinese, with abstract in English.

The results of modal analyses and static ultrasonic tests on simple box-type aircraft structures of carbon-fiber-reinforced composite materials are summarized. The structures tested are shown in drawings, and the data are compiled in tables and briefly discussed.

D.G.

A91-40234 IDENTIFICATION STRATEGIES FOR CRACK SHAPE DETERMINATION IN ROTORS [IDENTIFIKATIONSSTRATEGIEN ZUR RISSFORMBESTIMMUNG AN ROTOREN]

DIRK F. HARTMANN (Gesellschaft fuer angewandte Mathematik und Mechanik, Wissenschaftliche Jahrestagung, Hanover, Federal Republic of Germany, Apr. 8-12, 1990, Vortraege. A91-40226 16-31) Zeitschrift fuer angewandte Mathematik und Mechanik (ISSN 0044-2267), vol. 71, no. 4, 1991, p. T 139-T 141. In German. refs

Copyright
Crack shapes in laterally cracked rotors with variable bending are investigated. Strategies for parameter identification are examined. Crack shape is examined as a basis for a fracture

mechanical residual life span prediction.

A91-40239

PREFERENCE FOR AN INERTIAL DEGREE OF FREEDOM DESCRIBING THE TEETER MOTION OF WINDTURBINE AND HELICOPTER ROTORS

BERNHARDT WEYH (Universitaet Duisburg-Gesamthochschule, Federal Republic of Germany) and JOHANNES ACKVA (Gesellschaft fuer angewandte Mathematik und Mechanik, Wissenschaftliche Jahrestagung, Hanover, Federal Republic of Germany, Apr. 8-12, 1990, Vortraege. A91-40226 16-31) Zeitschrift fuer angewandte Mathematik und Mechanik (ISSN 0044-2267), vol. 71, no. 4, 1991, p. T 200-T 202. refs

When the rotating structure of a wind turbine or helicopter is coupled isotropically to the nonrotating one, time variance in the periodic coefficients of the linearized equations of motion can be eliminated by transformation of the generalized coordinates to the base of the rigid-fixed rotor. In this case, the eigenanalysis can be carried out analytically because the system has only two DOFs. In this paper, this idea is applied to two more complicated systems with teetering rotors. By considering an inertial teeter DOF, the stability investigation for both models leads to analytical expressions of limit speed which are applied to calculate stable parameter constellations for all rotor speeds of technical interest. In spite of the analytical simplifications required, a comparison with numerically calculated stability maps of nonsimple models shows excellent agreement.

A91-40241

VIBRATION BEHAVIOR OF A LABYRINTH SEAL WITH THROUGH-FLOW [SCHWINGUNGSVERHALTEN EINER DURCHSTROEMTEN LABYRINTHDICHTUNG]

BERND BEHNKE (Muenchen, Technische Universitaet, Munich, Federal Republic of Germany) (Gesellschaft fuer angewandte Mathematik und Mechanik, Wissenschaftliche Jahrestagung, Hanover, Federal Republic of Germany, Apr. 8-12, 1990, Vortraege. A91-40226 16-31) Zeitschrift fuer angewandte Mathematik und Mechanik (ISSN 0044-2267), vol. 71, no. 4, 1991, p. T 216-T 218. In German.

Copyright

The effect of through-flow on the motion of a labyrinth seal is mathematically examined. The elastic structure and the flow are modeled and coupled with each other. The eigenvalues of the

whole system are used to study the effects of various parameters on the stability. C.D.

A91-40278

BALANCING OF ROTATING MACHINERY

A. G. PARKINSON (Open University, Milton Keynes, England) Institution of Mechanical Engineers, Proceedings, Part C - Journal of Mechanical Engineering Science (ISSN 0954-4062), vol. 205, no. C1, 1991, p. 53-66. refs Copyright

An important form of vibration experienced by rotating machinery in a wide range of applications is that due to inherent unbalance. Rotating machinery may incorporate either rigid or flexible shafts and balancing procedures for both cases are discussed, but emphasis is given to a review of techniques for the high-speed balancing of flexible shafts. Reference is also made to the main International Standards in the field.

N91-23381# Oak Ridge National Lab., TN. RADIOLUMINESCENT (RL) LIGHTING SYSTEM DEVELOPMENT PROGRAM

K. W. HAFF, D. J. PRUETT, D. W. RAMEY, F. J. SCHULTZ, and J. A. TOMPKINS Mar. 1991 39 p (Contract DE-AC05-84OR-21400) (DE91-009743; ORNL/TM-11648) Avail: NTIS HC/MF A03

The Oak Ridge National Laboratory (ORNL) has been actively engaged in the development of radioluminescent (RL) lights for the past 10 years. Primary emphasis of the program at ORNL has been on the development and improvement of gas-tube technology lights that have been manufactured by private industry for over 30 years. The primary use of these lights until this time has been exit signs with some small numbers of applications in other areas. The goal of the ORNL program was to improve the light output and brightness of the lights to an acceptable level for use as airfield marker signs, runway lights, and taxiway lights. This goal was achieved in that a greater than 100 percent light output was obtained in commercial lights purchased for the U.S. Air Force and for the State of Florida. The results are presented of the radioluminescence tests for tritiated titanium.

N91-23409*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SIMULATION OF BRUSH INSERT FOR

LEADING-EDGE-PASSAGE CONVECTIVE HEAT TRANSFER

R. C. HENDRICKS, M. J. BRAUN, V. CANACCI, and R. L. MULLEN (Case Western Reserve Univ., Cleveland, OH.) 1991 12 p Presented at the 4th International Symposium on Transport Phenomena in Heat and Mass Transfer, Sydney, Australia, 14-18 Jul. 1991; sponsored by New South Wales Univ.

(NASA-TM-103801; E-6093; NAS 1.15:103801) Avail: NTIS HC/MF A03 CSCL 20/4

Current and proposed high speed aircraft have high leading edge heat transfer (to 160 MW/sq m, 100 Btu/sq in/sec) and surface temperatures to 1370 K (2000 F). Without cooling, these surfaces could not survive. In one proposal the coolant hydrogen is circulated to the leading edge through a passage and returned to be consumed by the propulsion system. Simulated flow studies and visualizations have shown flow separation within the passage with a stagnation locus that isolates a zone of recirculation at the most critical portion of the passage, namely the leading edge itself. A novel method is described for mitigating the flow separation and the isolated recirculation zones by using a brush insert in the flow passage near the leading edge zone, thus providing a significant increase in heat transfer.

N91-23410*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

PASSIVE LAMINAR FLOW CONTROL OF CROSSFLOW VORTICITY Patent Application

BRUCE J. HOLMES, inventor (to NASA) 2 Nov. 1990 18 p (NASA-CASE-LAR-13563-1; NAS 1.71:LAR-13563-1; US-PATENT-APPL-SN-608494) Avail: NTIS HC/MF A03 CSCL 20/4

12 ENGINEERING

A passive laminar flow crossflow vorticity control system includes an aerodynamic or hydrodynamic surface having geometric perturbations. The perturbations include peaks and valleys having a predetermined spacing and aligned approximately in a streamline direction to force the formation of crossflow vortices. This minimizes amplification and growth of the vortices, thus delaying transition to turbulence and reducing overall drag.

N91-23411 Pennsylvania State Univ., University Park. A COMPUTATIONALLY EFFICIENT MODELLING OF LAMINAR SEPARATION BUBBLES Ph.D. Thesis

PAOLO DINI 1990 169 p

Avail: Univ. Microfilms Order No. DA9104867

In predicting the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is often important to account for the effects of laminar (transitional) separation bubbles. Previous approaches to the modeling of this viscous phenomenon range from fast by sometimes unreliable empirical correlations for the length of the bubble and the associated increase in momentum thickness, to more accurate but significantly slower displacement thickness iteration methods employing inverse boundary layer formulations in the separated regions. Since the penalty in computational time associated with the more general methods is unacceptable for airfoil design applications, use of an accurate yet computationally efficient model is highly desirable. To this end, a semi-empirical bubble model was developed and incorporated into the Eppler and Somers airfoil design and analysis program. The generality and the efficiency were achieved by successfully approximating the local viscous/inviscid interaction, the transition location, and the turbulent reattachment process within the framework of an integral boundary-layer method. Comparisons of the predicted aerodynamic characteristics with experimental measurements for several airfoils show excellent and consistent agreement for Reynolds numbers from 2,000,000 down to Dissert. Abstr. 100,000.

N91-23413 Cornell Univ., Ithaca, NY. BLOCK IMPLICIT MULTIGRID SOLUTION OF THE EULER **EQUATIONS Ph.D. Thesis**

YORAM YADLIN 1990 177 p Avail: Univ. Microfilms Order No. DA9106233

A diagonal implicit multigrid (BDIM) scheme was developed to solve the Euler equations of inviscid, compressible flows in three-dimensions, and was implemented within the framework of block structured grids. A multigrid alternating direction implicit (ADI) scheme was developed for a single-block grid in three dimensions, using a diagonalization procedure resulting in a computationally efficient code. The scheme was applied to compute transonic flow past a swept wing and found accurate and efficient. Ways to implement the multigrid ADI scheme on block-structured grids were investigated. Two modes of multigrid cycles were developed: one in which the multigrid cycle advances concurrently on all blocks (horizontal mode) and one in which the multigrid cycle advances independently in each block (vertical mode). The efficiency and accuracy of both modes were investigate by applying the schemes to compute transonic flow past the NACA-0012 airfoil. Both modes were implemented to run on a shared-memory parallel computer. Computations of transonic flow past a swept wing illustrate the accuracy and efficiency of the scheme. Speed-up results are presented to illustrate the ability of the scheme to calculate complex flows in the short turn around time required in any design Dissert. Abstr. application.

N91-23419 Michigan Univ., Ann Arbor. AN EXPERIMENTAL INVESTIGATION OF VORTEX PAIR INTERACTION WITH A CLEAN OR CONTAMINATED FREE SURFACE Ph.D. Thesis

AMIR HOSSEIN HIRSA 1990 148 p Avail: Univ. Microfilms Order No. DA9034438

The interaction between a pair of trailing vortices and a free surface was studied. The vortices were produced by a submerged delta wing and a negative angle of attack. In order to isolate and study the interaction, an apparatus was built to generate

reproducible vortex pairs with the same Reynolds number and Froude number as the trailing vortices. The apparatus consisted of a pair of counter rotating flaps which were moved by a computer controlled stepping motor. The vortex pairs generated with the flaps were laminar and remained laminar during the time that significant interaction with the free surface was observed. The Froude number for the vortices was low and the resulting surface deformations were small. Particle image velocimetry along with flow visualization were used to study the flow field. Striations were also observed during the interaction of the vortex pair with the free surface. The striations were found to be caused by cross-stream vortices which are stretched by the strain field between the trailing vortices and their images. Contaminants on the free surface were found to have a large influence on both the free surface deformations and the flow field of the vortices. Also, a Reynolds ridge on the free surface was observed on each side of the wake. The effect of surface contamination was studied by adding known amounts of an insoluble surfactant to the free surface. Surface depressions, termed scars, were observed above the primary vortices as well as the secondary vortices, although in the case on the secondary vortices the depression was much Dissert. Abstr. greater.

N91-23437# Von Karman Inst. for Fluid Dynamics, Rhode-Saint-Genese (Belgium).

AERO-THERMAL INVESTIGATION OF A HIGHLY LOADED TRANSONIC LINEAR TURBINE GUIDE VANE CASCADE. A TEST CASE FOR INVISCID AND VISCOUS FLOW COMPUTATIONS

T. ARTS, M. LAMBERTDEROUVROIT, and A. W. RUTHERFORD Sep. 1990 91 p

(VKI-TN-174; ETN-91-99114) Avail: NTIS HC/MF A05

An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity. **FSA**

N91-23445# Arnold Engineering Development Center, Arnold Air Force Station, TN.

COMPUTATION OF INLET REFERENCE PLANE FLOW-FIELD FOR A SUBSCALE FREE-JET FOREBODY/INLET MODEL AND COMPARISON TO EXPERIMENTAL DATA Final Report, 1 Jan. 1989 - 31 Jul. 1990

M. D. MCCLURE and J. R. SIRBAUGH Feb. 1991 77 p Prepared in cooperation with Sverdrup Technology, Inc., Arnold AFS, TN (AD-A232101; AEDC-TR-90-21) Avail: NTIS HC/MF A05 CSCL 20/4

Ē

1

The computational fluid dynamics (CFD) computer code PARC3D was used to predict the inlet reference plane (IRP) flow field for a side-mounted inlet and forebody simulator in a free jet for five different flow conditions. The calculations were performed for free-jet conditions, mass flow rates, and inlet configurations that matched the free-jet test conditions. In addition, viscous terms were included in the main flow so that the viscous free-jet shear layers emanating from the free-jet nozzle exit were modeled. A

measure of the predicted accuracy was determined as a function of free-stream Mach number, angle-of-attack, and sideslip angle.

N91-23506# Central Research Inst. of Electric Power Industry, Tokyo (Japan). Energy and Environment Lab.

WATER-COOLING TECHNIQUE OF HIGH TEMPERATURE GAS **TURBINE BLADE**

T. SAKUMA May 1990 26 p In JAPANESE: ENGLISH summary

(DE91-764238; CRIE-T-89059) Avail: NTIS HC/MF A03

A simulation code has been developed that can simulate the thermal stress and temperature distribution of water cooled blades with a concentric tube type open thermopsyphon. The code has proven that it is possible to keep the blade temperature under 600 C and the thermal stress under 20 kg/sq mm in a gas turbine with inlet gas temperature of 1500 C. Thus, the range of blade material selections is increased and the way is opened for the simplification of cooling structures which contributes to the reduction of manufacturing costs. Furthermore, a simulation code has also been developed that can simulate the thermal efficiency of the Brayton cycle of the water cooled gas turbine. The code has proven that higher thermal efficiency for blades and nozzles is obtained by a water cooling system than by the air or steam cooling systems that are currently under development.

N91-23513*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MODAL ANALYSIS OF MULTISTAGE GEAR SYSTEMS **COUPLED WITH GEARBOX VIBRATIONS**

F. K. CHOY, Y. F. RUAN, Y. K. TU (Akron Univ., OH.), J. J. ZAKRAJSEK, and D. P. TOWNSEND 1991 34 p Prepared for presentation at the International Conference on Motion and Power Transmissions, Hiroshima, Japan, 24-26 Nov. 1991; sponsored in part by Japan Society of Mechanical Engineers, ASME, I.Mech.E., VDI, I.E.T., CSME (Contract DA PROJ. 1L1-62211-A-47-A)

(NASA-TM-103797; E-6085; NAS 1.15:103797;

AVSCOM-TR-90-C-033) Avail: NTIS HC/MF A03 CSCL 13/9

An analytical procedure to simulate vibrations in gear transmission systems is presented. This procedure couples the dynamics of the rotor-bearing gear system with the vibration in the gear box structure. The model synthesis method is used in solving the overall dynamics of the system, and a variable time-stepping integration scheme is used in evaluating the global transient vibration of the system. Locally each gear stage is modeled as a multimass rotor-bearing system using a discrete model. The modal characteristics are calculated using the matrix-transfer technique. The gearbox structure is represented by a finite element models, and modal parameters are solved by using NASTRAN. The rotor-gear stages are coupled through nonlinear compliance in the gear mesh while the gearbox structure is coupled through the bearing supports of the rotor system. Transient and steady state vibrations of the coupled system are examined in both time and frequency domains. A typical three-geared system is used as an example for demonstration of the developed procedure.

N91-23522# Israel Aircraft Industries Ltd., Ben-Gurion Airport. Ground Tests Engineering.

COMPUTERIZED SYSTEM FOR STATIC AND FATIGUE LARGE SCALE STRUCTURAL TESTS: A CASE STUDY

URI BENSHALOM May 1987 11 p

(IAITIC-87-1007; ITN-88-85006) Avail: NTIS HC/MF A03 A computerized system was developed at IAI (Israel Aircraft Industries) for large scale static and fatigue tests. The evolution of the new software system, the base-design of old systems, divergence of the original design from previous concepts, and insight gained during system development are discussed.

N91-23554# Army Lab. Command, Watertown, MA. Material Technology Lab.

MODEL SENSITIVITY IN STRESS-STRENGTH RELIABILITY **COMPUTATIONS Final Report**

DONALD M. NEAL, WILLIAM T. MATTHEWS, and MARK G. VANGEL Jan. 1991 27 p Presented at the 36th ARD Conference on the Design Experiments in Army Research, Development and Testing

(AD-A232023; MTL-TR-91-3) Avail: NTIS HC/MF A03 CSCL

There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. This report identifies the potential consequences of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative computation procedure is examined determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

N91-24074*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

QUANTITATIVE NONDESTRUCTIVE EVALUATION: REQUIREMENTS FOR TOMORROW'S RELIABILITY

JOSEPH S. HEYMAN In NASA, Washington, Technology 2000, Volume 2 p 287-297 1991

Avail: NTIS HC/MF A16 CSCL 14/4

Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice. Author

N91-24309*# Pratt and Whitney Aircraft, East Hartford, CT. APPLICATION OF CYCLIC DAMAGE ACCUMULATION LIFE PREDICTION MODEL TO HIGH TEMPERATURE COMPONENTS

RICHARD S. NELSON In NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems p 5-15 Apr. 1989 (Contract NAS3-23288)

Avail: NTIS HC/MF A12 CSCL 20/11

A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several

12 ENGINEERING

features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.

N91-24310*# United Technologies Research Center, East Hartford, CT.

NOTCHED FATIGUE OF SINGLE CRYSTAL PWA 1480 AT TURBINE ATTACHMENT TEMPERATURES

T. G. MEYER, D. M. NISSLEY, and G. A. SWANSON (Pratt and Whitney Aircraft, East Hartford, CT.) In NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems p 17-23 Apr. 1989 (Contract NAS3-23939)

Avail: NTIS HC/MF A12 CSCL 20/11

The focus is on the lower temperature, uncoated and notched features of gas turbine blades. Constitutive and fatigue life prediction models applicable to these regions are being developed. Fatigue results are presented which were obtained thus far. Fatigue tests are being conducted on PWA 1480 single crystal material using smooth strain controlled specimens and three different notched specimens. Isothermal fatigue tests were conducted at 1200, 1400, and 1600 F. The bulk of the tests were conducted at 1200 F. The strain controlled tests were conducted at 0.4 percent per second strain rate and the notched tests were cycled at 1.0 cycle per second. A clear orientation dependence is observed in the smooth strain controlled fatigue results. The fatigue lifes of the thin, mild notched specimens agree fairly well with this smooth data when elastic stress range is used as a correlating parameter. Finite element analyses were used to calculate notch stresses. Fatigue testing will continue to further explore the trends observed thus far. Constitutive and life prediction models are being Author developed.

N91-24336*# Pennsylvania State Univ., University Park. Dept. of Aerospace Engineering.

A NEW FACILITY TO STUDY THREE DIMENSIONAL VISCOUS FLOW AND ROTOR-STATOR INTERACTION IN TURBINES Progress Report

B. LAKSHMINARAYANA, C. CAMCI, and I. HALLIWELL (General Electric Co., Cincinnati, OH.) /n NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems p 223-236 Apr. 1989

Avail: NTIS HC/MF A12 CSCL 20/4

A description of the Axial Flow Turbine Research Facility (AFTRF) being built at the Turbomachinery Laboratory of the Pennsylvania State University is presented. The purpose of the research to be performed in this facility is to obtain a better understanding of the rotor/stator interaction, three dimensional viscous flow field in nozzle and rotor blade passages, spanwise mixing and losses in these blade rows, transport of wake through rotor passage, and unsteady aerodynamics and heat transfer of rotor blade row. The experimental results will directly feed and support the analytical and the computational tool development. This large scale low speed facility is heavily instrumented with pressure and temperature probes and has provision for flow visualization and laser Doppler anemometer measurement. The facility design permits extensive use of the high frequency response instrumentation on the stationary vanes and more importantly on the rotating blades. Furthermore it facilitates detailed nozzle wake, rotor wake, and boundary layer surveys. The large size of the rig also has the advantage of operating at Reynolds numbers Author representative of the engine environment.

N91-24338*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

AVERAGE-PASSAGE FLOW MODEL DEVELOPMENT

JOHN J. ADAMCZYK, MARK L. CELESTINA, TIM A. BEACH, KEVIN KIRTLEY, and MARK BARNETT (United Technologies Research Center, East Hartford, CT.) In its Structural Integrity and Durability of Reusable Space Propulsion Systems p 247-251 Apr. 1989

Avail: NTIS HC/MF A12 CSCL 20/4

A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

N91-24475# Magnavox Co., Fort Wayne, IN. SATURN: THE NEXT GENERATION RADIO FOR NATO

JAMES F. KEATING and THOMAS M. SCHUERMAN In AGARD, Electronic Counter-Counter Measures for Avionics Sensors and Communication Systems 9 p Feb. 1991

Copyright Avail: NTIS HC/MF A06; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The Second Generation Antijam Tactical UHF Radio for NATO (SATURN) system is described along with the URC-126 radio which will meet SATURN requirements when it enters production for the USAF. As its name implies, the system approach was jointly developed with NATO countries as STANAG 4372. It is designed to meet UHF Voice and data communication requirements into the next century. The URC-126 radio will replace the ARC-164, and is being developed by the USAF as part of its Have Quick antijam program. The URC-126 will be the first of several SATURN radios. It has completed Full Scale Engineering Development and Qualification Testing using the USAF Have Quick 2A Fast Frequency Hopping (FFH) mode which is a precursor of SATURN. Production radios will have the full SATURN capability. The AF has also developed and qualified the GRC-234 which uses the Have Quick 2A FFH mode. Additionally, a SATURN radio is now in development for the European Fighter Aircraft (EFA).

N91-24530# Massachusetts Inst. of Tech., Cambridge. Dept. of Aeronautics and Astronautics.

VISCOUS DESIGN AND ANALYSIS METHODS FOR TRANSONIC COMPRESSOR BLADING Final Technical Report, 15 May 1989 - 30 Sep. 1990

MARK DRELA 13 Feb. 1991 167 p (Contract AF-AFOSR-0373-89; AF PROJ. 2307) (AD-A232902; AFOSR-91-0184TR) Avail: NTIS HC/MF A08

CSCL 20/4

A viscous/inviscid computational method for the design and analysis of quasi-3D cascades has been developed. The specific application targeted is supersonic compressor blading with splitter blades, although the method is applicable to any type of cascade. The method is an extension of the ISES viscous/inviscid methodology. A streamline-based inviscid Euler formulation is fully coupled to an integral boundary layer formulation to describe the overall viscous flowfield. Rotation and streamtube contraction effects have been incorporated. The method is accurate with regards to loading and loss, and is substantially faster than equivalent Navier-Stokes solvers. Inverse design and optimization capabilities are also implemented giving an effective design/analysis system. Existing supersonic splittered cascades were investigated to determine what characteristics are desirable or undesirable in this type of blading. Sensitivity studies indicate that tangential splitter position and splitter loading details have little influence on performance. Substantial improvements are possible if the splitter is moved aft into a tandem-blade arrangement with the main blade. Comparisons between computational results

and measured data strongly suggest that traditional supersonic cascade tests involve substantial three-dimensional effects which are not correctable by measured streamtube contraction. GRA

N91-24533# California Inst. of Tech., Pasadena. Graduate Aeronautical Labs.

SIMULATION OF THE FLOW PAST AN IMPULSIVELY STARTED CYLINDER USING A DISCRETE VORTEX METHOD Final Report

FRANCOIS PEPIN 11 May 1990 152 p (Contract AF-AFOSR-0155-88; AF PROJ. 2308) (AD-A233066; AFOSR-91-0165TR) Avail: NTIS HC/MF A08 CSCL 20/4

Vortex methods are a powerful method for simulating incompressible flows at high Reynolds number. This work extends the basic method to include viscous effects in the presence of solid boundaries. The combination of a fully viscous vortex method with a fast parallel algorithm is used to simulate the flow past an impulsively started cylinder. Experiments have shown that this flow is characterized by the presence of secondary eddies within the main recirculating region. The numerical simulations successfully reproduced these secondary structures over a wide range of Reynolds number (Re = 550 to 9500). It was observed that the secondary phenomenon can lead to a major flow reorganization by drastically altering the transport of vorticity. At Re = 550, the vortex sheet smoothly rolls up into the primary vortex. For Re = 3000 and 9500, however, secondary eddies interfere with that process and the flux of vorticity is redirected toward the cylinder where it accumulates into a new vortical structure. The impulsive start is followed by a 1/(square root of t) singularity in the drag coefficients. The numerical simulations captured this behavior and the computed drag history for short times is in close agreement with the one predicted by a matched asymptotics analysis. GRA

N91-24551*# Pratt and Whitney Aircraft, West Palm Beach, FL. Commercial Engine Business.

COOLANT SIDE HEAT TRANSFER WITH ROTATION. TASK 3 REPORT: APPLICATION OF COMPUTATIONAL FLUID DYNAMICS

F. C. KOPPER, G. J. STURGESS, and P. DATTA Jan. 1989 91 p

(Contract NAS3-23691)

(NASA-CR-182109; NAS 1.26:182109; PWA-5930-29) Avail: NTIS HC/MF A05 CSCL 20/4

An experimental and analytical program was conducted to investigate heat transfer and pressure losses in rotating multipass passages with configurations and dimensions typical of modern turbine blades. The objective of this program is the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. As part of this overall program, a technique is developed for computational fluid dynamics. The specific objectives were to: select a baseline CFD computer code, assess the limitations of the baseline code, modify the baseline code for rotational effects, verify the modified code against benchmark experiments in the literature, and to identify shortcomings in the code as revealed by the verification. The Pratt and Whitney 3D-TEACH CFD code was selected as the vehicle for this program. The code was modified to account for rotating internal flows, and these modifications were evaluated for flow characteristics of those expected in the application. Results can make a useful contribution Author to blade internal cooling.

N91-24555*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA.

EFFECTS OF WING SWEEP ON IN-FLIGHT BOUNDARY-LAYER TRANSITION FOR A LAMINAR FLOW WING AT MACH NUMBERS FROM 0.60 TO 0.79

BIANCA TRUJILLO ANDERSON and ROBERT R. MEYER, JR. Jul. 1990 37 p Contains microfiche as supplement (NASA-TM-101701; H-1565; NAS 1.15:101701) Avail: NTIS HC/MF A03 CSCL 20/4

The variable sweep transition flight experiment (VSTFE) was

conducted on an F-14A variable sweep wing fighter to examine the effect of wing sweep on natural boundary layer transition. Nearly full span upper surface gloves, extending to 60 percent chord, were attached to the F-14 aircraft's wings. The results are presented of the glove 2 flight tests. Glove 2 had an airfoil shape designed for natural laminar flow at a wing sweep of 20 deg. Sample pressure distributions and transition locations are presented with the complete results tabulated in a database. Data were obtained at wing sweeps of 15, 20, 25, 30, and 35 deg, at Mach numbers ranging from 0.60 to 0.79, and at altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number obtained was 18.6 x 10(exp 6) at 15 deg of wing sweep, Mach 0.75, and at an altitude Author of 10,000 ft.

N91-24556*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA. EFFECTS OF WING SWEEP ON BOUNDARY-LAYER TRANSITION FOR A SMOOTH F-14A WING AT MACH NUMBERS FROM 0.700 TO 0.825

BIANCA TRUJILLO ANDERSON and ROBERT R. MEYER, JR. May 1990 48 p Contains microfiche as supplement (NASA-TM-101712; H-1531; NAS 1.15:101712) Avail: NTIS HC/MF A03 CSCL 20/4

The results are discussed of the variable sweep transition flight experiment (VSTFE). The VSTFE was a natural laminar flow experiment flown on the swing wing F-14A aircraft. The main objective of the VSTFE was to determine the effects of wing sweep on boundary layer transition at conditions representative of transport aircraft. The experiment included the flight testing of two laminar flow wing gloves. Glove 1 was a cleanup of the existing F-14A wing. Glove 2, not discussed herein, was designed to provide favorable pressure distributions for natural laminar flow at Mach number (M) 0.700. The transition locations presented for glove 1 were determined primarily by using hot film sensors. Boundary layer rake data was provided as a supplement. Transition data were obtained for leading edge wing sweeps of 15, 20, 25, 30, and 35 degs, with Mach numbers ranging from 0.700 to 0.825, and altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number of 13.7 x 10(exp 6) was obtained for the condition of 15 deg of sweep, M = 0.800, and an altitude of 20,000 ft.

N91-24583*# lowa State Univ. of Science and Technology, Ames. Dept. of Mechanical Engineering.
SIMULATION OF A COMBINED-CYCLE ENGINE Final Report

JON VANGERPEN 10 Jun. 1991 47 p (Contract NAG3-957)

(NASA-CR-188232; NAS 1.26:188232) Avail: NTIS HC/MF A03 CSCL 10/2

A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

N91-24638# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Structures and Materials Panel.

ANALYTICAL QUALIFICATION OF AIRCRAFT STRUCTURES

Apr. 1991 171 p In ENGLISH and FRENCH The 70th

Meeting was held in Sorrento, Italy, 1-6 Apr. 1990

(AGARD-R-772; ISBN-92-835-0603-0) Copyright Avail: NTIS

HC/MF A08; Non-NATO Nationals requests available only from

AGARD/Scientific Publications Executive

The role of structural analysis in relation to aircraft qualification procedures was addressed in order to establish guidelines for the

future and to seek out those areas where there exists a commonality of approach between nations. Topics covered include: quality assurance of software tools for structural analysis; comparison of analysis and test results; and trends in analysis for certification/certification only by analysis.

Wright Research Development Center, N91-24641# Wright-Patterson AFB, OH.

ANALYTICAL CERTIFICATION OF AIRCRAFT STRUCTURES V. B. VENKAYYA In AGARD, Analytical Qualification of Aircraft Structures 14 p Apr. 1991 Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests

available only from AGARD/Scientific Publications Executive

Analysis is expected to play an important role in the design and validation of future aircraft structures. The need for the development of professional standards in order to implement the concept of analytical certification is presented. Standards for analysis and criteria for model definition are discussed in some detail

Construcciones Aeronauticas S.A., Madrid (Spain). N91-24642# Stress Office.

NONLINEAR ANALYSIS OF COMPOSITE SHEAR WEBS WITH HOLES AND CORRELATION WITH TESTS

J. M. BLANCO SAIZ and A. BARRIO CARDABA Analytical Qualification of Aircraft Structures 17 p Apr. 1991 Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Since the use of composite materials is largely extended in aircraft construction, it is necessary to develop analytical calculations to avoid the present dependency on structural tests. With that objective, a test plan of 25 representative specimens of 9 different shear webs geometries with accessing, inspecting or lightening holes, enveloping the A320 tailplane design was performed, including simulated defects and impacts for two environmental conditions. Finite element linear and nonlinear analysis, using a very refined mesh, was performed to correlate test results. Very good correlation was found even in the postbuckling behavior of the structure. This analysis allows the prediction of the postbuckling capability of these structural elements Author and the derivation of a failure criteria.

N91-24643# Beech Aircraft Corp., Wichita, KS BEECHCRAFT STARSHIP STRENGTH CERTIFICATION

E. H. HOOPER In AGARD, Analytical Qualification of Aircraft Structures 7 p Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The all-composite airframe can be successfully designed and analyzed with today's technology. Simple designs using essentially monocoque techniques facilitate economical fabrication of parts and assemblies. An FAA certification program demands careful planning and coordination, especially concerning regulations, interpretations, test criteria, test plans, and test witnessing.

Author

N91-24645# Fokker B.V., Schipol-Oost (Netherlands). **EVALUATION OF THE QUALIFICATION OF THE STRUCTURE** OF A PASSENGER AIRCRAFT BY ANALYSIS AND **FULL-SCALE TESTING**

In AGARD, Analytical Qualification of H. A. VANDULLEMEN Aircraft Structures 12 p Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

On the basis of the experience with the Fokker 100 development and full-scale testing, the qualification process leading to a certified aircraft structure is reviewed. The question whether the state of the art is satisfactory or not is discussed, seen from the viewpoint of the FEM (finite element method) specialist, the manager, the structural specialist, and the authorities. Special attention is given to the problems with derivative aircraft with respect to the requirements. Computer simulation as a replacement for full-scale testing is discussed and rejected. The practical compromises in

full-scale testing and FEM model verification are discussed and some crucial experiences with the test program are considered.

Author

Royal Aerospace Establishment, Farnborough (England). Materials and Structures Dept.

THE ROLE OF STRUCTURAL ANALYSIS IN AIRWORTHINESS **CERTIFICATION**

P. BARTHOLOMEW In AGARD, Analytical Qualification of Aircraft Structures 8 p Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Those uses of structural analysis which have a bearing on airworthiness are reviewed. In particular, the extent to which finite element analysis is already implicitly relied on in the context of clearance by test is considered, and factors which may be expected to lead to an increased reliance are discussed. One such factor is the increased use of the computer aided engineering (CAE) approach which changes the design process itself. An assessment is made of actions required to ensure that results of analysis provide a consistent and reliable basis for airworthiness judgement. Author

N91-24648# Canadair Ltd., Montreal (Quebec). THE ROLE OF ANALYSIS IN THE DESIGN AND

QUALIFICATION OF COMPOSITE AIRCRAFT STRUCTURES

PATRICK MCCONNELL In AGARD, Analytical Qualification of Aircraft Structures 12 p Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Four areas of analysis in the qualification of aircraft structures made with composite materials are discussed. These areas are (1) statistics for material allowables, (2) damage tolerance modelling, (3) hygrothermal modelling, and (4) buckling of stiffened compression panels.

N91-24649# Dassault-Breguet Aviation, Saint Cloud (France). INFLUENCE OF THE REFINEMENT OF STRUCTURAL **CALCULATION ON AIRCRAFT QUALIFICATION PROCEDURES**

C. PETIAU In AGARD, Analytical Qualification of Aircraft Structures 14 p Apr. 1991 In FRENCH; ENGLISH summary Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The effects of improvements of analytical methods on the process of airframe qualification are examined. Potentialities, weaknesses, and corresponding corrections are reviewed for the three main branches of structural analysis of aircraft: calculation of stress fields, determination of failure criteria in static and in fatigue, and calculation of loads, aeroelasticity, and flutter. Risks of errors are omnipresent, so the structure qualification must include a reliable process of detection and correction of errors. An organization plan for design and qualification is presented. Computer analysis plays a large role, while remaining controlled via a minimum number of relevant tests. Improvements in analytical methods assist design optimization by reducing the number of required tests and reducing the risk of failure during the main qualification tests. However, insufficient reliability of analytical methods, mainly the risk of human error, requires continued use of the main qualification tests.

Author

N91-24650# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.).

ANALYTICAL METHODS FOR THE QUALIFICATION OF **HELICOPTER STRUCTURES**

F. OCH In AGARD, Analytical Qualification of Aircraft Structures Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Due to the increasing costs of experimental testing, analytical methods are becoming the primary means of demonstrating structural integrity, durability, and crashworthiness of helicopter structures, both for civil and military use, when representative conditions such as temperature, moisture, cyclic loading, and impact have to be considered. The airframes of derivatives of the basic BO 105 have been qualified in the past without retesting because it could be shown that the structure conformed to those for which experience had demonstrated the structural analysis to be reliable. During the development of a composite fuselage for the BK 117. both an analytical and an experimental strength substantiation was performed, which corresponded very well and formed the basis for airworthiness qualification of this experimental helicopter under flight testing now. A large number of components in the dynamic system are designed primarily so that they will provide adequate fatigue strength, defined in terms of an endurance limit, or in terms of fatigue life. The analytical qualification of these fatigue critical structures, on the basis of measured fatigue loadings and calculated working S-N curves, is state-of-the-art in the helicopter industry. In the nonlinear domain, analytical methods are applied highly laminated elastomeric bearings and for the crashworthiness qualification of both crushable subcomponents and complete helicopters. The results gained so far allow the application of analytical methods, partly in combination with coupon or component testing, for the qualification of helicopter structures.

Author

N91-24652*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

PROBABILITY APPROACH FOR STRENGTH CALCULATIONS
CHRISTOS C. CHAMIS and T. A. CRUSE (Southwest Research
Inst., San Antonio, TX.)

In AGARD, Analytical Qualification of
Aircraft Structures 13 p

Apr. 1991

Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive CSCL 20/11

The use of probabilistic structural analysis methods (PSAM) to predict structural reliability is the subject of an on-going NASA research program. The elements of the new technology developed to date is reported. Applications of the developed software to structural problems are demonstrated for simple validation problems and for large scale application problems. On-going research to support component and system reliability predictions suitable for analytical certification of aerospace structures is briefly reviewed.

Author

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

A91-37049

US INDUSTRY ENTERS THE GREEN MAZE

BILL GREGORY Interavia Aerospace Review (ISSN 0020-6512), vol. 46, May 1991, p. 22-25. Copyright

A review is presented of the growing number of complex and often inconsistent environmental regulations forcing the U.S. aerospace industry to spend increasingly large amounts of money to clean up past messes and to insure that future operations comply with new laws. To reduce stratospheric ozone depletion and smog generation, regulations are amended to lower volatile compounds. New aircraft construction bays include under-floor systems for recovery of corrosion inhibitors which capture emissions from paint over-spray and solvent evaporation during wing cleaning, painting and sealing. It is pointed out that company environmental policy officers are concerned by criminalization of environmental regulations; in particular it is argued that recently revised federal sentencing guidelines compound the potential severity of penalties. Water waste disposal, Clean Air Act

provisions, solvents, adhesives and coatings problems and solid rocket motor waste disposal are discussed.

491-37104

CLUTTER REJECTION IN DOPPLER WEATHER RADARS USED FOR AIRPORT WIND SHEAR DETECTION

JAMES E. EVANS and DANIEL HYNEK (MIT, Lexington, MA) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989. Amsterdam, Elsevier Science Publishers, 1990, p. 275-280. FAA-supported research. refs Copyright

Techniques for the suppression of ground and storm clutter to permit the detection of low altitude windshear by pulse Doppler radars are described. Novel features of the system include the use of clutter residue and range aliased weather echo editing maps which edit out the range-azimuth cells on a 'data adaptive basis'.

Author

A91-38323

AERONAUTICAL METEOROLOGY - SAFETY AND ECONOMICS OF COMMERCIAL AIR TRANSPORTS [METEOROLOGIE AERONAUTIQUE - LA SECURITE ET L'ECONOMIE DU TRANSPORT AERIEN]

JACQUES GOAS (Meteorologie Nationale, Boulogne-Billancourt, France) Navigation (Paris) (ISSN 0028-1530), vol. 39, April 1991, p. 239-243. In French. Copyright

The impact of meteorological parameters on the economics and safety of commercial air transportation is reviewed. Some 40 percent of fatal commercial transport accidents that have occurred since 1970 can be attributed in part to meteorological phenomena, e.g., hail, lightning, clear air turbulence, and wind shear. Consideration is given to the increasing severity of weather-related accidents in modern high-speed jet aircraft, as opposed to earlier piston engine types. Finally, the economic impact of operating high gross weight transport jet aircraft with regard to meteorological considerations, i.e., extended takeoff runs at high ambient temperatures, varying enroute climb and cruise altitudes due to changes of wind, weather and temperature, and meteorology at the destination/alternate airport, are discussed.

A91-38388#

THE LWC PARAMETER - SOME EXPERIMENTAL RESULTS

MAURIZIO BASSANI (Aeronautica Militare Italiana, Divisione Aerea Studi Ricerche e Sperimentazioni, Rome, Italy) Rivista di Meteorologia Aeronautica (ISSN 0035-6328), vol. 50, July-Dec. 1990, p. 141-148. refs

Analyses of four instances of icing conditions during flight tests are conducted from a meteorological standpoint. A summary of the test characteristics reported from a G222 aircraft equipped for icing certification is shown. Three events occurred near 12 UTC sounding, and one was between 12 and 18 UTC. Meteorological conditions at the time of the icing are inferred from conditions in the middle troposphere. LWC values are calculated and compared with observed data. A diffuse stability throughout the tropospheric region is indicated by the soundings, and the Appleman analysis shows favorable icing conditions. Airframe structure icing is limited to rime ice due to the lack of vertical motion. The LWC values found are shown to agree with observed values, although the value for the event corresponding to stratified cloud conditions must be linearly interpolated from time contiguous soundings. The Microcora sounding used here is shown to effectively calculate the LWC values for certain meteorological conditions.

N91-24170*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

INTEGRATED DATA ANALYSIS OF JULY 7, 1990 MICROBURST

DAVE HINTON In its Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, Part 1 p 63-79 Jan. 1991

Avail: NTIS HC/MF A21 CSCL 04/2

Integrated data analysis of July 7, 1990 microburst is presented in the form of view-graphs. Topics included are: summer 1990 TDWR flight experiment; least square estimate of linear shear; event synopsis; TDWR (terminal Doppler weather radar) data analysis; citation aircraft in situ data analysis; infrared data analysis; and summary of July 7 event.

15

MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A91-37584 NORMALIZED PREDICTIVE DECONVOLUTION MULTICHANNEL TIME-SERIES APPLICATIONS TO HUMAN DYNAMICS

DANIEL J. BIEZAD (USAF, Institute of Technology, Wright-Patterson AFB, OH) IN: Control and dynamic systems. Vol. 31 - Advances in aerospace systems dynamics and control systems. Pt. 1. San Diego, CA, Academic Press, Inc., 1989, p. 193-256. refs
Copyright

The human dynamics modeling problem as it relates to aircraft is described. The normalized predictive deconvolution algorithm is derived using straightforward matrix algebra. Existence conditions are determined and translated into experimental controls applicable both to flight simulation in the laboratory and to flight testing in the air.

K.K.

A91-37585

PRACTICAL CONSIDERATIONS IN OPTIMAL AND 4-DIMENSIONAL FLIGHT MANAGEMENT COMPUTATIONS

SAM LIDEN (Honeywell, Inc., Air Transport Systems Div., Phoenix, AZ) IN: Control and dynamic systems. Vol. 32 - Advances in aerospace systems dynamics and control systems. Pt. 2. San Diego, CA, Academic Press, Inc., 1990, p. 1-21. refs Copyright

Optimization and simulation studies conducted to clarify the more pragmatic aspects of commercial aircraft flight management system (FMS) computations have indicated that the optimum arrival time and cost index can be found with adequate accuracy for cost minimization by means of a three trial pass-based procedure. While precise speed adjustment for required arrival-time predictions can be found by a simple algorithm requiring few passes to converge, wind forecast errors are found to compromise prediction accuracy; a simple method is available, however, for adjusting the flight speed by the forecast error and adjusting the prediction speed limits accordingly. Total flight cost-minimizing speed control is achievable with relatively modest FMS design modifications.

A91-37591* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

CONTROL LAW SYNTHESIS AND STABILITY ROBUSTNESS IMPROVEMENT USING CONSTRAINED OPTIMIZATION TECHNIQUES

VIVEKANANDA MUKHOPADHYAY (NASA, Langley Research Center, Hampton, VA) IN: Control and dynamic systems. Vol. 32 - Advances in aerospace systems dynamics and control systems. Pt. 2. San Diego, CA, Academic Press, Inc., 1990, p. 163-205. refs

(Contract NAG1-199; NAS1-18000)

Copyright

The present generic optimization procedure for a continuous or discrete control law (of arbitrary order), which will be applicable to a multiinput-multioutput system, is upon constraining used to

satisfy conflicting design requirements on the mean-square responses and stability robustness at the plant input and output. The synthesis procedure is especially suitable for flexible airframes and large space structures modeled by a high-order state-space system of equations. Analytical expressions are obtained for the gradients of the cost function, together with design constraints on the mean-square response and minimum singular value.

O.C.

A91-38234# THE DEVELOPMENT AND RESEARCH ON CAD FOR EDUCATION ON AIRCRAFT DESIGN

MING CAO Japan Society for Aeronautical and Space Sciences, Journal (ISSN 0021-4663), vol. 39, no. 446, 1991, p. 127-137. In Japanese, with abstract in English. refs

An educational computer-aided aircraft design (ECAAD) system is developed using microcomputers. The constitutive details of the program are presented with some examples. The convergence rate and accuracy of the four different optimization methods are compared and the simplex method is found to have superior characteristics to the other three. The effect of introducing a relaxation factor in optimization of the structural initial design is also discussed.

A91-39417# ROBUST EIGENSTRUCTURE ASSIGNMENT WITH STRUCTURED STATE SPACE UNCERTAINTY

KENNETH M. SOBEL (City College, New York) and WANGLING YU Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 621-628. refs (Contract F49620-88-C-0053)

Copyright

Recent sufficient conditions for robust stability and robust performance of linear time-invariant systems subject to structured state-space uncertainty are utilized to obtain a robust eigenstructure assignment design method. This new approach optimizes either the sufficient condition for stability or performance robustness while constraining the dominant eigenvalues to lie within chosen regions in the complex plane. This constrained optimization problem is solved by using the sequential unconstrained minimization technique with a quadratic extended interior penalty function. The use of constraints on certain eigenvector entries and the effect of these constraints on robustness and nominal performance are considered. Conservatism of the robustness conditions is reduced by simultaneously introducing a similarity transformation, a positive real diagonal weighting, and a unitary weighting into the design procedure. An example that illustrates the design of a robust eigenstructure assignment controller for a pitch pointing/vertical translation maneuver of the AFTI F-16 aircraft is presented.

Author

A91-39436# LATERAL-DIRECTION TRACKING REQUIREMENTS FROM SIMULATION DATA

MARIO INNOCENTI (Auburn University, AL) and RENZO BAVA (Aeritalia, S.p.A., Turin, Italy) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, May-June 1991, p. 701-703. refs

Copyright

The Northrop criterion (Hoh et al., 1982) used to relate flying qualities characteristics to the amount of dipole cancellation is further validated via a fixed-base simulation. Pilot comments and tracking error data are related to the analytical level boundaries provided by the criterion. A general agreement is found with the left-hand boundaries' limits, whereas the boundary position on the right-hand side of the criterion appears disputable. The validation shows the capability of the method, provided the other parameters involved in the task have level-1 values.

N91-24291# Science Applications International Corp., Fort Washington, PA. Fluid Sciences Div.
ADVANCED COMPUTATIONAL MODELS FOR ANALYZING HIGH SPEED PROPULSIVE FLOWFIELDS

SANFORD M. DASH *In* Johns Hopkins Univ., The 1990 JANNAF Propulsion Meeting, Volume 1 p 247-283 Oct. 1990 Avail: NTIS HC/MF A20

Recently developed 3-D computational models (SCRINT, PARCH, SCHAFT, CRAFT) which analyze high speed propulsive flowfield problems are described. All the models contain generalized thermochemical capabilities and advanced turbulence models, and all integrate the governing equations using implicit/ strongly-conservative upwind and/or central difference numerics. The models differ with respect to discretization (finite-difference vs finite-volume), solution formulation (spatial marching parabolized Navier-Stokes (PNS), iterative PNS, time asymptotic full Navier-Stokes (FNS), and time accurate FNS), chemistry coupling (matrix-split/loosely-coupled vs largematrix/strongly coupled), and geometric/boundary condition flexibility. The hierarchy of propulsive related problems analyzable by these models is described, with specific model formulations found to be most appropriate for specific classes of propulsive flows. Applications to both air-breathing (scramjet/gas-turbine) and rocket propulsive flowfields are described along with thoughts and experiences related to code validation, turbulence modeling, and the development of problem specific, user-friendly codes. Author

N91-24640# Aerospatiale, Toulouse (France). Structural Research and Development Dept.

VALIDATION OF IN-HOUSE AND EXTERNAL SOFTWARE SYSTEMS AT AEROSPATIALE

J. LOCATELLI and J. C. SOURISSEAU In AGARD, Analytical Qualification of Aircraft Structures 3 p Apr. 1991 Copyright Avail: NTIS HC/MF A08; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

In the aeronautical industry, the concept of numerical simulation is implemented, at first, in the preliminary design stage, and then during the certification activities with respect to the airworthiness regulations. This implies the development and the use of calculation software, of which it is necessary to improve the validation at different levels. The different features of these validation tests are described in the design, use, and evaluation of these software systems. The experience of the engineer then plays a major role in obtaining high quality models in the design of aircraft structures.

N91-24757*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

ALDAS USER'S MANUAL

MICHAEL E. WATTS Apr. 1991 49 p (NASA-TM-102831; A-90182; NAS 1.15:102831) Avail: NTIS HC/MF A03 CSCL 09/2

The Acoustic Laboratory Data Acquisition System (ALDAS) is an inexpensive, transportable means to digitize and analyze data. The system is based on the Macintosh 2 family of computers, with internal analog-to-digital boards providing four channels of simultaneous data acquisition at rates up to 50,000 samples/sec. The ALDAS software package, written for use with rotorcraft acoustics, performs automatic acoustic calibration of channels, data display, two types of cycle averaging, and spectral amplitude analysis. The program can use data obtained from internal analog-to-digital conversion, or discrete external data imported in ASCII format. All aspects of ALDAS can be improved as new hardware becomes available and new features are introduced into the code.

N91-24768# Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.

DESIGN AND IMPLEMENTATION OF REAL-TIME COMPUTER COORDINATED FORCE ACTUATING SYSTEM WITH MULTI-INPUT/OUTPUT

XIAOBIN CAI, GUANZHONG DAI, and TIESHENG JIA 7 Nov. 1990 18 p Transl. into ENGLISH from Xiyou Yu Kongzhi (Peoples Rep. of China), no. 4, 1989 p 12, 13-17 (AD-A233114; FTD-ID(RS)T-0166-90) Avail: NTIS HC/MF A03 CSCL 01/4

A design method is presented for triple point real time

coordinated control loading of an electrohydraulic servosystem; with a conditional output feedback compensator, the system is relatively simple in its coordinated structure. The coordinated controller is used to alter the lift in variable sweptback wings in a loading system. As indicated by 5000 repeated tests, the method presented is feasible; the experimental results are excellent. Practical value is apparent in the designing of a stationary and moving loading type real time computer force actuating control system.

N91-24796*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

ENHANCING AEROPROPULSION RESEARCH WITH HIGH-SPEED INTERACTIVE COMPUTING

JOHN R. SZUCH, DALE J. ARPASI, and ANTHONY J. STRAZISAR 1991 18 p Presented at the 10th International Symposium on Air Breathing Engines, Nottingham, England, 1-6 Sep. 1991; sponsored by AIAA

(NASA-TM-104374; E-6179; NAS 1.15:104374) Avail: NTIS HC/MF A03 CSCL 09/2

NASA-Lewis has committed to a long range goal of creating a numerical test cell for aeropropulsion research and development. Efforts are underway to develop a first generation Numerical Propulsion System Simulation (NPSS). The NPSS will provide a unique capability to numerically simulate advanced propulsion systems from nose to tail. Two essential ingredients to the NPSS are: (1) experimentally validated Computational Fluid Dynamics (CFD) codes; and (2) high performing computing systems (hardware and software) that will permit those codes to be used efficiently. To this end, NASA-Lewis is using high speed, interactive computing as a means for achieving Integrated CFD and Experiments (ICE). The development is described of a prototype ICE system for multistage compressor flow physics research.

16

PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

A91-38688

ACOUSTICS OF UNSTEADY TRANSONIC FLOW

A. S. LYRINTZIS and Y. XUE (Minnesota, University, Minneapolis) IN: International Symposium on Nonsteady Fluid Dynamics, Toronto, Canada, June 4-7, 1990, Proceedings. New York, American Society of Mechanical Engineers, 1990, p. 187-199. refs

Copyright

Investigation of noise mechanisms due to unsteady transonic flow is important for aircraft noise reduction. In this work, the near-field impulsive noise due to transonic Blade Vortex Interaction (BVI) and oscillating flap is simulated numerically. These problems are modeled by the two-dimensional high frequency transonic small disturbance equation (VTRAN2 code). The three types of unsteady shock wave motion have been identified. Two different important disturbances exist in the pressure signal. The first disturbance is related to the fluctuating lift and the second is related to the fluctuating drag. Pressure wave signatures, noise frequency spectra, and noise directivity are investigated.

A91-38863

A NEW TECHNIQUE AND APPLICATION FOR NONLINEAR ACOUSTIC FATIGUE OF STIFFENED COMPOSITE PANELS

M. A. FERMAN and J. H. JACOBS (McDonnell Aircraft Co., Saint Louis, MO) IN: Vibration and behavior of composite structures; Proceedings of the Symposium, ASME Winter Annual Meeting, San Francisco, CA, Dec. 10-15, 1989. New York, American Society

of Mechanical Engineers, 1989, p. 27-33. refs Copyright

A new solution for the prediction of nonlinear acoustic fatigue of aircraft panels is presented, emphasizing both bidirectionally and unidirectionally stiffened panels. The response of integrally stiffened panels has been studied and a prediction methodology for nonlinear bay response and its relation to overall panel response for unimodal systems is developed. Test results indicate the accuracy for composite and metal panels, utilizing both literature and in-house data. Comparison with other prediction methods indicate that significantly more accurate results are achieved by this approach.

A91-39749

THE BREAKDOWN OF THE LINEARIZED THEORY AND THE ROLE OF QUADRUPOLE SOURCES IN TRANSONIC ROTOR ACOUSTICS

H. ARDAVAN (Cambridge, University, England) Journal of Fluid Mechanics (ISSN 0022-1120), vol. 226, May 1991, p. 591-624.

Copyright

The retarded Green function for the linearized version of the equation of the mixed type governing the potential flow around a rotating helicopter blade or a propeller is derived, and the distinction between the various forms of the Ffowcs Williams-Hawkings equations in the supersonic regime is discussed. The singularity structure of the Green function in the supersonic regime is examined in detail. The caustic representing the envelope of the spherical wavefronts emanating from a circularly moving point source is compared and contrasted with the Mach cone of a rectilinearly moving point source, and its role in the calculation of the sound amplitude of an extended source is considered. The radial component of the gradient of the sound amplitude predicted by the Ffowcs Williams-Hawkings equation is shown to diverge as the observation point approaches the sonic cylinder from outside. The practical implications of the findings are noted, and the relationship of the singularity obtained in the study with those already found in literature is discussed.

N91-23849*# United Technologies Research Center, East Hartford, CT.

UNIFIED AEROACOUSTICS ANALYSIS FOR HIGH SPEED TURBOPROP AERODYNAMICS AND NOISE. VOLUME 2: DEVELOPMENT OF THEORY FOR WING SHIELDING Final Report

R. K. AMIET May 1991 41 p (Contract NAS3-23720)

(NASA-CR-185192; NAS 1.26:185192) Avail: NTIS HC/MF A03 CSCL 20/1

A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.

N91-23850*# Hamilton Standard, Windsor Locks, CT.
UNIFIED AEROACOUSTICS ANALYSIS FOR HIGH SPEED
TURBOPROP AERODYNAMICS AND NOISE. VOLUME 3:
APPLICATION OF THEORY FOR BLADE LOADING, WAKES,
NOISE, AND WING SHIELDING Final Report
D. B. HANSON, C. J. MCCOLGAN, R. M. LADDEN, and R. J.
KLATTE May 1991 128 p
(Contract NAS3-23720)

(NASA-CR-185193; NÁS 1.26:185193) Avail: NTIS HC/MF A07 CSCL 20/1

Results of the program for the generation of a computer prediction code for noise of advanced single rotation, turboprops (prop-fans) such as the SR3 model are presented. The code is based on a linearized theory developed at Hamilton Standard in which aerodynamics and acoustics are treated as a unified process. Both steady and unsteady blade loading are treated. Capabilities include prediction of steady airload distributions and associated aerodynamic performance, unsteady blade pressure response to gust interaction or blade vibration, noise fields associated with thickness and steady and unsteady loading, and wake velocity fields associated with steady loading. The code was developed on the Hamilton Standard IBM computer and has now been installed on the Cray XMP at NASA-Lewis. The work had its genesis in the frequency domain acoustic theory developed at Hamilton Standard in the late 1970s. It was found that the method used for near field noise predictions could be adapted as a lifting surface theory for aerodynamic work via the pressure potential technique that was used for both wings and ducted turbomachinery. In the first realization of the theory for propellers, the blade loading was represented in a quasi-vortex lattice form. This was upgraded to true lifting surface loading. Originally, it was believed that a purely linear approach for both aerodynamics and noise would be adequate. However, two sources of nonlinearity in the steady aerodynamics became apparent and were found to be a significant factor at takeoff conditions. The first is related to the fact that the steady axial induced velocity may be of the same order of magnitude as the flight speed and the second is the formation of leading edge vortices which increases lift and redistribute loading. Discovery and properties of prop-fan leading edge vortices were reported in two papers. The Unified AeroAcoustic Program (UAAP) capabilites are demonstrated and the theory verified by comparison with the predictions with data from tests at NASA-Lewis. Steady aerodyanmic performance, unsteady blade loading, wakes, noise, Author and wing and boundary layer shielding are examined.

N91-23851*# Hamilton Standard, Windsor Locks, CT.
UNIFIED AEROACOUSTICS ANALYSIS FOR HIGH SPEED
TURBOPROP AERODYNAMICS AND NOISE. VOLUME 4:
COMPUTER USER'S MANUAL FOR UAAP TURBOPROP
AEROACOUSTIC CODE Final Report

R. W. MENTHE, C. J. MCCOLGAN, and R. M. LADDEN May 1991 123 p

(Contract NAS3-23720)

(NASA-CR-185194; NAS 1.26:185194) Avail: NTIS HC/MF A06

the shirt

The Unified AeroAcoustic Program (UAAP) code calculates the airloads on a single rotation prop-fan, or propeller, and couples these airloads with an acoustic radiation theory, to provide estimates of near-field or far-field noise levels. The steady airloads can also be used to calculate the nonuniform velocity components in the propeller wake. The airloads are calculated using a three dimensional compressible panel method which considers the effects of thin, cambered, multiple blades which may be highly swept. These airloads may be either steady or unsteady. The acoustic model uses the blade thickness distribution and the steady or unsteady aerodynamic loads to calculate the acoustic radiation. The users manual for the UAAP code is divided into five sections: general code description; input description; output description; system description; and error codes. The user must have access to IMSL10 libraries (MATH and SFUN) for numerous calls made for Bessel functions and matrix inversion. For plotted output users must modify the dummy calls to plotting routines included in the code to system-specific calls appropriate to the user's installation.

Author

N91-23852*# Hamilton Standard, Windsor Locks, CT.
UNIFIED AEROACOUSTICS ANALYSIS FOR HIGH SPEED
TURBOPROP AERODYNAMICS AND NOISE. VOLUME 5:
PROPAGATION OF PROPELLER TONE NOISE THROUGH A
FUSELAGE BOUNDARY LAYER Final Report

B. MAGLIOZZI and D. B. HANSON May 1991 71 p (Contract NAS3-23720)

(NASA-CR-185195; NAS 1.26:185195) Avail: NTIS HC/MF A04 CSCL 20/1

An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Author Appendix.

N91-23853# Aerospatiale, Toulouse (France). NOISE INSIDE AIRCRAFT FUSELAGES SUBJECTED TO AIRBORNE EXCITATIONS

M. GOULAIN 1991 26 p Presented at Internoise 90, 13-15 Aug. 1990

(REPT-911-111-104; ETN-91-99268) Avail: NTIS HC/MF A03

Noises inside a cockpit and a cabin and airborne and structureborne noise are summarized with the use of graphics. The necessity of having a model of acoustic and vibration transmission is outlined. The history and complexity of models, fuselage test in laboratory and a comparison of theory and experiment are discussed. The modal method is concluded to give a good understanding of the transmission phenomena through an aircraft fuselage in a 0.15 to 2.3 frequency range. The ease of use of these methods allow parametrical studies for preliminary design for noise reduction purpose.

N91-23854# European Space Agency, Paris (France). THE PROPAGATION OF ACOUSTIC DISTURBANCES IN THE TRANSONIC FLOW FIELDS OF WINGS

RALPH VOSS (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Goettingen, Germany, F.R.) Feb. 1991 199 p Transl. into ENGLISH of Ueber die Ausbreitung Akustischer

Stroerungen in Transsonischen Stroemungsfelden von Tragfluegeln (Goettingen, Fed. Republic of Germany, DLR), 1988 146 p (ESA-TT-1126; DLR-FB-88-13; ETN-91-99312) Avail: NTIS HC/MF A09; Original German version available from DLR, Wissenschaftliches Berichtswesen, VB-PL-DO, Postfach 90 60 58, 5000 Cologne, Fed. Republic of Germany, HC 53.50 Deutschs marks

The propagation of small disturbances in the vicinity of transonic wings with a mixture of subsonic and supersonic regions is theoretically investigated on the basis of the geometrical acoustics approximation. Waves, beams, and the spatial density distribution of the dissipated disturbance energy are numerically calculated using a system of eighteen differential equations. The effects of various two dimensional and three dimensional fields, of the location of the source and of reflections on the wing surface are investigated. The results of the acoustic theory are used to derive a general influence function for sources of disturbance in arbitrary transonic fields. This function represents a first step towards a new surface panel method for calculating unsteady transonic flows. The acoustic results are compared with measured unsteady pressure distributions on oscillating transonic wings and with the results of a numerical field panel method.

N91-24078*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A FIELD-DEPLOYABLE DIGITAL ACOUSTIC MEASUREMENT SYSTEM

DAVID L. GRAY, KENNETH D. WRIGHT, II, and WAYNE D. ROWLAND *In* NASA, Washington, Technology 2000, Volume 2 p 325-332 1991

Avail: NTIS HC/MF A16 CSCL 20/1

A field deployable digital acoustic measurement system was developed to support acoustic research programs at the Langley Research Center. The system digitizes the acoustic inputs at the microphone, which can be located up to 1000 feet from the van which houses the acquisition, storage, and analysis equipment. Digitized data from up to 12 microphones is recorded on high density 8mm tape and is analyzed post-test by a microcomputer system. Synchronous and nonsynchronous sampling is available with maximum sample rates of 12,500 and 40,000 samples per second respectively. The high density tape storage system is capable of storing 5 gigabytes of data at transfer rates up to 1 megabyte per second. System overall dynamic range exceeds 83 dB.

N91-24843# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Flight Mechanics Panel.

AGARD FLIGHT TEST TECHNIQUES SERIES. VOLUME 9: AIRCRAFT EXTERIOR NOISE MEASUREMENT AND ANALYSIS TECHNIQUES

H. HELLER (Deutsche Forschungs- und Versuchsanstalt fuer Luftund Raumfahrt, Brunswick, Germany, F.R.) Apr. 1991 201 p (AGARD-AG-300-VOL-9; ISBN-92-835-0612-X) Copyright Avail: NTIS HC/MF A10; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Testing and analysis techniques to measure aircraft noise primarily for purposes of noise certification as specified by the 'International Civil Aviation Organization', ICAO are described. The relevant aircraft noise certification standards and recommended practices are presented in detail for subsonic jet aircraft, for heavy and light propeller-driven aircraft, and for helicopters. The practical execution of conducting noise certification tests is treated in depth. The characteristics and requirements of the acoustic and non-acoustic instrumentation for data acquisition and data processing are discussed, as are the procedures to determine the special noise measures - effective perceived noise level (EPNL) and maximum overall A-weighted noise level (L sub pA,max) that are required for the noise certification of different types of aircraft. The AGARDograph also contains an extensive, although selective, discussion of test and analysis techniques for more detailed aircraft noise studies by means of either flight experiments or full-scale and model-scale wind tunnel experiments. Appendices provide supplementary information.

N91-24844*# Lockheed Aeronautical Systems Co., Burbank, CA.

LABORATORY TEST AND ACOUSTIC ANALYSIS OF CABIN TREATMENT FOR PROPFAN TEST ASSESSMENT AIRCRAFT Interim Report

H. L. KUNTZ and R. J. GATINEAU May 1991 144 p (Contract NAS1-18036)

(NASA-CR-182075; LF-31879; NAS 1.26:182075) Avail: NTIS HC/MF A07 CSCL 20/1

An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

Author

N91-24845*# Lockheed Engineering and Sciences Co., Hampton,

SIGNAL PROCESSING OF AIRCRAFT FLYOVER NOISE

JEFFREY J. KELLY May 1991 86 p (Contract NAS1-19000)

(NASA-CR-187546; NÁS 1.26:187546) Avail: NTIS HC/MF A05 CSCL 20/1

A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than Author recession.

N91-24983*# Royal Aircraft Establishment, Farnborough (England). Space Dept.

SURFACE ACTIVATION OF CONCORDE BY BE-7 Abstract

P. Ř. TRUSCOTT, C. S. DYER, and J. C. FLATMAN In NASA, Langley Research Center, First LDEF Post-Retrieval Symposium Abstracts p 14 Jun. 1991

Avail: NTIS HC/MF A07 CSCL 20/8

Activation analysis of two airframe parts from Concorde aircraft has identified the presence of Be-7, a nuclide which was found by other investigators to have been collected on the forward edge of the Long Duration Exposure Facility (LDEF) structure. The results of the Concorde analysis indicate that this phenomenon is very much a surface effect, and that the areal densities of the Be-7 are comparable to those found for LDEF. The collection of Be-7

by the aircraft must be greater than in the case of LDEF (since the duration for which Concorde is accumulating the nuclide is shorter) and is of the order of 1.9 to 40 nuclei sq cm/s, depending upon assumptions made regarding the efficiency of the process which removes the radionuclide.

Author

17

SOCIAL SCIENCES

Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law and political science; and urban technology and transportation.

A91-37801

THE ENGLISH SUMMER OF 1990 - FURTHER PROGRESS TOWARDS DEREGULATION OF THE AVIATION AND TRAVEL INDUSTRY

MARTIN BRIGGS (Aviation and Travel Services, Ltd., Coventry, England) Air Law (ISSN 0165-2079), vol. 16, April 1991, p. 50-62. refs Copyright

A summary is presented of the most significant events concerning the legal and regulatory developments involving England and the EEC that occurred during 1990. Also addressed are the results of further negotiations between the governments of the U.K. and the U.S.A. on services between the two countries, and the increased security measures implemented during this period. Some of the proposals put forth by the European Commission include: a regulation on the operation of air cargo services, a draft for common rules for denied boarding compensation in scheduled air transport, and mutual acceptance of licenses for civil aviation personnel.

A91-38367#

THE ROLE OF ORGANIZATIONS IN PROFESSIONAL DEVELOPMENT [EL PAPEL DE LAS ASOCIACIONES EN EL DESARROLLO PROFESIONAL]

CORT DUROCHER (AIAA, Washington, DC) IN: Space Conference of the Americas, San Jose, Costa Rica, Mar. 12-16, 1990, Proceedings. Vol. 1 - Reports. San Jose, Costa Rica, Ministerio de Ciencia y Tecnologia, 1990, p. 436-440. In Spanish.

An evaluation is made of the potential contribution of such professional organizations as the American Institute of Aeronautics and Astronautics (AIAA) to the growth and dissemination of expertise in the space sciences and the aerospace industries. An account is given of the illustrative roles of AIAA in furnishing expert testimony to legislative bodies on matters pertaining to space research and development, and in the convening of conferences and exhibitions whose proceedings are subsequently published for wide circulation. AIAA's focus on the ongoing education of its members, and on the recognition of their professional achievements, is stressed.

N91-24091# Wichita State Univ., KS. Ablah Library.
AN OVERVIEW OF INFORMATION RESOURCES IN AVIATION
THOMAS G. DEPETRO In its Kansas Aviation Review p 21-29
1991

Avail: NTIS HC/MF A03

Information resources in aviation are produced by many sources, including publishing companies, government agencies, professional associations, research organizations, and colleges and universities. Aspects of aviation covered include: management, government regulations, air transport, engineering, technology, research and development, and applied sciences. Information is available in a number of formats including books, periodicals (magazines, journals, newspapers, newsletters), maps and charts, government documents, technical reports, professional papers, microfiche, and more recently, audio and video cassette tapes and CD/ROM and

Ĭ

online computer databases. This overview serves an an introduction to what information is available from key organizations and how it is distributed and organized.

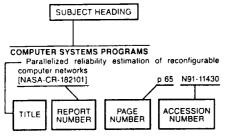
Author

19

GENERAL

N91-24084# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France).
AGARD HIGHLIGHTS 91/1, MARCH 1991
Mar. 1991 62 p
(AGARD-HIGHLIGHTS-91/1) Copyright Avail: NTIS HC/MF A04; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The accomplishments of AGARD are examined. Biographies are provided on the new AGARD chairman and the new director. An overview is given on the 'Danish National Day.' An article on 'Helicopters and V/STOL Aircraft - Post Development and Future Prospects' is presented.


N91-24086# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.).
ACTIVITIES REPORT OF THE DLR Annual Report 1989/90
[JAHRESBERICHT 1989/90]
THOMAS H. WEYER Sep. 1990 87 p In GERMAN
(ISSN-0938-2194; ETN-91-99252) Copyright Avail: NTIS
HC/MF A05

The activities of the five research centers of the German research organization for air and space transportation during the year 1989/90 are described. Air flight, spaceceflight, and energy techniques are discussed. With regard to air flight the following research work was carried out: aerodynamic efficiency improvement, flight dynamical simulation, new helicopter technology, new propulsion unit development, air traffic, and personnel selection. Under the topic of space flight the follwing areas of research were addressed: space vehicles, rocket launchers, operating tasks for space missions, and research in space. Weightlessness research in the field of materials and bioscience, multi-axis vibration simulator development for satellites, and ozone measuring aircraft is presented. Energy techniques in the field of fossil fuel combustion, solar and hydrogen energy, and high energy lasers are discussed.

.

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 269)

Typical Subject Index Listing

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence.

A

A-320 AIRCRAFT

A320 - First of the computer-age aircraft

p 645 A91-36354

p 667 N91-23192

The electrical flight control system of A320 Airbus: A

fault tolerant system [REPT-911-111-103]

ACCELERATION (PHYSICS)

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady

p 631 N91-24115 (AD-A2335691

ACCEPTABILITY

p 638 N91-24161 Crashworthiness experiments

ACCIDENT PREVENTION

Orientation measurements and transmission via Mode p 643 A91-38526 S at airports

The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2

[AD-A232907]

p 641 N91-24187

The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,

[AD-A233349] p 641 N91-24188

ACOUSTIC FATIGUE

A new technique and application for nonlinear acoustic

fatigue of stiffened composite panels p 687 A91-38863

Calculation and experimental study on sonic fatigue life p 648 A91-40162 of aircraft structural panels

ACOUSTIC MEASUREMENT

field-deployable digital acoustic measuremen p 689 N91-24078 Laboratory test and acoustic analysis of cabin treatment for propfan lest assessment aircraft

p 690 N91-24844 [NASA-CR-182075]

ACOUSTIC PROPERTIES

ALDAS user's manual INASA-TM-1028311

p 687 N91-24757 ACOUSTIC RETROFITTING

Modification meets Chapter 3 standards --- re-engined p 612 A91-40181 Boeing 727
ACOUSTICS

ALDAS user's manual [NASA-TM-102831] p 687 N91-24757

ACTIVATION ANALYSIS

Surface activation of Concorde by Be-7 p 690 N91-24983

ACTIVE CONTROL

ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 Full-scale demonstration tests of cabin noise reduction

p 646 A91-38549 using active vibration control p 648 A91-40203 Landing gear drop testing Unsteady flow structure from swept edges subjected

to controlled motion p 628 N91-23094 [AD-A232714] Integrated multidisciplinary optimization of actively

p 667 N91-23190 controlled fiber composite wings ACTUATORS Design and implementation of real-time computer

coordinated force actuating system multi-input/output AD-A2331141 p 587 N91-24768

ADAPTIVE FILTERS

Adaptive airborne track while scan

ADDITIVES

p 642 A91-37139

Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity

p 673 N91-24453

AFROACOUSTICS Acoustics of unsteady transonic flow

p 687 A91-38688 The breakdown of the linearized theory and the role of quadrupole sources in transonic rotor acoustics

p 688 A91-39749 Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory

for wing shielding [NASA-CR-185192] Unified aeroacoustics analysis for high speed turboprop

aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding p 688 N91-23850 [NASA-CR-185193]

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code p 688 N91-23851 [NASA-CR-185194]

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer [NASA-CR-185195] p 689 N91-23852

AERODYNAMIC BALANCE

Model rotor icing tests in the NASA Lewis icing research tunnet

[NASA-TM-104351] p 661 N91-23184

AERODYNAMIC CHARACTERISTICS

Forward sweep - A favorable concept for a laminar flow p 615 A91-37767 Moving surface boundary-layer control as applied to

p 615 A91-37768 two-dimensional airloils approach to the Equation decoupling aerodynamic identification of unstable aircraft

p 664 A91-37773 Aerodynamic characteristics of slender wing-gap-body

p 615 A91-37777 Steady linearised aerodynamics. III - Transonic

p 620 A91-39223 Kinetic study of a homogeneous propellant primary p 671 A91 39690 flame, with and without additive of scissor-wing p 624 A91-40216 Aerodynamic characteristics

geometries Aerodynamic characteristics of crescent and elliptic p 624 A91-40219 wings at high angles of attack

Analysis of circular elastic memb ne wings p 625 A91-40472

Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at p 649 A91-40495 low speed

Fluid dynamics for the study of transonic flow --- Book p 625 A91-40513

Aerodynamic preliminary analysis system 2. Part 1: [NASA-CR-182076] p 626 N91-23080

Aerodynamic preliminary analysis system 2. Part 2:

p 627 N91-23081 [NASA-CR-182077] IAI hypersonic wind tunnel

[IAITIC-87-1006] p 668 N91-23194 A computationally efficient modelling p 680 N91-23411 separation bubbles

AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p 691 N91-24084 Transonic Symposium: Theory, Application and Experiment, volume 2

p 634 N91-24132 [NASA-CP-3020-VOL-2] Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration

p 634 N91-24134 The effects on aerodynamic performance of designing upersonic wings for laminar flow control

p 654 N91-24197 [AD-A233040]

AERODYNAMIC COEFFICIENTS

An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients [NASA-CR-188192] p 629 p 629 N91-24099

AERODYNAMIC CONFIGURATIONS New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699

Aircraft repair/general aviation quick tooling SME PAPER EM90-178] p 611 A91-36944 (SME PAPER EM90-178) The planar elements method for computing the scattering field of flight vehicle p 874 A91-37052 Instability features appearing on swept wing p 622 A91-39937 configurations

Aerodynamic preliminary analysis system 2. Part 1: Theory p 626 N91-23080 [NASA-CR-182076]

Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 integrated multidisciplinary optimization of actively

controlled fiber composite wings p 667 N91-23190 Calculation of high angle of attack aerodynamics of ighter configurations. Volume 1: Steady p 631 N91-24113 [AD-A233482]

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAB-2

p 631 N91-24114 [AD-A233483] Calculation of high angle of attack aerodynamics of fighter configurations, Volume 3: Unsteady

p 631 N91-24115 AD-A233569]

AÈRODYNAMIC DRAG

Nonlinear Aerodynamics and the Design of Wing Tips NASA-CR-188044] p 630 N91-24105 The computation of induced drag with nonplanar and [NASA-CR-188044] p 630 N91-24106

AERODYNAMIC FORCES

Numerical study of twin-jet impingement upwash flow p 619 A91-38736

Modeling for unsteady aerodynamics of rectangular wing in incompressible flow using step responses p 625 A91-40473

AERODYNAMIC HEAT TRANSFER

p 676 A91-38698 Heat transfer in oscillating flows Simulation of brush insert for leading-edge-passage convective heat transfer p 679 N91-23409 NASA-TM-1038011

AFRODYNAMIC HEATING

method for A simplified aerothermal p 619 A91-38787 axisymmetric blunt bodies AERODYNAMIC INTERFERENCE

Deep stall of an NACA 0012 airfoil induced by periodic serodynamic interference p 619 A91-38699 High subsonic flow about a moving spoiler identifying

a novel problem of wind tunnel interference p 619 A91-38710

Procedure for determination of three-dimensional wind	Vibration behavior of a labyrinth seal with through-flow
tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall	p 679 A91-40241
pressures	Buffet induced structural/flight-control system interaction of the X-29A aircraft
[DLR-F8-90-46] p 628 N91-23088	[NASA-TM-101735] p 652 N91-23133
AERODYNAMIC LOADS	Flow visualization study of a 1/48-scale AFTI/F111
Stability of hingeless rotors in hover using three-dimensional unsteady aerodynamics	model to investigate horizontal tail flow disturbances
p 663 A91-36358	[NASA-TM-101698] p 633 N91-24128
On the improvement of the supersonic lifting line	AEROLOGY The LWC parameter - Some experimental results
theory p 614 A91-36695	liquid water content in atmosphere p 685 A91-38388
Experimental investigation of loading effects on compressor trailing-edge flowfields p 615 A91-37420	AERONAUTICAL ENGINEERING
Simulation of iced wing aerodynamics	Aeronautical research in the United States - Challenges
[NASA-TM-104362] p 628 N91-23086	for the 1990's p 612 A91-38580
AERODYNAMIC NOISE	AERONAUTICS The role of organizations in professional development
A study of the noise mechanisms of transonic blade-vortex interactions	p 690 A91-38367
[NASA-CR-188199] p 627 N91-23084	AEROSPACE INDUSTRY
Unified aeroacoustics analysis for high speed turboprop	US industry enters the green maze new environmental
aerodynamics and noise. Volume 3: Application of theory	regulations affecting aerospace companies
for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850	p 685 A91-37049 Kansas Aviation Review
Unified aeroacoustics analysis for high speed turboprop	[NIAR-91-3] p 613 N91-24087
aerodynamics and noise. Volume 4: Computer user's	AEROSPACE MEDICINE
manual for UAAP turboprop aeroacoustic code	A test of the American Safety Flight Systems, Inc.
[NASA-CR-185194] p 688 N91-23851 Unified aeroacoustics analysis for high speed turboprop	prebreather/portable oxygen system
aerodynamics and noise. Volume 5: Propagation of	[AD-A232723] p 636 N91-23100 Flight mechanics/air navigation research field. A 1990
propeller tone noise through a fuselage boundary layer	Scientific report of the German Air and Space Research
[NASA-CR-185195] p 689 N91-23852 NERODYNAMIC STABILITY	Organization
New developments in the dynamic aeroelastic stability	[ISSN-0720-7608] p 643 N91-23103
study of rotor blades p 673 A91-36698	AEROSPACE PLANES Performance of an aerospace plane propulsion nozzle
Simplification of nonlinear indicial response models -	p 615 A91-37769
Assessment for the two-dimensional airfoil case	Re-entry flight control of space plane using approximate
p 664 A91-37771 AERODYNAMIC STALLING	perfect servo p 664 A91-37778 Improvement of atmospheric flight performance of a
Dynamic stall of an oscillating circulation control airfoil	space vehicle through sensitivity minimization
p 617 A91-38677	p 664 A91-37779
On some physical aspects of airfoil dynamic stall p 618 A91-38686	Hypersonic propulsion: Past and present
Deep stall of an NACA 0012 airfoil induced by periodic	p 657 N91-23148 Hypersonic propulsion: Status and challenge
aerodynamic interference p 619 A91-38699	p 658 N91-23153
Flying qualities experience on the AMX aircraft	Supersonic-hypersonic inlet studies for
p 650 N91-23112 Calculation of high angle of attack aerodynamics of	aerospacepiane p 659 N91-23160
fighter configurations. Volume 3: Unsteady	AEROSPACE SCIENCES Wright Laboratory review of aerospace research
[AD-A233569] p 631 N91-24115	p 611 A91-36351
LERODYNAMICS	AEROTHERMODYNAMICS
Aerodynamic calculation of tandem wings in supersonic flow by means of SLLT p 614 A91-36724	Heat transfer in oscillating flows p 676 A91-38698
Fluid dynamics for the study of transonic flow Book	Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid
p 625 A91-40513	and viscous flow computations
Simulation of iced wing aerodynamics	[VKI-TN-174] p 680 N91-23437
[NASA-TM-104362] p 628 N91-23086 loing simulation: A survey of computer models and	Advanced Hypervelocity Aerophysics Facility Workshop
experimental facilities	[NASA-CP-10031] p 669 N91-24211
[NASA-TM-104366] p 628 N91-23087	AFTERBODIES
Agility: A rational development of fundamental metrics	Effect of exhaust plume/afterbody interaction on
and their relationship to flying qualities p 651 N91-23129	installed scramjet performance p 615 A91-37770 Three-dimensional composite velocity solutions for
A computer aided multivariable control systems design	subsonic/transonic flow p 616 A91-37841
technique with application to aircraft flying qualities	AFTERBURNING
[AD-A232549] p 653 N91-23144 Aerodynamics and stabilization of combustion of	Turbojet potential for hypersonic flight
hydrogen jets injected into subsonic airflow	p 658 N91-23155 AGING (MATERIALS)
p 629 N91-23164	Safety of aging aircraft - Boeing programs for the
Passive laminar flow control of crossflow vorticity	1990's
[NASA-CASE-LAR-13563-1] p 679 N91-23410 Calculation of high angle of attack aerodynamics of	[AIAA PAPER 91-0909] p 612 A91-40563 Evaluation of automation for inspection of aging
fighter configurations. Volume 1: Steady	aircraft p 613 N91-24088
[AD-A233482] p 631 N91-24113	AH-64 HELICOPTER
Hypersonic aerodynamics fellowships	The airbag as a supplement to standard restraint
[AD-A233584] p 632 N91-24116	systems in the AH-1 and AH-64 attack helicopters and
Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists'	its role in reducing head strikes of the copilot/gunner, volume 1
Conference, part 1	[AD-A233349] p 641 N91-24188
[NASA-CP-10060-PT-1] p 639 N91-24166	AIR BAG RESTRAINT DEVICES
Estimate of heavy rain performance effect	The airbag as a supplement to standard restraint
p 640 N91-24182	systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner.
ROELASTICITY New developments in the dynamic aeroelastic stability	volume 2
study of rotor blades p 673 A91-36698	[AD-A232907] p 641 N91-24187
ACT wind-tunnel experiments of a transport-type wing	The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and
p 615 A91-37772	its role in reducing head strikes of the copilot/gunner,
Analytical studies on static aeroelastic behavior of	volume 1
forward-swept composite wing structures p 674 A91-37774	[AD-A233349] p 641 N91-24188
Supersonic flutter analysis of clamped symmetric	AIR BREATHING ENGINES NASA aeropropulsion research in support of propulsion
composite panels using shear deformable finite	systems of the 21st century
elements p 675 A91-37847	[NASA-TM-104403] p 627 N91-23083

Airbreathing propulsion for space transport: New

n 658 N91-23154

concepts, special problems and attempts at solutions

```
Airbreathing propulsion for transatmospheric flight
                                          p 659 N91-23156
      Design considerations for combined air breathing-rocket
   propulsion systems [AIAA-90-0098]
                                          p 659 N91-23158
     Supersonic-hypersonic
                                   inlet
                                             studies
   aerospaceolane
                                          p 659 N91-23160
     Enhancing aeropropulsion research with high-speed
   interactive computing
  [NASA-TM-104374]
                                          p 687 N91-24796
 AIR COOLING
    Research on aerodynamic control of blade tip clearance
   flow in air-cooled turbine
  [DE91-764223]
                                          p 660 N91-23182
AIR DATA SYSTEMS
     Velocity sensor for an airborne optical air data system
                                          p 655 A91-38542
     Air surveying and data analysis for dynamic respon-
of missiles at swept-back wing tip
AIR DROP OPERATIONS
                                          p 647 A91-40156
    Low Altitude High Speed Cargo Parachute system
  development - A status report
                                          p 635 A91-40558
AIR FLOW
    Numerical study of hypersonic dissociated air past blunt
  bodies
                                          p 616 A91-37835
    Aerodynamics and stabilization of combustion of
  hydrogen jets injected into subsonic airflo
                                         p 829 N91-23164
AIR INTAKES
    Hypersonic Combined Cycle Propulsion
  [AGARD-CP-479]
                                         p 657 N91-23147
AIR LAW
    The English summer of 1990 - Further progress towards
  deregulation of the aviation and travel industry
                                         p 690 A91-37801
AIR NAVIGATION
    Current status and future prospects of air traffic
    ontrol p 642 A91-38322
Flight mechanics/air navigation research field. A 1990
  control
  Scientific report of the German Air and Space Research
  Organization
  [ISSN-0720-7808]
                                         p 643 N91-23103
  Navigation, guidance, and trajectory optimization for hypersonic vehicles p 644 N91-23150
AIR TRAFFIC
    Air travel - System relating flight safety, aircraft, and
                                         p 634 A91-38527
   Flight mechanics/air navigation rese
                                          arch field. A 1990
  Scientific report of the German Air and Space Research
  Organization
 [ISSN-0720-78081
                                         p 643 N91-23103
AIR TRAFFIC CONTROL
    Evolution of clutter suppression techniques for air traffic
  control and surveillance radar
                                  p 641 A91-37101
weather radars used for
    Clutter rejection in Doppler
 airport wind shear detection p 685 A91-37104
Track initiation using MHT in dense environments —
Multiple Hypotesis Tracking p 674 A91-37141
   Evaluation of the performance of a RISC based real
 time data processor in air traffic control radar applications p 642 A91-37145
   Practical considerations in optimal and 4-dimensional
 flight management computations
                                        p 686 A91-37585
   Air traffic control today and tomorrow
                                        p 642 A91-38215
    European studies to investigate the feasibility of using
 1000 ft vertical separation minima above FL 290. I
                                        p 642 A91-38217
   Current status and future prospects of air traffic
   ontrol p 642 A91-38322
Flight tests show potential benefits of data link as primary
 control
 communication medium
                                        p 643 A91-38577
   Near midair collisions as an indicator of general aviation
 collision risk
                                        p 635 N91-23096
   Microwave landing system modeling with application to
 air traffic control
 [NASA-TM-102832]
                                        p 636 N91-23099
   Flight mechanics/air navigation research field. A 1990
 Scientific report of the German Air and Space Research
 Organization
 (ISSN-0720-7808)
                                        p 643 N91-23103
 Airborne Collision Avoidance System (ACAS) in controlled air traffic. Aspects of reciprocal influence in Secondary Surveillance Radar (SSR) radio loads
 [ETN-91-99253]
                                        p 644 N91-23105
   Differential GPS terminal area test results
 [AD-A232668]
                                        p 644 N91-23106
   The limits of the landing process of aircraft
 [DLR-FB-90-49]
                                        p 653 N91-23137
   Precision runw
                     monitor demonstration report
p 669 N91-23198
 [AD-A232671]
   National airspace system. Communications operational
concept NAS-SR-136
[DOT/FAA/SE-91/1]
                                        p 640 N91-24185
```

i

Calculation of steady and unsteady pressures on wings

p 617 A91-38544

at supersonic speeds with a transonic small-disturbance

AIRCRAFT INDUSTRY SUBJECT INDEX

SUBJECT INDEX		AIRCRAFT INDUSTRY
Aviation system capital investment plan	Integration of handling quality aspects into the	IAI hypersonic wind tunnel
[PB91-150268] p 644 N91-24189	aerodynamic design of modern unstable fighters	[IAITIC-87-1006] p 668 N91-23194
AIR TRANSPORTATION	p 667 N91-23125	Nonlinear Aerodynamics and the Design of Wing Tips
The English summer of 1990 - Further progress towards	A review of high angle of attack requirements for combat aircraft p 651 N91-23130	[NASA-CR-188044] p 630 N91-24105
deregulation of the aviation and travel industry	aircraft p 651 N91-23130 X-31A at first flight p 651 N91-23131	A general multiblock Euler code for propulsion integration. Volume 1: Theory document
p 690 A91-37801	Navigation, guidance, and trajectory optimization for	[NASA-CR-187484-VOL-1] p 632 N91-24120
Aeronautical research in the United States - Challenges for the 1990's p 612 A91-38580	hypersonic vehicles p 644 N91-23150	A general multiblock Euler code for propulsion
Engine technology challenges for a 21st century high	Calculation of high angle of attack aerodynamics of	integration. Volume 3: User guide for the Euler code
speed civil transport	fighter configurations. Volume 1: Steady	[NASA-CR-187484-VOL-3] p 632 N91-24122
[NASA-TM-104363] p 636 N91-23098	[AD-A233482] p 631 N91-24113 Calculation of high angle of attack aerodynamics of	Transonic Symposium: Theory, Application and
Activities report of the DLR	fighter configurations. Volume 2: User manual for	Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132
[ISSN-0938-2194] p 691 N91-24086	VORSTAB-2	Laminar-flow flight experiments p 634 N91-24135
An overview of information resources in aviation	[AD-A233483] p 631 N91-24114	Computational support of the X-29A Advanced
p 690 N91-24091	AIRCRAFT CONSTRUCTION MATERIALS	Technology Demonstrator flight experiment
AIRBORNE EQUIPMENT Functional-adaptive data processing in airborne radio	Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875	p 653 N91-24137 Results of correlations for transition location on a
navigation and landing systems p 643 A91-39187	Modal analysis for fibre-carbon composite parts of an	clean-up glove installed on an F-14 aircraft and design
Advanced airborne oxygen sensors	airplane p 679 A91-40157	studies for a laminar glove for the X-29 aircraft accounting
p 655 A91-39387	Calculation and experimental study on sonic fatigue life	for spanwise pressure gradient p 654 N91-24138
Airborne Collision Avoidance System (ACAS) in	of aircraft structural panels p 648 A91-40162	Variable Sweep Transition Flight Experiment (VSTFE):
controlled air traffic. Aspects of reciprocal influence in	NKK premium quality titanium master alloy p 672 A91-40425	Unified Stability System (USS). Description and users' manual
Secondary Surveillance Radar (SSR) radio loads [ETN-91-99253] p 644 N91-23105	Observatory of new materials. Evolution perspectives	[NASA-CR-181918] p 634 N91-24139
Airborne Wind Shear Detection and Warning Systems:	for the materials used in civil transportation aircraft	Lightning protection requirements for aircraft: A
Third Combined Manufacturers' and Technologists'	[REPT-911-111-107] p 672 N91-23248	proposed specification
Conference, part 2	AIRCRAFT CONTROL	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186
[NASA-CP-10060-PT-2] p 636 N91-24140	Normalized predictive deconvolution - Multichannel time-series applications to human dynamics	A system approach to aircraft optimization [NASA-TM-104074] p 654 N91-24196
CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance	p 686 A91-37584	The effects on aerodynamic performance of designing
[LMSC-F-415048] p 636 N91-24141	Methodology for the analytical assessment of aircraft	supersonic wings for laminar flow control
Clutter modeling of the Denver Airport and surrounding	handling qualities p 664 A91-37597	[AD-A233040] p 654 N91-24197
areas p 638 N91-24152	ACT wind-tunnel experiments of a transport-type wing	Evaluation of cloud detection instruments and
Radar simulation program upgrade and algorithm	p 615 A91-37772 Effects of horizontal tail ice on longitudinal aerodynamic	performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program
development p 638 N91-24153 Airborne radar simulation studies of the Denver July 11,	derivatives p 665 A91-38547	[NASA-TP-2888] p 655 N91-24199
1988 microburst p 638 N91-24155	Evolution of airplane stability and control - A designer's	Analytical Qualification of Aircraft Structures
Description, characteristics and testing of the NASA	viewpoint p 665 A91-39401	[AGARD-R-772] p 683 N91-24638
airborne radar p 638 N91-24156	Real time estimation of aircraft angular attitude	Validation of in-house and external software systems
Integration of weather sensing devices	[IAITIC-87-1004] p 649 N91-23107 Flying Qualities	at Aerospatiale p 687 N91-24640 Analytical certification of alreraft structures
p 639 N91-24174 NASA Langley flight test program p 639 N91-24175	[AGARD-CP-508] p 649 N91-23108	p 684 N91-24641
TDWR information on the flight deck	MIL-STD-1797 is not a cookbook p 650 N91-23111	AIRCRAFT ENGINES
p 640 N91-24176	Handling qualities guidelines for the design of fly-by-wire	Automated CAD design for sculptured airfoil surfaces
Orlando experiment p 640 N91-24177	flight control systems for transport aircraft p 667 N91-23119	[SME PAPER MS90-744] p 673 A91-36943
AIRBORNE SURVEILLANCE RADAR	Determination of decision-height windows for	On digital electronic control system of aircraft engine p 657 A91-38209
Adaptive airborne track while scan p 642 A91-37139	decelerating IMC approaches in helicopters	Water droplet impingement on airfoils and aircraft engine
AIRBORNE/SPACEBORNE COMPUTERS	p 667 N91-23124	inlets for icing analysis p 634 A91-38543
A320 - First of the computer-age aircraft	The electrical flight control system of A320 Airbus: A	Design and development of aviation gas turbine engines
p 645 A91-36354	fault tolerant system [REPT-911-111-103] p 667 N91-23192	Russian book p 657 A91-39201
Along for the ride? computer-automated aviation overview p 656 A91-40550	[REPT-911-111-103] p 667 N91-23192 AIRCRAFT DESIGN	Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181
overview p 656 A91-40550 The electrical flight control system of A320 Airbus: A	Identification of pilot-vehicle dynamics from simulation	Vectored propulsion, supermaneuverability and robot
fault tolerant system	and flight test p 664 A91-37598	aircraft Book p 649 A91-40501
[REPT-911-111-103] p 667 N91-23192	Design of aircraft wings subjected to gust loads - A safety	NASA aeropropulsion research in support of propulsion
AIRCRAFT ACCIDENTS	index based approach p 675 A91-37851 Advanced aircraft secondary power system design	systems of the 21st century [NASA-TM-104403] p 627 N91-23083
Aeronautical meteorology - Safety and economics of commercial air transports p 685 A91-38323	p 656 A91-38007	[NASA-TM-104403] p 627 N91-23083 Engine technology challenges for a 21st century high
Orientation measurements and transmission via Mode	The development and research on CAD for education	speed civil transport
S at airports p 643 A91-38526	on aircraft design p 686 A91-38234	[NASA-TM-104363] p 636 N91-23098
Near midair collisions as an indicator of general aviation	Aircraft design for maintainability p 612 A91-38546	Fuel-rich, catalytic reaction experimental results
collision risk p 635 N91-23096 The airbag as a supplement to standard restraint	Optimization of rotor performance in hover using a free wake analysis p 646 A91-38548	[NASA-TM-104423] p 662 N91-24203 Small Engine Component Technology (SECT)
systems in the AH-1 and AH-64 attack helicopters and	Vibration problems in an aircraft design	[NASA-CR-175078] p 662 N91-24205
its role in reducing head strikes of the copilot/gunner,	p 648 A91-40165	Small Engine Component Technology (SECT) study
volume 2	Tiltrotor developments p 612 A91-40180	[NASA-CR-175081] p 663 N91-24207
[AD-A232907] p 641 N91-24187	Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at	AIRCRAFT FUELS Detection of traces of water in aviation kerosenes by
AIRCRAFT ANTENNAS Characteristics of the reception by the antenna systems	low speed p 649 A91-40495	gas chromatography p 670 A91-37182
of a descending aircraft of signals from radio-beacon	Safety of aging aircraft - Boeing programs for the	Commercial aircraft fuel efficiency potential through
landing systems p 642 A91-37200	1990's	2010 p 645 A91-38127
Development of B-1 antenna measurement test bed	[AIAA PAPER 91-0909] p 612 A91-40563 The art of flying qualities testing p 649 N91-23109	Methanol - An environmentally attractive alternative
p 668 A91-37881	The art of flying qualities testing p 649 N91-23109 Integration of handling quality aspects into the	commercial aviation fuel p 670 A91-38129 AIRCRAFT GUIDANCE
AIRCRAFT COMMUNICATION Current status and future prospects of air traffic	aerodynamic design of modern unstable lighters	Navigation, guidance, and trajectory optimization for
control p 642 A91-38322	p 667 N91-23125	hypersonic vehicles p 644 N91-23150
Flight tests show potential benefits of data link as primary	Agility: A rational development of fundamental metrics	AIRCRAFT HAZARDS
communication medium p 643 A91-38577	and their relationship to flying qualities	loing simulation: A survey of computer models and experimental facilities
National airspace system. Communications operational concept NAS-SR-136	p 651 N91-23129	[NASA-TM-104366] p 628 N91-23087
[DOT/FAA/SE-91/1] p 640 N91-24185	A review of high angle of attack requirements for combat aircraft p 651 N91-23130	Near midair collisions as an indicator of general aviation
AIRCRAFT COMPARTMENTS	aircraft p 651 N91-23130 X-31A at first flight p 651 N91-23131	collision risk p 635 N91-23096
Full-scale demonstration tests of cabin noise reduction	A new architecture and expert system for aircraft design	Signal processing techniques for clutter filtering and wind
using active vibration control p 646 A91-38549	synthesis p 652 N91-23132	shear detection p 638 N91-24154
Canopy breaking system for non-delay pilot rescue p 647 A91-39398	Application of multidisciplinary optimization methods to	Lightning protection requirements for aircraft: A proposed specification
Application of acoustically treated honeycomb sandwich	the design of a supersonic transport	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186
panels in noise control of aircraft cabin	[NASA-TM-104073] p 652 N91-23135	AIRCRAFT INDUSTRY
p 648 A91-40160	Design and construction of a composite airframe for UAV research	Estimating fixed and variable costs of airframe
AIRCRAFT CONFIGURATIONS A study on sonic load of the vertical tail of F-7 aircraft	[AD-A232422] p 653 N91-23143	manufacturers [AD-A232661] p 613 N91-23077
A study on sonic load of the vertical tall of F-7 aircraft p 648 A91-40171	A computer aided multivariable control systems design	Integration of propulsive systems: Selection and
Aerodynamic characteristics of scissor-wing	technique with application to aircraft flying qualities	compromise
geometries p 624 A91-40216	[AD-A232549] p 653 N91-23144	[REPT-911-111-101] p 661 N91-23187

Development of MIL-8785C into a handling qualities Some analysis of decision-making in the test **AIRCRAFT STRUCTURES** manufacture of military aircraft specification for a new European fighter aircraft Automatic aircraft paint stripping [SME PAPER MS90-280] [AD-A233111] p 666 N91-23114 p 613 N91-24093 p 611 A91-36895 Robotic sensors for aircraft paint stripping AIRCRAFT INSTRUMENTS Do civil flying qualities requirements address military [SME PAPER MS90-282] p 673 A91-36896 Radiation transmission in adverse weather missions for off-the-shelf procurement p 675 A91-37880 p 650 N91-23115 The introduction of off-line programming techniques for Aircraft Command in Emergency Situations (ACES). Airborne Wind Shear Detection and Warning Systems: the robotic assembly of aircraft structures Phase 1: Concept development SME PAPER MS90-2761 p 611 A91-36898 Third Combined Manufacturers' and Technologists' p 636 N91-23097 [DOT/FAA/CT-90/21] A new technique and application for nonlinear acoustic Conference, part 1 An engineering study of altitude determination fatigue of stiffened composite panels [NASA-CP-10060-PT-1] p 639 N91-24166 deficiencies of the Service Aircraft Instrumentation p 687 A91-38863 Estimate of heavy rain performance effect Package (SAIP) [AD-A232055] Sensitivity analysis, optimization, and data support in p 640 N91-24182 p 656 N91-23145 finite element systems p 677 A91-39230 AIRCRAFT PILOTS AIRCRAFT LANDING Identification of nacelle modes from airplane GVT Identification of pilot-vehicle dynamics from simulation p 64B A91-40170 Characteristics of the reception by the antenna systems results and flight test p 664 A91-37598 of a descending aircraft of signals from radio-beacon Computerized system for static and fatigue targe scale Canopy breaking system for non-delay pilot rescue p 642 A91-37200 structural tests: A case study [IAITIC-87-1007] landing systems p 647 A91-39398 The limits of the landing process of aircraft p 681 N91-23522 [DLR-FB-90-49] p 653 N91-23137 AIRCRAFT POWER SUPPLIES Quantitative nondestructive evaluation: Requirements p 639 N91-24167 Advanced aircraft secondary power system design for tomorrow's reliability p 681 N91-24074 LIDAR studies on microbursts p 656 A91-38007 AIRCRAFT MAINTENANCE Evaluation of automation for inspection of aging Aircraft repair/general aviation quick tooling
[SME PAPER EM90-178] p 611 A91-36944
Aircraft design for maintainability p 612 A91-38546 simulation p 613 N91-24088 Aircraft electrical system compute p 657 A91-38037 Program plans for aviation safety research p 638 N91-24157 [NIAR-90-32] AIRCRAFT PRODUCTION AIRCRAFT MANEUVERS Feasibility study in crack detection in aircraft stiffened CAPP imitative system of aircraft assembly --- Computer The influence of altitude and speed variations over the Aided Process Planning p 611 A91-37061 panels by pulse probing and deconvolution aircraft flight control response during the longitudinal D 654 N91-24158 AIRCRAFT RELIABILITY p 664 A91-36722 p 671 A91-39389 nonlinear manoeuvres Bonded/fusion repair of aircraft structures Flexure vibration test method of aviation tube Helicopter in-flight stores lettison p 613 N91-24160 p 648 A91-40172 Vectored propulsion, supermaneuverability and robot Mechanical paint removal techniques for composite The certification of the aircraft integrated propulsive p 613 N91-24163 aircraft --- Book p 649 A91-40501 aircraft Agility: A rational development of fundamental metrics Analytical Qualification of Aircraft Structures [REPT-911-111-102] p 661 N91-23188 and their relationship to flying qualities [AGARD-R-772] p 683 N91-24638 p 651 N91-23129 The role of structural analysis in airworthiness Validation of in-house and external software systems Aerospatiale p 687 N91-24640 p 684 N91-24647 at Aerospatiale p 687 Status of Sundstrand research p 640 N91-241B3 Analytical methods for the qualific cation of helicopter AIRCRAFT MODELS Analytical certification of aircraft structures p 684 N91-24650 Safety of aging aircraft - Boeing programs for the structures p 684 N91-24641 Nonlinear analysis of composite shear webs with holes AIRCRAFT SAFETY 1990's [AIAA PAPER 91-0909] Aeronautical meteorology - Safety and economics of p 612 A91-40563 and correlation with tests p 684 N91-24642 commercial air transports p 685 A91-38323 The costs and benefits of aircraft availability Evaluation of the qualification of the structure of a p 613 N91-23076 [AD-A232660] passenger aircraft by analysis and full-scale testing Orientation measurements and transmission via Mode Navigation, guidance, and trajectory optimization for p 684 N91-24645 S at airports p 643 A91-38526 p 644 N91-23150 hypersonic vehicles The role of analysis in the design and qualification of Air travel - System relating flight safety, aircraft, and p 684 N91-24648 Model rotor icing tests in the NASA Lewis icing research p 634 A91-38527 composite aircraft structures Probability approach for strength calculations Safety of aging aircraft - Boeing programs for the NASA-TM-104351] p 661 N91-23184 p 685 N91-24652 1990's [AIAA PAPER 91-0909] AIRCRAFT SURVIVABILITY AIRCRAFT NOISE p 612 A91-40563 Full-scale demonstration tests of cabin noise reduction Toward enhanced fighter combat effectiveness Near midair collisions as an indicator of general aviation p 646 A91-38549 using active vibration control p 635 N91-23096 p 645 A91-37050 A study of the noise mechanisms of transonic blade-vortex interactions AIRCRAFT WAKES Aircraft Command in Emergency Situations (ACES). A vortex panel method for calculating aircraft downwash Phase 1: Concept development (NASA-CR-1881991 p 627 N91-23084 [DOT/FAA/CT-90/21] on parachute trajectories p 636 N91-23097 Unified aeroacoustics analysis for high speed turboprop p 649 N91-23109 [AIAA PAPER 91-0875] p 626 A91-40557 The art of flying qualities testing p 649 Program plans for aviation safety research erodynamics and noise. Volume 2: Development of theory An experimental study of an axisymmetric turbulent p 638 N91-24157 for wing shielding [NIAR-90-32] boundary layer disturbed by a periodic freestream (NASA-CR-1851921 p 626 N91-23078 NASA Langley flight test program p 639 N91-24175 Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory The airbag as a supplement to standard restraint Aircraft wake vortices: An assessment of the current situation systems in the AH-1 and AH-64 attack helicopters and for blade loading, wakes, noise, and wing shielding [AD-A231658] p 626 N91-23079 its role in reducing head strikes of the copilot/gunner. [NASA-CR-185193] p 688 N91-23850 A vortex panel method for calculating aircraft downwash on parachute trajectories volume 2 Unified aeroacoustics analysis for high speed turboprop p 641 N91-24187 [AD-A232907] aerodynamics and noise. Volume 4: Computer user's p 627 N91-23085 [DE91-009764] AIRCRAFT SPECIFICATIONS Aircraft wake vortices: An annotated bibliography manual for UAAP turboprop aeroacoustic code Flying Qualities [AGARD-CP-508] p 688 N91-23851 [NASA-CR-185194] p 649 N91-23108 Unified aeroacoustics analysis for high speed turboprop AD-A2331611 p 631 N91-24111 MIL-STD-1797 is not a cookbook p 650 N91-23111 **AIRFOIL FENCES** aerodynamics and noise. Volume 5: Propagation of Flying qualities experience on the AMX aircraft Tip vortex/airfoil interaction for a low Reynolds numb propeller tone noise through a fuselage boundary layer p 650 N91-23112 p 689 N91-23852 canard/wing configuration AIRFOIL OSCILLATIONS [NASA-CR-185195] The development of alternate criteria for FBW handling p 617 A91 38545 Noise inside aircraft fuselages subjected to airborne p 666 N91-23113 Simplification of nonlinear indicial response models -Development of MIL-8785C into a handling qualities (REPT-911-111-1041 p 689 N91-23853 specification for a new European fighter aircraft Assessment for the two-dimensional airfoil case field-deployable digital acoustic p 666 N91-23114 p 664 A91-37771 measurement p 689 N91-24078 Do civil flying qualities requirements address military On some physical aspects of airfoil dynamic stall p 618 A91-38686 AGARD flight test techniques series. Volume 9: Aircraft missions for off-the-shelf procurement exterior noise measurement and analysis techniques Further experiments on vortex formation around an p 650 N91-23115 p 689 N91-24843 [AGARD-AG-300-VOL-91 oscillating and translating airfoil at large incidences AIRCRAFT STABILITY Laboratory test and acoustic analysis of cabin treatment p 620 A91-39738 Equation decoupling - A new approach to the Investigations on flow instabilities on airfoils by means r propfan test assessment aircraft aerodynamic identification of unstable aircraft [NASA-CR-182075] p 690 N91-24844 of piezofoil-arrays p 621 A91-39911 p 664 A91-37773 Transonic flutter analysis of 2-D airfoils with 2 degrees Signal processing of aircraft flyover noise [NASA-CR-187546] p 690 Improvement of atmospheric flight performance of a p 690 N91-24845 space vehicle through sensitivity minimization p 665 A91-40169 p 664 A91-37779 Airfoil transition and separation studies using an infrared AIRCRAFT PARTS p 624 A91-40215 imaging system
AIRFOIL PROFILES Effects of horizontal tail ice on longitudinal aerodynamic Modal analysis for fibre-carbon composite parts of an p 665 p 679 A91-40157 airplane Automated CAD design for sculptured airfoil surfaces Evolution of airplane stability and control - A designer's AIRCRAFT PERFORMANCE [SME PAPER MS90-744] SME PAPER MS90-744] p 673 A91-36943 Experimental investigation of loading effects on p 665 A91-39401 Long-range aircraft are in demand viewpoint The art of flying qualities testing p 649 N91-23109 p 611 A91-36353 compressor trailing-edge flowfields p 615 A91-37420 The development of alternate criteria for FBW handling Methodology for the analytical assessment of aircraft Moving surface boundary-layer control as applied to vo-dimensional airfoils p 615 A91-37768 p 666 N91-23113 handling qualities p 664 A91-37597 Integration of handling quality aspects into the two-dimensional airfoils Aeronautical research in the United States - Challenges Water droplet impingement on airfoils and aircraft engine aerodynamic design of modern unstable fighters p 612 A91-38580 p 634 A91-38543 for the 1990's p 667 N91-23125 inlets for icing analysis Aircraft performance p 649 A91-40511 the Navier-Stokes Airfoil design method using B-1B high AOA testing in the evaluation of a stall inhibitor Flying Qualities p 651 N91-23126 p 646 A91 38550 p 649 N91-23108 (AGARD-CP-508) Evaluation techniques for highly Unsteady flow past an airfoil pitched at constant rate p 667 N91-23191

p 617 A91-38679

MIL-STD-1797 is not a cookbook

p 650 N91-23111

[DLR-FB-90-35]

SUBJECT INDEX AXISYMMETRIC FLOW

ALTITUDE CONTROL ASSEMBLING Unsteady separation on an impulsively set into motion Real time estimation of aircraft angular attitude The introduction of off-line programming techniques for p 618 A91-38694 Carafoli airfoil [IAITIC-87-1004] p 649 N91-23107 the robotic assembly of aircraft structures Deep stall of an NACA 0012 airfoil induced by periodic p 611 A91-36898 [SME PAPER MS90-276] p 619 A91-38699 ALUMINIDES. aerodynamic interference Fatigue crack growth in monolithic titanium aluminides CAPP imitative system of aircraft assembly --- Computer Steady linearised aerodynamics. III - Transonic p 670 A91-38809 p 620 A91-39223 Aided Process Planning p 611 A91-37061 Titanium aluminides for aerospace applications Calculation of low Reynolds number flows at high angles **ASTRONAUTICS** p 671 A91-39302 p 624 A91-40218 The role of organizations in professional development **AMBULANCES** p 690 A91-38367 **AIRFOILS** Air ambulance helicopter operational analysis Cell centered and cell vertex multigrid schemes for the ASYMPTOTIC METHODS [DOT/FAA/RD-91/7] p 652 N91-23134 p 674 A91-37834 Asymptotic theory of bending-torsion flutter of high Navier-Stokes equations ANALOG TO DIGITAL CONVERTERS Airfoil design method using the Navier-Stokes aspect ratio wing in the torsion controlled domain p 646 A91-38550 ALDAS user's manual p 675 A91-37846 p 687 N91-24757 NASA-TM-1028311 Receptivity and stability of the boundary layer at a high ATMOSPHERIC ATTENUATION p 678 A91-39945 ANGLE OF ATTACK turbulence level Radiation transmission in adverse weather A new method for estimating airspeed, attack angle and Icing simulation: A survey of computer models and p 675 A91-37880 p 664 A91-37051 sideslip angle experimental facilities ATMOSPHERIC EFFECTS Stream functions for the hypersonic flow around p 628 N91-23087 [NASA-TM-104366] Environmental exposure effects on composite materials quasi-pointed slender bodies at low angles of attack Advanced ice protection systems test in the NASA Lewis for commercial aircraft p 621 A91-39832 icing research tunnel [NASA-CR-187478] p 672 N91-24358 Synchronous iterative method for computation of vortex [NASA-TM-103757] p 661 N91-23183 ATMOSPHERIC ENTRY flows at high angles of attack p 624 A91-40126 A computationally efficient modelling of laminar eparation bubbles p 680 N91-23411 Re-entry flight control of space plane using approximate effect servo p 664 A91-37778 Airfoil transition and separation studies using an infrared paging system p 624 A91-40215 separation bubbles perfect servo The NASA Langley laminar-flow-control experiment on imaging system Calculation of low Reynolds number flows at high angles attack p 624 A91-40218 ATMOSPHERIC MOISTURE a swept, supercritical airfoil: Suction coefficient analysis The LWC parameter - Some experimental results [NASA-TM-4267] of attack p 629 N91-24098 p 685 A91-38388 liquid water content in atmosphere Aerodynamic characteristics of crescent and elliptic Laminar-flow wind tunnel experiments rings at high angles of attack p 624 A91-40219
B-1B high AOA testing in the evaluation of a stall inhibitor p 624 A91-40219 p 634 N91-24136 ATMOSPHERIC SOUNDING Integration of weather sensing devices AIRFRAMES p 651 N91-23126 p 639 N91-24174 system Accent on hypersonic p 669 A91-36625 A review of high angle of attack requirements for combat ATOMIZING Estimating fixed and variable costs of airframe p 651 N91-23130 aircraft Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91 Buffet induced structural/flight-control interaction of the X-29A aircraft p 662 N91-24203 [AD-A2326611 p 613 N91-23077 Application of multidisciplinary optimization methods to ATTACK AIRCRAFT [NASA-TM-101735] p 652 N91-23133 the design of a supersonic transport Flying qualities experience on the AMX aircraft Calculation of high angle of attack aerodynamics of INASA-TM-1040731 p 652 N91-23135 p 650 N91-23112 fighter configurations. Volume 1: Steady Design and construction of a composite airframe for ATTITUDE CONTROL p 631 N91-24113 [AD-A233482] HAV research Simulation evaluation of a speed-guidance law for Harrier Calculation of high angle of attack aerodynamics of [AD-A2324221 p 653 N91-23143 approach transitions fighter configurations. Volume 2: User manual for Beechcraft starship strength certification INASA-TM-1028531 p 668 N91-24209 VORSTAR-2 p 684 N91-24643 ATTITUDE STABILITY [AD-A2334831 influence of the refinement of structural calculation on n 631 N91-24114 Simulation evaluation of a speed-guidance law for Harrier Calculation of high angle of attack aerodynamics of p 684 N91-24649 aircraft qualification procedures ighter configurations. Volume 3: Unsteady Analytical methods for the qualification of helicopter p 631 N91-24115 INASA-TM-1028531 ρ 668 N91-24209 [AD-A2335691 p 684 N91-24650 structures ANTENNA ARRAYS AUTOMATIC CONTROL AIRLINE OPERATIONS On digital electronic control system of aircraft engine for satellite High gain airborne antenna Evaluation of cloud detection instruments and p 643 A91-39776 p 657 A91-38209 performance of laminar-flow leading-edge test articles communications Evaluation of automation for inspection of aging ANTENNA RADIATION PATTERNS during NASA Leading-Edge Flight-Test Program p 613 N91-24088 p 655 N91-24199 airborne antenna for satellite aircraft [NASA-TP-2888] High gain p 643 A91-39776 communications National remote computational flight research facility APPLICATIONS PROGRAMS (COMPUTERS) INASA-CR-1794321 p 668 N91-24210 Orientation measurements and transmission via Mode Water-cooling technique of high temperature gas turbine **AUTOMATIC FLIGHT CONTROL** p 643 A91-38526 S at airports The design and simulation of an intelligent flight control Air travel - System relating flight safety, aircraft, and blade p 681 N91-23506 [DE91-764238] p 665 A91-40133 airports p 634 A91-38527 A general multiblock Euler code for propulsion Literature review on geotextiles to improve pavements Along for the ride? --- computer-automated aviation p 656 A91-40550 integration. Volume 1: Theory document for general aviation airports p 632 N91-24120 [NASA-CR-187484-VOL-1] p 632 N91-24120 A general multiblock Euler code for propulsion **AUTOMATIC PILOTS** [AD-A232871] p 669 N91-23199 Integration of four-dimensional guidance with total Saberliner flight test for airborne wind shear forward integration. Volume 3: User guide for the Euler code energy control system --- integrated autopilot/autothrottle looking detection and avoidance radar systems p 665 A91-39410 [NASA-CR-187484-VOL-3] p 632 N91-24122 p 637 N91-24149 system design Clutter modeling of the Denver Airport and surrounding The 3-D Navier-Stokes analysis of crossing, glancing AUTOMATION shocks/turbulent boundary layer interactions Automatic aircraft paint stripping (SME PAPER MS90-2801) p 638 N91-24152 p 633 N91-24130 [NASA-TM-1044691 p 611 A91-36895 Airborne radar simulation studies of the Denver July 11, Advanced computational models for analyzing high p 638 N91-24155 **AUXILIARY POWER SOURCES** 1988 microburst p 686 N91-24291 speed propulsive flowfields ALDAS user's manual Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 NS MLS mathematical model validation study using airborne p 662 N91-24205 MLS data from Atlantic City International Airport Boeing p 687 N91-24757 [NASA-TM-102831] AVAILABILITY 727 elevation shadowing flight tests [DQT-FAA/CT-TN90/55] The costs and benefits of aircraft availability [AD-A232660] p 613 p 644 N91-24190 APPROACH p 613 N91-23076 AIRSPACE Microwave landing system modeling with application to AVIATION METEOROLOGY Aviation system capital investment plan air traffic control p 636 N91-23099 p 644 N91-24189 [NASA-TM-102832] Clutter rejection in Doppler weather radars used for [PB91-150268] airport wind shear detection p 685 A91-37104 AIRSPEED Determination of decision-height windows decelerating IMC approaches in helicopters Aeronautical meteorology - Safety and economics of A new method for estimating airspeed, attack angle and p 664 A91-37051 commercial air transports. p 685 A91-38323 sideslip angle p 667 N91-23124 The LWC parameter - Some experimental results Airblast atomization at conditions of low air velocity Simulation evaluation of a speed-guidance law for Harrier p 674 A91-37410 liquid water content in atmosphere p 685 A91-38388 approach transitions Wind shear training applications for 91/135 Velocity sensor for an airborne optical air data system p 668 N91-24209 (NASA-TM-1028531 p 639 N91-24173 p 655 A91-38542 APPROACH CONTROL AVIONICS **ALGORITHMS** Differential GPS terminal area test results Aircraft electrical system computer simulation An initial investigation into methods of computing p 644 N91-23106 (AD-A2326681 p 657 A91-38037 transonic aerodynamic sensitivity coefficients ARCHITECTURE (COMPUTERS) p 629 N91-24099 Flight management systems --- Book [NASA-CR-188192] A new architecture and expert system for aircraft design p 666 A91-40517 Saberliner flight test for airborne wind shear forward p 652 N91-23132 Avionic laser multisensor program at Litton Aero looking detection and avoidance radar systems ARMED FORCES (UNITED STATES) p 637 N91-24144 p 637 N91-24149 A test of the American Safety Flight Systems, Inc. **AXIAL FLOW** Radar simulation program upgrade and algorithm prebreather/portable oxygen system Temporally and spatially resolved flow in a two-stage p 638 N91-24153 development p 636 N91-23100 AD-A2327231 axial compressor. II - Computational assessment Simulation of the flow past an impulsively started cylinder p 620 A91-39048 ASME PAPER 90-GT-299] ARROW WINGS using a discrete vortex method p 683 N91-24533 The effects on aerodynamic performance of designing **AXISYMMETRIC BODIES** [AD-A233066] upersonic wings for laminar flow control A simplified aerothermal heating method for ALTITUDE p 654 N91-24197 An engineering study of altitude [AD-A2330401 axisymmetric blunt bodies p 619 A91-38787 determination ARTIFICIAL INTELLIGENCE AXISYMMETRIC FLOW deficiencies of the Service Aircraft Instrumentation Computational analysis of underexpanded jets in the ypersonic regime p 615 A91-37421

The design and simulation of an intelligent flight control

p 665 A91-40133

hypersonic regime

Package (SAIP)

p 656 N91-23145

system

[AD-A232055]

В

В	A study of three dimensional turbulent boundary layer	Dialogue on progress and issues in stability and transition
B 4 44000455	separation and vortex flow control using the reduced Navier	research p 677 A91-39902
B-1 AIRCRAFT Development of B-1 antenna measurement test bed	Stokes equations [NASA-TM-104407] p 628 N91-23089	Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919
p 668 A91-37881	Passive laminar flow control of crossflow vorticity	Experimental and theoretical analysis of natural
B-1B high AOA testing in the evaluation of a stall inhibitor	[NASA-CASE-LAR-13563-1] p 679 N91-23410	transition on 'infinite' swept wing p 621 A91-39927
system p 651 N91-23126 BALANCING	The NASA Langley laminar-flow-control experiment on	An evaluation of stability-based methods for transition of three-dimensional flows p 678 A91-39928
Balancing of rotating machinery p 679 A91-40278	a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098	Correlation of boundary layer stability analysis with flight
BEARINGLESS ROTORS	Laminar-flow flight experiments p 634 N91-24135	transition data p 621 A91-39929
Soft hub for bearingless rotors [NASA-CR-177586] p 654 N91-24198	Laminar-flow wind tunnel experiments	On the stability of swept wing laminar boundary layers
BEND TESTS	p 634 N91-24136	including curvature effects p 622 A91-39933 Development and interaction of instabilities in the
Identification strategies for crack shape determination	The 1989 high-speed civil transport studies [NASA-CR-4375] p 654 N91-24195	crossflow field p 622 A91-39938
in rotors p 679 A91-40234 BENDING MOMENTS	[NASA-CR-4375] p 654 N91-24195 The effects on aerodynamic performance of designing	Visual study of boundary layer transition on rotating flat plate p 623 A91-39941
Asymptotic theory of bending-torsion flutter of high	supersonic wings for laminar flow control	plate p 623 A91-39941 Receptivity and stability of the boundary layer at a high
aspect ratio wing in the torsion controlled domain	[AD-A233040] p 654 N91-24197	turbulence level p 678 A91-39945
p 675 A91-37846 BERYLLIUM ISOTOPES	Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles	Visualisation of boundary layer transition
Surface activation of Concorde by Be-7	during NASA Leading-Edge Flight-Test Program	p 623 A91-39964 Airfoil transition and separation studies using an infrared
p 690 N91-24983	[NASA-TP-2888] p 655 N91-24199	imaging system p 624 A91-40215
BIBLIOGRAPHIES Aircraft wake vortices: An annotated bibliography	BOUNDARY LAYER EQUATIONS	Laminar-flow flight experiments p 634 N91-24135 Variable Sweep Transition Flight Experiment (VSTFE):
(1923-1990)	Calculation of low Reynolds number flows at high angles of attack p 624 A91-40218	Unified Stability System (USS). Description and users'
[AD-A233161] p 631 N91-24111	BOUNDARY LAYER FLOW	manual
BIOGRAPHY	Boundary layer control by a local heating of the wall	[NASA-CR-181918] p 634 N91-24139 Effects of wing sweep on in-flight boundary-layer
AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p 691 N91-24084	p 678 A91-39909 Experiments on swept-wing boundary layers	transition for a laminar flow wing at Mach numbers from
BIRD-AIRCRAFT COLLISIONS	p 622 A91-39932	0.60 to 0.79
The nonlinear dynamic response analysis of the front	Receptivity and stability of the boundary layer at a high	[NASA-TM-101701] p 683 N91-24555
windshield of Y12 under 'bird-impact' loads p 648 A91-40158	turbulence level p 678 A91-39945 The effect of isolated roughness elements on transition	Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to
BLADE TIPS	in attachment-line flows p 678 A91-39959	0.825
Research on aerodynamic control of blade tip clearance	Boundary layer tripping in supersonic flow	[NASA-TM-101712] p 683 N91-24556 BRAYTON CYCLE
flow in air-cooled turbine	p 623 A91-39960 An experimental study of an axisymmetric turbulent	Water-cooling technique of high temperature gas turbine
[DE91-764223] p 660 N91-23182 BLADE-VORTEX INTERACTION	boundary layer disturbed by a periodic freestream	blade
A study of the noise mechanisms of transonic	p 626 N91-23078	[DE91-764238] p 681 N91-23506 BRIGHTNESS
blade-vortex interactions	Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics	Radioluminescent (RL) lighting system development
[NASA-CR-188199] p 627 N91-23084 BLASIUS FLOW	[NASA-CR-182109] p 683 N91-24551	program
Visual study of boundary layer transition on rotating flat	BOUNDARY LAYER SEPARATION	[DE91-009743] p 679 N91-23381
plate p 623 A91-39941	Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838	BRUNT-VAISALA FREQUENCY RADAR performance experiments
BLUFF BODIES	Unsteady separation on an impulsively set into motion	p 639 N91-24168
Vortex shedding and lock-on in bluff body wakes p 675 A91-38689	Carafoli airfoil p 618 A91-38694	BRUSHES
BLUNT BODIES	Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694	Simulation of brush insert for leading-edge-passage convective heat transfer
Entropy effects of hypersonic flow past blunt delta	A study of three dimensional turbulent boundary layer	[NASA-TM-103801] p 679 N91-23409
wings p 615 A91-37181	separation and vortex flow control using the reduced Navier	BUBBLES
Numerical study of hypersonic dissociated air past blunt bodies p 616 A9T-37835	Stokes equations [NASA-TM-104407] p 628 N91-23089	A computationally efficient modelling of laminar separation bubbles p 680 N91-23411
A simplified aerothermal heating method for	Some aspects of shock-wave boundary layer interaction	BUFFETING
axisymmetric blunt bodies p 619 A91-38787	relevant to intake flows p 628 N91-23161	Buffet induced structural/flight-control system
BODIES OF REVOLUTION	Calculation of high angle of attack aerodynamics of fighter configurations. Volume 1: Steady	interaction of the X-29A aircraft [NASA-TM-101735] p 652 N91-23133
Asymmetric vortices on a slender body of revolution p 616 A91-37827	[AD-A233482] p 631 N91-24113	Flow visualization study of a 1/48-scale AFTI/F111
Synchronous iterative method for computation of vortex	BOUNDARY LAYER STABILITY	model to investigate horizontal tail flow disturbances
flows at high angles of attack p 624 A91-40126	Real gas effects on hypersonic boundary-layer stability p 614 A91-36453	[NASA-TM-101698] p 633 N91-24128 BURNING RATE
BODY-WING AND TAIL CONFIGURATIONS	A model for the experimental study of curvature effects	Kinetic study of a homogeneous propellant primary
Numerical investigation of airfoil/jet/fusetage-undersurface flowfields in ground	on transition of the boundary layer on a swept wing -	flame, with and without additive p 671 A91-39690
effect p 617 A91-38541	Preliminary results p 620 A91-39691 Laminar-turbulent transition; Proceedings of the IUTAM	_
BODY-WING CONFIGURATIONS		
	Symposium, Ecole Nationale Superleure de l'Aeronautique	C
Aerodynamic characteristics of slender wing-gap-body combinations n 615 A91-37777	et de l'Espace, Toulouse, France, Sept. 11-15, 1989	•
Aerodynamic characteristics of slender wing-gap-body combinations p 615 A91-37777 Transonic Symposlum: Theory, Application and	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901	CALIBRATING ALDAS user's manual
combinations p 615 A91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2	et de l'Espace, Toulouse, France, Sept. 11-15, 1989	CALIBRATING
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39819 Correlation of boundary layer stability analysis with flight	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39819 Correlation of boundary layer stability analysis with flight	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow Instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 587 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow Instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alroraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoll interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 623 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPLES Canopy breaking system for non-delay pilot rescue p 647 A91-39398
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alroraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoll interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 623 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoll interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow Instability of 3-D boundary layers on a flat plate plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual [NASA-CR-181918]	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system
combinations p 615 Ā91-37777 Transonic Symposlum: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING Bonded/fusion repair of aircraft structures p 613 N91-24160	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels p 621 A91-39919 Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system development - A status report [AIAA PAPER 91-0880] p 635 A91-40558
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alroraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING Bonded/fusion repair of aircraft structures p 613 N91-24160 BOUNDARY LAYER CONTROL Moving surface boundary-layer control as applied to	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow Instability of 3-D boundary layers on a flat plate plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 678 A91-39950 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual [NASA-CR-181918] BOUNDARY LAYER TRANSITION A model for the experimental study of curvature effects on transition of the boundary layer on a sweept wing -	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system development - A status report [AIAA PAPER 91-0880] p 635 A91-40558 CARGO AIRCRAFT
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING Bonded/fusion repair of aircraft structures p 613 N91-24160 BOUNDARY LAYER CONTROL Moving surface boundary-layer control as applied to two-dimensional airfolis p 615 A91-37768	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels Correlation of boundary layer stability analysis with flight transition data p 621 A91-39919 Corss-flow Instability of 3-D boundary layers on a flat plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual [NASA-CR-181918] p 634 N91-24139 BOUNDARY LAYER TRANSITION A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system development A status report [AIAA PAPER 91-0880] p 635 A91-40558 CARGO AIRCRAFT Fire detection system for aircraft cargo bays
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a stender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alroraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING Bonded/fusion repair of aircraft structures p 613 N91-24160 BOUNDARY LAYER CONTROL Moving surface boundary-layer control as applied to	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow Instability of 3-D boundary layers on a flat plate plate p 622 A91-39931 Instability features appearing on swept wing configurations p 622 A91-39937 Development and interaction of instabilities in the crossflow field p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 678 A91-39950 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual [NASA-CR-181918] BOUNDARY LAYER TRANSITION A model for the experimental study of curvature effects on transition of the boundary layer on a sweept wing -	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoil interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system development - A status report [AIAA PAPER 91-0880] p 635 A91-40558 CARGO AIRCRAFT
combinations p 615 Ā91-37777 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration p 634 N91-24134 BOEING AIRCRAFT Safety of aging alrcraft - Boeing programs for the 1990's [AIAA PAPER 91-0909] p 612 A91-40563 BOEING 727 AIRCRAFT Modification meets Chapter 3 standards re-engined Boeing 727 p 612 A91-40181 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 BONDING Bonded/fusion repair of aircraft structures p 613 N91-24160 BOUNDARY LAYER CONTROL Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 Analysis and control of low-speed forced unsteady	et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 Transition research in low-disturbance high-speed wind tunnels Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929 Cross-flow instability of 3-D boundary layers on a flat plate lastability features appearing on swept wing configurations Development and interaction of instabilities in the crossflow field p 622 A91-39937 The experimental investigation of stability and receptivity of a swept-wing flow p 622 A91-39938 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Receptivity and stability of the boundary layer at a high turbulence level p 678 A91-39945 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users' manual [NASA-CR-181918] BOUNDARY LAYER TRANSITION A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminar-turbulent transition; Proceedings of the IUTAM	CALIBRATING ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 CANARD CONFIGURATIONS Tip vortex/airfoll interaction for a low Reynolds number canard/wing configuration p 617 A91-38545 Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at low speed p 649 A91-40495 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 CANOPIES Canopy breaking system for non-delay pilot rescue p 647 A91-39398 CARBON DIOXIDE LASERS Continuous wave laser for wind shear detection p 637 N91-24142 CARGO Low Altitude High Speed Cargo Parachute system development - A status report [AIAA PAPER 91-0880] p 635 A91-40558 CARGO AIRCRAFT Fire detection system for alroraft cargo bays p 655 A91-36755

COMPRESSOR BLADES SUBJECT INDEX

SUBJECT INDEX		COMPRESSOR BLADES
Computation of three-dimensional flow fields through	The 1989 high-speed civil transport studies	COMBUSTION STABILITY
compressor blade rows p 625 A91-40375	[NASA-CR-4375] p 654 N91-24195	The effects of controlling vortex formation on the
Euler calculations of unsteady transonic flow in	AGARD flight test techniques series. Volume 9: Aircraft	performance of a dump combustor p 672 N91-23270
cascades	exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843	COMMERCIAL AIRCRAFT Long-range aircraft are in demand
[AIAA PAPER 91-1104] p 626 A91-40562	CLEARANCES	p 611 A91-36353
Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid	Research on aerodynamic control of blade tip clearance	Practical considerations in optimal and 4-dimensional
and viscous flow computations	flow in air-cooled turbine	flight management computations p 686 A91-37585
[VKI-TN-174] p 680 N91-23437	[DE91-764223] p 660 N91-23182 CLIMBING FLIGHT	Commercial aircraft fuel efficiency potential through
Viscous design and analysis methods for transonic	Aircraft performance p 649 A91-40511	2010 p 645 A91-38127
compressor blading [AD-A232902] p 682 N91-24530	CLIPS	Tiltrotor developments p 612 A91-40180 Engine technology challenges for a 21st century high
CATALYSTS	Airborne rescue system	speed civil transport
Fuel-rich, catalytic reaction experimental results	[NASA-CASE-ARC-11909-1] p 635 N91-23095 CLOUD COVER	[NASA-TM-104363] p 636 N91-23098
[NASA-TM-104423] p 662 N91-24203	RADAR performance experiments	COMMUNICATION NETWORKS
CAVITIES	p 639 N91-24168	National airspace system. Communications operational
Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer	CLOUDS	concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185
p 619 A91-38742	Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles	COMPONENT RELIABILITY
CENTRIFUGAL PUMPS	during NASA Leading-Edge Flight-Test Program	Probability approach for strength calculations
Fluid Machinery Forum - 1990; ASME Spring Meeting,	[NASA-TP-2888] p 655 N91-24199	p 685 N91-24652
University of Toronto, Canada, June 4-7, 1990,	CLUTTER	COMPOSITE MATERIALS
Proceedings p 676 A91-38869 Toward automating the design of centrifugal impellers	Evolution of clutter suppression techniques for air traffic control and surveillance radar p 641 A91-37101	Designing with composites - A study of design process p 646 A91-38752
p 676 A91-38874	Saberliner flight test for airborne wind shear forward	Composites for a widebody p 612 A91-39852
CERAMIC MATRIX COMPOSITES	looking detection and avoidance radar systems	Moulded Mustang p 612 A91-39854
Oxidation resistant carbon/carbon materials	p 637 N91-24149	Design and construction of a composite airframe for
[REPT-911-430-105] p 672 N91-23251	Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152	UAV research [AD-A232422] p 653 N91-23143
How to know CMC [REPT-911-430-130] p 672 N91-23262	areas p 638 N91-24152 Radar simulation program upgrade and algorithm	[AD-A232422] p 653 N91-23143 Integration of propulsive systems: Selection and
[REPT-911-430-130] p 672 N91-23262 CERAMICS	development p 638 N91-24153	compromise
Fabrication of engineering ceramics by injection	Signal processing techniques for clutter filtering and wind	[REPT-911-111-101] p 661 N91-23187
molding p 674 A91-37375	shear detection p 638 N91-24154	Observatory of new materials. Evolution perspectives
Improved silicon carbide for advanced heat engines	Description, characteristics and testing of the NASA	for the materials used in civil transportation aircraft
[NASA-CR-182289] p 672 N91-24451	airborne radar p 638 N91-24156 COCKPITS	[REPT-911-111-107] p 672 N91-23248 The role of analysis in the design and qualification of
CERTIFICATION The certification of the aircraft integrated propulsive	Kansas Aviation Review	composite aircraft structures p 684 N91-24648
system	[NIAR-91-3] p 613 N91-24087	COMPOSITE STRUCTURES
[REPT-911-111-102] p 661 N91-23188	COHERENT RADAR	Spot welded thermoplastic composite access door
Kansas Aviation Review	Radar simulation program upgrade and algorithm development p 638 N91-24153	[SME PAPER EM90-489] p 645 A91-36942
[NIAR-91-3] p 613 N91-24087	development p 638 N91-24153 Description, characteristics and testing of the NASA	Analytical studies on static aeroelastic behavior of forward-swept composite wing structures
Analytical certification of aircraft structures p 684 N91-24641	airborne radar p 638 N91-24156	p 674 A91-37774
Beechcraft starship strength certification	COLLISION AVOIDANCE	Designing with composites - A study of design
p 684 N91-24643	Air traffic control today and tomorrow	process p 646 A91-38752
The role of structural analysis in airworthiness	p 642 A91-38215 Airborne Collision Avoidance System (ACAS) in	Flexural waves induced by electro-impulse deicing forces p 676 A91-38776
certification p 684 N91-24647 Probability approach for strength calculations	controlled air traffic. Aspects of reciprocal influence in	A new technique and application for nonlinear acoustic
p 685 N91-24652	Secondary Surveillance Radar (SSR) radio loads	fatigue of stiffened composite panels
AGARD flight test techniques series. Volume 9: Aircraft	[ETN-91-99253] p 644 N91-23105	p 687 A91-38863
exterior noise measurement and analysis techniques	COMBAT Toward onbanced Eabter combat effectiveness	Design and construction of a composite airframe for
[AGARD-AG-300-VOL-9] p 689 N91-24843	Toward enhanced fighter combat effectiveness p 645 A91-37050	UAV research [AD-A232422] p 653 N91-23143
CHANNEL FLOW Mixing of multiple jets with a confined subsonic	One-on-one helicopter combat simulated by chess-type	Bonded/fusion repair of aircraft structures
crossflow. Summary of NASA-supported experiments and	lookahead p 668 A91-37775	p 613 N91-24160
modeling	COMBUSTIBLE FLOW	Mechanical paint removal techniques for composite
[NASA-TM-104412] p 662 N91-24202	Subsonic and supersonic combustion using noncircular	aircraft p 613 N91-24163 Soft hub for bearingless rotors
CIRCULAR CYLINDERS Rotary oscillation control of a cylinder wake	injectors p 674 A91-37414	[NASA-CR-177586] p 654 N91-24198
p 620 A91-39708	COMBUSTION Aerodynamics and stabilization of combustion of	The role of analysis in the design and qualification of
Secondary frequencies in the wake of a circular cylinder	hydrogen jets injected into subsonic airflow	composite aircraft structures p 684 N91-24648
with vortex shedding p 620 A91-39736	p 629 N91-23164	COMPRESSED GAS
CIRCULATION Simulation of the flow past an impulsively started cylinder	Fuel-rich, catalytic reaction experimental results	An isentropic compression-heated Ludweig tube transient wind tunnel p 673 A91-36450
using a discrete vortex method	[NASA-TM-104423] p 662 N91-24203	COMPRESSIBILITY EFFECTS
[AD-A233066] p 683 N91-24533	COMBUSTION CHAMBERS	An efficient hybrid scheme for the solution of rotational
CIRCULATION CONTROL AIRFOILS	Design and development of aviation gas turbine engines Russian book p 657 A91-39201	flow around advanced propellers p 629 N91-24104
Aerodynamic calculation of tandem wings in supersonic flow by means of SLLT p 614 A91-36724	Design techniques for dual mode ram-scramjet	On the instability of hypersonic flow past a wedge
flow by means of SLLT p 614 A91-36724 Dynamic stall of an oscillating circulation control airfoil	combustors p 659 N91-23166	p 621 A91-39922
p 617 A91-38677	Analytical and experimental investigations of the oblique	COMPRESSIBLE FLOW
CIVIL AVIATION	detonation wave engine concept p 660 N91-23169	Structure of the compressible turbulent shear layer
The English summer of 1990 - Further progress towards	A CFD study of jet mixing in reduced flow areas for	p 616 A91-37830 Block multigrid implicit solution of the Euler equations
deregulation of the aviation and travel industry p 690 A91-37801	lower combustor emissions [NASA-TM-104411] p 661 N91-23185	of compressible fluid flow p 616 A91-37836
Air travel - System relating flight safety, aircraft, and	The effects of controlling vortex formation on the	Unsteady wave structure near separation in a Mach 5
airports p 634 A91-38527	performance of a dump combustor p 672 N91-23270	compression ramp interaction p 616 A91-37838
Aeronautical research in the United States - Challenges	Mixing of multiple jets with a confined subsonic	Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950
for the 1990's p 612 A91-38580 Euler analysis of a High-Speed Civil Transport concept	crossflow. Summary of NASA-supported experiments and	approach p 623 A91-39950 Second mode interactions in supersonic boundary
at Mach 3 p 624 A91-40217	modeling [NASA-TM-104412] p 662 N91-24202	layers p 623 A91-39957
Engine technology challenges for a 21st century high	An experimental evaluation of combustor liner materials	Procedure for determination of three-dimensional wind
speed civil transport	for solid fuel ramjet testing p 670 N91-24289	tunnel wall interferences and wall adaptation in
[NASA-TM-104363] p 636 N91-23098	COMBUSTION EFFICIENCY	compressible subsonic flow using measured wall pressures
Do civil flying qualities requirements address military missions for off-the-shelf procurement	A CFD study of jet mixing in reduced flow areas for	[DLR-FB-90-46] p 628 N91-23088
p 650 N91-23115	lower combustor emissions	Block implicit multigrid solution of the Euler equations
An investigation into the use of side-arm control for civil	[NASA-TM-104411] p 661 N91-23185	p 680 N91-23413
rotorcraft applications p 667 N91-23123	Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203	Euler flow predictions for an oscillating cascade using
Integration of propulsive systems: Selection and	An experimental evaluation of combustor liner materials	a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107
compromise [REPT-911-111-101] p 661 N91-23187	for solid fuel ramjet testing p 670 N91-24289	COMPRESSOR BLADES
Observatory of new materials. Evolution perspectives	COMBUSTION PHYSICS	Residual stress control in developing processes for the
for the materials used in civil transportation aircraft	Kinetic study of a homogeneous propellant primary	manufacture of compressor blades for gas turbine
[REPT-911-111-107] p 672 N91-23248	flame, with and without additive p 671 A91-39690	engines p 674 A91-37269

COMPRESSOR ROTORS	
Experimental investigation of loading effects on	
compressor trailing-edge flowfields p 615 A91-37420	1
Computation of three-dimensional flow fields through compressor blade rows p 625 A91-40375	CC
A new facility to study three dimensional viscous flow	1
and rotor-stator interaction in turbines	
p 682 N91-24336 Viscous design and analysis methods for transonic	1
compressor blading	
[AD-A232902] p 682 N91-24530	,
COMPRESSOR ROTORS Effects of inlet distortion on the development of	(
secondary flows in a subsonic axial inlet compressor	
rotor	
[NASA-TM-104356] p 660 N91-23179 A new facility to study three dimensional viscous flow	t [
and rotor-stator interaction in turbines	ı
p 682 N91-24336	9
COMPUTATIONAL FLUID DYNAMICS Aerodynamic calculation of tandem wings in supersonic	[
flow by means of SLLT p 614 A91-36724	į
A comparison between computation and experiment for flows around airfoil with slat and flap	ſ
p 616 A91-37780	į
Interactive three-dimensional boundary-layer method for	f
transonic flow over swept wings p 616 A91-37829 Numerical study of hypersonic dissociated air past blunt	[
bodies p 616 A91-37835	i
Block multigrid implicit solution of the Euler equations	Į
of compressible fluid flow p 616 A91-37836 Three-dimensional composite velocity solutions for	r
subsonic/transonic flow p 616 A91-37841	(
Airfoil design method using the Navier-Stokes	•
equations p 646 A91-38550 Application of vortex dynamics to simulations of	CO
two-dimensional wakes p 676 A91-38706	,
Temporally and spatially resolved flow in a two-stage	
axial compressor. II - Computational assessment [ASME PAPER 90-GT-299] p 620 A91-39048	CO
Secondary frequencies in the wake of a circular cylinder	-
with vortex shedding p 620 A91-39736	c
Direct numerical study of crossflow instability p 678 A91-39956	r
Second mode interactions in supersonic boundary	co
layers p 623 A91-39957	
Euler analysis of a High-Speed Civil Transport concept at Mach 3 p 624 A91-40217	(
Low-order panel method for internal flows	it
p 625 A91-40225	f
A new pseudo-potential function model for rotational flow and its application to transonic-supersonic flow	co
p 625 A91-40373	•
Computation of three-dimensional flow fields through compressor blade rows p 625 A91-40375	
compressor blade rows p 625 A91-40375 Analysis of numerical solutions for three-dimensional	
lifting wing flows p 625 A91-40498	p
Fluid dynamics for the study of transonic flow Book	_
p 625 A91-40513 Euler calculations of unsteady transonic flow in	Ţ
cascades	
[AIAA PAPER 91-1104] p 626 A91-40562 Hypersonic Combined Cycle Propulsion	r
[AGARD-CP-479] p 657 N91-23147	
Hypersonic propulsion: Status and challenge	h
ρ 658 N91-23153 Analytical and experimental investigations of the oblique	s
detonation wave engine concept p 660 N91-23169	9
Viscous three-dimensional analyses for nozzles for	[-
hypersonic propulsion p 629 N91-23175 Computation of inlet reference plane flow-field for a	а
subscale free-jet forebody/inlet model and comparison to	fe
experimental data	[
[AD-A232101] p 680 N91-23445 Transonic Symposium: Theory, Application and	a
Experiment, volume 2	p
[NASA-CP-3020-VOL-2] p 634 N91-24132	[
Advanced Hypervelocity Aerophysics Facility Workshop	tr
[NASA-CP-10031] p 669 N91-24211	[1
Advanced computational models for analyzing high	
speed propulsive flowfields p 686 N91-24291 Coolant side heat transfer with rotation. Task 3 report:	a [1
Application of computational fluid dynamics	
[NASA-CR-182109] p 683 N91-24551	fo
Enhancing aeropropulsion research with high-speed interactive computing	a [1
[NASA-TM-104374] p 687 N91-24796	ι,
COMPUTATIONAL GRIDS	ir
Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834	fo [1
Transonic analysis and design using an improved grid	
p 624 A91-40137 Reacting shock waves in hypersonic propulsion	s

p 629 N91-23174

Block implicit multigrid solution of the Euler equations p 680 N91-23413

```
compromise
ertification
```

```
Coolant side heat transfer with rotation. Task 3 report:
   Implicit solvers for unstructured meshes
                                       p 633 N91-24125
  NASA-CR-187564]
                                                                    Application of computational fluid dynamics
                                                                    [NASA-CR-182109]
                                                                                                           p 683 N91-24551
 MPUTER AIDED DESIGN
                                                                      Simulation of a combined-cycle engine
   The introduction of off-line programming techniques for
                                                                    [NASA-CR-188232]
                                                                                                           p 683 N91-24583
  he robotic assembly of aircraft structures
                                       p 611 A91-36898
  SME PAPER MS90-276]
                                                                      Signal processing of aircraft flyover noise
   Automated CAD design for sculptured airfoil surfaces
                                                                                                           p 690 N91-24845
                                                                    [NASA-CR-187546]
                                                                 COMPUTER SYSTEMS DESIGN
  SME PAPER MS90-744]
                                       p 673 A91-36943
  CAPP imitative system of aircraft assembly --- Computer ided Process Planning p 611 A91-37061
                                                                      NASA-LaRc Flight-Critical Digital Systems Technology
                                                                    Workshop
[NASA-CP-10028]
  Aided Process Planning
                                                                                                           p 655 N91-24200
   The development and research on CAD for education
                                                                  COMPUTER SYSTEMS PERFORMANCE
  n aircraft design p 686 A91-38234
Aircraft design for maintainability p 612 A91-38546
 on aircraft design
                                                                    Enhancing aeropropulsion research with high-speed interactive computing
   A computer aided multivariable control systems design
                                                                    [NASA-TM-104374]
                                                                                                          p 687 N91-24796
 technique with application to aircraft flying qualities
[AD-A232549] p 653 N91-23144
                                                                 COMPUTER SYSTEMS PROGRAMS
                                                                      Enhancing aeropropulsion research with high-speed
  Integration of propulsive systems: Selection and
                                                                    interactive computing
  REPT-911-111-101]
                                       p 661 N91-23187
                                                                    INASA-TM-1043741
                                                                                                          p 687 N91-24796
   A general multiblock Euler code for propulsion
                                                                  COMPUTER TECHNIQUES
  ntegration. Volume 1: Theory document
                                                                      Influence of the refinement of structural calculation on
 NASA-CR-187484-VOL-1] p 632 N91-24120
A general multiblock Euler code for propulsion
                                                                    aircraft qualification procedures
                                                                                                          p 684 N91-24649
                                                                 COMPUTERIZED SIMULATION
                                                                    Temporally and spatially resolved flow in a two-stage axial compressor. II - Computational assessment
  ntegration. Volume 2: User guide for BCON, pre-processor
 for grid generation and GMBE
[NASA-CR-187484-VOL-2]
                                                                                                          p 620 A91-39048
                                       p 632 N91-24121
                                                                    [ASME PAPER 90-GT-299]
  A general multiblock Euler code for propulsion
                                                                      Simulation of G(x) forces using horizontal impulse
                                                                                                           p 668 A91-39396
  ntegration. Volume 3: User guide for the Euler code
                                                                    accelerators
  NASA-CR-187484-VOL-3]
                                                                     Angle-only tracking filter in modified spherical
                                       p 632 N91-24122
 A system approach to aircraft optimization
NASA-TM-104074] p 654 N91-24196
The role of structural analysis in airworthiness
                                                                                                           p 643 A91-39433
                                                                    coordinates
                                                                      Lateral-direction tracking requirements from simulation
                                                                    data
                                                                                                          p 686 A91-39436
                                       p 684 N91-24647
                                                                     Further experiments on vortex formation around an
  MPUTER AIDED MANUFACTURING
                                                                   oscillating and translating airfoil at large incidences
  CAPP imitative system of aircraft assembly --- Computer
                                                                                                          p 620 A91-39738
                                                                      Model for IR sensor performance evaluation - pplications and results p 656 A91-39890
  lided Process Planning
                                       p 611 A91-37061
  A system approach to aircraft optimization
                                                                    Applications and results
                                       p 654 N91-24196
  NASÁ-TM-1040741
                                                                     Synchronous iterative method for computation of vortex
  MPUTER DESIGN
                                                                                                          p 624 A91-40126
                                                                    flows at high angles of attack
  Design and implementation of real-time computer
                                                                      Icing simulation: A survey of computer models and
 hetenibron
               force
                         actuating
                                        system
                                                                    experimental facilities
  nulti-input/output
                                                                   [NASA-TM-104366]
                                                                                                          p 628 N91-23087
 AD-A2331141
                                       p 687 N91-24768
                                                                     A CFD study of jet mixing in reduced flow areas for
  MPUTER GRAPHICS
                                                                   lower combustor emissions
[NASA-TM-104411]
  A dynamic analysis of the SRB parachute system

AIAA PAPER 91-0838] p 670 A91-40555

A general multiblock Euler code for propulsion
                                                                                                          p 661 N91-23185
  AIAA PAPER 91-0838]
                                                                     Computerized system for static and fatigue large scale
                                                                    structural tests: A case study
 Integration. Volume 2: User guide for BCON, pre-processor for grid generation and GMBE

NASA-CR-187484-VOL-2] p 632 N91-24121
                                                                   [IAITIC-87-1007]
                                                                                                          p 681 N91-23522
                                                                     An initial investigation into methods of computing
                                       p 632 N91-24121
                                                                   transonic aerodynamic sensitivity coefficients
  MPUTER PROGRAMS
                                                                   [NASA-CR-188192]
                                                                                                          p 629 N91-24099
  Development and demonstration of CREST subsystems
  - computer program for ejection seats
                                                                      LIDAR studies on microbursts
                                                                                                          p 639 N91-24167
                                       p 646 A91-39380
                                                                      Average-passage flow model development
  Application of multiple-input/single-output analysis
                                                                                                          p 682 N91-24338
  rocedures to flight test data
                                       p 647 A91-39420
                                                                      Simulation of a combined-cycle engine
  Aerodynamic preliminary analysis system 2. Part 1:
                                                                   [NASA-CR-188232]
                                                                                                          p 683 N91-24583
                                                                      Validation of in-house and external software systems
  NASÁ-CR-182076]
                                       p 626 N91-23080
                                                                                                          p 687 N91-24640
  Theoretical and experimental performance of a solid fuel
                                                                     Evaluation of the qualification of the structure of a
 amjet combustion cycle for hypersonic flight conditions
                                      p 660 N91-23170
                                                                   passenger aircraft by analysis and full-scale testing
                                                                                                          p 684 N91-24645
  Viscous three-dimensional analyses for nozzles for
                                                                     Enhancing aeropropulsion research with high-speed
                                       p 629 N91-23175
 ypersonic propulsion
                                                                   interactive computing [NASA-TM-104374]
  Computation of inlet reference plane flow-field for a
                                                                                                          p 687 N91-24796
  ubscale free-let forebody/inlet model and comparison to
                                                                 COMPUTERS
                                                                   National remote computational flight research facility
[NASA-CR-179432] p 668 N91-24210
                                       p 680 N91-23445
  AD-A2321011
                                                                                                          p 668 N91-24210
  Unified aeroacoustics analysis for high speed turboprop
                                                                 CONCORDE AIRCRAFT
  erodynamics and noise. Volume 3: Application of theory
                                                                     Surface activation of Concorde by Be-7
  or blade loading, wakes, noise, and wing shielding
  NASA-CR-185193]
                                       p 688 N91-23850
                                                                                                          p 690 N91-24983
 Unified aeroacoustics analysis for high speed turboprop 
aerodynamics and noise. Volume 5: Propagation of
                                                                 CONFERENCES
                                                                     Fluid Machinery Forum - 1990; ASME Spring Meeting,
                                                                   University of Toronto, Canada, June 4-7, 1990, Proceedings p 676 A91-38869
  ropeller tone noise through a fuselage boundary layer
  VASA-CR-185195] p 689 N91-23852
An initial investigation into methods of computing
  NASA-CR-1851951
                                                                     Laminar-turbulent transition; Proceedings of the IUTAM
  ansonic aerodynamic sensitivity coefficients
                                                                   Symposium, Ecole Nationale Superieure de l'Aeronautique
  NASA-CR-1881921
                                      p 629 N91-24099
                                                                   et de l'Espace, Toulouse, France, Sept. 11-15, 1989
  Euler flow predictions for an oscillating cascade using
                                                                                                          p 677 A91-39901
 high resolution wave-split scheme
NASA-TM-104377]
                                                                   Flying Qualities [AGARD-CP-508]
                                     p 630 N91-24107
                                                                                                          p 649 N91-23108
  Developing and utilizing an Euler computational method
                                                                     Airborne Wind Shear Detection and Warning Systems:
 or predicting the airframe/propulsion effects for an 
ft-mounted turboprop transport. Volume 2: User guide
                                                                   Third Combined Manufacturers' and Technologists'
                                                                   Conference, part 2
 NASA-CR-181924-VOL-2] p 632 N91-24119
A general multiblock Euler code for propulsion
ntegration. Volume 2: User guide for BCON, pre-processor
                                                                   [NASA-CP-10060-PT-2]
                                                                                                          p 636 N91-24140
                                                                     Analytical Qualification of Aircraft Structures
                                                                   [AGARD-R-772]
                                                                                                          p 683 N91-24638
 or grid generation and GMBE
NASA-CR-187484-VOL-21
                                                                 CONICAL FLOW
                                      p 632 N91-24121
                                                                   Inception length to a fully developed, fin-generated, shock-wave, boundary-layer interaction
  The effects on aerodynamic performance of designing
  upersonic wings for laminar flow control
                                     p 654 N91-24197
                                                                                                          p 617 A91-37842
  AD-A233040]
                                                                 CONSTRAINTS
  Application of cyclic damage accumulation life prediction
                                                                     The limits of the landing process of aircraft
model to high temperature components
                                                                   [DLR-FB-90-49]
                                                                                                          p 653 N91-23137
                                      p 681 N91-24309
```

applications

CONSTRUCTION	Determination of decision-height windows for	CRASHWORTHINESS
Design and construction of a composite airframe for	decelerating IMC approaches in helicopters	Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157
UAV research	p 667 N91-23124	
[AD-A232422] p 653 N91-23143	Integration of handling quality aspects into the	
CONSTRUCTION MATERIALS	aerodynamic design of modern unstable fighters	CREEP TESTS
Literature review on geotextiles to improve pavements	p 667 N91-23125	Modeling of creep-fatigue interaction effects on crack
for general aviation airports	Handling qualities evaluation for highly augmented helicopters p 651 N91-23128	growth p 670 A91-38802
[AD-A232871] p 669 N91-23199	helicopters p 651 N91-23128 A review of high angle of attack requirements for combat	CREWS
CONTAMINATION		A test of the American Safety Flight Systems, Inc.
An experimental investigation of vortex pair interaction		prebreather/portable oxygen system
with a clean or contaminated free surface	X-31A at first flight p 651 N91-23131 Evaluation techniques for highly augmented aircraft	[AD-A232723] p 636 N91-23100
p 680 N91-23419		CRITERIA
CONTINUOUS WAVE LASERS	[DLR-FB-90-35] p 667 N91-23191 Soft hub for bearingless rotors	Evaluation of automation for inspection of aging
Continuous wave laser for wind shear detection		aircraft p 613 N91-24088
p 637 N91-24142	Contract and Contract	CROSS FLOW
CONTRAROTATING PROPELLERS	CONTROLLERS An initial study into the influence of control stick	Experimental and theoretical analysis of natural
An efficient hybrid scheme for the solution of rotational	characteristics on the handling qualities of a fly-by-wire	transition on 'infinite' swept wing p 621 A91-39927
flow around advanced propellers p 629 N91-24104	helicopter p 651 N91-23122	Cross-flow instability of 3-D boundary tayers on a flat
CONTROL CONFIGURED VEHICLES	Design and implementation of real-time computer	plate p 622 A91-39931
Decoupled flight control via a model-following technique	coordinated force actuating system with	Experiments on swept-wing boundary layers
using the Euler operator p 664 A91-37595	multi-input/output	p 622 A91-39932
CONTROL STABILITY	[AD-A233114] p 687 N91-24768	Development and interaction of instabilities in the
Control law synthesis and stability robustness	CONVECTIVE HEAT TRANSFER	crossflow field p 622 A91-39938
improvement using constrained optimization techniques	Simulation of brush insert for leading-edge-passage	Direct numerical study of crossflow instability
p 686 A91-37591	convective heat transfer	p 678 A91-39956
·	[NASA-TM-103801] p 679 N91-23409	
CONTROL STICKS	Aero-thermal investigation of a highly loaded transonic	Experiments on the unsteadiness associated with a ground vortex p 624 A91-40220
An initial study into the influence of control stick	linear turbine guide vane cascade. A test case for inviscid	9· · · · · · · · · · · · · · · · · · ·
characteristics on the handling qualities of a fly-by-wire	and viscous flow computations	Passive laminar flow control of crossflow vorticity
helicopter p 651 N91-23122	[VKI-TN-174] p 680 N91-23437	[NASA-CASE-LAR-13563-1] p 679 N91-23410
CONTROL SURFACES	CONVERGENCE	Mixing of multiple jets with a confined subsonic
Research on aerodynamic control of blade tip clearance	Implicit solvers for unstructured meshes	crossflow. Summary of NASA-supported experiments and
flow in air-cooled turbine	[NASA-CR-187564] p 633 N91-24125	modeling
[DE91-764223] p 660 N91-23182	COOLING SYSTEMS	[NASA-TM-104412] p 662 N91-24202
CONTROL SYSTEMS DESIGN	Research on aerodynamic control of blade tip clearance	CRUISE MISSILES
Decoupled flight control via a model-following technique	flow in air-cooled turbine	Small Engine Component Technology (SECT) studies
using the Euler operator p 664 A91-37595	[DE91-764223] p 660 N91-23182	[NASA-CR-175080] p 663 N91-24206
On digital electronic control system of aircraft engine	Coolant side heat transfer with rotation. Task 3 report:	CRUISING FLIGHT
p 657 A91-38209	Application of computational fluid dynamics	Long-range aircraft are in demand
Evolution of airplane stability and control - A designer's	[NASA-CR-182109] p 683 N91-24551	p 611 A91-36353
viewpoint p 665 A91-39401	CORIOLIS EFFECT	Euler analysis of a High-Speed Civil Transport concept
Integration of four-dimensional guidance with total	Visual study of boundary layer transition on rotating flat	at Mach 3 p 624 A91-40217
energy control system integrated autopilot/autothrottle	plate p 623 A91-39941	CRYOGENICS
control system design p 665 A91-39410	CORROSION RESISTANCE	Development of a quiet supersonic wind tunnel with a
Robust eigenstructure assignment with structured state	Composites for a widebody p 612 A91-39852	cryogenic adaptive nozzle
space uncertainty p 686 A91-39417	COST EFFECTIVENESS	[NASA-CR-186769] p 669 N91-23195
Hot gas ingestion test results of a two-poster vectored	The costs and benefits of aircraft availability	National Transonic Facility status p 669 N91-24133
Hot gas ingestion test results of a two-poster vectored	[AD-A232660] p 613 N91-23076	CUES
thrust concept with flow visualization in the NASA Lewis		
9- by 15-foot low speed wind tunnel	Simulation evaluation of a speed-guidance law for Harrier	The flying qualities influence of delay in the fighter pilot's
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561	Simulation evaluation of a speed-guidance law for Harrier approach transitions	cuing environment p 650 N91-23120
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209	cuing environment p 650 N91-23120 CYCLES
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102653] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study.	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-CR-1726077] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse decing
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102653] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse decing
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor Design and implementation of real-time computer coordinated force actuating system with	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102653] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-IB high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D D D D D D AMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A23549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 684 A91-37799 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-3779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-3772	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D D D D AMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components P 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack prown p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth in monolithic titanium aluminides p 670 A91-38809	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 688 N91-24843
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D D D D AMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116 The handling qualities of the STOL and maneuver	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack prowth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES Differential GPS terminal area test results
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116 The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth modeling at elevated temperature using fracture mechanics p 670 A91-38809 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38804	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft extenior noise measurement and analysis techniques (AGARD-AG-300-VOL-9) p 689 N91-24843 DATA BASES Differential GPS terminal area test results [AD-A232668] p 644 N91-23106
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth in monolithic titanium aluminides p 670 A91-38809 Fatigue crack growth in monolithic titanium aluminides p 670 A91-38809 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D D D D D AMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES Differential GPS terminal area test results [AD-A232668] An overview of information resources in aviation
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-IB high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 586 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116 The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 Metrics for roll response flying qualities	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 CRACKS	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack prown p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES Differential GPS terminal area test results [AD-A232668] p 644 N91-23106 An overview of information resources in aviation
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 666 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGAPD-FMP working group effort p 666 N91-23117 The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 Metrics for roll response flying qualities	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATES Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Smäll Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INTIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth modeling at elevated temperature using fracture mechanics p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 CRACKS Feasibility study in crack detection in aircraft stiffened	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces p 676 A91-38776 D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24193 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft extenior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES Differential GPS terminal area test results [AD-A232668] p 644 N91-23106 An overview of information resources in aviation p 690 N91-24091 Suckdown, fountain lift, and pressures induced on
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Unsteady flow structure from swept edges subjected to controlled motion [AD-A232714] p 628 N91-23094 B-IB high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127 A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 CONTROL THEORY Control law synthesis and stability robustness improvement using constrained optimization techniques p 586 A91-37591 Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 CONTROLLABILITY The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116 The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 Metrics for roll response flying qualities	Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 COST ESTIMATE9 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 513 N91-23077 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 COUNTER ROTATION An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104 COUPLES Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 CRACK GEOMETRY Identification strategies for crack shape determination in rotors p 679 A91-40234 CRACK INITIATION Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158 Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 CRACK PROPAGATION Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 CRACKS	cuing environment p 650 N91-23120 CYCLES Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 CYCLIC LOADS Modeling of creep-fatigue interaction effects on crack prown p 670 A91-38802 Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Analytical methods for the qualification of helicopter structures p 684 N91-24650 CYLINDRICAL SHELLS Flexural waves induced by electro-impulse deicing forces D DAMAGE Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157 DAMAGE ASSESSMENT Application of cyclic damage accumulation life prediction model to high temperature components p 681 N91-24309 DATA ACQUISITION National Transonic Facility status p 669 N91-24133 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843 DATA BASES Differential GPS terminal area test results [AD-A232668] p 644 N91-23106 An overview of information resources in aviation

volume 2 [AD-A232907]

The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,

p 641 N91-24187

Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft

An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122

An investigation into the use of side arm and the sid

An investigation into the use of side-arm control for civil otorcraft applications p 667 N91-23123

rotorcraft applications

p 643 A91-39187

DATA LINKS
Flight tests show potential benefits of data link as primary communication medium p 643 A91-38577

DATA PROCESSING
Functional-adaptive data processing in airborne radio

navigation and landing systems

AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques	Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle	Airborne radar simulation studies of the Denver July 11, 1988 microburst p 638 N91-24155
[AGARD-AG-300-VOL-9] p 689 N91-24843	[NASA-CR-186769] p 669 N91-23195	RADAR performance experiments
DATA PROCESSING EQUIPMENT Evaluation of the performance of a RISC based real	A computationally efficient modelling of laminar separation bubbles p 680 N91-23411	p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst
time data processor in air traffic control radar	separation bubbles p 680 N91-23411 Soft hub for bearingless rotors	p 685 N91-24170
applications p 642 A91-37145	[NASA-CR-177586] p 654 N91-24198	Microburst avoidance simulation tests
DATA RECORDERS Recent escape system parachute efforts at Douglas	Viscous design and analysis methods for transonic	p 639 N91-24172 Orlando experiment p 640 N91-24177
Aircraft Company p 635 A91-39393	compressor blading	Integration of the TDWR and LLWAS wind shear
DATA TRANSMISSION	[AD-A232902] p 682 N91-24530 Nonlinear analysis of composite shear webs with holes	detection system p 640 N91-24178
SATURN: The next generation radio for NATO	and correlation with tests p 684 N91-24642	DOUBLE BASE PROPELLANTS Kinetic study of a homogeneous propellant primary
p 682 N91-24475 DECELERATION	The role of analysis in the design and qualification of	flame, with and without additive p 671 A91-39690
Simulation evaluation of a speed-guidance law for Harrier	composite aircraft structures p 684 N91-24648	DOWNBURSTS
approach transitions	Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649	An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147
[NASA-TM-102853] p 668 N91-24209 DECISION MAKING	DETECTION	altitude wind shear p 637 N91-24147 DOWNWASH
Some analysis of decision-making in the test	Continuous wave laser for wind shear detection	A vortex panel method for calculating aircraft downwash
manufacture of military aircraft	p 637 N91-24142	on parachute trajectories
[AD-A233111] p 613 N91-24093 DEFORMATION	Status of 2 micron laser technology program p 637 N91-24143	[AIAA PAPER 91-0875] p 626 A91-40557 A vortex panel method for calculating aircraft downwash
The computation of induced drag with nonplanar and	Avionic laser multisensor program at Litton Aero	on parachute trajectories
deformed wakes p 630 N91-24106	Products p 637 N91-24144	[DE91-009764] p 627 N91-23085
DEGREES OF FREEDOM	Saberliner flight test for airborne wind shear forward	Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095
Transonic flutter analysis of 2-D airfoils with 2 degrees of freedom p 665 A91-40169	looking detection and avoidance radar systems p 637 N91-24149	DRAG CHUTES
Preference for an inertial degree of freedom describing	Signal processing techniques for clutter filtering and wind	A dynamic analysis of the SRB parachute system
the tester motion of windturbine and helicopter rotors	shear detection p 638 N91-24154	[AIAA PAPER 91-0838] p 670 A91-40555
p 679 A91-40239 DEICERS	Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution	DRAG REDUCTION Dialogue on progress and issues in stability and transition
Advanced ice protection systems test in the NASA Lewis	p 654 N91-24158	research p 677 A91-39902
icing research tunnel	LIDAR studies on microbursts p 639 N91-24167	Passive laminar flow control of crossflow vorticity
[NASA-TM-103757] p 661 N91-23183	Thermodynamic Alerter for Microbursts (TAMP)	[NASA-CASE-LAR-13563-1] p 679 N91-23410 Nonlinear Aerodynamics and the Design of Wing Tips
DEICING Flexural waves induced by electro-impulse deicing	p 640 N91-24179 Evaluation of cloud detection instruments and	[NASA-CR-188044] p 630 N91-24105
forces p 676 A91-38776	performance of laminar-flow leading-edge test articles	DROP SIZE
Icing simulation: A survey of computer models and	during NASA Leading-Edge Flight-Test Program	Airblast atomization at conditions of low air velocity p 674 A91-37410
experimental facilities [NASA-TM-104366] p 628 N91-23087	[NASA-TP-2888] p 655 N91-24199 DETONATION WAVES	DROP TESTS
Advanced ice protection systems test in the NASA Lewis	Performance characteristics of hypersonic detonation	A numerical method for simulating drop test of landing
icing research tunnel	wave ramjets p 659 N91-23168	gears p 648 A91-40174
[NASA-TM-103757] p 661 N91-23183 DELTA WINGS	Analytical and experimental investigations of the oblique detonation wave engine concept p 660 N91-23169	Landing gear drop testing p 648 A91-40203 DROPS (LIQUIDS)
Entropy effects of hypersonic flow past blunt delta	detonation wave engine concept p 660 N91-23169 DIFFRACTION	Water droplet impingement on airfoils and aircraft engine
wings p 615 A91-37181	Unified aeroacoustics analysis for high speed turboprop	inlets for icing analysis p 634 A91-38543
Unsteady aerodynamic loading of delta wings for low	aerodynamics and noise. Volume 2: Development of theory	DUCTED FLOW Low-order panel method for internal flows
and high angles of attack p 617 A91-38680 Visualization of the flow about a delta wing maneuvering	for wing shielding [NASA-CR-185192] p 688 N91-23849	p 625 A91-40225
in pitch to very high angle of attack p 618 A91-38684	DIGITAL SIMULATION	Mixing of multiple jets with a confined subsonic
Static measurements of slender delta wing rolling	The design and simulation of an intelligent flight control	crossflow. Summary of NASA-supported experiments and
moment hysteresis p 625 A91-40223 The performance of 60 deg delta wings: The effects	system p 665 A91-40133	modeling [NASA-TM-104412] p 662 N91-24202
of leading edge radius on vortex flaps and the wing	DIGITAL SYSTEMS ADFCS and NOTAR (trademark): Two ways to fix flying	DUMP COMBUSTORS
[CRANFIELD-AERO-9004] p 628 N91-23092	qualities p 650 N91-23110	The effects of controlling vortex formation on the
Unsteady flow structure from swept edges subjected	A field-deployable digital acoustic measurement	performance of a dump combustor p 672 N91-23270 DURABILITY
to controlled motion [AD-A232714] p 628 N91-23094	system p 689 N91-24078 NASA-LaRc Flight-Critical Digital Systems Technology	Environmental exposure effects on composite materials
The performance of 60 deg delta wings: The effects	Workshop	for commercial aircraft
of leading edge radius and vortex flaps	[NASA-CP-10028] p 655 N91-24200	[NASA-CR-187478] p 672 N91-24358 DYNAMIC CHARACTERISTICS
[CRANFIELD-AERO-9002] p 653 N91-23140 An experimental investigation of vortex pair interaction	DIMENSIONAL ANALYSIS An initial investigation into methods of computing	A dynamic analysis of the SRB parachute system
with a clean or contaminated free surface	transonic aerodynamic sensitivity coefficients	[AIAA PAPER 91-0838] p 670 A91-40555
p 680 N91-23419	[NASA-CR-188192] p 629 N91-24099	An initial study into the influence of control stick
Breaking down the delta wing vortex: The role of vorticity in the breakdown process	DIRECTIONAL CONTROL ADFCS and NOTAR (trademark): Two ways to fix flying	characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122
[NASA-CR-188235] p 630 N91-24109	qualities p 650 N91-23110	DYNAMIC LOADS
An experimental analysis of critical factors involved in	DISPLAY DEVICES	Landing gear drop testing p 648 A91-40203
the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198	DYNAMIC MODELS Normalized predictive deconvolution - Multichannel
DEPLOYMENT	[AD-A232671] p 669 N91-23198 DOORS	time-series applications to human dynamics
Deployment optimization and human factors	Spot welded thermoplastic composite access door	p 686 A91-37584
considerations for low-attitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559	[SME PAPER EM90-489] p 645 A91-36942	A new system for unsteady aerodynamics of moving wall p 618 A91-38695
DESIGN ANALYSIS p 635 Ma1-40559	DOPPLER EFFECT Measurement of clutter suppression using a	Further research on mechanical model for 'ground
Airfoil design method using the Navier-Stokes	Quadrahedral p 674 A91-37106	resonance' of helicopters p 665 A91-40164
equations p 646 A91-38550	DOPPLER RADAR	Reacting shock waves in hypersonic propulsion applications p 629 N91-23174
Designing with composites - A study of design process p 646 A91-38752	Clutter rejection in Doppler weather radars used for alroort wind shear detection p 685 A91-37104	applications p 629 N91-23174 DYNAMIC RESPONSE
Aerodynamic preliminary analysis system 2. Part 2:	Pulse Doppler signature of a rotary-wing aircraft	Air surveying and data analysis for dynamic response
User's manual	p 643 A91-39756	of missiles at swept-back wing tip p 647 A91-40156
[NASA-CR-182077] p 627 N91-23081 MIL-STD-1797 is not a cookbook p 650 N91-23111	Airborne Wind Shear Detection and Warning Systems:	The nonlinear dynamic response analysis of the front windshield of Y12 under 'bird-impact' loads
A new architecture and expert system for aircraft design	Third Combined Manufacturers' and Technologists' Conference, part 2	p 648 A91-40158
synthesis p 652 N91-23132	[NASA-CP-10060-PT-2] p 636 N91-24140	A numerical method for simulating drop test of landing
Application of multidisciplinary optimization methods to	CLASS: Coherent Lidar Airborne Shear Sensor.	gears p 648 A91-40174 Prediction of test spectrum for gunfire vibration
the design of a supersonic transport [NASA-TM-104073] p 652 N91-23135	Windshear avoidance [LMSC-F-415048] p 636 N91-24141	p 666 A91-40175
Design techniques for dual mode ram-scramjet	Continuous wave laser for wind shear detection	Integrated multidisciplinary optimization of actively
combustors p 659 N91-23166	p 637 N91-24142	controlled fiber composite wings p 667 N91-23190 DYNAMIC STABILITY
Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168	Status of turbulence Prediction System's AWAS 3 p 637 N91-24146	Further research on mechanical model for 'ground
The 2-D supersonic nozzle design	Wind Shear radar program future plans	resonance' of helicopters p 665 A91-40164
p 660 N91-23176	p 637 N91-24151	DYNAMIC STRUCTURAL ANALYSIS
Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190	Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152	A general method for rotordynamic analysis p 677 A91-39585
Controller inter controlste wints 0.007 NST-23180	u. 040 P 000 1101-24102	p 0.7 7.07-08303

EXPERT SYSTEMS SUBJECT INDEX

ENVIRONMENT EFFECTS Developing and utilizing an Euler computational method Modal analysis for fibre-carbon composite parts of an The 1989 high-speed civil transport studies for predicting the airframe/propulsion effects for an p 679 A91-40157 airolane p 654 N91-24195 aft-mounted turboprop transport. Volume 2: User guide (NASA-CR-4375) The nonlinear dynamic response analysis of the front p 632 N91-24119 **ENVIRONMENT PROTECTION** [NASA-CR-181924-VOL-2] windshield of Y12 under 'bird-impact' loads A general multiblock Euler code for propulsion US industry enters the green maze --- new environmental p 648 A91-40158 integration. Volume 1: Theory document regulations affecting aerospace companies DYNAMIC TESTS p 685 A91-37049 [NASA-CR-187484-VOL-1] p 632 N91-24120 p 638 N91-24161 Crashworthiness experiments A general multiblock Euler code for propulsion ENVIRONMENTAL TESTS Similarities and differences between environment tests integration. Volume 2: User guide for BCON, pre-processor for grid generation and GMBE [NASA-CR-187484-VOL-2] Ε and reliability tests in view of vibration p 632 N91-24121 p 665 A91-40166 A general multiblock Euler code for propu integration. Volume 3: User guide for the Euler code code for propulsion **EQUATIONS OF MOTION** EFFECTIVE PERCEIVED NOISE LEVELS Preference for an inertial degree of freedom describing AGARD flight test techniques series. Volume 9: Aircraft p 632 N91-24122 [NASA-CR-187484-VOL-3] the teeter motion of windturbine and helicopter rotors exterior noise measurement and analysis techniques **ENGINE CONTROL** p 679 A91-40239 p 689 N91-24843 FAGARD-AG-300-VOL-91 Sensor failure detection for jet engines A dynamic analysis of the SRB parachute system p 656 A91-37593 **FIGENVALUES** p 670 A91-40555 [AIAA PAPER 91-0838] Robust eigenstructure assignment with structured state On digital electronic control system of aircraft engine ERROR ANALYSIS p 686 A91-39417 space uncertainty p 657 A91-38209 An engineering study of altitude determination An evaluation of stability-based methods for transition **ENGINE DESIGN** deficiencies of the Service Aircraft Instrumentation p 678 A91-39928 Cycle analysis for a supersonic through flow fan p 657 A91-38207 of three-dimensional flows Package (SAIP) **EJECTION INJURIES** engine p 656 N91-23145 [AD-A232055] Toward automating the design of centrifugal impellers p 676 A91-38874 The technical challenges of the crew escape Influence of the refinement of structural calculation on p 612 A91-39392 technologies program p 684 N91-24649 aircraft qualification procedures NASA aeropropulsion research in support of propulsion **EJECTION SEATS ESCAPE SYSTEMS** systems of the 21st century [NASA-TM-104403] Development and demonstration of CREST subsystems Development and demonstration of CREST subsystems p 627 N91-23083 --- computer program for ejection seats A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined --- computer program for ejection seats p 646 A91-39380 p 646 A91-39380 Fighter escape system - The next step forward p 658 N91-23149 Fighter escape system - The next step forward p 646 A91-39382 p 646 A91-39382 cycle aircraft engines) Trajectory optimization considerations for ramjet Ejection seat rocket catapult design for reduced G field p 658 N91-23151 The technical challenges of the crew p 646 A91-39385 engines p 612 A91-39392 Airbreathing propulsion for space transport: New technologies program The Minipac II ejection seat program Recent escape system parachute efforts at Douglas concepts, special problems and attempts at solutions p 647 A91-39390 p 658 N91-23154 p 635 A91-39393 Aircraft Company the crew escape The technical challenges of Analytical and experimental investigations of the oblique Hardware-in-the-loop testing of the crest ejection seat technologies program p 612 A91-39392 p 647 A91-39394 detonation wave engine concept p integration of propulsive systems: p 660 N91-23169 control system Hardware-in-the-loop testing of the crest ejection seat **EULER EQUATIONS OF MOTION** Selection and p 647 A91-39394 control system Block multigrid implicit solution of the Euler equations of compressible fluid flow p 616 A91-37836 Simulation of G(x) forces using horizontal impulse p 661 N91-23187 [REPT-911-111-101] p 668 A91-39396 accelerators Euler analysis of a High-Speed Civil Transport concept The certification of the aircraft integrated propulsive Canopy breaking system for non-delay pilot rescue p 624 A91-40217 at Mach 3 p 647 A91-39398 p 661 N91-23188 Euler calculations of unsteady transonic flow in (REPT-911-111-102) **EJECTION TRAINING** Small Engine Component Technology (SECT) studies [NASA-CR-175080] p 663 N91-24206 Simulation of G(x) forces using horizontal impulse p 626 A91-40562 p 663 N91-24206 [AIAA PAPER 91-1104] celerators p 668 A91-39396 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Block implicit multigrid solution of the Euler equations **EJECTORS** p 680 N91-23413 Static performance tests of a flight-type STOVL Aero-thermal investigation of a highly loaded transonic ENGINE FAILURE linear turbine guide vane cascade. A test case for inviscid Sensor failure detection for jet engines [NASA-TM-104437] p 662 N91-24201 p 656 A91-37593 and viscous flow computations ELASTOMERS p 680 N91-23437 [VKI-TN-174] **ENGINE INLETS** Soft hub for bearingless rotors [NASA-CR-177586] An efficient hybrid scheme for the solution of rotational ow around advanced propellers p 629 N91-24104 Mach 4 testing of scramjet inlet models p 654 N91-24198 p 615 A91-37418 flow around advanced propellers **ELECTRIC CHARGE** Euler flow predictions for an oscillating cascade using Experimental investigation on supersonic combustion Prismatic sealed Ni-Cd battery for aircraft power p 657 A91-38203 a high resolution wave-split scheme p 657 A91-38178 p 630 N91-24107 A study of three dimensional turbulent boundary layer [NASA-TM-104377] **ELECTRIC CONTROL** separation and vortex flow control using the reduced Navier Developing and utilizing an Euler computational method The electrical flight control system of A320 Airbus: A Stokes equations for predicting the airframe/propulsion effects for an fault tolerant system aft-mounted turboprop transport. Volume 1: Theory [NASA-TM-104407] p 628 N91-23089 p 667 N91-23192 [REPT-911-111-103] ELECTRIC PULSES A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid [NASA-CR-181924-VOL-1] p 632 N91-24118 Flexural waves induced by electro-impulse deicing Developing and utilizing an Euler computational method dynamics p 676 A91-38776 forces p 633 N91-24131 for predicting the airframe/propulsion effects for an [NASA-TM-104436] **ELECTRODE MATERIALS ENGINE PARTS** aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 Prismatic sealed Ni-Cd battery for aircraft power p 632 N91-24119 Spot welded thermoplastic composite access doo p 657 A91-38178 A general multiblock Euler code for propulsion integration. Volume 1: Theory document [SME PAPER EM90-489] p 645 A91-36942 **ELECTROMAGNETIC SCATTERING** NKK premium quality titanium master alloy for computing the The planar elements method scattering field of flight vehicle A91-40425 NASA-CR-187484-VOL-1] p 632 N91-24120
A general multiblock Euler code for propulsion integration. Volume 2: User guide for BCON, pre-processor p 632 N91-24120 p 672 p 674 A91-37052 Small Engine Component Technology (SECT)
[NASA-CR-175078] p 662 NS **ELECTRONIC CONTROL** p 662 N91-24205 On digital electronic control system of aircraft engine for grid generation and GMBE [NASA-CR-187484-VOL-2] Small Engine Component Techn ology (SECT) studies p 657 A91-38209 p 663 N91-24206 p 632 N91-24121 (NASA-CR-1750B0) A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code [NASA-CR-187484-VOL-3] p 632 N91-24122 **EMERGENCIES** Small Engine Component Technology (SECT) study National airspace system. Communications operational p 663 N91-24208 [NASA-CR-175079] concept NAS-SR-136 Improved silicon carbide for advanced heat engines p 640 N91-24185 IDOT/FAA/SE-91/11 [NASA-CR-182289] p 672 N91-24451 **EUROPEAN AIRBUS** EMERGENCY LOCATOR TRANSMITTERS The certification of the aircraft integrated propulsive ENGINE TESTING LABORATORIES 406 MHz ELT signal spectra for Sarsat A new facility to study three dimensional viscous flow system p 643 A91-39778 p 661 N91-23188 and rotor-stator interaction in turbines [REPT-911-111-102] **EMISSION SPECTRA** p 682 N91-24336 **EXHAUST EMISSION** Signal processing of aircraft flyover noise
[NASA-CR-187546] p 690 A CFD study of jet mixing in reduced flow areas for **ENGINE TESTS** p 690 N91-24845 wer combustor emissions Mach 4 testing of scramjet inlet models **ENERGY TECHNOLOGY** p 615 A91-37418 p 661 N91-23185 [NASA-TM-104411] Activities report of the DLR ogy (SECT) Small Engine Component Technol The 1989 high-speed civil transport studies [ISSN-0938-2194] p 691 N91-24086 [NASA-CR-4375] p 654 N91-24195 p 662 N91-24205 [NASA-CR-175078] ENERGY TRANSFER Small Engine Component Technology (SECT) studies [NASA-CR-175080] p 663 N91-24206 **EXHAUST GASES** An experimental study of an axisymmetric turbulent p 663 N91-24206 Effect of exhaust plume/afterbody interaction on boundary layer disturbed by a periodic freestream Small Engine Component Technology (SECT) study IASA-CR-175079] p 663 N91-24208 p 615 A91-37770 p 626 N91-23078 installed scramiet performance [NASA-CR-175079] EXHAUST NOZZLES Multi-heat addition turbine engine An experimental evaluation of combustor liner materials Hot gas ingestion test results of a two-poster vectored p 660 N91-23180 NASA-CASE-LEW-15094-11 thrust concept with flow visualization in the NASA Lewis p 670 N91-24289 for solid fuel ramiet testing ENGINE AIRFRAME INTEGRATION Model 320-2: A compact advanced UAV turbojet 9- by 15-foot low speed wind tunnel Developing and utilizing an Euler computational method p 663 N91-24292 D 626 A91-40561 [AIAA PAPER 90-2268] for predicting the airframe/propulsion effects for an

aft-mounted turboprop transport. Volume 1: Theory

[NASA-CR-181924-VOL-1]

p 632 N91-24118

ENTROPY

Entropy effects of hypersonic flow past blunt delta

p 615 A91-37181

p 665 A91-40133

EXPERT SYSTEMS

The design and simulation of an intelligent flight control

A new architecture and expert sy		
synthesis	p 652	N91-23132
National remote computational	flight res	earch facility
[NASA-CR-179432]		N91-24210
F		
-14 AIRCRAFT Variable Sweep Transition Fligh	t Experime	ent (VSTFE)

F

Unified Stability System (USS). Description and users' manual p 634 N91-24139

NASA-CR-1819181 F-16 AIRCRAFT

Demonstration of a Laser Ordnance Initiation System in an F-16 sled --- for flight crew escape system p 646 A91-39377

FABRICATION

Fabrication of engineering ceramics by injection planting p 674 A91-37375

FACTORIZATION

Implicit solvers for unstructured meshes

p 633 N91-24125 FAILURE ANALYSIS

Sensor failure detection for jet engines

p 656 A91-37593 Nonlinear analysis of composite shear webs with holes p 684 N91-24642 and correlation with tests Influence of the refinement of structural calculation on p 684 N91-24649 aircraft qualification procedures

FALSE ALARMS

Track initiation using MHT in dense environments Multiple Hypotesis Tracking p 674 A91-37141 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24149

FATIGUE (MATERIALS)

Application of cyclic damage accumulation life prediction model to high temperature components

p 681 N91-24309 Notched fatigue of single crystal PWA 1480 at turbine p 682 N91-24310 attachment temperatures **FATIGUE LIFE**

Modeling of creep-fatigue interaction effects on crack p 670 A91-38802 p 612 A91-39852 growth Composites for a widebody Calculation and experimental study on sonic fatigue life of aircraft structural panels Analytical methods for the qualification of helicopte p 684 N91-24650

FATIGUE TESTS

Computerized system for static and fatigue large scale structural tests: A case study

[IAITIC-87-1007] p 681 N91-23522

FAULT TOLERANCE

The electrical flight control system of A320 Airbus: A fault tolerant system REPT-911-111-1031 p 667 N91-23192

FEEDBACK CONTROL

Automatic aircraft paint stripping p 611 A91-36895 [SME PAPER MS90-280]

FIBER COMPOSITES

Supersonic flutter analysis of clamped symmetric composite panels using shear deformable finite p 675 A91-37847 elements Modal analysis for fibre-carbon composite parts of an p 679 A91-40157 airplana Integrated multidisciplinary optimization of actively p 667 N91-23190 controlled fiber composite wings

FIGHTER AIRCRAFT

Toward enhanced fighter combat effectiveness

p 645 A91-37050 Northrop advanced fighter crew protection system. I Engineering development. II - System development, test p 647 A91-39395 and evaluation A study on sonic load of the vertical tail of F-7 aircraft

p 648 A91-40171 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft

p 666 N91-23114 The flying qualities influence of delay in the fighter pilot's p 650 N91-23120 cuing environment Agility: A rational development of fundamental metrics and their relationship to flying qualities

p 651 N91-23129 p 651 N91-23131 X-31A at first flight structural/flight-control system Buffet induced interaction of the X-29A aircraft

p 652 N91-23133 [NASA-TM-101735] Calculation of high angle of attack aerodynamics of fighter configurations. Volume 1: Steady

p 631 N91-24113 [AD-A233482] Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAB-2

p 631 N91-24114 [AD-A233483]

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady

p 631 N91-24115 [AD-A233569]

FINANCIAL MANAGEMENT Aviation system capital investment plan

[PB91-150268] p 644 N91-24189

FINITE DIFFERENCE THEORY

Calculation of low Reynolds number flows at high angles p 624 A91-40218 of attack

FINITE ELEMENT METHOD

Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419

Sensitivity analysis, optimization, and data support in p 677 A91-39230 finite element systems Modal analysis of multistage gear systems coupled with

searbox vibrations [NASA-TM-103797] p 681 N91-23513

FINITE VOLUME METHOD

Cell contered and cell vertex multigrid schemes for the avier-Stokes equations p 674 A91-37834 Navier-Stokes equations Transonic analysis and design using an improved grid p 624 A91-40137

FINNED BODIES

Inception length to a fully developed, fin-generated, shock-wave, boundary-layer interaction p 617 A91-37842

FIRE PREVENTION

Fire detection system for aircraft cargo bays p 655 A91-36755

Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development

IDOT/FAA/CT-90/211 p 636 N91-23097

FIRES

Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097

FLAME PROPAGATION

Subsonic and supersonic combustion using noncircular injectors D 674 A91-37414

FLAME TEMPERATURE

Kinetic study of a homogeneous propellant primary p 671 A91-39690 flame, with and without additive A CFD study of jet mixing in reduced flow areas for lower combustor emissions [NASA-TM-104411] p 661 N91-23185

FLAMES

Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow

p 629 N91-23164

FLAPS (CONTROL SURFACES)

A comparison between computation and experiment for flows around airfoil with slat and flap

p 616 A91-37780 Blunt-nosed swept supercritical LFC wings without nos p 622 A91-39936

FLAT PLATES

Cross-flow instability of 3-D boundary layers on a flat p 622 A91-39931 Visual study of boundary layer transition on rotating flat p 623 A91-39941 The experimental investigation of stability and receptivity

of a swept-wing flow p 623 A91-39944 The effect of isolated roughness elements on transition p 678 A91-39959 in attachment-line flows Breaking down the delta wing vortex: The role of vorticity

in the breakdown process [NASA-CR-188235]

p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 FLEXIBILITY

Microwave landing system modeling with application to ir traffic control

[NASA-TM-102832] p 636 N91-23099

FLEXIBLE BODIES

The transient dynamic performances of a rotor-SFDB

system during passage through resonance p 678 A91-40130

FLEXIBLE WINGS

Analysis of circular elastic membrane wings p 625 A91-40472

FLEXING

Flexural waves induced by electro-impulse deicing p 676 A91-38776 Flexure vibration test method of aviation tube

p 648 A91-40172 FLIGHT ALTITUDE

The influence of altitude and speed variations over the aircraft flight control response during the longitudinal

onlinear manoeuvres p 664 A91-36722 European studies to investigate the feasibility of using nonlinear manoeuvres 1000 ft vertical separation minima above FL 290. I

p 642 A91-38217

A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system p 636 N91-23100

AD-A2327231 FLIGHT CHARACTERISTICS

Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization

p 664 A91-37779

Flying Qualities [AGARD-CP-508] p 649 N91-23108 The art of flying qualities testing p 649 N91-23109 ADFCS and NOTAR (trademark): Two ways to fix flying p 650 N91-23110

MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft

p 650 N91-23112 The development of alternate criteria for FBW handling p 666 N91-23113 qualities Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft

p 666 N91-23114 Do civil flying qualities requirements address military missions for off-the-shelf procurement

p 650 N91-23115 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort

p 666 N91-23116 The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117

Metrics for roll response flying qualities

p 650 N91-23118 The flying qualities influence of delay in the fighter pilot's cuing environment p 650 N91-23120

An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire heticopter p 651 N91-23122

Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127

Agility: A rational development of fundamental metrics and their relationship to flying qualities

p 651 N91-23129 Evaluation techniques for highly augmented aircraft IDLR-FB-90-351 p 667 N91-23191

FLIGHT CONDITIONS Effects of canard position on the aerodynamic characteristics of a close-coupled canard configuration at p 649 A91-40495

low speed Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170

FLIGHT CONTROL

The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 nonlinear manoeuvres A new method for estimating airspeed, attack angle and

ideslip angle p 664 A91-37051 Practical considerations in optimal and 4-dimensional flight management computations p 686 A91-37585 Decoupled flight control via a model-following technique sing the Euler operator p 664 A91-37595 using the Euler operator

Re-entry flight control of space plane using approximate perfect servo p 664 A91-37778 Lateral-direction tracking requirements from simulation p 686 A91-39436

Testing the tiltrotor flight control system p 666 A91-40202

Flying Qualities [AGARD-CP-508] p 649 N91-23108 p 649 N91-23109 The art of flying qualities testing p 649 N91-23109 ADFCS and NOTAR (trademark): Two ways to fix flying p 650 N91-23110 p 650 N91-23111

MIL-STD-1797 is not a cookbook p 650 N91-23111 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114

Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116

The flying qualities influence of delay in the fighter pilot's p 650 N91-23120 cuing environment Determination of decision-height windows for

decelerating IMC approaches in helicopters p 667 N91-23124

Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127

Handling qualities evaluation for highly augmented elicopters p 651 N91-23128

Buffet induced structural/flight-control system interaction of the X-29A aircraft [NASA-TM-101735] p 652 N91-23133

Evaluation techniques for highly augmented aircraft p 667 N91-23191 [DLR-FB-90-35] The electrical flight control system of A320 Airbus: A

fault tolerant system [REPT-911-111-103] p 667 N91-23192 SUBJECT INDEX FLOW DISTRIBUTION

NASA-LaRc Flight-Critical Digital Systems Technology	a	
	One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775	Analytical methods for the qualification of helicopter structures p 684 N91-24650
Workshop	lookahead p 668 A91-37775 Handling qualities evaluation for highly augmented	AGARD flight test techniques series. Volume 9: Aircraft
[NASA-CP-10028] p 655 N91-24200		exterior noise measurement and analysis techniques
Simulation evaluation of a speed-guidance law for Harrier	helicopters p 651 N91-23128 Analytical study of the effects of weight on Light	[AGARD-AG-300-VOL-9] p 689 N91-24843
approach transitions	Analytical study of the effects of weight on Light	
[NASA-TM-102853] p 668 N91-24209	Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141	Laboratory test and acoustic analysis of cabin treatment
National remote computational flight research facility		for propfan test assessment aircraft
[NASA-CR-179432] p 668 N91-24210	Evaluation techniques for highly augmented aircraft	[NASA-CH-182075] p 690 N91-24844
FLIGHT CREWS	[DLR-FB-90-35] p 667 N91-23191	FLIGHT VEHICLES
Development and demonstration of CREST subsystems	Microburst avoidance simulation tests	The planar elements method for computing the
	p 639 N91-24172	scattering field of flight vehicle p 674 A91-37052
computer program for ejection seats p 646 A91-39380	Status of heavy rain tests p 640 N91-24180	FLIR DETECTORS
	MLS mathematical model validation study using airborne	Status of NASA's IR wind shear detection research
The technical challenges of the crew escape	MLS data from Atlantic City International Airport Boeing	p 637 N91-24145
technologies program p 612 A91-39392	727 elevation shadowing flight tests	An airborne FLIR detection and warning system for low
Hardware-in-the-loop testing of the crest ejection seat	[DOT-FAA/CT-TN90/55] p 644 N91-24190	
control system p 647 A91-39394	Evaluation of cloud detection instruments and	
Northrop advanced fighter crew protection system. 1 -	performance of laminar-flow leading-edge test articles	FLOW DISTORTION
Engineering development. II - System development, test	during NASA Leading-Edge Flight-Test Program	Vortex shedding and lock-on in bluff body wakes
and evaluation p 647 A91-39395	[NASA-TP-2888] p 655 N91-24199	p 675 A91-38689
The airbag as a supplement to standard restraint	Simulation evaluation of a speed-guidance law for Harrier	Effects of inlet distortion on the development of
The airbag as a supplement to standard restraint	approach transitions	secondary flows in a subsonic axial inlet compressor
systems in the AH-1 and AH-64 attack helicopters and	[NASA-TM-102853] p 668 N91-24209	rotor
its role in reducing head strikes of the copilot/gunner	FLIGHT SIMULATORS	[NASA-TM-104356] p 660 N91-23179
volume 2	An investigation into the use of side-arm control for civil	A design strategy for the use of vortex generators to
[AD-A232907] p 641 N91-24187		manage inlet-engine distortion using computational fluid
FLIGHT HAZARDS		
Aeronautical meteorology - Safety and economics of	Handling qualities evaluation for highly augmented	dynamics FNASA-TM-1044361 p 633 N91-24131
commercial air transports p 685 A91-38323	helicopters p 651 N91-23128	(10.00)
An airborne FLIR detection and warning system for low	Wind shear training applications for 91/135	FLOW DISTRIBUTION
altitude wind shear p 637 N91-24147	p 639 N91-24173	Experimental investigation of loading effects on
Airborne Wind Shear Detection and Warning Systems:	FLIGHT TESTS	compressor trailing-edge flowfields p 615 A91-37420
Third Combined Manufacturers' and Technologists'	Identification of pilot-vehicle dynamics from simulation	Numerical investigation of
Conference, part 1	and flight test p 664 A91-37598	airfoil/jet/fuselage-undersurface flowfields in ground
[NASA-CP-10060-PT-1] p 639 N91-24166	Development of B-1 antenna measurement test bed	effect p 617 A91-38541
Microburst avoidance simulation tests	p 668 A91-37881	Flow around an unsteady thin wing close to curved
p 639 N91-24172	Effects of horizontal tail ice on longitudinal aerodynamic	ground p 620 A91-39744
Wind shear training applications for 91/135	derivatives p 665 A91-38547	Experiments on the unsteadiness associated with a
p 639 N91-24173	Flight tests show potential benefits of data link as primary	
NASA Langley flight test program p 639 N91-24175	communication medium p 643 A91-38577	g
	Application of multiple-input/single-output analysis	Low-order panel method for internal flows
	procedures to flight test data p 647 A91-39420	p 625 A91-40225
Thermodynamic Alerter for Microbursts (TAMP)	Investigations on flow instabilities on airfoils by means	Effects of canard position on the aerodynamic
p 640 N91-24179	of piezofoil-arrays p 621 A91-39911	characteristics of a close-coupled canard configuration at
Estimate of heavy rain performance effect	Correlation of boundary layer stability analysis with flight	low speed p 649 A91-40495
p 640 N91-24182	transition data p 621 A91-39929	Hot gas ingestion test results of a two-poster vectored
Status of Sundstrand research p 640 N91-24183	Application of identification method of modal parameters	thrust concept with flow visualization in the NASA Lewis
Temperature lapse rate as an adjunct to wind shear		9- by 15-foot low speed wind tunnel
detection p 640 N91-24184	to flight flutter test p 665 A91-40167 Flight mechanics/air navigation research field. A 1990	[AIAA PAPER 90-2268] p 626 A91-40561
FLIGHT MANAGEMENT SYSTEMS		An experimental study of an axisymmetric turbulent
Flight management systems Book	Scientific report of the German Air and Space Research	An experimental study of an axisymmetric torbulent
p 666 A91-40517	Organization	boundary layer disturbed by a periodic freestream p 626 N91-23078
Airborne Wind Shear Detection and Warning Systems:	[ISSN-0720-7808] p 643 N91-23103	
Third Combined Manufacturers' and Technologists'	Differential GPS terminal area test results	Interferometric investigation of supersonic flow fields
Conference, part 1	[AD-A232668] p 644 N91-23106	with shock-shock interactions p 627 N91-23082
[NASA-CP-10060-PT-1] p 639 N91-24166	The art of flying qualities testing p 649 N91-23109	Supersonic-hypersonic inlet studies for
NASA Langley flight test program p 639 N91-24175	ADFCS and NOTAR (trademark): Two ways to fix flying	aerospaceplane p 659 N91-23160
FLIGHT MECHANICS	qualities p 650 N91-23110	Reacting shock waves in hypersonic propulsion
	An investigation into the use of side-arm control for civil	applications p 629 N91-23174
Simplification of nonlinear indicial response models -		Viscous three-dimensional analyses for nozzles for
Simplification of nonlinear indicial response models -	rotorcraft applications p 667 N91-23123	
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor	hypersonic propulsion p 629 N91-23175
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126	Effects of inlet distortion on the development of
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126	
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 [AlTIC-87-1006] p 668 N91-23194
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft p 667 N91-23119 Integration of handling quality aspects into the	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23121 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 633 N91-24135	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-10169B] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] Computation of inlet reference plane flow-field for a
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24177 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101699] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24177 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 653 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems:	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24177 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101699] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 653 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems:	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-10169B] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists'	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 654 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wife flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters LIDAR studies on microbursts p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT PATHS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 851 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24132 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 654 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wife flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters LIDAR studies on microbursts p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT PATHS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 660 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 669 N91-23854 Aerodynamic interactions between bodies in relative motion
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 644 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wife flight control systems for transport alroraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT PATHS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. 1 p 642 A91-38217	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101699] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 654 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alcreaft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation milnima above FL 290.1 p 642 A91-38217 Air travel - System relating flight safety, aircraft, and	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 655 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 660 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion p 629 N91-24105 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 630 N91-24105
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. 1 p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101699] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiment p 634 N91-24132 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips NASA-CR-188044] p 630 N91-24105 The computation of induced drag with nonplanar and
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alreraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters P 667 N91-23112 LIDAR studies on microbursts p 639 N91-23125 LIDAR studies on microbursts p 639 N91-24175 Orlando experiment p 639 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. I p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 634 A91-38527 Near midair collisions as an indicator of general aviation	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23457 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 630 N91-24105 The computation of induced drag with nonplanar and deformed wakes
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 ELIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. 1 p 642 A91-38527 Near midair collisions as an indicator of general aviation collision risk p 635 N91-23096	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion p 629 N91-24105 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 630 N91-24105 The computation of induced drag with nonplanar and deformed wakes p 630 N91-24106 Breaking down the delta wing vortex: The role of vorticity
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. I p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 635 N91-23096 Flight mechanics/air navigation research field. A 1990	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24132 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24176 Integrated data analysis of July 7, 1990 microburst p 658 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23445 Aerodynamic interactions between bodies in relative motion p 629 N91-24103 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] The computation of induced drag with nonplanar and deformed wakes Breaking down the delta wing vortex: The role of vorticity in the breakdown process
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 644 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alreraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-23125 p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation mlnima above FL 290. I p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 635 N91-23098 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 880 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23452 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 530 N91-24105 Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24105
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 654 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24167 Orlando experiment p 640 N91-24177 Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. 1 p 642 A91-38217 Near midair collisions as an indicator of general aviation collision risk p 635 N91-23096 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS[F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion p 629 N91-24105 Nonlinear Aerodynamics and the Design of Wing Tips p 630 N91-24105 The computation of induced drag with nonplanar and deformed wakes p 630 N91-24105 Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24105 An experimental analysis of critical factors involved in
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 635 N91-23096 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS[F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23445 Aerodynamic interactions between bodies in relative motion p 629 N91-24103 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] The computation of induced drag with nonplanar and deformed wakes Breaking down the delta wing vortex: The role of vorticin in the breakdown process [NASA-CR-188235] p 630 N91-24105 An experimental analysls of critical factors involved in the breakdown process of leading edge vortex flows
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 644 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-23125 p 639 N91-24175 Orlando experiment p 640 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation mlnima above FL 290. I p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 634 A91-38527 Near midair collisions as an indicator of general aviation collision risk p 635 N91-23098 Flight mechanics/air navigation research flield, A 1990 Scientific report of the German Air and Space Research Organization System capital investment plan	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-553] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 Static performance tests of a flight-type STOVL	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips (NASA-CR-188044) p 630 N91-24105 The computation of induced drag with nonplanar and deformed wakes p 630 N91-24105 IT he computation of induced drag with nonplanar and deformed wakes p 630 N91-24105 IT he breakdown process of leading edge vortex flows
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 644 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alcreaft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24167 Orlando experiment p 640 N91-24177 Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. 1 p 642 A91-38527 Near midair collisions as an indicator of general aviation collision risk p 635 N91-23096 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Aviation system capital investment plan [PB91-150268]	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFT1/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101699] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft. A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 Static performance tests of a flight-type STOVU elector	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23445 Aerodynamic interactions between bodies in relative motion p 629 N91-24103 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] The computation of induced drag with nonplanar and deformed wakes Breaking down the delta wing vortex: The role of vorticin in the breakdown process [NASA-CR-188235] p 630 N91-24105 An experimental analysls of critical factors involved in the breakdown process of leading edge vortex flows
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 635 N91-23096 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Aviation system capital investment plan p 644 N91-24189 FLIGHT SIMULATION	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 Static performance tests of a flight-type STOVL ejector	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 572 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion p 629 N91-24103 Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 630 N91-24105 Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24105 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24115 Unsteady Navier-Stokes solutions for a low aspect ratio
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 644 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wifer flight control systems for transport alreraft p 667 N91-23119 Integration of handling quality aspects into the aerodynamic design of modern unstable fighters aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-24175 Orlando experiment p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. I p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 634 N91-23103 N91-23096 Flight mechanics/air navigation research flield, a 1990 Scientific report of the German Air and Space Research Organization (ISSN-0720-7808) p 643 N91-23103 Aviation system capital investment plan [PBS1-150268] p 644 N91-24189 FLIGHT SIMULATION Identification of pilot-vehicle dynamics from simulation and post of the capital control of the control of th	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24170 NASA Langley flight test program p 639 N91-24175 Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 Static performance tests of a flight-type STOVL elector [NASA-TM-104437] p 662 N91-24201 National remote computational flight research facility	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison of experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion Nonlinear Aerodynamics and the Design of Wing Tips (NASA-CR-188044) p 630 N91-24105 The computation of induced drag with nonplanar and deformed wakes p 630 N91-24105 IT he breakdown process [NASA-CR-188235] p 630 N91-24105 The treaking down the delta wing vortex: The role of vorticity in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24101 Unsteady Navier-Stokes solutions for a low aspect ratio delta wing
Simplification of nonlinear indicial response models - Assessment for the two-dimensional airfoil case p 664 A91-37771 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Handling qualities guidelines for the design of fly-by-wire flight control systems for transport alrcraft p 667 N91-23119 aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125 LIDAR studies on microbursts p 639 N91-23125 LIDAR studies on microbursts p 639 N91-24167 FLIGHT OPERATIONS NASA Langley flight test program p 639 N91-24175 Orlando experiment p 640 N91-24177 FLIGHT PATHS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099 FLIGHT SAFETY European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. p 642 A91-38217 Air travel - System relating flight safety, aircraft, and airports p 635 N91-23096 Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 Aviation system capital investment plan p 644 N91-24189 FLIGHT SIMULATION	rotorcraft applications p 667 N91-23123 B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 X-31A at first flight p 651 N91-23131 Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances [NASA-TM-101698] p 633 N91-24128 Transonic Symposium: Theory, Application and Experiment, volume 2 [NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow flight experiments p 634 N91-24135 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Integrated data analysis of July 7, 1990 microburst Lightning protection requirements for aircraft: A proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 Static performance tests of a flight-type STOVL ejector	Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction with a clean or contaminated free surface p 680 N91-23419 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison experimental data [AD-A232101] p 680 N91-23445 The propagation of acoustic disturbances in the transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative motion p 629 N91-24103 Nonlinear Aerodynamics and the Design of Wing Tips (NASA-CR-188044) The computation of induced drag with nonplanar and deformed wakes p 630 N91-24105 Breaking down the delta wing vortex: The role of vorticin in the breakdown process [NASA-CR-188235] p 630 N91-24105 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-241114 Unsteady Navier-Stokes solutions for a low aspect ratic delta wing

A general multiblock Euler code for propulsion	FLUID FLOW	Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-2420
integration. Volume 1: Theory document [NASA-CR-187484-VOL-1] p 632 N91-24120	Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241	FUEL CONSUMPTION
Theoretical evaluation of engine auxiliary inlet design	An efficient hybrid scheme for the solution of rotational	Long-range aircraft are in demand
for supersonic V/STOL aircraft	flow around advanced propellers p 629 N91-24104	p 611 A91-3635
[NASA-CR-187098] p 633 N91-24123	FLUID MECHANICS	Commercial aircraft fuel efficiency potential through 2010 p 645 A91-3812
A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid	Development of a quiet supersonic wind tunnel with a	Trajectory optimization considerations for ramje
dynamics	cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195	engines p 658 N91-2315
[NASA-TM-104436] p 633 N91-24131	FLUID-SOLID INTERACTIONS	_ Small Engine Component Technology (SECT) study
Mixing of multiple jets with a confined subsonic	Numerical analysis of solid-fuel interactive vibration on	Program report [NASA-CR-175077] p 662 N91-2420-
crossflow. Summary of NASA-supported experiments and	an aircraft integral tank p 648 A91-40161	[NASA-CR-175077] p 662 N91-2420- FUEL INJECTION
modeling [NASA-TM-104412] p 662 N91-24202	FLUTTER	Analytical and experimental investigations of the oblique
Advanced computational models for analyzing high	An efficient hybrid scheme for the solution of rotational	detonation wave engine concept p 660 N91-23169
speed propulsive flowfields p 686 N91-24291	flow around advanced propellers p 629 N91-24104	FUEL PUMPS
Average-passage flow model development	FLUTTER ANALYSIS Asymptotic theory of bending-torsion flutter of high	Advanced aircraft secondary power system design
p 682 N91-24338	aspect ratio wing in the torsion controlled domain	p 656 A91-38007
Effects of wing sweep on in-flight boundary-layer transition for a laminar flow wing at Mach numbers from	p 675 Å91-37B46	Airblast atomization at conditions of low air velocity
0.60 to 0.79	Supersonic flutter analysis of clamped symmetric	p 674 A91-37410
[NASA-TM-101701] p 683 N91-24555	composite panels using shear deformable finite	FUEL TANKS
Effects of wing sweep on boundary-layer transition for	elements p 675 A91-37847	Numerical analysis of solid-fuel interactive vibration or
a smooth F-14A wing at Mach numbers from 0.700 to	Application of identification method of modal parameters	an aircraft integral tank p 648 A91-4016
0.825 [NASA-TM-101712] p 683 N91-24556	to flight flutter test p 665 A91-40167	FUEL TESTS An experimental evaluation of combustor liner materials
[NASA-TM-101712] p 683 N91-24556 FLOW GEOMETRY	Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system'	for solid fuel ramjet testing p 670 N91-24289
Forebody vortex control with the unsteady bleed	p 665 A91-40168	FULL SCALE TESTS
technique p 617 A91-37859	Transonic flutter analysis of 2-D airfoils with 2 degrees	Full-scale demonstration tests of cabin noise reduction
Mixing of multiple jets with a confined subsonic	of freedom p 665 A91-40169	using active vibration control p 646 A91-38549
crossflow. Summary of NASA-supported experiments and	Flow visualization study of a 1/48-scale AFTI/F111	FUNCTIONAL DESIGN SPECIFICATIONS
modeling 5.662 NR1.24202	model to investigate horizontal tail flow disturbances	Lightning protection requirements for aircraft: A proposed specification
[NASA-TM-104412]" p 662 N91-24202 FLOW MEASUREMENT	[NASA-TM-101698] p 633 N91-24128 FLY BY WIRE CONTROL	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186
Effects of inlet distortion on the development of	A320 - First of the computer-age aircraft	FUSELAGES
secondary flows in a subsonic axial inlet compressor	p 645 A91-36354	Rotor-fuselage dynamics of helicopter air and ground
rotor	Aircraft electrical system computer simulation	resonance p 645 A91-36357
[NASA-TM-104356] p 660 N91-23179	p 657 A91-38037	Moulded Mustang p 612 A91-39854 Unified aeroacoustics analysis for high speed turboprop
An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows	Flying qualities experience on the AMX aircraft p 650 N91-23112	aerodynamics and noise. Volume 5: Propagation of
[NASA-CR-188231] p 631 N91-24110	The development of alternate criteria for FBW handling	propeller tone noise through a fuselage boundary layer
FLOW STABILITY	qualities p 666 N91-23113	[NASA-CR-185195] p 689 N91-23852
The stability to two-dimensional wakes and shear layers	Handling qualities guidelines for the design of fly-by-wire	Noise inside aircraft fuselages subjected to airborne
at high Mach numbers p 614 A91-36452	flight control systems for transport aircraft	excitations
Dialogue on progress and issues in stability and transition	p 667 N91-23119	[REPT-911-111-104] p 689 N91-23853 Aerodynamic interactions between bodies in relative
research p 677 A91-39902 Investigations on flow instabilities on airfoils by means	An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire	motion p 629 N91-24103
of piezofoil-arrays p 621 A91-39911	helicopter p 651 N91-23122	Analytical methods for the qualification of helicopter
On the instability of hypersonic flow past a wedge	An investigation into the use of side-arm control for civil	structures p 684 N91-24650
On the instability of hypersonic flow past a wedge p 621 A91-39922	An investigation into the use of side-arm control for civil rotorcraft applications p 667 N91-23123	structures p 684 N91-24650
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers	An investigation into the use of side-arm control for civil rotorcraft applications p 667 N91-23123 FORCED VIBRATION	structures p 684 N91-24650
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using	_
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme	G GAME THEORY
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using	G GAME THEORY One-on-one helicopter combat simulated by chess-type
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944	An investigation into the use of side-arm control for civil rotorcraft applications p 667 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES FOREBODIES	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoid configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 571 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS)	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-09743] p 679 N91-23381
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoid configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39945 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound FREE FLOW	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39945 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound P 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoid configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound PREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low all velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISCOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCOLATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatique crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors P 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound P 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors p 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39944 Visualisation of boundary layer transition p 623 A91-39944 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoid configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate visualization of boundary layer transition p 623 A91-39941 Visualisation of boundary layer transition p 623 A91-39964 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnet	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound P 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors p 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39945 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition in rotating flat plate p 623 A91-39964 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors p 674 A91-37414 A91-37416 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-3994 Visualisation of boundary layer transition on rotating flat plate p 623 A91-3994 Visualisation of boundary layer transition in the NASA Lewis 9-by 15-foot low speed wind tunnel [AIAA PAPER 90-2266] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatique crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISOCIATION Numerical study of hypersonic dissociated air past blunt bodies P 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors P 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744) p 673 A91-36943 Residual stress control in developing processes for the
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition p 623 A91-39944 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9-by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic tinear turbine guide vane cascade. A test case for inviscid	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound P 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREQUENCY HOPPING SATURN: The next generation radio for NATO	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors p 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors p 674 A91-37414 A91-37416 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor (NASA-TM-104356) p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 523 A91-39941 Visualisation of boundary layer transition on rotating flat plate p 523 A91-39944 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9-by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREQUENCY HOPPING SATURN: The next generation radio for NATO p 682 N91-24475	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors p 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943 Residual stress control in developing processes for the manufacture of compressor blades for gas turbine
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition in the NASA Lewis 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TTN-174] p 680 N91-23437	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-spilt scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatique crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREQUENCY HOPPING SATURN: The next generation radio for NATO p 682 N91-24475 FUEL COMBUSTION	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 Betection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPÉR MS90-744] Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines p 674 A91-3785 temperature crack growth p 671 A91-38819
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor (NASA-TM-104356) p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 523 A91-39941 Visualisation of boundary layer transition on rotating flat plate p 523 A91-39941 Visualisation test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9-by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizonital tail flow disturbances	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREQUENCY HOPPING SATURN: The next generation radio for NATO p 682 N91-24475 FUEL COMBUSTION Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors P 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943 Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines p 674 A91-37269 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38189 Design and development of aviation gas turbine engines
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39945 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition in the NASA Lewis 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic tinear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N81-23437 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances (NASA-TM-101698) p 633 N91-24128	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatique crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low alr velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DISCHARGE TUBES Advanced airborne oxygen sensors P 655 A91-39387 GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies P 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 Advanced airborne oxygen sensors P 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors Advanced airborne oxygen sensors P 675 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow P 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943 Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines P 674 A91-37269 Application of path-independent integrals to elevated temperature crack growth P 677 A91-38819 Design and development of aviation gas turbine engines P 677 A91-39201
On the instability of hypersonic flow past a wedge p 621 A91-39922 On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944 Direct numerical study of crossflow instability p 678 A91-39944 Direct numerical study of crossflow instability p 678 A91-39956 FLOW THEORY New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 FLOW VELOCITY Airblast atomization at conditions of low air velocity p 674 A91-37410 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor [NASA-TM-104356] p 660 N91-23179 FLOW VISUALIZATION Asymmetric vortices on a slender body of revolution p 616 A91-37827 Quantitative analysis of flow visualizations in ONERA water tunnels p 677 A91-39694 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738 Visual study of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition on rotating flat plate p 623 A91-39941 Visualisation of boundary layer transition in the NASA Lewis 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437 Flow visualization study of a 1/48-scale AFTI/F111 model to investigate horizontal tail flow disturbances	An investigation into the use of side-arm control for civil rotorcraft applications p 867 N91-23123 FORCED VIBRATION Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107 FOREBODIES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 FORMAT An overview of information resources in aviation p 690 N91-24091 FORMING TECHNIQUES Metal matrix composite vertical tail fabrication [SME PAPER EM90-438] p 611 A91-36875 FRACTURE MECHANICS Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 Identification strategies for crack shape determination in rotors p 679 A91-40234 FRACTURES (MATERIALS) How to know CMC [REPT-911-430-130] p 672 N91-23262 FREE FLIGHT Aerodynamics at the speed of sound p 621 A91-39900 FREE FLOW An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078 Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREE JETS Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445 FREQUENCY HOPPING SATURN: The next generation radio for NATO p 682 N91-24475 FUEL COMBUSTION Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions	GAME THEORY One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 GAS ATOMIZATION Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS CHROMATOGRAPHY Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 GAS DETECTORS Advanced airborne oxygen sensors GAS DISCHARGE TUBES Radioluminescent (RL) lighting system development program [DE91-009743] p 679 N91-23381 GAS DISSOCIATION Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835 GAS FLOW Airblast atomization at conditions of low air velocity p 674 A91-37410 GAS GENERATORS Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414 Advanced airborne oxygen sensors P 655 A91-39387 GAS JETS Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164 GAS TURBINE ENGINES Automated CAD design for sculptured airfoil surfaces [SME PAPER MS90-744] p 673 A91-36943 Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines p 674 A91-37269 Application of path-independent integrals to elevated temperature crack growth p 671 A91-38189 Design and development of aviation gas turbine engines

HIGH TEMPERATURE GASES SUBJECT INDEX

A general multiblock Euler code for propulsion **HEAT TRANSFER** Research on aerodynamic control of blade tip clearance Variable-property effects in supersonic wedge flow integration. Volume 3: User guide for the Euler code flow in air-cooled turbine p 616 A91-37832 p 632 N91-24122 INASA-CR-187484-VOL-31 [DE91-764223] p 660 N91-23182 GROUND BASED CONTROL Viscous three-dimensional analyses for nozzles for Water-cooling technique of high temperature gas turbine hypersonic propulsion Multi-heat addition turbine engine Microburst avoidance simulation tests p 629 N91-23175 p 639 N91-24172 p 681 N91-23506 [DE91-764238] NASA-CASE-LEW-15094-1] p 660 N91-23180 Coolant side heat transfer with rotation. Task 3 report: GROUND EFFECT (AERODYNAMICS) [NASA-CASE-LEW-15094-1] Mixing of multiple jets with a confined subsonic crossflow. Summary of NASA-supported experiments and investigation airfoil/jet/fuselage-undersurface flowfields in ground Application of computational fluid dynamics modeling p 683 N91-24551 p 617 A91-38541 NASA-CR-1821091 INASA-TM-1044121 p 662 N91-24202 Flow around an unsteady thin wing close to curved round p 620 A91-39744 HELICOPTER CONTROL Fuel-rich, catalytic reaction experimental results ADFCS and NOTAR (trademark): Two ways to fix flying around p 662 N91-24203 [NASA-TM-104423] Suckdown, fountain lift, and pressures induced on p 650 N91-23110 Small Engine Component Technology (SECT) study NASA-CR-175081] p 663 N91-24207 Handling qualities evaluation for highly augmented several tandem jet V/STOL configurations [NASA-CR-175081] p 630 N91-24108 [NASA-TM-102817] p 651 N91-23128 helicopters Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures p 682 N91-24310 GROUND EFFECT (COMMUNICATIONS) HELICOPTER DESIGN Clutter modeling of the Denver Airport and surrounding Ground resonance of a helicopter with inter-connected p 638 N91-24152 p 645 A91-36360 Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics Radar simulation program upgrade and algorithm Comanche - Tomorrow's high-tech helicopter p 63B N91-24153 p 683 N91-24551 p 649 A91-40254 INASA-CR-1821091 GROUND RESONANCE HELICOPTER PERFORMANCE **GAS TURBINES** Rotor-fuselage dynamics of helicopter air and ground Rotor-fuselage dynamics of helicopter air and ground Multi-heat addition turbine engine p 645 A91-36357 p 645 A91-36357 p 660 N91-23180 resonance [NASA-CASE-LEW-15094-1] resonance Unsteady, frequency-domain analysis of helicopter non-rotating lifting surfaces p 613 A91-36359 Ground resonance of a helicopter with inter-connected Simulation of a combined-cycle engine p 645 A91-36360 p 683 N91-24583 hiades INASA-CR-1882321 Further research on mechanical model for 'ground HELICOPTERS GAS-SOLID INTERFACES p 665 A91-40164 resonance' of helicopters
GROUND TESTS Further research on mechanical model for 'ground Variable-property effects in supersonic wedge flow p 665 A91-40164 resonance' of helicopters p 616 A91-37832 A study of the noise mechanisms of transonic Identification of nacelle modes from airplane GVT blade-vortex interactions [NASA-CR-188199] p 648 A91-40170 Theoretical and experimental performance of a solid fuel Testing the tiltrotor flight control system p 627 N91-23084 ramjet combustion cycle for hypersonic flight condition p 666 A91-40202 Airborne rescue system
[NASA-CASE-ARC-11909-1] p 660 N91-23170 p 635 N91-23095 GROUND WIND An initial study into the influence of control stick TDWR information on the flight deck Modal analysis of multistage gear systems coupled with p 640 N91-24176 Integration of the TDWR and LLWAS wind shear characteristics on the handling qualities of a fly-by-wire gearbox vibrations [NASA-TM-103797] p 651 N91-23122 helicopter p 681 N91-23513 p 640 N91-24178 Determination of decision-height windows detection system GEOMETRICAL ACOUSTICS **GROUND-AIR-GROUND COMMUNICATION** decelerating IMC approaches in helicopters The propagation of acoustic disturbances in the transonic flow fields of wings p 667 N91-23124 National airspace system. Communications operational concept NAS-SR-136 Air ambulance helicopter operational analysis p 689 N91-23854 [ESA-TT-1126] p 652 N91-23134 [DOT/FAA/SE-91/1] [DOT/FAA/RD-91/7] p AGARD highlights 91/1, March 1991 GEOTECHNICAL FABRICS p 640 N91-24185 Literature review on geotextiles to improve pavements **GUIDE VANES** p 691 N91-24084 [AGARD-HIGHLIGHTS-91/1] general aviation airports Aero-thermal investigation of a highly loaded transonic Analytical methods for the qualification of helicopter p 669 N91-23199 [AD-A232871] linear turbine guide vane cascade. A test case for inviscid p 684 N91-24650 structures GLOBAL POSITIONING SYSTEM and viscous flow computations HELMETS p 680 N91-23437 Differential GPS terminal area test results [VKI-TN-174] Northrop advanced fighter crew protection system. I -Engineering development. II - System development, test p 644 N91-23106 GUNFIRE [AD-A232668] GOERTLER INSTABILITY Prediction of test spectrum for gunfire vibration On the Goertler vortex instability mechanism and evaluation p 647 A91-39395 p 666 A91-40175 HELMHOLTZ RESONATORS p 623 A91-39940 hypersonic speeds **GUST LOADS** Laboratory test and acoustic analysis of cabin treatment Theoretical study of Goertler vortices - Linear stability Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 for propfan test assessment aircraft [NASA-CR-182075] p 623 A91-39950 p 690 N91-24844 GOVERNMENT/INDUSTRY RELATIONS HIGH GRAVITY ENVIRONMENTS US industry enters the green maze --- new environmental Integrated multidisciplinary optimization of actively Simulation of G(x) forces using horizontal impulse regulations affecting aerospace companies p 667 N91-23190 controlled fiber composite wings p 668 A91-39396 accelerators p 685 A91-37049 HIGH RESOLUTION **GRAPHITE-EPOXY COMPOSITES** Relative effectiveness of 2-D vs. 1-D high resolution microwave imageing p 641 A91-37094 The design, manufacture, and test of a one-piece thermoplastic wing rib for tiltrotor aircraft [SME PAPER EM90-665] p 645 A91-36940 H Euler flow predictions for an oscillating cascade using HARDWARE Study of thermal-expansion-molded, graphite-epoxy a high resolution wave-split scheme p 630 N91-24107 Hardware-in-the-loop testing of the crest ejection seat [NASA-TM-104377] at-stiffened sandwich panels p 675 A91-37845
Development and demonstration of CREST subsystems hat-stiffened sandwich panels p 647 A91-39394 HIGH REYNOLDS NUMBER control system Simulation of the flow past an impulsively started cylinder HARMONIC MOTION -- computer program for ejection seats Euler flow predictions for an oscillating cascade using using a discrete vortex method p 646 A91-39380 p 683 N91-24533 FAD-A2330661 a high resolution wave-split scheme Environmental exposure effects on composite materials p 630 N91-24107 [NASA-TM-104377] HIGH SPEED for commercial aircraft [NASA-CR-187478] Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 p 672 N91-24358 HARRIER AIRCRAFT **GRAVITATIONAL EFFECTS** Simulation evaluation of a speed-guidance law for Harrier Unified aeroacoustics analysis for high speed turboprop Ejection seat rocket catapult design for reduced G field approach transitions p 668 N91-24209 aerodynamics and noise. Volume 2: Development of theory p 646 A91-39385 [NASA-TM-102853] influence for wing shielding GREEN'S FUNCTIONS HAZE p 688 N91-23849 [NASA-CR-185192] The breakdown of the linearized theory and the role of Evaluation of cloud detection instruments and Unified aeroacoustics analysis for high speed turboprop quadrupole sources in transonic rotor acoustics performance of laminar-flow leading-edge test articles aerodynamics and noise. Volume 3: Application of theory during NASA Leading-Edge Flight-Test Program
[NASA-TP-2888] p 655 N91-24199 p 688 A91-39749 for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-2 Procedure for determination of three-dimensional wind [NASA-TP-2888] p 688 N91-23850 tunnel wall interferences and wall adaptation in HEAD (ANATOMY) Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's compressible subsonic flow using measured wall The airbag as a supplement to standard restraint pressures systems in the AH-1 and AH-64 attack helicopters and DLR-FB-90-46] p 628 N91-23088 Feasibility study in crack detection in aircraft stiffened manual for UAAP turboprop aeroacoustic code [DLR-FB-90-46] its role in reducing head strikes of the copilot/gunner, p 688 N91-23851 [NASA-CR-185194] Unified aeroacoustics analysis for high speed turboprop panels by pulse probing and deconvolution [AD-A2333491 p 641 N91-24188 aerodynamics and noise. Volume 5: Propagation of p 654 N91-24158 HEAD-UP DISPLAYS GRID GENERATION (MATHEMATICS) propeller tone noise through a fuselage boundary layer Lateral-direction tracking requirements from simulation [NASA-CR-185195] p 689 N91-23852 Developing and utilizing an Euler computational method p 686 A91-39436 Advanced computational models for analyzing high peed propulsive flowfields p 686 N91-24291 for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 1: Theory Along for the ride? --- computer-automated aviation speed propulsive flowfields p 656 A91-40550 overview HIGH TEMPERATURE **HEAT EXCHANGERS** Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812 [NASA-CR-181924-VOL-1] p 632 N91-24118 Compact heat exchanger for an inverse components A general multiblock Euler code for propulsion p 659 N91-23157 engine Advanced thermally stable jet fuels development

HEAT RESISTANT ALLOYS

Non metallic materials for gas turbine engines - Are they

NKK premium quality titanium master alloy

p 671 A91-40178

p 672 A91-40425

integration. Volume 1: Theory document

A general multiblock Euler code for propulsion

integration. Volume 2: User guide for BCON, pre-processor for grid generation and GMBE [NASA-CR-187484-VOL-2] p 632 N91-24121

p 632 N91-24120

[NASA-CR-187484-VOL-1]

p 673 N91-24453

program annual report. Volume 3: Fuel lubricity

An isentropic compression-heated Ludweig tube transient wind tunnel p 673 A91-36450

IAD-A2327931

HIGH TEMPERATURE GASES

		ter vectore
thrust concept with flow visualization	n in the	NASA Lew
9- by 15-foot low speed wind tunnel		104 1055
[AIAA PAPER 90-2268]	p 626	A91-4056
Suckdown, fountain lift, and prosecution several tandem jet V/STOL configurence.		muuceu c
[NASA-TM-102817]		N91-2410
HIGH TEMPERATURE TESTS	p 000	1101 2110
Application of path-independent i	ntegrals	to elevate
temperature crack growth		A91-3881
HISTORIES		
AGARD highlights 91/1, March 19	91	
[AGARD-HIGHLIGHTS-91/1]	p 691	N91-2408
HOLOGRAPHIC INTERFEROMETRY		
Interferometric investigation of su		
with shock-shock interactions	p 627	N91-2308
HONEYCOMB STRUCTURES		
Application of acoustically treated h		nb sandwic
panels in noise control of aircraft cat		
	p 648	A91-4016
HORIZONTAL FLIGHT		
Optimization of rotor performance		
wake analysis	p 646	A91-3854
HOVERING	. aaroola	etic etabili
New developments in the dynamic study of rotor blades	n 673	A91-3669
Optimization of rotor performance		
wake analysis	p 646	A91-3854
Technology needs for high-speed		
[NASA-CR-177578]	p 652	N91-2313
Simulation evaluation of a speed-gu		w for Harrie
approach transitions		
[NASA-TM-102853]	p 668	N91-2420
HOVERING STABILITY		
Stability of hingeless rotors		over usin
three-dimensional unsteady aerodyna	amics	
	p 663	A91-3635
HUMAN FACTORS ENGINEERING		
Identification of pilot-vehicle dynar		
and flight test		A91-3759
Aircraft design for maintainability	p 612	A91-3854 in factor
Deployment optimization and		
considerations for low-altitude troop [AIAA PAPER 91-0889]	рагасно р 635	A91-4055
Program plans for aviation safety r		A31-4000
[NIAR-90-32]	p 638	N91-2415
HUMAN PERFORMANCE	F	
A test of the American Safety FI	ight Sy:	stems, inc
A test of the American Safety Fl prebreather/portable oxygen system	ight Sy	stems, inc
A test of the American Safety Fl prebreather/portable oxygen system [AD-A232723]	-	stems, Inc N91-2310
prebreather/portable oxygen system	-	
prebreather/portable oxygen system [AD-A232723]	p 636 r system	N91-2310 design
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary power	p 636 r system p 656	N91-2310 design A91-3800
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT	p 636 r system p 656 viation tu	N91-2310 design A91-3800 be
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av	p 636 r system p 656 viation tu	N91-2310 design A91-3800
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary power Flexure vibration test method of average of the system	p 636 r system p 656 viation tu p 648	N91-2310 design A91-3800 be A91-4017
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary power Flexure vibration test method of available of the control of the cont	p 636 r system p 656 viation tu p 648	N91-2310 design A91-3800 be A91-4017
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels	p 636 r system p 656 viation tu p 648	N91-2310 design A91-3800 be A91-4017
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS	p 636 r system p 656 viation tu p 648 alizations p 677	N91-2310 design A91-3800 be A91-4017 in ONER A91-3969
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary power Flexure vibration test method of available of the system of the syst	p 636 or system p 656 viation tu p 648 alizations p 677 nental re	N91-2310 design A91-3800 be A91-4017 in ONER A91-3969 sults
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423]	p 636 or system p 656 viation tu p 648 alizations p 677 nental re	N91-2310 design A91-3800 be A91-4017 in ONER A91-3969
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS	p 636 or system p 656 viation tu p 648 alizations p 677 nental re p 662	N91-2310 design A91-3800 be A91-4017 in ONER A91-3969 sults N91-2420
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro	p 636 r system p 656 r/iation tu p 648 alizations p 677 nental re p 662 ssflow v	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1]	p 636 r system p 656 r/iation tu p 648 alizations p 677 nental re p 662 ssflow v	N91-2310 design A91-3800 be A91-4017 in ONER A91-3969 sults N91-2420
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro	p 636 or system p 656 viation tu p 648 alizations p 677 nental re p 662 ssflow v p 679	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visue water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN	p 636 or system p 656 viation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of com airflow	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic	p 636 or system p 656 viation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of com airflow	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic	p 636 or system p 656 viation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of conairflow p 629	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catelytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an in-	p 636 or system p 656 viation tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine	p 636 or system p 656 viation tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT	p 636 r system p 656 riation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of con airflow p 629 inverse p 659	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of N91-2316
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic	p 636 r system p 656 rication tup 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 inverse r p 659 p 669	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 A91-3662
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecte	p 636 r system p 656 riction to p 648 slizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 669 ory optin	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of N91-2316 component N91-2315 A91-3662
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visua water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecto hypersonic vehicles	p 636 rr system p 656 riation tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 669 p 644	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2320 orticity N91-2316 component N91-2315 A91-3662 injustion of N91-2315
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experts [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an engine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecto hypersonic vehicles National remote computational file	p 636 r system p 656 rication tup 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 inverse r p 659 p 669 py optin p 644 ight rese	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 A91-3662 ization fc N91-2315 sarch facility
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajector hypersonic vehicles National remote computational fit [NASA-CR-179432]	p 636 r system p 656 rication tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 ry optin p 644 ight rese p 668	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an implementation of the compact heat exchanger for an impl	p 636 r system p 656 rication tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 ry optin p 644 ight rese p 668	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajector hypersonic vehicles National remote computational fit [NASA-CR-179432]	p 636 r system p 656 rication tup 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse r p 659 p 669 py optin p 644 ight rese p 668 rophysic	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2341 abustion of N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315 A91-3662 ization fo N91-2315
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajector hypersonic vehicles National remote computational fil [NASA-CR-179432] Advanced Hypervelocity Aerovices	p 636 r system p 656 rication to p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse r p 659 p 669 py optin p 644 ight rese p 668 rophysic	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 A91-3662 ization fc N91-2315 sarch facilit N91-2421 s Facilits
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecto hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER	p 636 r system p 656 riation tup p 648 alizations p 677 mental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 668 r system p 668 r system p 669 p 668 p 669	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-23216 component N91-2316 A91-3662 airzation for N91-2315 such facilit N91-2421 s Facilit N91-2421
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inequal engine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecte hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo	p 636 r system p 656 rication to p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 inverse p 659 p 669 ory optin p 644 g ht rese p 668 rophysic p 669 undary-ta	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2316 component N91-2315 A91-3662 ization fc N91-2315 xer facilit N91-2421 xey r stabilit A91-3421
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajector hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo	p 636 r system p 656 riation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 669 p 669 p 669 undary-lap 614 three-	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 application for N91-2315 surphise acide N91-2421 supphise acide N91-2421
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inequal engine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecte hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo	p 636 r system p 656 rication tup 648 alizations p 677 nental re p 662 ssflow v p 679 rof con airflow p 629 rof con airflow p 629 rof con airflow p 659 p 669 rop 668 rophysic p 669 undary-li p 614 three- action	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 application for N91-2315 surphise facility N91-2421 supphise facility N91-2421 supphise facility N91-2421 dayer stability A91-3645 dimensions
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available. HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an implemental engine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajecte hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo Discontinuous solutions for a hypersonic boundary layer with interse	p 636 r system p 656 risation tup 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 riverse p 659 p 669 ry optin p 644 ght ress p 668 rophysic p 669 undary-la p 614 three- action p 614	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 A91-3662 dization fc N91-2421 surf facilit N91-2421 s Facilit N91-2421 ayer stabilit A91-3645 dimensione A91-3717
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inengine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajector hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic boot interest.	p 636 r system p 656 riation tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 668 rophysic p 664 three- action p 614 three- action	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2316 A91-3662 nization fc N91-2421 so Facilit N91-2421 ayer stabilit A91-3645 dimensione A91-3717 chanism &
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of available of the visual water tunnels HYDROULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catelytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an implied experiment of the engine HYPERSONIC AIRCRAFT Accent on hypersonic Navigation, guidance, and trajected hypersonic vehicles National remote computational file [NASA-CR-179432] Advanced Hypervelocity Aerovickshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo Discontinuous solutions for a hypersonic boundary layer with interse On the Goerller vortex instab hypersonic speeds	p 636 r system p 656 riation tu p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 nverse p 659 p 669 p 668 rophysic p 664 three- action p 614 three- action	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2315 A91-3662 dization fc N91-2421 surf facilit N91-2421 s Facilit N91-2421 ayer stabilit A91-3645 dimensione A91-3717
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovinceshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo Discontinuous solutions for a hypersonic boundary layer with interest of the control of the Goerller vortex instab hypersonic speeds HYPERSONIC FLIGHT	p 636 r system p 656 risation to p 648 alizations p 677 nental re p 662 ssflow v p 679 of con airflow p 629 ry optim p 644 ght rese p 668 rophysic p 669 undary-la p 614 three- action p 614 lifty me p 623	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2316 A91-3662 nization fc N91-2421 so Facilit N91-2421 ayer stabilit A91-3645 dimensione A91-3717 chanism &
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visual water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDRODYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an impressive systems of the systems	p 636 r system p 656 riation tu p 648 alizations p 677 mental re p 662 ssflow v p 679 of con airflow p 629 mverse p 659 p 669 p 668 rophysic p 664 three- action p 614 three- p 614 three- p 614 three- action p 614 illity me p 623	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2316 A91-3662 nization fc N91-2421 so Facilit N91-2421 ayer stabilit A91-3645 dimensiona A91-3994
prebreather/portable oxygen system [AD-A232723] HYDRAULIC EQUIPMENT Advanced aircraft secondary powe Flexure vibration test method of av HYDRAULIC TEST TUNNELS Quantitative analysis of flow visus water tunnels HYDROCARBON FUELS Fuel-rich, catalytic reaction experin [NASA-TM-104423] HYDROCYNAMICS Passive laminar flow control of cro [NASA-CASE-LAR-13563-1] HYDROGEN Aerodynamics and stabilization hydrogen jets injected into subsonic HYDROGEN ENGINES Compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact heat exchanger for an inequipment of the compact hypersonic vehicles National remote computational fit [NASA-CR-179432] Advanced Hypervelocity Aerovinceshop [NASA-CP-10031] HYPERSONIC BOUNDARY LAYER Real gas effects on hypersonic bo Discontinuous solutions for a hypersonic boundary layer with interest of the control of the Goerller vortex instab hypersonic speeds HYPERSONIC FLIGHT	p 636 r system p 656 riston p 656 riston p 656 riston p 656 riston p 657 nental re p 662 ssflow v p 679 riston p 648 riston p 649 riston p 659 riston p 659 riston p 669 undary-li p 669 undary-li p 614 riston p 614 riston p 614 riston p 614 riston p 614 riston p 623	N91-2310 design A91-3800 be A91-4017 in ONER. A91-3969 sults N91-2420 orticity N91-2316 component N91-2316 A91-3662 nization fc N91-2421 so Facilit N91-2421 ayer stabilit A91-3645 dimensione A91-3717 chanism &

```
Trajectory optimization considerations for ramjet
                                                                                           p 658 N91-23151
                                                         engines
                                                                                                                  ICE
                                                           Hypersonic propulsion: Status and challenge
                                                                                           p 658 N91-23153
                                                ÞΠ
                                                           Airbreathing propulsion for space transport: New
                                                         concepts, special problems and attempts at solutions
                                                8(
                                                                                           p 658 N91-23154
                                                           Turbojet potential for hypersonic flight
                                                                                           p 658 N91-23155
                                                           Compact heat exchanger for an inverse components
                                                                                           p 659 N91-23157
                                                           Design considerations for combined air breathing-rocket
                                                                                                                     tunnel
                                                         propulsion systems
                                                         [AIAA-90-0098]
                                                                                           p 659 N91-23158
                                                                                                                  ICE FORMATION
                                                           Some aspects of shock-wave boundary layer interaction
                                                                                           p 628 N91-23161
                                                         relevant to intake flows
                                                           Analytical and experimental investigations of the oblique
                                                                                          p 660 N91-23169
                                                         detonation wave engine concept
                                                           Theoretical and experimental performance of a solid fuel
                                                                                                                    derivatives
                                                         ramjet combustion cycle for hypersonic flight conditions
                                                                                           p 660 N91-23170
                                                          Reacting shock waves in hypersonic propulsion
                                                                                           p 629 N91-23174
                                                         applications
                                                           Viscous three-dimensional analyses for nozzles for
                                                                                           p 629 N91-23175
                                                         hypersonic propulsion
                                                           IAI hypersonic wind tunnel
                                                                                           p 668 N91-23194
                                                         [IAITIC-87-1006]
                                                       HYPERSONIC FLOW
                                                          Entropy effects of hypersonic flow past blunt delta
                                                                                           p 615 A91-37181
                                                          Computational analysis of underexpanded jets in the
                                                                                           p 615 A91-37421
                                                         hypersonic regime
                                                          Numerical study of hypersonic dissociated air past blunt
                                                                                           p 616 A91-37835
                                                          Stream functions for the hypersonic flow around
                                                         quasi-pointed slender bodies at low angles of attack
                                                                                           p 621 A91-39832
                                                                                                                  ILLUMINANCE
                                                           On the instability of hypersonic flow past a wedge
                                                                                           p 621 A91-39922
                                                                                                                    program
                                                          Reacting shock waves in hypersonic propulsion
                                                                                                                    DE01-0097431
                                                                                           p 629 N91-23174
                                                         applications
                                                          Hypersonic aerodynamics fellowships
                                                         [AD-A233584]
                                                                                           p 632 N91-24116
                                                       HYPERSONIC INLETS
                                                                                                                  IMAGING RADAR
                                                          Supersonic-hypersonic
                                                                                              studies
                                                                                           p 659 N91-23160
                                                         aerospaceplane
                                                          The 3-D Navier-Stokes analysis of crossing, glancing
                                                          shocks/turbulent boundary layer interactions
                                                                                           p 633 N91-24130
                                                                                                                  IMPINGEMENT
                                                         INASA-TM-1044691
                                                       HYPERSONIC SPEED
                                                          On the Goertler
                                                                            vortex instability mechanism
                                                                                           p 623 A91-39940
                                                         hypersonic speeds
                                                        Hypersonic Combined Cycle Propulsion
[AGARD-CP-479] p 65
                                                                                          p 657 N91-23147
                                                           Hypersonic propulsion: Past and present
                                                                                           p 657 N91-23148
                                                                                                                    [AD-A2321261
                                                       HYPERSONIC VEHICLES
                                                          Effect of exhaust plume/afterbody interaction on
                                                                                          p 615 A91-37770
                                                         installed scramiet performance
                                                           Titanium aluminides for aerospace applications
                                                                                           p 671 A91-39302
                                                          Performance characteristics of hypersonic detonation
                                                                                                                    water tunnels
                                                                                           p 659 N91-23168
                                                         wave ramiets
                                                       HYDERSONIC WAKES
                                                           The stability to two-dimensional wakes and shear layers
                                                                                                 A91-36452
                                                         at high Mach numbers
                                                       HYPERSONIC WIND TUNNELS
                                                        IAI hypersonic wind tunnel [IAITIC-87-1006]
                                                                                           p 668 N91-23194
                                                       HYPERSONICS
                                                          Aerodynamic preliminary analysis system 2. Part 1:
                                                         Theory
                                                                                           p 626 N91-23080
                                                         [NASA-CR-182076]
                                                           Aerodynamic preliminary analysis system 2. Part 2:
                                                         Liser's manual
                                                                                           p 627 N91-23081
                                                                                                                    [NIAR-91-3]
                                                        [NASA-CR-182077]
                                                          Performance characteristics of hypersonic detonation
                                                                                          p 659 N91-23168
                                                         wave ramiets
                                                           Hypersonic aerodynamics fellowships
                                                                                           p 632 N91-24116
                                                        [AD-A2335841
                                                       HYPERVELOCITY FLOW
                                                                       Hypervelocity
                                                                                       Aerophysics Facility
                                                          Advanced
                                                        Workshop
[NASA-CP-10031]
                                                                                           p 669 N91-24211
                                                       HYPOBARIC ATMOSPHERES
                                                          A test of the American Safety Flight Systems, Inc.
                                                         prebreather/portable oxygen system
                                                         [AD-A232723]
                                                                                           p 636 N91-23100
                                                       HYSTERESIS
A study of supersonic and hypersonic ramjet engines
```

Static measurements of slender delta wing rolling

moment hysteresis

p 625 A91-40223

imaging system

```
Simulation of iced wing aerodynamics
  [NASA-TM-104362]
                                     p 628 N91-23086
    Icing simulation: A survey of computer models and
   experimental facilities
                                      p 628 N91-23087
  [NASA-TM-104366]
    Advanced ice protection systems test in the NASA Lewis
   cing research tunnel
                                     p 661 N91-23183
  [NASA-TM-103757]
    Model rotor icing tests in the NASA Lewis icing research
  INASA-TM-104351]
                                     p 661 N91-23184
    The LWC parameter - Some experimental results -
  liquid water content in atmosphere
                                     p 685 A91-38388
    Water droplet impingement on airfoils and aircraft engine
                                     p 634 A91-38543
  inlets for icing analysis
    Effects of horizontal tail ice on longitudinal aerodynamic
                                     p 665 A91-38547
    Simulation of iced wing aerodynamics
                                     p 628 N91-23086
  [NASA-TM-104362]
    Icing simulation: A survey of computer models and
  experimental facilities
  INASA-TM-1043661
                                     p 628 N91-23087
    Advanced ice protection systems test in the NASA Lewis
  icing research tunnel
  [NASA-TM-103757]
                                     p 661 N91-23183
    Model rotor icing tests in the NASA Lewis icing research
  [NASA-TM-104351]
                                     p 661 N91-23184
ICE PREVENTION
    Icing simulation: A survey of computer models and
   xperimental facilities
  INASA-TM-1043661
                                     p 628 N91-23087
    Advanced ice protection systems test in the NASA Lewis
  icing research tunnel
[NASA-TM-103757]
                                     p 661 N91-23183
   Radioluminescent (RL) lighting system development
                                     p 679 N91-23381
IMAGE RESOLUTION
    Relative effectiveness of 2-D vs. 1-D high resolution
  microwave imageing
                                     p 641 A91-37094
    Radiation transmission in adverse weather
                                     p 675 A91-37880
   Clutter modeling of the Denver Airport and surrounding
                                     p 638 N91-24152
    Interferometric investigation of supers
                                     p 627 N91-23082
  with shock-shock interactions
IN-FLIGHT MONITORING
    Aircraft Command in Emergency Situations (ACES).
  Phase 1: Concept development
  [DOT/FAA/CT-90/21]
                                     p 636 N91-23097
    Mechanical component diagnostic system
                                     p 656 N91-23146
    The electrical flight control system of A320 Airbus: A
  fault tolerant system
[REPT-911-111-103]
                                     p 667 N91-23192
INCOMPRESSIBLE FLOW
   Quantitative analysis of flow visualizations in ONERA
                                     p 677 A91-39694
   Experimental and theoretical analysis of natural ansition on 'infinite' swept wing p 621 A91-39927
  transition on 'infinite' swept wing
    Modeling for unsteady aerodynamics of rectangular wing
  in incompressible flow using step responses
                                     p 625 A91-40473
INERTIAL NAVIGATION
    Status of turbulence Prediction System's AWAS 3
                                     p 637 N91-24146
INFLATABLE STRUCTURES
    An update on SKAD (survival
                                    kit air droopable)
                                     p 635 A91-39384
INFORMATION DISSEMINATION
    Kansas Aviation Review
                                     p 613 N91-24087
INFORMATION MANAGEMENT
    An overview of information resources in aviation
                                     p 690 N91-24091
INFRARED DETECTORS
   Fire detection system for aircraft cargo bays
                                     p 655 A91-36755
    Model for IR sensor performance evaluation
                                     p 656 A91-39890
  Applications and results
    Status of NASA's IR wind shear detection research
                                     p 637 N91-24145
    Integrated data analysis of July 7, 1990 microburst
                                     p 685, N91-24170
INFRARED IMAGERY
   Airfoil transition and separation studies using an infrared
```

p 624 A91-40215

cycle aircraft engines)

in France from 1950 to 1974 (application on combined

p 658 N91-23149

SUBJECT INDEX

	War Derootte TEDO	JP-8 JET FUEL
INFRARED INSTRUMENTS	INTERFEROMETERS Interferometric investigation of supersonic flow fields	Advanced thermally stable jet fuels development
Status of turbulence Prediction System's AWAS 3 p 637 N91-24146	with shock-shock interactions p 627 N91-23082	program annual report. Volume 3: Fuel lubricity
INFRARED RADAR	INTERMETALLICS	[AD-A232793] p 673 N91-24453
CLASS: Coherent Lidar Airborne Shear Sensor.	Titanium aluminides for aerospace applications p 671 A91-39302	1,7
Windshear avoidance	INTERNATIONAL COOPERATION	K
[LMSC-F-415048] p 636 N91-24141	Accent on hypersonic p 669 A91-36625	
INFRARED RADIOMETERS An airborne FLIR detection and warning system for low	INVESTMENTS	K-EPSILON TURBULENCE MODEL Numerical investigation of
altitude wind shear p 637 N91-24147	Aviation system capital investment plan (PB91-150268) p 644 N91-24189	Numerical investigation of airfoil/jet/fuselage-undersurface flowfields in ground
INGESTION (ENGINES)	[PB91-150268] p 644 N91-24189 INVISCID FLOW	effect p 617 A91-38541
Suckdown, fountain lift, and pressures induced on	Computation of three-dimensional flow fields through	KALMAN FILTERS
several tandem jet V/STOL configurations (NASA-TM-102817) p 630 N91-24108	compressor blade rows p 625 A91-40375	Track initiation using MHT in dense environments
[NASA-TM-102817] p 630 N91-24108 INJECTION MOLDING	Fluid dynamics for the study of transonic flow Book p 625 A91-40513	Multiple Hypotesis Tracking p 674 A91-37141
Fabrication of engineering ceramics by injection	Block implicit multigrid solution of the Euler equations	Angle-only tracking filter in modified spherical coordinates p 643 A91-39433
molding p 674 A91-37375	p 680 N91-23413	coordinates p 643 A91-39433 KEROSENE
Improved silicon carbide for advanced heat engines	The computation of induced drag with nonplanar and	Detection of traces of water in aviation kerosenes by
[NASA-CR-182289] p 672 N91-24451	deformed wakes p 630 N91-24106	gas chromatography p 670 A91-37182
INJECTORS	Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125	•
Subsonic and supersonic combustion using noncircular injectors p 674 A91-37414	Viscous design and analysis methods for transonic	1
injectors p 6/4 A91-3/414 INJURIES	compressor blading	-
The airbag as a supplement to standard restraint	[AD-A232902] p 682 N91-24530	LABYRINTH SEALS
systems in the AH-1 and AH-64 attack helicopters and	ISENTROPIC PROCESSES	Vibration behavior of a labyrinth seal with through-flow
its role in reducing head strikes of the copilot/gunner,	An isentropic compression-heated Ludweig tube transient wind tunnel p 673 A91-36450	p 679 A91-40241
volume 2 [AD-A232907] p 641 N91-24187	ITERATIVE SOLUTION	LAMINAR BOUNDARY LAYER
	Application of multiple-input/single-output analysis	A model for the experimental study of curvature effects
The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and	procedures to flight test data p 647 A91-39420	on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691
its role in reducing head strikes of the copilot/gunner,	Synchronous iterative method for computation of vortex	Transition research in low-disturbance high-speed wind
volume 1	flows at high angles of attack p 624 A91-40126 Navigation, guldance, and trajectory optimization for	tunnels p 621 A91-39919
[AD-A233349] p 641 N91-24188	hypersonic vehicles p 644 N91-23150	On the stability of swept wing laminar boundary layers
INLET FLOW	Implicit solvers for unstructured meshes	including curvature effects p 622 A91-39933
Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis	[NASA-CR-187564] p 633 N91-24125	Passive laminar flow control of crossflow vorticity
9- by 15-foot low speed wind tunnel		[NASA-CASE-LAR-13563-1] p 679 N91-23410
[AIAA PAPER 90-2268] p 626 A91-40561	J	The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis
A study of three dimensional turbulent boundary layer	_	[NASA-TM-4267] p 629 N91-24098
separation and vortex flow control using the reduced Navier	JAMMING	Laminar-flow wind tunnel experiments
Stokes equations [NASA-TM-104407] p 628 N91-23089	SATURN: The next generation radio for NATO p 682 N91-24475	p 634 N91-24136
Some aspects of shock-wave boundary layer interaction	JET AIRCRAFT	Results of correlations for transition location on a
relevant to intake flows p 628 N91-23161	Handling qualities of highly augmented unstable aircraft	clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting
Effects of inlet distortion on the development of	summary of an AGARD-FMP working group effort	for spanwise pressure gradient p 654 N91-24138
secondary flows in a subsonic axial inlet compressor	p 666 N91-23116	Variable Sweep Transition Flight Experiment (VSTFE):
rotor (NASA-TM-104356) p 660 N91-23179	Metrics for roll response flying qualities	Unified Stability System (USS). Description and users'
[NASA-TM-104356] p 660 N91-23179 Computation of inlet reference plane flow-field for a	p 650 N91-23118 JET AIRCRAFT NOISE	manual (NASA-CR-181918) p 634 N91-24139
subscale free-jet forebody/inlet model and comparison to	A study on sonic load of the vertical tail of F-7 aircraft	[NASA-CR-181918] p 634 N91-24139 The 1989 high-speed civil transport studies
experimental data	p 648 A91-40171	[NASA-CR-4375] p 654 N91-24195
[AD-A232101] p 680 N91-23445	JET ENGINE FUELS	The effects on aerodynamic performance of designing
INSPECTION Kansas Aviation Review	Fuel-rich, catalytic reaction experimental results	supersonic wings for laminar flow control
[NIAR-91-3] p 613 N91-24087	[NASA-TM-104423] p 662 N91-24203 Advanced thermally stable jet fuels development	[AD-A233040] p 654 N91-24197 Evaluation of cloud detection instruments and
Evaluation of automation for inspection of aging	program annual report. Volume 3: Fuel lubricity	performance of laminar-flow leading-edge test articles
aircraft p 613 N91-24088	[AD-A232793] p 673 N91-24453	during NASA Leading-Edge Flight-Test Program
INSTRUMENT LANDING SYSTEMS	JET ENGINES	[NASA-TP-2888] p 655 N91-24199
Microwave landing system modeling with application to air traffic control	Sensor failure detection for jet engines p 656 A91-37593	LAMINAR FLOW
[NASA-TM-102832] p 636 N91-23099	A general method for rotordynamic analysis	The stability to two-dimensional wakes and shear layers at high Mach numbers p 614 A91-36452
LIDAR studies on microbursts p 639 N91-24167	p 677 A91-39585	at high Mach numbers p 614 A91-36452 Laminar-turbulent transition; Proceedings of the IUTAM
INSTRUMENT PACKAGES	NKK premium quality titanium master alloy	Symposium, Ecole Nationale Superleure de l'Aeronautique
An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation	p 672 A91-40425	et de l'Espace, Toulouse, France, Sept. 11-15, 1989
Package (SAIP)	JET EXHAUST	p 677 A91-39901
[AD-A232055] p 656 N91-23145	Computation of axisymmetric slender bodies enclosing	On the development of turbulent spots in plane Poiseuille flow p 678 A91-39904
INTEGRALS	a jet efflux in pitching oscillatory motion p 618 A91-38681	Boundary layer control by a local heating of the wall
Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819	JET FLOW	p 678 A91-39909
temperature crack growth p 671 A91-38819 INTERACTIONAL AERODYNAMICS	Computational analysis of underexpanded jets in the	investigations on flow instabilities on airfoils by means
Discontinuous solutions for a three-dimensional	hypersonic regime p 615 A91-37421	of piezofoil-arrays p 621 A91-39911
hypersonic boundary layer with interaction	Experiments on the unsteadiness associated with a	The effect of isolated roughness elements on transition in attachment-line flows p 678 A91-39959
p 614 A91-37176	ground vortex p 624 A91-40220	A computationally efficient modelling of laminar
Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829	JET IMPINGEMENT Numerical study of twin-jet impingement upwash flow	separation bubbles p 680 N91-23411
transonic flow over swept wings p 616 A91-3/829 Tip vortex/airfoil interaction for a tow Reynolds number	p 619 A91-38736	Laminar-flow flight experiments p 634 N91-24135
canard/wing configuration p 617 A91-38545	Experiments on the unsteadiness associated with a	Laminar-flow wind tunnel experiments p 634 N91-24136
Second mode interactions in supersonic boundary	ground vortex p 624 A91-40220	Effects of wing sweep on in-flight boundary-layer
layers p 623 A91-39957	JET MIXING FLOW	transition for a laminar flow wing at Mach numbers from
Calculation of low Reynolds number flows at high angles of attack p 624 A91-40218	A CFD study of jet mixing in reduced flow areas for	0.60 to 0.79
of attack p 624 A91-40216 Analysis of circular elastic membrane wings	lower combustor emissions (NASA-TM-104411) p 661 N91-23185	[NASA-TM-101701] p 683 N91-24555
p 625 A91-40472	Mixing of multiple jets with a confined subsonic	Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to
Buffet induced structural/flight-control system	crossflow. Summary of NASA-supported experiments and	0.825
interaction of the X-29A aircraft (NASA-TM-101735) p 652 N91-23133	modeling	[NASA-TM-101712] p 683 N91-24556
[NASA-TM-101735] p 652 N91-23133 Some aspects of shock-wave boundary layer interaction	[NASA-TM-104412] p 662 N91-24202	I AMINAR FLOW AIRFOILS
relevant to intake flows p 628 N91-23161	JETTISON SYSTEMS Demonstration of a Laser Ordnance Initiation System	Forward sweep - A favorable concept for a laminar flow wing p 615 A91-37767
Aerodynamic interactions between bodies in relative	in an F-16 sled for flight crew escape system	wing p 615 A91-37/6/ LANDING AIDS
motion p 629 N91-24103	p 646 A91-39377	Functional-adaptive data processing in airborne radio
INTERFERENCE LIFT Suckdown, fountain lift, and pressures induced on	Helicopter in-flight stores jettison p 671 A91-39389	navigation and landing systems p 643 A91-39187
several tandem jet V/STOL configurations	Canopy breaking system for non-delay pilot rescue	Along for the ride? computer-automated aviation
[NASA-TM-102817] p 630 N91-24108	p 647 A91-39398	overview p 656 A91-40550

LANDING GEAR	The performance of 60 deg delta wings: The effects	LOW SPEED WIND TUNNELS
A numerical method for simulating drop test of landing	of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140	The performance of 60 deg delta wings: The effects of leading edge radius on vortex flaps and the wing
gears p 648 A91-40174 Landing gear drop testing p 648 A91-40203	LIFTING BODIES	[CRANFIELD-AERO-9004] p 628 N91-23092
Long time measurements of landing gear loads on SAAB	Unsteady, frequency-domain analysis of helicopter	The performance of 60 deg delta wings: The effects
SF-340 commuter aircraft	non-rotating lifting surfaces p 613 A91-36359	of leading edge radius and vortex flaps
[FFA-TN-1990-53] p 653 N91-23138	Analysis of numerical solutions for three-dimensional	[CRANFIELD-AERO-9002] p 653 N91-23140 LOW THRUST PROPULSION
Landing Loads Long time measurements of landing gear loads on SAAB	lifting wing flows p 625 A91-40498	Turbojet potential for hypersonic flight
SF-340 commuter aircraft	LIGHT HELICOPTERS Analytical study of the effects of weight on Light	p 658 N91-23155
[FFA-TN-1990-53] p 653 N91-23138	Helicopter (LH) exposure to ground-based weapons	LUBRICATION
LAPSE RATE	[AD-A232024] p 653 N91-23141	Advanced thermally stable jet fuels development
Temperature lapse rate as an adjunct to wind shear	LIGHT TRANSMISSION	program annual report. Volume 3: Fuel lubricity [AD-A232793] p 673 N91-24453
detection p 640 N91-24184 LASER APPLICATIONS	Radiation transmission in adverse weather	LUMINESCENCE
Demonstration of a Laser Ordnance Initiation System	p 675 A91-37880	Radioluminescent (RL) lighting system development
in an F-16 sled for flight crew escape system	LIGHTING EQUIPMENT	program
p 646 A91-39377	Radioluminescent (RL) lighting system development	[DÉ91-009743] p 679 N91-23381
Hot gas ingestion test results of a two-poster vectored	program [DE91-009743] p 679 N91-23381	3.5
thrust concept with flow visualization in the NASA Lewis	LIGHTNING	M
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561	Lightning protection requirements for aircraft: A	
LATERAL CONTROL	proposed specification	MACH NUMBER Inception length to a fully developed, fin-generated,
Metrics for roll response flying qualities	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186	shock-wave, boundary-layer interaction
p 650 N91-23118	LIGHTNING SUPPRESSION Lightning protection requirements for aircraft: A	p 617 A91-37842
LAUNCH VEHICLE CONFIGURATIONS Airbreathing propulsion for transatmospheric flight	proposed specification	Effects of wing sweep on in-flight boundary-layer
p 659 N91-23156	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186	transition for a laminar flow wing at Mach numbers from
LEADING EDGE SWEEP	LINE OF SIGHT	0.60 to 0.79 [NASA-TM-101701] p 683 N91-24555
The performance of 60 deg delta wings: The effects	Angle-only tracking filter in modified spherical	Effects of wing sweep on boundary-layer transition for
of leading edge radius on vortex flaps and the wing	coordinates p 643 A91-39433	a smooth F-14A wing at Mach numbers from 0.700 to
[CRANFIELD-AERO-9004] p 628 N91-23092	LINEAR SYSTEMS	0.825
The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps	Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417	[NASA-TM-101712] p 683 N91-24556
[CRANFIELD-AERO-9002] p 653 N91-23140	space uncertainty p 686 A91-39417 LININGS	MAGNETIC TAPES
Unsteady Navier-Stokes solutions for a low aspect ratio	An experimental evaluation of combustor liner materials	An overview of information resources in aviation p 690 N91-24091
delta wing	for solid fuel ramiet testing p 670 N91-24289	MAINTENANCE
[AD-A233201] p 631 N91-24112	LIQUID AIR CYCLE ENGINES	Bonded/fusion repair of aircraft structures
LEADING EDGES Boundary layer tripping in supersonic flow	Comparative study of different systems of combined	p 613 N91-24160
p 623 A91-39960	cycle propulsion p 658 N91-23152	MAN MACHINE SYSTEMS
Simulation of iced wing aerodynamics	LIQUID COOLING	Normalized predictive deconvolution - Multichannel
[NASA-TM-104362] p 628 N91-23086	Water-cooling technique of high temperature gas turbine	time-series applications to human dynamics p 686 A91-37584
Unsteady flow structure from swept edges subjected	blade [DE91-764238] p 681 N91-23506	Methodology for the analytical assessment of aircraft
to controlled motion [AD-A232714] p 628 N91-23094	LIQUID CRYSTALS	handling qualities p 664 A91-37597
[AD-A232714] p 628 N91-23094 Oxidation resistant carbon/carbon materials	Visualisation of boundary layer transition	Identification of pilot-vehicle dynamics from simulation
[REPT-911-430-105] p 672 N91-23251	p 623 A91-39964	and flight test p 664 A91-37598
Simulation of brush insert for leading-edge-passage	LIQUID HYDROGEN	National remote computational flight research facility [NASA-CR-179432] p 668 N91-24210
convective heat transfer	Simulation of brush insert for leading-edge-passage	MANEUVERABILITY
[NASA-TM-103801] p 679 N91-23409	convective heat transfer [NASA-TM-103801] p 679 N91-23409	Agility: A rational development of fundamental metrics
Breaking down the delta wing vortex: The role of vorticity in the breakdown process	LOAD DISTRIBUTION (FORCES)	and their relationship to flying qualities
[NASA-CR-188235] p 630 N91-24109	A study on sonic load of the vertical tail of F-7 aircraft	p 651 N91-23129
An experimental analysis of critical factors involved in	p 648 A91-40171	A review of high angle of attack requirements for combat aircraft p 651 N91-23130
the breakdown process of leading edge vortex flows	LOAD TESTS	X-31A at first flight p 651 N91-23131
[NASA-CR-188231] p 631 N91-24110 Calculation of high angle of attack aerodynamics of	Computerized system for static and fatigue large scale	MANUFACTURING
fighter configurations. Volume 2: User manual for	structural tests: A case study [IAITIC-87-1007] p 681 N91-23522	NKK premium quality titanium master alloy
VORSTAB-2	Improved silicon carbide for advanced heat engines	p 672 A91-40425
[AD-A233483] p 631 N91-24114	[NASA-CR-182289] p 672 N91-24451	Estimating fixed and variable costs of airframe manufacturers
Evaluation of cloud detection instruments and	LONG DURATION EXPOSURE FACILITY	[AD-A232661] p 613 N91-23077
performance of laminar-flow leading-edge test articles	Surface activation of Concorde by Be-7 p 690 N91-24983	How to know CMC
during NASA Leading-Edge Flight-Test Program [NASA-TP-2888] p 655 N91-24199	LONGITUDINAL CONTROL	[REPT-911-430-130] p 672 N91-23262
LIFE (DURABILITY)	Handling qualities guidelines for the design of fly-by-wire	MASS FLOW RATE
Application of cyclic damage accumulation life prediction	flight control systems for transport aircraft	Mach 4 testing of scramjet inlet models p 615 A91-37418
model to high temperature components	p 667 N91-23119	MATHEMATICAL MODELS
p 681 N91-24309 Notched fatigue of single crystal PWA 1480 at turbine	LONGITUDINAL STABILITY The influence of altitude and speed variations over the	Airfoil design method using the Navier-Stokes
attachment temperatures p 682 N91-24310	aircraft flight control response during the longitudinal	equations p 646 A91-38550
LIFE RAFTS	nonlinear manoeuvres p 664 A91-36722	Near midair collisions as an indicator of general aviation collision risk p 635 N91-23096
An update on SKAD (survival kit air droppable)	LOW ALTITUDE	collision risk p 635 N91-23096 Application of multidisciplinary optimization methods to
systems p 635 A91-39384	Air ambulance helicopter operational analysis	the design of a supersonic transport
UFT	[DOT/FAA/RD-91/7] p 652 N91-23134	[NASA-TM-104073] p 652 N91-23135
On the improvement of the supersonic lifting line theory p 614 A91-36695	An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147	The limits of the landing process of aircraft
Wing calculation in supersonic flow by means of the	LOW ASPECT RATIO WINGS	[DLR-FB-90-49] p 653 N91-23137 Design techniques for dual mode ram-scramjet
supersonic lifting line theory p 614 A91-36700	Unsteady Navier-Stokes solutions for a low aspect ratio	combustors p 659 N91-23166
Aerodynamic calculation of tandem wings in supersonic	delta wing	Evaluation techniques for highly augmented aircraft
flow by means of SLLT p 614 A91-36724	[AD-A233201] p 631 N91-24112 LOW COST	[DLR-FB-90-35] p 667 N91-23191
Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936	Fighter escape system - The next step forward	A computationally efficient modelling of laminar
	p 646 A91-39382	separation bubbles p 680 N91-23411 Modal analysis of multistage gear systems coupled with
Status of heavy rain tests p 640 N91-24180 LIFT DRAG RATIO	LOW REYNOLDS NUMBER	gearbox vibrations
Analytical studies on static aeroelastic behavior of	Tip vortex/airfoil interaction for a low Reynolds number	[NASA-TM-103797] p 681 N91-23513
forward-swept composite wing structures	canard/wing configuration p 617 A91-38545 Calculation of low Reynolds number flows at high angles	Model sensitivity in stress-strength reliability
p 674 A91-37774	of attack p 624 A91-40218	computations
Aerodynamic characteristics of scissor-wing	LOW SPEED	[AD-A232023] p 681 N91-23554
geometries p 624 A91-40216	Effects of canard position on the aerodynamic	An initial investigation into methods of computing
Aerodynamic characteristics of crescent and elliptic	characteristics of a close-coupled canard configuration at	transonic aerodynamic sensitivity coefficients [NASA-CR-188192] p 629 N91-24099
wings at high angles of attack p 624 A91-40219	low speed p 649 A91-40495 LOW SPEED STABILITY	Calculation of high angle of attack aerodynamics of
The performance of 60 deg delta wings: The effects of leading edge radius on vortex flaps and the wing	Analysis and control of low-speed forced unsteady	fighter configurations. Volume 1: Steady
[CRANFIELD-AERO-9004] p 628 N91-23092	flow p 676 A91-38697	[AD-A233482] p 631 N91-24113
(0.000.000.000.000.000.000.000.000.000.		

SUBJECT INDEX NAVIER-STOKES EQUATION

NASA Langley flight test program p 639 N91-24175	Airborne Wind Shear Detection and Warning Systems:	MISSILES
MLS mathematical model validation study using airborne	Third Combined Manufacturers' and Technologists'	Air surveying and data analysis for dynamic response
MLS data from Atlantic City International Airport Boeing	Conference, part 1	of missiles at swept-back wing tip p 647 A91-40156
727 elevation shadowing flight tests	[NASA-CP-10060-PT-1] p 639 N91-24166	MODAL RESPONSE
[DOT-FAA/CT-TN90/55] p 644 N91-24190	LIDAR studies on microbursts p 639 N91-24167	Modal analysis for fibre-carbon composite parts of an
A system approach to aircraft optimization	Integrated data analysis of July 7, 1990 microburst	airplane p 679 A91-40157
[NASA-TM-104074] p 654 N91-24196	p 685 N91-24170	Application of identification method of modal parameters
Advanced computational models for analyzing high	Microburst avoidance simulation tests	to flight flutter test p 665 A91-40167
speed propulsive flowfields p 686 N91-24291	p 639 N91-24172	MODEL REFERENCE ADAPTIVE CONTROL
Notched fatigue of single crystal PWA 1480 at turbine	Wind shear training applications for 91/135	Decoupled flight control via a model-following technique
attachment temperatures p 682 N91-24310	p 639 N91-24173	using the Euler operator p 664 A91-37595
	TDWR information on the flight deck	MOISTURE CONTENT
Evaluation of the qualification of the structure of a	p 640 N91-24176	Detection of traces of water in aviation kerosenes by
passenger aircraft by analysis and full-scale testing	Orlando experiment p 640 N91-24177	gas chromatography p 670 A91-37182
p 684 N91-24645	Integration of the TDWR and LLWAS wind shear	MONITORS
The role of structural analysis in airworthiness	detection system p 640 N91-24178	Precision runway monitor demonstration report
certification p 684 N91-24647	Thermodynamic Alerter for Microbursts (TAMP)	[AD-A232671] p 669 N91-23196
Influence of the refinement of structural calculation on	p 640 N91-24179	MONTE CARLO METHOD
aircraft qualification procedures p 684 N91-24649	Estimate of heavy rain performance effect	The limits of the landing process of aircraft
MECHANICAL PROPERTIES	p 640 N91-24182	[DLR-FB-90-49] p 653 N91-23137
Titanium aluminides for aerospace applications	Temperature lapse rate as an adjunct to wind shear	MOVING TARGET INDICATORS
p 671 A91-39302	detection p 640 N91-24184	Measurement of clutter suppression using a
MEDICAL SCIENCE	MICROFILMS	Quadrahedral p 674 A91-37106
A test of the American Safety Flight Systems, Inc.	An overview of information resources in aviation	All solid-state ASR with adaptive pulse Doppler
prebreather/portable oxygen system	p 690 N91-24091	processing p 641 A91-37107
[AD-A232723] p 636 N91-23100	MICROWAVE IMAGERY	MRCA AIRCRAFT
MENTAL PERFORMANCE	Relative effectiveness of 2-D vs. 1-D high resolution	Fighter escape system - The next step forward
Kansas Aviation Review	microwave imageing p 641 A91-37094	p 646 A91-39382
[NIAR-91-3] p 613 N91-24087	MICROWAVE LANDING SYSTEMS	MULTIGRID METHODS
• • • • • • • • • • • • • • • • • • • •	Air traffic control today and tomorrow	Cell centered and cell vertex multigrid schemes for the
METAL FATIGUE	p 642 A91-38215	Navier-Stokes equations p 674 A91-37834
Fatigue crack growth in monolithic titanium aluminides p 670 A91-38809	Microwave landing system modeling with application to	Block multigrid implicit solution of the Euler equations
· ·	air traffic control	of compressible fluid flow p 616 A91-37836
METAL MATRIX COMPOSITES	[NASA-TM-102832] p 636 N91-23099	A general multiblock Euler code for propulsion
Metal matrix composite vertical tail fabrication	MLS mathematical model validation study using airborne	integration. Volume 1: Theory document
[SME PAPER EM90-438] p 611 A91-36875	MLS data from Atlantic City International Airport Boeing	[NASA-CR-187484-VOL-1] p 632 N91-24120
METEOROLOGICAL PARAMETERS	727 elevation shadowing flight tests	A general multiblock Euler code for propulsion
Air ambulance helicopter operational analysis	[DOT-FAA/CT-TN90/55] p 644 N91-24190	integration. Volume 2: User guide for BCON, pre-processor
[DOT/FAA/RD-91/7] p 652 N91-23134	MICROWAVE TRANSMISSION	for grid generation and GMBE
Temperature lapse rate as an adjunct to wind shear	Radiation transmission in adverse weather	[NASA-CR-187484-VOL-2] p 632 N91-24121
detection p 640 N91-24184	p 675 A91-37880	A general multiblock Euler code for propulsion
METEOROLOGICAL RADAR	406 MHz ELT signal spectra for Sarsat	integration. Volume 3: User guide for the Euler code
Clutter rejection in Doppler weather radars used for	p 643 A91-39778	[NASA-CR-187484-VOL-3] p 632 N91-24122
airport wind shear detection p 685 A91-37104	MIDAIR COLLISIONS	MULTIPATH TRANSMISSION
Airborne Wind Shear Detection and Warning Systems:	Near midair collisions as an indicator of general aviation	Microwave landing system modeling with application to
Third Combined Manufacturers' and Technologists'	collision risk p 635 N91-23096	air traffic control
Conference, part 2	MILITARY AIRCRAFT	[NASA-TM-102832] p 636 N91-23099
	Development and demonstration of CREST subsystems	[147.07.14.102.002]
[NASA-CP-10060-PT-2] p 636 N91-24140	Development and demonstration of Ches i subsystems	
[NASA-CP-10060-PT-2] p 636 N91-24140	computer program for ejection seats	N.T.
Continuous wave laser for wind shear detection		N
Continuous wave laser for wind shear detection p 637 N91-24142	computer program for ejection seats	N
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3	computer program for ejection seats p 646 A91-39380	N
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program	NACELLES
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390	
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability	NACELLES Identification of nacelle modes from airplane GVT
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 2 P637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL ABROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMF)	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24158 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24171 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24174 detection system p 640 N91-24178	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-4017C NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of allitude determination deficiencies of the Service Aircraft Instrumentation	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP)	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232025] p 656 N91-23145	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24171 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A230255] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A230111] p 613 N91-24093	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150288] NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled stender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability p 613 N91-23060] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24188 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24171 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microburst (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY)	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes equations p 646 A91-38550
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warming Systems:	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 688 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tormorrow's high-tech helicopter	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes equations p 646 A91-38550 Secondary frequencies in the wake of a circular cylinder
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 640 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists'	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability p 613 N91-23060] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 688 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes equations p 646 A91-38535 Secondary frequencies in the wake of a circular cylindie with vortex shedding p 620 A91-39736
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24171 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microburst (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 649 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tormorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes equations p 646 A91-38555 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39735 Theoretical study of Goertler vortices - Linear stability
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warming Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tormorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Airfoil design method using the Navier-Stokes equations p 646 A91-38550 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor.	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations p 681 N91-23513 NATONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylindes with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24172 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microburst (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37835 Airfoil design method using the Navier-Stokes equations p 646 A91-38550. Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach p 678 A91-39956.
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive atternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 651 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,	NACELLES Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150288] NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855. Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39536 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39956 Second mode interactions in supersonic boundary
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 An airborne FLIR detection and warning system for low	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tormorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AEROSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylindes with vortex shedding p 620 A91-39735 Theoretical study of Goertler vortices - Linear stability approach Direct numerical study of crossflow instability p 678 A91-39955 Second mode interactions in supersonic boundary layers p 623 A91-39957
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24170 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24178 Thermodynamic Alerter for Microburst (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 649 N91-24179 METEOROLOGY Integration of weather sensing devices p 649 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologist' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tormorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37835 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39735 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Direct numerical study of crossflow instability p 678 A91-39955 Second mode interactions in supersonic boundary layers A study of three dimensional turbulent boundary layers
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive afternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 A91-34185 (DOT/FAA/SE-91/1] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-38553 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39573 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39955 Second mode interactions in supersonic boundary layers A study of three dimensional turbulent boundary layers A study of three dimensional turbulent boundary layers separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and vortex flow control using the reduced Navier separation and
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive afternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A23111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AEROSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach Direct numerical study of crossflow instability p 678 A91-39950 Second mode interactions in supersonic boundary layers p 623 A91-39957 A study of three dimensional turbulent boundary layers p 623 A91-39957 A study of three dimensional turbulent boundary layers spearation and vortex flow control using the reduced Navier Stokes equations
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24149	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness improvement using constrained optimization techniques	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150288] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-38550 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39735 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Direct numerical study of crossflow instability p 678 A91-39950 Second mode interactions in supersonic boundary layers p 623 A91-39950 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23085
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24149 Radar simulation program upgrade and algorithm	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] p 653 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-38550 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Direct numerical study of crossflow instability p 678 A91-39950 Second mode interactions in supersonic boundary layers A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23085 [NASA-TM-104407]
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-P-1080-PT-2] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24145 Radar simulation program upgrade and algorithm development p 638 N91-24153	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A23111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Application of multiple-input/single-output analysis	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AEROSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [P891-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach Direct numerical study of crossflow instability p 678 A91-39950 Second mode interactions in supersonic boundary layers p 623 A91-39950 A study of three dimensional turbulent boundary layers A study of three dimensional turbulent boundary layers p 623 A91-39950 NASA-TM-104407] p 628 N91-23085 N9
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24172 Orlando experiment p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24149 Radar simulation program upgrade and algorithm development p 638 N91-2413 Signal processing techniques for clutter filtering and wind	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A23111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24167 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Application of multiple-input/single-output analysis procedures to flight test data p 647 A91-39420	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AIRSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [PB91-150288] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39735 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Direct numerical study of crossflow instability p 678 A91-39955 Second mode interactions in supersonic boundary layers p 623 A91-39955 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navies (NASA-TM-104407) p 628 N91-23085 N91-23185
Continuous wave laser for wind shear detection p 637 N91-24142 Status of turbulence Prediction System's AWAS 3 p 637 N91-24146 Wind Shear radar program future plans p 637 N91-24151 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 RADAR performance experiments p 639 N91-24168 Integrated data analysis of July 7, 1990 microburst p 685 N91-24170 Microburst avoidance simulation tests p 639 N91-24172 Orlando experiment p 640 N91-24177 Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178 Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179 METEOROLOGY Integration of weather sensing devices p 639 N91-24174 METHOD OF CHARACTERISTICS The 2-D supersonic nozzle design p 660 N91-23176 METHYL ALCOHOL Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 MICROBURSTS (METEOROLOGY) Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-P-1080-PT-2] p 636 N91-24141 An airborne FLIR detection and warning system for low altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24145 Radar simulation program upgrade and algorithm development p 638 N91-24153	computer program for ejection seats p 646 A91-39380 The Minipac II ejection seat program p 647 A91-39390 The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Flying Qualities [AGARD-CP-508] p 649 N91-23108 MIL-STD-1797 is not a cookbook p 650 N91-23111 Flying qualities experience on the AMX aircraft p 650 N91-23112 The development of alternate criteria for FBW handling qualities p 666 N91-23113 Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115 Analytical study of the effects of weight on Light Helicopter (LH) exposure to ground-based weapons [AD-A232024] p 653 N91-23141 An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 Some analysis of decision-making in the test manufacture of military aircraft [AD-A23111] p 613 N91-24093 MILITARY HELICOPTERS One-on-one helicopter combat simulated by chess-type lookahead p 668 A91-37775 Helicopter in-flight stores jettison p 671 A91-39389 Comanche - Tomorrow's high-tech helicopter p 649 A91-40254 ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187 MIMO (CONTROL SYSTEMS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Application of multiple-input/single-output analysis	Identification of nacelle modes from airplane GVT results p 648 A91-40170 NASA SPACE PROGRAMS The role of organizations in professional development p 690 A91-38367 NASTRAN Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] NATIONAL AEROSPACE PLANE PROGRAM Hypersonic propulsion: Status and challenge p 658 N91-23153 NATIONAL AEROSPACE SYSTEM National airspace system. Communications operational concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185 Aviation system capital investment plan [P891-150268] p 644 N91-24185 NAVIER-STOKES EQUATION Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37418 Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 646 A91-3855 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Theoretical study of Goertler vortices - Linear stability approach Direct numerical study of crossflow instability p 678 A91-39950 Second mode interactions in supersonic boundary layers p 623 A91-39950 A study of three dimensional turbulent boundary layers A study of three dimensional turbulent boundary layers p 623 A91-39950 NASA-TM-104407] p 628 N91-23085 N9

Unsteady Navier-Stokes solutions for a low aspect ratio	NOZZLE FLOW	ORDNANCE
delta wing [AD-A233201] p 631 N91-24112	Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis	Demonstration of a Laser Ordnance Initiation System in an F-16 sled for flight crew escape system
The 3-D Navier-Stokes analysis of crossing, glancing	9- by 15-foot low speed wind tunnel	p 646 A91-39377
shocks/turbulent boundary layer interactions	[AIAA PAPER 90-2268] p 626 A91-40561	ORGANIZATIONS
[NASA-TM-104469] p 633 N91-24130	Hypersonic Combined Cycle Propulsion	The role of organizations in professional development
A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid	[AGARD-CP-479] p 657 N91-23147	p 690 A91-38367 ORR-SOMMERFELD EQUATIONS
dynamics	Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23175	An evaluation of stability-based methods for transition
[NASA-TM-104436] p 633 N91-24131	NOZZLE GEOMETRY	of three-dimensional flows p 678 A91-39928
NAVIGATION SATELLITES	Performance of an aerospace plane propulsion nozzle	OSCILLATING CYLINDERS
Air traffic control today and tomorrow p 642 A91-38215	p 615 A91-37769	Computation of axisymmetric slender bodies enclosing a jet efflux in pitching oscillatory motion
NAVSTAR SATELLITES	The 2-D supersonic nozzle design	p 618 A91-38681
Air traffic control today and tomorrow	p 660 N91-23176 NUMERICAL ANALYSIS	Hotary oscillation control of a cylinder wake
p 642 A91-38215	Transonic analysis and design using an improved grid	p 620 A91-39708
NEAR WAKES	p 624 A91-40137	OSCILLATING FLOW Dynamic stall of an oscillating circulation control airfoil
Vortex shedding and lock-on in bluff body wakes p 675 A91-38689	A numerical method for simulating drop test of landing	p 617 A91-38677
NICKEL CADMIUM BATTERIES	gears p 648 A91-40174 Unsteady Navier-Stokes solutions for a low aspect ratio	Heat transfer in oscillating flows p 676 A91-38698
Prismatic sealed Ni-Cd battery for aircraft power	delta wing	OXIDATION RESISTANCE
p 657 A91-38178	[AD-A233201] p 631 N91-24112	Oxidation resistant carbon/carbon materials [REPT-911-430-105] p 672 N91-23251
NITROUS OXIDES A CFD study of jet mixing in reduced flow areas for	NUMERICAL CONTROL	OXYGEN PRODUCTION
lower combustor emissions	Unsteady flow structure from swept edges subjected	Advanced airborne oxygen sensors
[NASA-TM-104411] p 661 N91-23185	to controlled motion [AD-A232714] p 628 N91-23094	p 655 A91-39387
NOISE INTENSITY	NUMERICAL FLOW VISUALIZATION	OXYGEN SUPPLY EQUIPMENT
AGARD flight test techniques series. Volume 9: Aircraft	Numerical simulation of steady and unsteady asymmetric	A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system
exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-24843	vortical flow p 618 A91-38683	[AD-A232723] p 636 N91-23100
NOISE MEASUREMENT	Visualization of the flow about a delta wing maneuvering	, p 555 (16) LE0100
AGARD flight test techniques series. Volume 9: Aircraft	in pitch to very high angle of attack p 618 A91-38684 Application of vortex dynamics to simulations of	P
exterior noise measurement and analysis techniques	two-dimensional wakes p 676 A91-38706	r
[AGARD-AG-300-VOL-9] p 689 N91-24843	•	P-51 AIRCRAFT
NOISE PREDICTION (AIRCRAFT) Noise inside aircraft fuselages subjected to airborne	0	Moulded Mustang p 612 A91-39854
excitations	•	PAINTS
[REPT-911-111-104] p 689 N91-23853	OBLIQUE SHOCK WAVES	Automatic aircraft paint stripping
NOISE PROPAGATION	interferometric investigation of supersonic flow fields	[SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping
Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of	with shock-shock interactions p 627 N91-23082	[SME PAPER MS90-282] p 673 A91-36896
propeller tone noise through a fuselage boundary layer	Analytical and experimental investigations of the oblique detonation wave engine concept p 660 N91-23169	Mechanical paint removal techniques for composite
[NASA-CR-185195] p 689 N91-23852	OGIVES	aircraft p 613 N91-24163
NOISE REDUCTION	Stream functions for the hypersonic flow around	PANEL FLUTTER
Clutter rejection in Doppler weather radars used for	quasi-pointed slender bodies at low angles of attack	Supersonic flutter analysis of clamped symmetric composite panels using shear deformable finite
airport wind shear detection p 685 A91-37104 Full-scale demonstration tests of cabin noise reduction	p 621 A91-39832 ONBOARD DATA PROCESSING	elements p. 675 A91-37847
using active vibration control p 646 A91-38549	Mechanical component diagnostic system	PANEL METHOD (FLUID DYNAMICS)
Application of acoustically treated honeycomb sandwich	[AD-A232126] p 656 N91-23146	Low-order panel method for internal flows
panels in noise control of aircraft cabin	OPTICAL MEASURING INSTRUMENTS	p 625 A91-40225
p 648 A91-40160 Modification meets Chapter 3 standards re-engined	Velocity sensor for an airborne optical air data system p 655 A91-38542	A vortex panel method for calculating aircraft downwash
Boeing 727 p 612 A91-40181	OPTICAL RADAR	on parachute trajectories [AIAA PAPER 91-0875] p 626 A91-40557
Noise inside aircraft fuselages subjected to airborne	Coherent lidar airborne windshear sensor - Performance	A vortex panel method for calculating aircraft downwash
excitations	evaluation p 655 A91-39873	on parachute trajectories
[REPT-911-111-104] p 689 N91-23853 Laboratory test and acoustic analysis of cabin treatment	Airborne Wind Shear Detection and Warning Systems:	[DE91-009764] p 627 N91-23085
for propfan test assessment aircraft	Third Combined Manufacturers' and Technologists' Conference, part 2	The propagation of acoustic disturbances in the
[NASA-CR-182075] p 690 N91-24844	[NASA-CP-10060-PT-2] p 636 N91-24140	transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854
NONDESTRUCTIVE TESTS	CLASS: Coherent Lidar Airborne Shear Sensor.	[ESA-TT-1126] p 689 N91-23854 Theoretical evaluation of engine auxiliary inlet design
How to know CMC	Windshear avoidance	for supersonic V/STOL aircraft
[REPT-911-430-130] p 672 N91-23262 Quantitative nondestructive evaluation: Requirements	[LMSC-F-415048] p 636 N91-24141	[NASA-CR-187098] p 633 N91-24123
for tomorrow's reliability p 681 N91-24074	Continuous wave laser for wind shear detection p 637 N91-24142	PANELS
NONEQUILIBRIUM FLOW	Status of 2 micron laser technology program	A new technique and application for nonlinear acoustic
Numerical study of hypersonic dissociated air past blunt	p 637 N91-24143	fatigue of stiffened composite panels
bodies p 616 A91-37835	Avionic laser multisensor program at Litton Aero	p 687 A91-38863 Application of acoustically treated honeycomb sandwich
NONLINEARITY Calculation of high angle of attack aerodynamics of	Products p 637 N91-24144 LIDAR studies on microbursts p 639 N91-24167	panels in noise control of aircraft cabin
fighter configurations. Volume 1: Steady	OPTICAL SCANNERS	p 648 A91-40160
[AD-A233482] p 631 N91-24113	Fire detection system for aircraft cargo bays	PARACHUTE DESCENT
Nonlinear analysis of composite shear webs with holes	p 655 A91-36755	A vortex panel method for calculating aircraft downwash
and correlation with tests p 684 N91-24642	OPTIMAL CONTROL Normalized predictive deconvolution - Multichannel	on parachute trajectories [AlAA PAPER 91-0875] p 626 A91-40557
NOSE CONES	time-series applications to human dynamics	Low Altitude High Speed Cargo Parachute system
Oxidation resistant carbon/carbon materials [REPT-911-430-105] p 672 N91-23251	p 686 A91-37584	development - A status report
NOSE WHEELS	Improvement of atmospheric flight performance of a	[AIAA PAPER 91-0880] p 635 A91-40558
Long time measurements of landing gear loads on SAAB	space vehicle through sensitivity minimization	Deployment optimization and human factors
SF-340 commuter aircraft	p 664 A91-37779 OPTIMIZATION	considerations for low-altitude troop parachutes
[FFA-TN-1990-53] p 653 N91-23138	Control law synthesis and stability robustness	[AIAA PAPER 91-0889] p 635 A91-40559
NOSES (FOREBODIES) Blunt-nosed swept supercritical LFC wings without nose	improvement using constrained optimization techniques	PARACHUTE FABRICS An introduction to testing parachutes in wind tunnels
flaps p 622 A91-39936	p 686 A91-37591	[AIAA PAPER 91-0858] p 668 A91-40556
NOTCH TESTS	Toward automating the design of centrifugal impellers p 676 A91-38874	PARACHUTES
Actual stresses in notches - How applicable are the	Sensitivity analysis, optimization, and data support in	An introduction to testing parachutes in wind tunnels
common stress concentration factors?	finite element systems p 677 A91-39230	[AIAA PAPER 91-0858] p 668 A91-40556
p 676 A91-38775	Robust eigenstructure assignment with structured state	Low Altitude High Speed Cargo Parachute system development - A status report
Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures p 682 N91-24310	space uncertainty p 686 A91-39417 Deployment optimization and human factors	[AIAA PAPER 91-0880] p 635 A91-40558
NOZZLE DESIGN		, , , , , , , , , , , , , , , , , , ,
		Deployment optimization and human factors
The 2-D supersonic nozzle design	considerations for low-altitude troop parachutes	considerations for low-altitude troop parachutes
	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559 Integrated multidisciplinary optimization of actively	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559
The 2-D supersonic nozzle design p 660 N91-23176 Development of a quiet supersonic wind tunnel with a	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559 A vortex panel method for calculating aircraft downwash
The 2-D supersonic nozzle design p 660 N91-23176	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559 Integrated multidisciplinary optimization of actively	considerations for low-altitude troop parachutes [AIAA PAPER 91-0889] p 635 A91-40559

interactive computing [NASA-TM-104374]

to flight flutter test

PASSENGER AIRCRAFT

for general aviation airports [AD-A232871]

PERFORMANCE PREDICTION

Applications and results

PERFORMANCE TESTS

[NASA-CASE-LAR-13563-1]

of a synthetic-aperture radar

MEGASODAR experiment

PILOT INDUCED OSCILLATION

Aircraft electrical system computer simulation

airborne

Metrics for roll response flying qualities

Wind shear training applications for 91/135

Evaluation techniques for highly augmented aircraft

Design and construction of a composite airframe for

The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and

its role in reducing head strikes of the copilot/gunner,

Unsteady flow past an airfoil pitched at constant rate

Visualization of the flow about a delta wing maneuvering

The design, manufacture, and test of a one-piece

Spot welded thermoplastic composite access doo

Computational analysis of underexpanded jets in the

Advanced ice protection systems test in the NASA Lewis

The limits of the landing process of aircraft

in pitch to very high angle of attack p 618 A91-38684
PLASTIC AIRCRAFT STRUCTURES

Flexure vibration test method of aviation tube

Simulation of a combined-cycle engine

thermoplastic wing rib for tiltrotor aircraft

[SME PAPER EM90-665]

ISME PAPER EM90-4891

hypersonic regime

icing research tunnel

POISSON DENSITY FUNCTIONS

INASA-TM-1037571

[DLR-FB-90-49]

PNEUMATICS

antenna

p 650 N91-23118

p 667 N91-23191

p 639 N91-24173

p 653 N91-23143

p 641 N91-24188

p 648 A91-40172

p 683 N91-24583

p 617 A91-38679

p 645 A91-36940

p 645 A91-36942

p 615 A91-37421

p 661 N91-23183

p 653 N91-23137

results

2010

PAVEMENTS

PAYLOADS

certification

PERTURBATION

PHASE DEVIATION

PHASED ARRAYS

High gain

communications

PILOT PERFORMANCE

PILOTLESS AIRCRAFT

PILOTS (PERSONNEL)

(DLR-FB-90-351

PILOT TRAINING

UAV research

[AD-A232422]

[AD-A233349]

PISTON ENGINES

FNASA-CR-1882321

PITCHING MOMENTS

PIPES (TUBES)

volume 1

qualities

PARAMETER IDENTIFICATION

PARALLEL PROCESSING (COMPUTERS)

aerodynamic identification of unstable aircraft

PORTABLE EQUIPMENT Enhancing aeropropulsion research with high-speed evetem p 687 N91-24796 POTENTIAL FLOW The breakdown of the linearized theory and the role of quadrupole sources in transonic rotor acoustics Equation decoupling - A new approach to the The experimental investigation of stability and receptivity p 664 A91-37773 Application of identification method of modal parameters of a swept-wing flow Theoretical evaluation of engine auxiliary inlet design for supersonic V/STOL aircraft p 665 A91-40167 Identification of nacelle modes from airplane GVT [NASA-CR-187098] p 648 A91-40170 POTENTIAL THEORY Aerodynamic preliminary analysis system 2. Part 1: Commercial aircraft fuel efficiency potential through p 645 A91-38127 [NASA-CR-182076] Evaluation of the qualification of the structure of a Aerodynamic preliminary analysis system 2. Part 2: passenger aircraft by analysis and full-scale testing n 684 N91-24645 Literature review on geotextiles to improve pavements p 669 N91-23199 A dynamic analysis of the SRB parachute system [AIAA PAPER 91-0838] p 670 A91-4 p 670 A91-40555 p 657 A91-38037 Model for IR sensor performance evaluation p 656 A91-39890 The role of structural analysis in airworthiness p 684 N91-24647 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Passive laminar flow control of crossflow vorticity p 679 N91-23410 Evaluation of the phase distortions of the input signal p 677 A91-39144 na for satellite p 643 A91-39776 p 639 N91-24169 The development of alternate criteria for FBW handling p 666 N91-23113

User's manual		
	627	N91-23081
OWERED LIFT AIRCRAFT		
Static performance tests of a fli	ght-typ	e STOVL
ejector		
	662	191-24201
PRANDTL-MEYER EXPANSION		
The 2-D supersonic nozzle design		
p.	660 1	N91-23176
PREDICTION ANALYSIS TECHNIQUES		
Prediction of test spectrum for gunfire		
		491-40175
Analytical and experimental investigate		
		N91-23169
Results of correlations for transition		
clean-up glove installed on an F-14 air		
studies for a laminar glove for the X-29 a		
		N91-24138
Application of cyclic damage accumulate	tion life	prediction
model to high temperature components		
		N91-24309
Notched fatigue of single crystal PWA		
	682	N91-24310
PREPREGS		
	612 /	491-39854
PRESSURE DISTRIBUTION		
Calculation of steady and unsteady pro		
at supersonic speeds with a transonic s		
		191-38544
Steady flow in a three-dimensional re		
yawed from the freestream turbulent box		18997 191-38742
Correlation of boundary layer stability a		
		A91-39929
The effects on aerodynamic performa		
supersonic wings for laminar flow control		designing
		N91-24197
Effects of wing sweep on in-flight		
transition for a laminar flow wing at Mac		
0.60 to 0.79	C11 11011	ibers nom
	A ERA	N91-24555
PRESSURE GRADIENTS		24000
Dialogue on progress and issues in stab	ility and	d transition
research		

field-deployable digital acoustic measurement

p 689 N91-24078

p 688 A91-39749

p 623 A91-39944

p 633 N91-24123

p 626 N91-23080

wave ramjets

[REPT-911-111-102]

detonation wave engine concept

nbers from N91-24555 d transition p 677 A91-39902 PRESSURE MEASUREMENT An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation Package (SAIP) [AD-A232055] p 656 N91-23145 PRESSURE OSCILLATIONS Unsteady pressure fluctuation on a highly loaded turbine p 619 A91-38702 blade row PRESSURE SUITS

Northrop advanced fighter crew protection system. I -Engineering development. II - System development, test p 647 A91-39395 and evaluation PROBABILITY THEORY

Model sensitivity in stress-strength reliability computations p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652

PROCEDURES AGARD flight test techniques series. Volume 9: Aircraft xterior noise measurement and analysis techniq p 689 N91-24843 [AGARD-AG-300-VOL-9] PROCESS CONTROL (INDUSTRY) Automatic aircraft paint stripping

ISME PAPER MS90-2801 p 611 A91-36895 CAPP imitative system of aircraft assembly --- Computer p 611 A91-37061 Aided Process Planning PROCUREMENT POLICY Do civil flying qualities requirements address military missions for off-the-shelf procurement

p 650 N91-23115 PROGRAM VERIFICATION (COMPUTERS)

Water droplet impingement on airfoils and aircraft engine inlets for icing analysis p 634 A91-38543 p 659 N91-23168

p 660 N91-23169

p 661 N91-23188

Analytical and experimental investigations of the oblique

The certification of the aircraft integrated propulsive

.

į

PROPULSIVE EFFICIENCY	Airborne radar simulation studies of the Denver July 11,	Design and implementation of real-time computer
Integration of propulsive systems. Selection and	1988 microburst p 638 N91-24155	coordinated force actuating system with multi-input/output
compromise [REPT-911-111-101] p 661 N91-23187	RADAR IMAGERY Evaluation of the phase distortions of the input signal	[AD-A233114] p 687 N91-24768
The certification of the aircraft integrated propulsive	of a synthetic-aperture radar p 677 A91-39144	REATTACHED FLOW
system (REPT-911-111-102) p 661 N91-23188	CLASS: Coherent Lidar Airborne Shear Sensor.	The effect of isolated roughness elements on transition in attachment-line flows p 678 A91-39959
[REPT-911-111-102] p 661 N91-23188 An efficient hybrid scheme for the solution of rotational	Windshear avoidance [LMSC-F-415048] p 636 N91-24141	RECOVERY PARACHUTES
flow around advanced propellers p 629 N91-24104	Clutter modeling of the Denver Airport and surrounding	Recent escape system parachute efforts at Douglas Aircraft Company p 635 A91-39393
Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an	areas p 638 N91-24152 Airborne radar simulation studies of the Denver July 11,	Aircraft Company p 635 A91-39393 RECTANGULAR PANELS
aft-mounted turboprop transport. Volume 1: Theory	1988 microburst p 638 N91-24155	Calculation and experimental study on sonic fatigue life
document	Description, characteristics and testing of the NASA	of aircraft structural panels p 648 A91-40162 RECTANGULAR WINGS
[NASA-CR-181924-VOL-1] p 632 N91-24118 PROTECTION	airborne radar p 638 N91-24156 RADAR SCATTERING	Modeling for unsteady aerodynamics of rectangular wing
Lightning protection requirements for aircraft: A	The planar elements method for computing the	in incompressible flow using step responses
proposed specification [RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186	scattering field of flight vehicle p 674 A91-37052	p 625 A91-40473 Calculation of high angle of attack aerodynamics of
[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 PROTECTIVE CLOTHING	RADAR SIGNATURES Pulse Doppler signature of a rotary-wing aircraft	fighter configurations. Volume 3: Unsteady
Northrop advanced fighter crew protection system. I -	p 643 A91-39756	[AD-A233569] p 631 N91-24115
Engineering development. II - System development, test and evaluation p 647 A91-39395	RADAR TARGETS Relative effectiveness of 2-D vs. 1-D high resolution	REDUNDANCY Sensor failure detection for jet engines
PROTECTIVE COATINGS	microwave imageing p 641 A91-37094	p 656 A91-37593
Robotic sensors for aircraft paint stripping	Measurement of clutter suppression using a	REENTRY VEHICLES How to know CMC
[SME PAPER MS90-282] p 673 A91-36896 Aircraft repair/general aviation quick tooling	Quadrahedral p 674 A91-37106 RADIATION EFFECTS	[REPT-911-430-130] p 672 N91-23262
[SME PAPER EM90-178] p 611 A91-36944	Surface activation of Concorde by Be-7	REGULATIONS
PSEUDOPOTENTIALS A new pseudo-potential function model for rotational	p 690 N91-24983 RADIO BEACONS	US industry enters the green maze new environmental regulations affecting aerospace companies
flow and its application to transonic-supersonic flow	Characteristics of the reception by the antenna systems	p 685 A91-37049
p 625 A91-40373	of a descending aircraft of signals from radio-beacon	The certification of the aircraft integrated propulsive
PULSE DOPPLER RADAR All solid-state ASR with adaptive pulse Doppler	landing systems p 642 A91-37200 RADIO COMMUNICATION	system [REPT-911-111-102] p 661 N91-23188
processing p 641 A91-37107	SATURN: The next generation radio for NATO	An overview of information resources in aviation
Radar simulation program upgrade and algorithm	p 682 N91-24475	p 690 N91-24091 Beechcraft starship strength certification
development p 638 N91-24153 PULSES	RADIO NAVIGATION Functional-adaptive data processing in airborne radio	p 684 N91-24643
Feasibility study in crack detection in aircraft stiffened	navigation and landing systems p 643 A91-39187	REINFORCED PLASTICS
panels by pulse probing and deconvolution p 654 N91-24158	RADIO TRANSMISSION Orientation measurements and transmission via Mode	Study of thermal-expansion-molded, graphite-epoxy hat-stiffened sandwich panels p 675 A91-37845
PUMP IMPELLERS	S at airports p 643 A91-38526	REINFORCEMENT (STRUCTURES)
Fluid Machinery Forum - 1990; ASME Spring Meeting,	RAIN	A new technique and application for nonlinear acoustic fatigue of stiffened composite panels
University of Toronto, Canada, June 4-7, 1990, Proceedings p 676 A91-38869	Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists'	p 687 A91-38863
Toward automating the design of centrifugal impellers	Conference, part 1	RELIABILITY
p 676 A91-38874	[NASA-CP-10060-PT-1] p 639 N91-24166	Quantitative nondestructive evaluation: Requirements
p 0, 0 7, 0, 0, 0, 0, 1		for tomorrow's reliability p 681 N91-24074
· ·	RADAR performance experiments p 639 N91-24168	for tomorrow's reliability p 681 N91-24074 RELIABILITY ANALYSIS
Q	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety
Q	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect	RELIABILITY ANALYSIS
Q QUALIFICATIONS Analytical Qualification of Aircraft Structures	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach Similarities and differences between environment tests and reliability tests in view of vibration
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638	RADAR performance experiments p 639 N91-24168	PELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present	PRELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach Similarities and differences between environment tests and reliability tests in view of vibration P 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-478] Hypersonic propulsion: Past and present p 657 N91-23147 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] Hypersonic propulsion: Past and present p 657 N91-23147 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures QUALITY CONTROL NKK premium quality titanium master alloy	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] P 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop	RADAR performance experiments Status of heavy rain tests p 640 N91-24168 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772]	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166	Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude	RADAR performance experiments Status of heavy rain tests p 640 N91-24168 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772]	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion (AGAPD-CP-479) p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23149 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER M590-280] p 611 A91-36895
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion (AGARD-CP-479) p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23149 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRic Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-282] p 671 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 Mechanical paint removal techniques for composite
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772]	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A230203] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion (AGAPD-CP-479) p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23149 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-23189 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel	PRELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 PRELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 PREMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 PREMOTE SENSORS Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 PREMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-280] p 673 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163 PREQUIREMENTS Quantitative nondestructive evaluation: Requirements
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107	RADAR performance experiments p 639 N91-24168 Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] RADAR APPROACH CONTROL	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion (AGAPD-CP-479) p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23149 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines airbeathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170	PRELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 PRELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 PREMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 PREMOTE SENSORS Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 PREMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-280] p 673 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163 PREQUIREMENTS Quantitative nondestructive evaluation: Requirements
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-3960 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 Mechanical paint removal techniques for composite aircraft REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 647 A91-39398
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772]	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 647 A91-39398 Airborne rescue system
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24649 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR APPROACH CONTROL Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR CLUTTER MAPS Measurement of clutter suppression using a	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203 REAL GASES Real gas effects on hypersonic boundary-layer stability p 614 A91-36453	Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 671 A91-36895 Rebobtic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 Mechanical paint removal techniques for composite aircraft PREMOVING PAPER MS90-282 p 673 A91-36896 Mechanical paint removal techniques for composite aircraft REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 647 A91-39398 Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] RADAR APPROACH CONTROL Presision runway monitor demonstration report [AD-A232671] P 669 N91-23198 RADAR CLUTTER MAPS Measurement of clutter suppression using a Quadrahedral	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203 REAL TIME OPERATION	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36896 Mechanical paint removal techniques for composite aircraft p 613 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 847 A91-39398 Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR APPROACH CONTROL Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR CLUTTER MAPS Measurement of clutter suppression using a Quadrahedral p 674 A91-37106 RADAR CROSS SECTIONS The planar elements method for computing the	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23166 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203 REAL GASES Real gas effects on hypersonic boundary-layer stability p 614 A91-36453	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 671 A91-36895 Rebotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36996 Mechanical paint removal techniques for composite aircraft P 681 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 647 A91-39398 Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095 RESEARCH A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] RADAR APPROACH CONTROL Presision runway monitor demonstration report [AD-A232671] P 669 N91-23198 RADAR CLUTTER MAPS Measurement of clutter suppression using a Quadrahedral P 674 A91-37106 RADAR CROSS SECTIONS The planar elements method for computing the scattering field of flight vehicle P 674 A91-37052	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23166 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 660 N91-23483 REAL TIME OPERATION Evaluation of the performance of a RISC based real time data processor in air traffic control radar applications p 642 A91-37145	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 Mechanical paint removal techniques for composite aircraft paint stripping [SME PAPER MS90-282] p 613 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 847 A91-39398 Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095 RESEARCH A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100
QUALIFICATIONS Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648 Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Analytical methods for the qualification of helicopter structures p 684 N91-24650 QUALITY CONTROL NKK premium quality titanium master alloy p 672 A91-40425 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 QUATERNIONS Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 RADAR ANTENNAS Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR APPROACH CONTROL Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 RADAR CLUTTER MAPS Measurement of clutter suppression using a Quadrahedral p 674 A91-37106 RADAR CROSS SECTIONS The planar elements method for computing the	RADAR performance experiments Status of heavy rain tests p 640 N91-24180 Estimate of heavy rain performance effect p 640 N91-24182 RAMJET ENGINES Accent on hypersonic p 669 A91-36625 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 Hypersonic propulsion: Past and present p 657 N91-23148 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Trajectory optimization considerations for ramjet engines airbreathing propulsion for transatmospheric flight p 659 N91-23151 Airbreathing propulsion for transatmospheric flight p 659 N91-23166 Design techniques for dual mode ram-scramjet combustors p 659 N91-23166 Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289 REACTION KINETICS Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690 Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170 Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203 REAL GASES Real gas effects on hypersonic boundary-layer stability p 614 A91-36453	RELIABILITY ANALYSIS Design of aircraft wings subjected to gust loads - A safety index based approach p 675 A91-37851 Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Model sensitivity in stress-strength reliability computations [AD-A232023] p 681 N91-23554 Probability approach for strength calculations p 685 N91-24652 RELIABILITY ENGINEERING NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 REMOTE SENSORS Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873 REMOTELY PILOTED VEHICLES Vectored propulsion, supermaneuverability and robot aircraft Book p 649 A91-40501 REMOVAL Automatic aircraft paint stripping [SME PAPER MS90-280] p 671 A91-36895 Rebotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36996 Mechanical paint removal techniques for composite aircraft P 681 N91-24163 REQUIREMENTS Quantitative nondestructive evaluation: Requirements for tomorrow's reliability p 681 N91-24074 RESCUE OPERATIONS Canopy breaking system for non-delay pilot rescue p 647 A91-39398 Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095 RESEARCH A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system

Interferometric investigation of supersonic flow fields ith shock-shock interactions p 627 N91-23082

p 636 N91-23099

with shock-shock interactions p 627 N91-23082
Microwave landing system modeling with application to

air traffic control [NASA-TM-102832]

RESEARCH AND DEVELOPMENT

Toward enhanced fighter combat effectiveness p 645 A91-37050
The development and research on CAD for education on aircraft design p 686 A91-38234

RADAR DETECTION

Alphar DETECTION
Airborne Wind Shear Detection and Warning Systems:
Third Combined Manufacturers' and Technologists'
Conference, part 2
[NASA-CP-10060-PT-2] p 636 N91-24140

p 636 N91-24140

SHEAR LAYERS SUBJECT INDEX

The state and benefit or increase and benefit or increase particles (a) 613 Act 2015 (b) (A) Act 2015 (c) (B) SUBJECT INDEX		SHEAR LAYERS	
Mochanization proposed disposed by patient of the Composed approach patient of the Composed approac	The conto and honofits of sircraft sysilability	BOLLING MOMENTS	SAFETY
ADJ-2017/2017 ADJ-2017-2017-2017-2017-2017-2017-2017-2017		Static measurements of stender delta wing rolling	A test of the American Safety Flight Systems, Inc.
The Double signature of a notice of the DUS (1954 No. 1-2016) Shank of Sharksen research p 600 No. 1-2016 Shank of Sharksen research p 600 No. 1-2016 Actions research p 100 No. 1-2016 Act	· · · · · · · · · · · · · · · · · · ·		
Accidence room of the Service of the		Pulse Doppler signature of a rotary-wing aircraft	• • • • •
Selection of contractions of management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the DLR post non-zero of a management of the post non-zero of a management of a management of the post non-zero of a management of the post non-zero of a management of a management of the post non-zero of a management of a management of the post non-zero of a management of a management of a management of a management of a management of a management of a management of a mana	[ISSN-0938-2194] p 691 N91-24086		•
Activities good in the CLF 14 Activities good in the CLF 1		rotorcraft applications p 667 N91-23123	
Mechanics component displayed by page 1 (As 1-305) INSA-CRI FARMANGEMENT policy of the page 1 (As 1-205)			
RESEARCH MANAGEMENT Small Engine Component Technology (SECT) study Anchoes report of the DLR Post 1912/2005 Anchoes report of the DLR Post 1912/2005 Anchoes report of the DLR Post 1912/2005 Anchoes report of the DLR Post 1912/2005 Enversamental exposure effects on composite materials No.PCH-1917/2019 Post 2012/2005 Enversamental exposure effects on composite materials No.PCH-1917/2019 Post 2012/2005 Enversamental exposure effects on composite materials No.PCH-1917/2019 Post 2012/2005 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure effects on composite materials No.PCH-1917/2019 Post 2012/2005 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure effects on composite materials No.PCH-1917/2019 Enversamental exposure exposure effects on composite materials No.PCH-1917/2019 Enversamental exposite report and exposure effects Post 2012/2019 Enversamental exposite report and exposure Enversamental exposite proposition and exposite exposition of the spectrum to guide exposition of th	p 611 A91-36351	Mechanical component diagnostic system	
RESEARCH MANAGEMENT Some Engine Component Technology (SECT) study RESEARCH PROJECTS Activities speed of the UR INSERTING PROPERTY RESEARCH PROJECTS Activities speed of the UR INSERTING PROPERTY RESEARCH PROJECTS Activities speed of the UR INSERTING PROPERTY RESEARCH PROJECTS RES			• • • • • • • • • • • • • • • • • • • •
Small Engine Component Technology (SECT) study (PASACAT PURISH) (PASACAT P	•••••••		
FUNDAMY HIGS 1961 No. 12406 Country Co	Small Engine Component Technology (SECT) study	Small Engine Component Technology (SECT) study	
Achieves report of the DLR (ISMA/0802-1) p. 691 Nol-2405 (ISMA/0802-2) p. 691 Nol-2405 (ISMA/080			• - •
SAMOUNDS TRUE CONTRES AND CONTROL STRUCTURES AND CON		Ground resonance of a helicopter with inter-connected	
HASHANIA BRICKING FOR Commentation according and commentations of commentations and processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of compressor blades for gas tubine processes for the manufacture of the instructed theory and the noted of quadronic of the instructed theory and the noted of quadronic of the instructed theory and the noted of quadronic of the instructed theory and the noted of quadronic of the instructed theory and the noted of quadronic of the instructed theory and the noted of quadronic of the instructed theory and the noted of processes for the processes of the	(• • • • • • • • • • • • • • • • • • • •
The design, manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of complexed black processes for the manufacture of t			Study of thermal-expansion-molded, graphite-epoxy
RESIDUAL STRESS Residual stress control in developing processes for the manufacture of compressor biolese for gas burbon and factors of compressor biolese for gas burbon and factors of compressor biolese for gas burbon and factors of compressor biolese for gas burbon and factors of compressor biolese for gas burbon and factors of compressor biolese for gas burbon and factors of gas and factors of the factors	for commercial aircraft		
The break/down of the investroop and the role of quactive congressor blacks of 1984 Marinest and the complex of 1984 Marinest and the control of the control			panels in noise control of aircraft cabin
Preference for an inertial degree of Freedom discribed in the heading qualities of a hybryterie hashcopier or the heading qualities of a hybryterie hashcopier or head heading published of a hybryterie hashcopier or heading qualities of hybryterie hashcopier or heading qualities of hybryterie hashcopier or heading qualities of hybryterie hashcopier or heading qualities of hybryterie hashcopier or heading qualities of hybryterie hashcopier or heading a hybriterie hashcopier or history for his hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hybriterie hashcopier or history for history hyb	Residual stress control in developing processes for the	The breakdown of the linearized theory and the role of	·
PRESONANT VIBOURISES RESONANT VIBOURISES ON 1912-1125 Feasibility study in cards descent on invariant silendar or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and deconocidation or eventuring and the	•		
characterisation on the handing osalities of a hyb-year helicipopter of helici		·	p 643 A91-39778
P651 NB1/32125 Feasibility study in crack detection in aircraft siffled grants by pulse probing and deconvolution Fedicition of lest spectrum for guntine vibration Prediction of test spectrum fore		the teeter motion of windturbine and helicopter rotors	
Fessebility study in crack detection in aircraft siffered panels by puter profing and deconvolution p. 654 M1-2158 PRESONANT VIBRATION P. 655 M1-2158 A new pseudo-potential function model for rolational flow and its application to transform the stage potential profit of the profit of the stage potential profit of the profit of the stage potential profit of the pro		•	
Animals of the flower and deconvolution posses with processing and deconvolution processing and processing and deconvolution processing and p	Feasibility study in crack detection in aircraft stiffened		SATELLITE COMMUNICATION
RESONATY VIBRATION Prediction of test spectrum for gunffer vibration p 666 A91-4075 REVIOLDS NUMBER Onthe development of turbulent spots in plane Possullife flow p 678 A91-39974 Transition research in low-disturbance high-speed wind p 678 A91-39974 Transition research in low-disturbance high-speed wind p 678 A91-39974 Transition research in low-disturbance high-speed wind p 678 A91-39978 PART AND AND AND AND AND AND AND AND AND AND		ROTATING FLUIDS	
REVIOLDS NUMBER On the development of turbulent spots in plane Poissuille flow Transition research in low disturbance high-speed wind flow and the programment of the development of turbulent spots in plane Poissuille flow many at high angles of states. p. 624 A81-40213 Reynolds rumber effects on the fransonic aerodynamics of a steady which the programment problems of a steady which the programment problems of a steady evidence flower or the membrane problems. Policy in the programment of the flow past an impulsively started cylinder stating a discrete vortex method (IAO-A232066) BISS (SPECIAL) Simulation of the flow past an impulsively started cylinder stating a discrete vortex method (IAO-A232066) RIGIO ROTORS SINCE PAPER RIGIO ROTORS ROTOR SPEED PERFORMATION of the inequirate flower of the rotor of the inequirate flower of the rotor of the inequirate flower of the rotor of the			SATELLITE TRACKING
ROYON ARRONAMICS On the development of turbulent spots in plane Poissuille flow p. 678. As 193904 Transition research in low-discutrations high-special work p. 678. As 193904 Transition research in low-discutrations high-special work p. 678. As 193904 Transition research in low-discutrations high-special work p. 678. As 193904 Transition research in low-discutration high-special work p. 678. As 193904 Acodynamic characteristics of creacent and allighter wings at high parties of states. P. 624. As 19413315 New developments in the dynamic aeroelastic stability status p. 688. New 19413315 New developments of high personnel p. 648. As 1943057 The control of rotor blades p. 673. As 193904 Simulation of the flow pasts an implication to a one-piece thermopisate wing in the dynamic aeroel. P. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The control of rotor vibration using squeeze-flim to p. 645. As 193057 The design, manufacture, and test of a one-piece p. 646. As 193057 The design, manufacture, and test of a one-piece p. 646. As 193057 The design, manufacture, and test of a one-piece p. 646. As 193057 The design, manufacture, and test of a personnel p. 646. As 193057 The design, manufacture, and test of a personnel p. 646. As 193057 The design, manufacture, and test of a personnel p. 646. As 193057 The design, manufacture, and test of a personnel p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646. As 193057 The design of p. 646			
On the development of truthelent spots in plane Poisevalle for flow of the development of the development of the development of the development of the development of the development in the dynamic aeroelastic stability and the development in the dynamic aeroelastic stability of order stables of the stable of the development in the dynamic aeroelastic stability of order stables of the stable			
Invariation research in low-distributance p. 021 14-339 and the part of t	On the development of turbulent spots in plane Poiseuille	•	
Sumplison of a late of the control of control and elliptic wings at high angles of attack p 624 A0140219 A0140219 A01400219 A0			
wings at high englies of attack P. 624 A91-40219 National Transcenic Facility status p 689 N3124133 Reynolds number effects on the transonic earodynamics of a stender wing-body configuration p 634 N31-2433 Reynolds number effects on the transonic earodynamics of a stender wing-body configuration p 634 N31-2433 Simulation of the flow past an imputorisely attended yielder using a discord works method (ApA-233068) P. 638 N31-24533 The control of rotor vibration using squaeza-like in relative motion p 629 N31-24103 Reynolds number effects on the transonic earodynamics of heticopter air and ground resonance p 645 A91-36357 The control of rotor vibration using squaeza-like in relative motion p 629 N31-24103 Rotor Leading of works method (ApA-233068) The design, manufacture, and test of a one-piece thermoplastic work method (SI) p 645 A91-36357 Stability of hingelass rotors in hover using a free demensional unsteady servolynamics in p 645 A91-36357 Stability of hingelass rotors in hover using three-dimensional unsteady servolynamics in p 656 A91-36358 RISK Nam reridair collisions as an indicator of parental aviation collision risk. Nam relidar collisions as an indicator of parental aviation collision risk. Rotor TARIS The introduction of off-line programming techniques for the robotic assembly of aircraft structures p 659 A91-36898 ROBOT CRINS ROBOT CRINS ROBOT CRINS ROBOT CRINS ROBOT SENSORS of aircraft paint stripping p 613 N31-24088 ROBUSTNESS (MATHEMATICS) Control law synthasis and stability robustness page introughly resonance in p 648 A91-36395 ROBOTISES (MATHEMATICS) Control law synthasis and stability robustness page united by the proposal page aircraft with the programming techniques for the relation of aircraft paint stripping p 649 A91-36395 ROBUSTNESS (MATHEMATICS) Control law synthasis and stability robustness page united by the proposal page aircraft with the proposal page aircraf			[AD-A232101] p 680 N91-23445
National Transmice Facility status p. 698 N31-24138 Reprofictor untrolled effects on the transmic aerotynamics of a stender wing-body configuration p. 634 N31-24134 Simulation of the flow past an impulsively started cylinder using a discrete vortex method p. 635 N31-24134 Simulation of the flow past an impulsively started cylinder using a discrete vortex method p. 635 N31-24134 RIBS (SUPPORTS) p. 635 N31-24134 RIBS (SUPPORTS) p. 635 N31-24135 RIBS (SUPPORTS) p. 645 N31-23095 RIBS (SUPPORTS) p. 645 N31-23095 RIGH ROTORS p. 645 N31-23095 ROBOT CONTROL Automatic alloration for facility of the recibility of the			
resonance p. 645 A91-36357 RISG (SUPPORTS) The design, manufacture, and test of a one-piece surrogasse wing in for silicot aricraft part stronged by the design of the stronged by the design of the stronged by the design of the stronged by the design of the stronged by the design of the stronged by the design of the stronged by the design of the stronged by the str		ROTOR BODY INTERACTIONS	[NASA-TM-101698] p 633 N91-24128
Simulation of the flow pasts inripodasvely started cyrinder using a discrete vortex method (AD-A2330861) p. 683 N91-24533 Armodynamic interactions between bodies in relative properties of the design of the NASA Recommendation of the control of th			
using a discrete vortex method [AD-A233068] p 683 N91-24533 RIBS (SUPPORTS) The design, manufacture, and test of a one-piece thermoplastic wing nb for tillitrotor aircraft [SME PAPER BM90-665] p 645 A91-38357 RIGHE RIMS (BMS) p 645 A91-38357 RIGHE RIMS (BMS) p 645 A91-38357 Stability of hingeless fotors Stability of hingeless fotors Near midar collisions as an indicator of general aviation nollision risk p 635 A91-38358 RISK Near midar collisions as an indicator of general aviation nollision risk p 635 A91-38358 ROBOTO ARMS The introduction of off-line programming techniques for the robotic assembly of aircraft structures SIME PAPER MS90-279 p 611 A91-38895 ROBOT SENDORS ROBOT ARMS ROBOT CONTRANS ROBOT			
RISS (SUPPORTS) The design, manufacture, and test of a one-piece thermoplastic wing in for tillitrotor aircraft [SME PAPER EM90-665] p. 645 A91-36940 [RIOTO DYNAMICS] Rotor-fusellage dynamics of helicopter air and ground resonance p. 645 A91-36957 [RioTo funding for the resonance of p. 645 A91-36957 [RioTo funding for the resonance of p. 645 A91-36957 [RioTo funding for the resonance of the res	Simulation of the flow past an impulsively started cylinder	dampers p 677 A91-39590	
RISS SUPPORTS) The design, manufacture, and test of a one-piece thermoplastic wing in for tiltrotor aircraft [SME PAPER MS0-965] p 645 A91-36940 [RIGID ROTORS All Control of Fluid Machinery Forum - 1990; ASME Spring Meeting. University of Toronto, Canada, June 4-7, 1990, P676 A91-39357 Subility of hingeless rotors in hover using three-dimensional unsteady servolynamics of helicopter air and ground resonance p 645 A91-36357 Subility of hingeless rotors in hover using three-dimensional unsteady servolynamics of helicopter air and ground resonance p 645 A91-36357 Subility of hingeless rotors in hover using three-dimensional unsteady servolynamics of helicopter air and ground resonance p 645 A91-36358 Ageneral method for rotordynamic analysis p 677 A91-39858 Ageneral method for rotordynamic analysis p 678 A91-36358 Ageneral method for rotordynamic analysis p 678 A91-36358 The breakdown of the linearized theory and the rote of udurlipole sources in transonic rotor acoustics of the robotic assembly of aircraft structures [SME PAPER MS0-278] p 611 A91-36895 ROBOTICS SME PAPER MS0-278] p 611 A91-36895 ROBOTICS SME PAPER MS0-278] p 613 A91-36895 ROBOTICS SMEDITARIES (MATHEMATICS) p 679 A91-36895 ROBOTICS Evaluation of automation for inspection of aging aircraft power using constrained optimization p 613 N91-24085 ROBOTICS Evaluation of automation for inspection of aging aircraft power using a free power			
thermoplastic wing ib for tilltotor aircraft [SME PAPER RM90-665] p 645 A91-38940 RIGID ROTORS PAGE RM90-665] p 645 A91-38940 RIGID ROTORS PAGE RM90-665] p 645 A91-38940 Piccoedings p 646 A91-38940	RIBS (SUPPORTS)	•	airborne radar p 638 N91-24156
SME PAPER RM0-0665 p 645 A91-38940 RIGIO ROTORS			
RIGID ROTORS Rotor-busilage dynamics of helicopter air and ground resonance p 645 A91-38357 Stability of hingeless rotors in hover using three-dimensional unsteady servorganities p 653 A91-38358 RISK RISK RISK RISK ROBOT ARMS ROBOT ARMS ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-38895 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 613 A91-38895 ROBOT CONTROL Evaluation of automation for inspection of aging aircraft paint stripping [SME PAPER MS90-280] p 673 A91-38986 ROBOTICS Evaluation of automation for inspection of aging aircraft paint stripping [SME PAPER MS90-280] p 673 A91-38986 ROBOTICS Control law synthesis and stability robustness improvement using constrained optimization techniques space uncertainty p 586 A91-39395 ROBUSTINESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques space uncertainty p 586 A91-39395 ROBUST ROBOT SERON ROBOT SERON ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques space uncertainty p 586 A91-39395 ROBUST ROBOT SERON ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques space uncertainty p 586 A91-39395 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques space uncertainty p 586 A91-39395 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability reductions seal robustness improvement using constrained optimization techniques space uncertainty p 588 A91-39395 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability reductions seal robustness improvement using constrained optimization techniques page uncertainty p 588 A91-39395 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability reductions seal robustness improvement using constrained optimization techniques page uncertainty p 588 A91-39395 ROBUST SERON ROBUSTNESS (MATHEM			p 657 A91-38178
resonance Sability of hingeless rotors in hover using three-dimensional unsteady aerodynamics p 653 A91-36585 RISK Near midiar collisions as an indicator of general aviation collision risk p 653 N91-23996 RISK Near midiar collisions as an indicator of general aviation collision risk p 653 N91-23996 ROBOT ARMS The introduction of off-line programming techniques for the robotic assembly of aircraft structures [SME PAPER MS90-276] p 611 A91-36998 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36995 ROBOT SENSORS ROBOT		University of Toronto, Canada, June 4-7, 1990,	
The interior singless and order in flower sing three-dimensional unsteady aerodynamics p 653 A91-3858 p 653 A91-3858 p 653 A91-3858 p 653 A91-3858 p 658 A91-3858 p 658 A91-3959 p 658 A91-3959 p 658 A91-3974 p 659 A91-2318 p 659 A91		·	
The breakdown of the linearized theory and the role of quadropole sources in transonic rotor acoustics Near midair collisions as an indicator of general aviation collision risk ROBOT ARMS ROBOT ARMS ROBOT CONTROL Automatic alteraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 ROBOT SENSORS RO			
Near midair collisions as an indicator of general aviation collision risks p 635 N91-23096 ROBOT ARMS The introduction of off-line programming techniques for the robotic assembly of aircraft structures [SME PAPER MS90-276] p 611 A91-36898 [SME PAPER MS90-276] p 611 A91-36898 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 ROBOT SENSORS ROBO			Airborne Collision Avoidance System (ACAS) in
Collision risk p 635 N91-23096 ROBOT ARMS The introduction of off-line programming techniques for the robotic assembly of aircraft structures [SME PAPER MS90-276] p 611 A91-36898 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 ROBOT SENSORS ROBOT SEN			
Preference for an Inertial degree of freedom describing the robotic assembly of aircraft structures [SME PAPER MS90-276] p. 611 A91-36998 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p. 611 A91-36895 ROBOT SENSORS R		ROTOR SPEED	
the robotic assembly of aircraft structures [RME PAPER MS90-278] p 611 A91-36898 ROBOT CONTROL Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895 ROBOT SENSORS Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36895 ROBOTICS Evaluation of automation for inspection of aging aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques passe uncertainty p 686 A91-37591 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness (MATHEMATICS) ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness (MATHEMATICS) ROBUSTNESS (MA	ROBOT ARMS		
ROBOT CONTROL Automatic alterate paint stripping [SME PAPER MS90-280] p 611 A91-36895 ROBOT SENSORS ROBOTICS Evaluation of automation for inspection of aging alterate point stripping alterate point attended of the p 613 N91-24088 ROBUSTNESS (MATHEMATICS) Control law synthesis and simprovement using constrained optimization techniques p 686 A91-39547 ROBOST SENSORS ROBUSTNESS (MATHEMATICS) Control law synthesis and simprovement using constrained optimization techniques p 686 A91-39751 Robust eigensfurcture assignment with structured state space uncertainty ROCKET CATAPULTS Ejection seaf rocket catapult design for reduced G field influence p 686 A91-39355 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems Alana-80-0098] ROLL Metrics for roll response flying qualities P 650 N91-23158 ROLL An initial study into the influence of control stick characteristics on the handling qualities p 765-340 commuter alterant for automation of rocal time shading qualities p 765-340 commuter alterant for reduced of shading and single points and point and point point point performance in hover using a free wake analysis of p 646 A91-38548 ROTORS The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 Identification strategies for crack shape determination p 679 A91-40234 Mechanical component diagnostic system [AD-A232126] p 650 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations p 686 A91-39347 ROCKET CATAPULTS Ejection seaf rocket catapult design for reduced G field influence p 646 A91-39347 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems p 650 N91-23198 ROLL Metrics for roll response flying qualities p 6 8/91-23198 ROLL Metrics for roll response flying qualities p 6 8/91-23198 ROLL Metrics for roll response flying qualities p 6 8/91-23198 ROLL Metrics for roll response flying qualities p 6 8/91-23198 ROLL Metrics for roll response flying qualities p 6 8			
Automatic alreraft paint stripping [MEP PAPER MS90-280] p 611 A91-36895 [ROBOT SENSORS] p 673 A91-36896 [SME PAPER MS90-280] p 673 A91-36896 [SME PAPER MS90-282] p 674 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3514 [SME PAPER MS90-282] p 675 A91-3	[SME PAPER MS90-276] p 611 A91-36898		[AD-A232023] p 681 N91-23554
ROBOT SENSORS ROBOT SENSORS ROBOTICS ROBOTICS ROBOTICS Evaluation of automation for inspection of aging aircraft point stripping (SME PAPER MS90-282) p 673 A91-36896 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 650 N91-2318 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire sign and stabilities of the stripping (smearly stable) and included a first of the stripping assage through resonance p 678 A91-40130 Identification strategies for crack shape determination of recorks hape determination in rotors p 679 A91-40234 Mechanical component diagnostic system [AD-A232126] p 555 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103801] p 679 N91-23458 Mechanical component diagnostic system [AD-A232126] p 658 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103801] p 679 N91-23458 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AD-A232871] p 669 N91-23198 SABB AIRCRAFT An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire P 650 N91-2318 Literature review on geotextiles to improve pavements of microl stick propulsion systems and microl stick part of the propulsion of trust insert for condinated component aignost is roughly with the influence of control stick part of the			
Robotic sensors for aircraft paint stripping (SME PAPER MS90-282] p 673 A91-36896 [ROBOTICS] Evaluation of automation for inspection of aging aircraft point stripping (sucraft points) and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 586 A91-3985 [ADA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control Istick characteristics on the handling qualities of a fly-by-wire system during passage through resonance p 678 A91-40130 p 678 A91-40130 [ROF ROT Crack shape determination p 679 A91-40234 [NAS-TM-103801] p 679 N91-23408 Accomplated termination in rotors p 679 A91-40234 Mechanical component diagnostic system (AD-A232126] p 656 N91-23146 [Mochanical component diagnostic system (AD-A232126] p 656 N91-23148 [Mochanical component diagnostic system (AD-A232126] p 656 N91-23148 [ND-A232126] p 656 N91-23148 [ND-A232126] p 656 N91-23148 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-A232671] p 669 N91-23199 [ND-		· · · · · · · · · · · · · · · · · · ·	Carafoli airfoil p 618 A91-38694
ROBOTICS Evaluation of automation for inspection of aging aircraft Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence P 668 A91-39355 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence P 669 A91-39385 ROCKET ENGINE DESIGN Charles was a considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] ROLL Metrics for roll response flying qualities P 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire SAAB AIRCRAFT Long time measurements of landing gear loads on SAAB SABA IRCRAFT Long time measurements of landing gear loads on SAAB SABA IRCRAFT The stability to two-dimensional wakes and shear layers Identification strategies for crack shape determination p 679 A91-40234 A computationally efficient modelling A computation pof 1 aminar pof 8 N91-23146 A computationally efficient modelling A computationally efficient modelling A computational profes N91-23146 A computationally efficient modelling A computational profe in rotors N91-23418 A computationally efficient modelling A computational profe in rotors N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [AD-A232126]			
ROBOTICS Evaluation of automation for inspection of aging aircraft p 613 N91-24088 ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-393417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET Engine DESIGN Design considerations for combined air breathing-rocket propulsion systems [AD-A23217] Aliantial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire serious control accordance of the formulation of aging aircraft p 679 A91-40234 Mechanical component diagnostic system Mechanical component diagnostic system Mechanical component diagnostic systems [AD-A232126] Modal analysis of multistage gear systems coupled with gearbox vibrations [AD-A23217] P 681 N91-2318 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AD-A232871] [AD-A232871] P 669 N91-23199 SERVICE LIFE Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] P 672 N91-24358 SERVOCONTROL Re-entry flight control of space plane using approximate perfect servo parements for general aviation airports [AD-A23217] P 681 N91-23198 Literature review on geotextiles to improve pavements for general aviation airports [AD-A23218] P 672 N91-24358 SERVOCONTROL Re-entry flight control of space plane using approximate perfect servo parements for general aviation airports [AD-A23219] P 681 N91-23198 Literature review on geotextiles to improve pavements for general aviation airports [AD-A23217] P 683 N91-23198 Literature review on geotextiles to improve pavements for general aviation airports [AD-A23218] P 683 N91-23198 Literature review on geotextiles to improve pavements fo			
aircraft p 613 N91-24088 ROBUSTRESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire should be characteristics on the handling qualities of a fly-by-wire should be characteristics on the handling qualities of a fly-by-wire should be communicated and stability robustness improvement diagnostic system p 656 N91-23146 Mochanical component diagnostic system p 656 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [AD-A232126] p 656 N91-23153 ROLL Mechanical component diagnostic system p 656 N91-23146 Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513 RUNWAYS Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Literature review on geotextiles to improve pavements for general aviation airports [AD-A232871] p 669 N91-23199 SERVICE LIFE Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358 SERVOCONTROL Re-entry flight control of space plane using approximate perfect servo SERVOMECHANISMS Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A232871] p 669 N91-23199 SAADOWS MILS mathematical model validation study using airborne MILS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHOULD AD TORTON AND AS POS N91-23158 Literature review on geotextiles	ROBOTICS	·	
ROBUSTNESS (MATHEMATICS) Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire should be characteristics on the handling qualities of a fly-by-wire should be considered as a fly-by-wire should be considered as a fly-by-wire should be considered as a fly-by-wire should be considered as a fly-by-wire should be constrained optimization techniques p 650 N91-23168 Modal analysis of multistage gear systems coupled with gearbox vibrations p 681 N91-2313 Modal analysis of multistage gear systems coupled with gearbox vibrations p 681 N91-23513 ROBLET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AD-A232126] p 661 N91-23138 RUNMAYS Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Literature review on geotextiles to improve pavements for general aviation airports [AD-A232126] p 669 N91-23198 Literature review on geotextiles to improve pavements of near the proposition are port perfect commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial aircraft for commercial airc		·	
Control law synthesis and stability robustness improvement using constrained optimization techniques p 686 A91-37591 Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket cataput design for reduced G field influence p 646 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics on the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of the characteristics of the handling qualities of a fly-by-wire sheet of the characteristics of the handling qualities of a fly-by-wire sheet of the c	ROBUSTNESS (MATHEMATICS)		Environmental exposure effects on composite materials
Robust eigenstructure assignment with structured state space uncertainty p 686 A91-39417 ROCKET CATAPULTS Ejection seat rocket catapult design for reduced G field influence p 546 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire size of a flat of the first of the fir			
Hooust eigenstructure assignment with structure assignment with a spiral assignment with a s	p 686 A91-37591		SERVOCONTROL
Precision runway monitor demonstration report Ejection seat rocket catapult design for reduced G field influence p 546 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire should be characteristics on the handling qualities of a fly-by-wire should be commuted afforce actuating system with p 669 N91-23199 Literature review on geotextiles to improve pavements of georgenical availation airports [AD-A232871] p 669 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 669 N91-23199 [AD-A232871] p 669 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 667 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A232871] p 668 N91-23199 [AD-A23		· · · · · · · · · · · · · · · · · · ·	
Election seal rocket caught to table to a fail influence p 6 46 A91-39385 ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire shadowing flughttes of a fly-by-wire shadowing qualities SF-340 commuter all craft Literature review on geotextiles to improve pavements for general aviation airports [AD-A232871] p 669 N91-23199 [AD-A232871] p 669 N91-23199 [AD-A232871] p 687 N91-24768 SHADOWS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHARD WS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHARD WS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHARD WS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHARD WS To response flying qualities of a fly-by-wire shadowing flight tests [DOT-FAA/CT-TN90/55] The stability to two-dimensional wakes and shear layers	ROCKET CATAPULTS		SERVOMECHANISMS
ROCKET ENGINE DESIGN Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire SF-340 commuter alroratt for general aviation airports [AD-A232871] p 669 N91-23199 [AD-A232871] p 669 N91-23199 [AD-A232871] p 687 N91-24768 SHADOWS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHEAR LAYERS The stability to two-dimensional wakes and shear layers			
Design considerations for combined air breathing-rocket propulsion systems [AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire service of commuter alrorat [AD-A232871] p 669 N91-23199 SHADOWS SHADOWS MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SHEAR LAYERS The stability to two-dimensional wakes and shear layers		for general aviation airports	multi-input/output
[AIAA-90-0098] p 659 N91-23158 ROLL Metrics for roll response flying qualities	Design considerations for combined air breathing-rocket	[AD-A232871] p 669 N91-23199	
ROLL Metrics for roll response flying qualities p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire SF-340 commuter alroraft MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests [DOT-FAA/CT-TN90/55] p 644 N91-24190 SF-340 commuter alroraft The stability to two-dimensional wakes and shear layers		•	
p 650 N91-23118 An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics on the handling qualities of a fly-by-wire shows the characteristics of the character	ROLL	5	MLS data from Atlantic City International Airport Boeing
An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire SF-340 commuter alreaft SF-340 commuter SF-340		SAAB AIRCRAFT	
	An initial study into the influence of control stick	Long time measurements of landing gear loads on SAAB	SHEAR LAYERS
Page 110 agricultural Company			
	nameptor poor moreotee	[(1000 00)] p 000 (101120100	

Rotary oscillation control of a cylinder wake

p 620 A91-39708

SILICON CARBIDES Structure of the compressible turbulent shear layer SPACE TRANSPORTATION SYSTEM p 616 A91-37830 Improved silicon carbide for advanced heat engines Airbreathing propulsion for space transport: New [NASA-CR-182289] Unsteady wave structure near separation in a Mach 5 p 672 N91-24451 concepts, special problems and attempts at solutions p 616 A91-37838 compression ramp interaction SIMULATION SPACECRAFT CONSTRUCTION MATERIALS On the development of turbulent spots in plane Poiseuille Simulation of iced wing aerodynamics p 678 A91-39904 INASA-TM-1043621 p 628 N91-23086 Titanium aluminides for aerospace applications Unsteady Navier-Stokes solutions for a low aspect ratio Radar simulation program upgrade and algorithm p 671 A91-39302 delta wing p 638 N91-24153 Oxidation resistant carbon/carbon materials [REPT-911-430-105] [AD-A233201] p 631 N91-24112 p 672 N91-23251 Airborne radar simulation studies of the Denver July 11, SHEAR PROPERTIES How to know CMC p 638 N91-24155 1988 microburst [REPT-911-430-130] Supersonic flutter analysis of clamped symmetric p 672 N91-23262 SINGLE CRYSTALS composite panels using shear deformable finite SPACECRAFT REENTRY Notched fatigue of single crystal PWA 1480 at turbine p 675 A91-37847 elements Boundary layer tripping in supersonic flow attachment temperatures p 682 N91-24310 SHEAR STRENGTH p 623 A91-39960 SISO (CONTROL SYSTEMS) Spot welded thermoplastic composite access door SME PAPER EM90-489] p 645 A91-36942 SPATIAL FILTERING [SME PAPER EM90-489] Application of multiple-input/single-output analysis Evolution of clutter suppression techniques for air traffic procedures to flight test data p 647 A91-39420 SHIELDING ontrol and surveillance radar p 641 A91-37101 SKIN FRICTION Unified aeroacoustics analysis for high speed turboprop SPATIAL RESOLUTION Viscous three-dimensional analyses for nozzles for serodynamics and noise. Volume 2: Development of theory Temporally and spatially resolved flow in a two-stage for wing shielding p 629 N91-23175 axial compressor. II - Computational assessment [ASME PAPER 90-GT-299] p 620 AS hypersonic propulsion [NASA-CR-185192] p 688 N91-23849 **SLEDS** p 620 A91-39048 Unified aeroacoustics analysis for high speed turboprop Crashworthiness experiments p 638 N91-24161 SPECIFICATIONS aerodynamics and noise. Volume 3: Application of theory Soft hub for bearingless rotors [NASA-CR-177586] SLENDER BODIES for blade loading, wakes, noise, and wing shielding Three-dimensional finite element method analysis of p 654 N91-24198 p 688 N91 23850 [NASA-CR-185193] SPECTROSCOPY turbulent flow over self-propelled slender bodies SHOCK LAYERS p 615 A91-37419 Feasibility study in crack detection in aircraft stiffened Entropy effects of hypersonic flow past blunt de Asymmetric vortices on a slender body of revolution panels by pulse probing and deconvolution p 615 A91-37181 p 654 N91-24158 p 616 A91-37827 SHOCK TUNNELS SPECTRUM ANALYSIS Computation of axisymmetric slender bodies enclosing ALDAS user's manual An isentropic compression-heated Ludweig a jet efflux in pitching oscillatory motion p 673 A91-36450 NASA-TM-1028311 transient wind tunnel p 618 A91-38681 p 687 N91-24757 SHOCK WAVE INTERACTION SPHERICAL COORDINATES SLENDER WINGS Unsteady wave structure near separation in a Mach 5 Angle-only tracking filter in modified spherical Aerodynamic characteristics of slender wing-gap-body coordinates compression ramp interaction p 616 A91-37838 p 643 A91-39433 p 615 A91-37777 inception length to a fully developed, fin-generated, SPOILERS Asymptotic theory of bending-torsion flutter of high shock-wave, boundary-layer interaction High subsonic flow about a moving spoiler identifying p 617 A91-37842 aspect ratio wing in the torsion controlled domain a novel problem of wind tunnel interference p 675 A91-37846 Interferometric investigation of supersonic flow fields p 619 A91-38710 Reynolds number effects on the transonic aerodynamics with shock-shock interactions p 627 N91-23082 Integration of four-dimensional guidance with total Some aspects of shock-wave boundary layer interaction of a slender wing-body configuration energy control system --- integrated autopilot/autothrottle p 628 N91-23161 n 634 N91-24134 relevant to intake flows control system design p 665 A91-39410 SMEAR Hypersonic aerodynamics fellowships SPOOLS p 632 N91-24116 [AD-A233584] Signal processing of aircraft flyover noise Airborne rescue system p 690 N91-24845 The 3-D Navier-Stokes analysis of crossing, glancing [NASA-CH-187546] [NASA-CASE-ARC-11909-1] p 635 N91-23095 shocks/turbulent boundary layer interactions **SMOKE DETECTORS** SPOT WELDS [NASA-TM-104469] p 633 N91-24130 Spot welded thermoplastic composite access door [SME PAPER EM90-489] p 645 A91-36942 SQUEEZE FILMS Aircraft Command in Emergency Situations (ACES). SHOCK WAVES Phase 1: Concept development Mach 4 testing of scramlet inlet models p 636 N91-23097 [DOT/FAA/CT-90/21] p 615 A91-37418 The control of rotor vibration using squeeze-film p 677 A91-39590 SODAR MEGASODAR experiment Reacting shock waves in hypersonic propulsion p 639 N91-24169 dampers N91-23174 applications p 629 SOFTWARE ENGINEERING The transient dynamic performances of a rotor-SFDB Hypersonic aerodynamics fellowships system during passage through resonance Validation of in-house and external software systems [AD-A233584] p 632 N91-24116 at Aerospatiale p 687 N91-24640 n 678 A91-40130 SHORT TAKEOFF AIRCRAFT STABILITY AUGMENTATION Analytical certification of aircraft structures The handling qualities of the STOL and maneuver p 684 N91-24641 Simulation evaluation of a speed-guidance law for Harrier technology demonstrator from specification to flight test SOFTWARE TOOLS approach transitions p 666 N91-23117 NASA-TM-1028531 Analytical Qualification of Aircraft Structures p 668 N91-24209 SIDESLIP p 683 N91-24638 (AGARD-R-772) STABILIZATION A new method for estimating airspeed, attack angle and SOLID PROPELLANT COMBUSTION An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122 sideslip angle p 664 A91-37051 An experimental evaluation of combustor liner materials SIGNAL DISTORTION for solid fuel ramjet testing p 670 N91-24289 Evaluation of the phase distortions of the input signal Aerodynamics and stabilization of combustion of SOLID PROPELLANTS p 677 A91-39144 of a synthetic-aperture radar SIGNAL PROCESSING hydrogen jets injected into subsonic airflo An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 629 N91-23164 p 670 N91-24289 All solid-state ASR with adaptive puise Dop STATE ESTIMATION **SOLID STATE DEVICES** p 641 A91-37107 processina All solid-state ASR with adaptive pulse Dopp Real time estimation of aircraft angular attitude SSR signal discrimination from garbled replies p 649 N91-23107 p 641 A91-37107 processing p 642 A91-37121 SOLID STATE LASERS STATIC PRESSURE Pulse Doppler signature of a rotary-wing aircraft Avionic laser multisensor program at Litton Aero An engineering study of altitude determination deficiencies of the Service Aircraft Instrumentation p 643 A91-39756 **Products** p 637 N91-24144 406 MHz ELT signal spectra for Sarsat Package (SAIP) SONIC BOOMS p 643 A91-39778 [AD-A2320551 p 656 N91-23145 The 1989 high-speed civil transport studies [NASA-CR-4375] STATIC TESTS Radar simulation program upgrade and algorithm p 654 N91-24195 p 638 N91-24153 SOUND PRESSURE Static measurements of slender delta wing rolling p 625 A91-40223 Signal processing techniques for clutter filtering and wind A study on sonic load of the vertical tail of F-7 aircraft moment hysteresis p 638 N91-24154 shear detection p 64B A91-40171 Computerized system for static and fatigue large scale SOUND PROPAGATION structural tests: A case study Description, characteristics and testing of the NASA Unified aeroacoustics analysis for high speed turboprop [IAITIC-87-1007] p 681 N91-23522 p 638 N91-24156 airborne radar aerodynamics and noise. Volume 2: Development of theory Static performance tests of a flight-type STOVL MLS mathematical model validation study using airborne for wing shielding [NASA-CR-185192] MLS data from Atlantic City International Airport Boeing elector p 688 N91-23849 [NASA-TM-104437] p 662 N91-24201 727 elevation shadowing flight tests SOUND TRANSMISSION [DOT-FAA/CT-TN90/55] p 644 N91-24190 STATISTICAL TESTS ALDAS user's manual Model sensitivity Signal processing of aircraft flyover noise in stress-strength reliability [NASA-TM-102831] p 687 N91-24757 p 690 N91-24845 computations [NASA-CR-187546] Laboratory test and acoustic analysis of cabin treatment [AD-A2320231 p 681 N91-23554 SIGNAL REFLECTION for propfan test assessment aircraft STEADY FLOW Characteristics of the reception by the antenna systems INASA-CR-1820751 p 690 N91-24844 Steady flow in a three-dimensional rectangular cavity of a descending alreraft of signals from radio-beaco SPACE EXPLORATION vawed from the freestream turbulent boundary layer p 642 A91-37200 landing systems The role of organizations in professional development p 619 A91-38742 SIGNATURE ANALYSIS p 690 A91-38367 Steady linearised aerodynamics. III - Transonic Model for IR sensor performance evaluation SPACE SHUTTLE BOOSTERS p 656 A91-39890 n 620 A91-39223 Applications and results A dynamic analysis of the SRB parachute system Quantitative analysis of flow visualizations in ONERA SIKORSKY AIRCRAFT [AIAA PAPER 91-0838] p 670 A91-40555 p 677 A91-39694 Model rotor icing tests in the NASA Lewis icing research water tunnels SPACE TRANSPORTATION

Activities report of the DLR

p 691 N91-24086

[ISSN-0938-2194]

p 661 N91-23184

tunnel

[NASA-TM-104351]

SUBJECT INDEX SURVEILLANCE RADAR

Aerodynamics at the speed of sound STRUCTURAL INFLUENCE COEFFICIENTS SUPERSONIC FLIGHT p 621 A91-39900 Analytical studies on static aeroelastic behavior of Calculation of steady and unsteady pressures on wings forward-swept composite wing structures at supersonic speeds with a transonic small-disturbance STRAIN MEASUREMENT p 617 A91-38544 p 674 A91-37774 code Long time measurements of landing gear loads on SAAB STRUCTURAL RELIABILITY Trajectory optimization considerations for ramjet SF-340 commuter aircraft Design of aircraft wings subjected to gust loads - A safety p 658 N91-23151 [FFA-TN-1990-53] p 653 N91-23138 engines SUPERSONIC FLOW p 675 A91-37851 index based approach STREAM FUNCTIONS (FLUIDS) STRUCTURAL STABILITY On the improvement of the supersonic lifting line Stream functions for the hypersonic flow around quasi-pointed slender bodies at low angles of attack p 614 A91-36695 Sensitivity analysis, optimization, and data support in finite element systems p 677 A91-39230 Wing calculation in supersonic flow by means of the p 621 A91-39832 Vibration behavior of a labyrinth seal with through-flow p 614 A91-36700 supersonic lifting line theory STRESS ANALYSIS p 679 A91-40241 Aerodynamic calculation of tandem wings in supersonic Low Altitude High Speed Cargo Parachute system development - A status report STRUCTURAL VIBRATION flow by means of SLLT p 614 A91-36724 Full-scale demonstration tests of cabin noise reduction Variable-property effects in supersonic wedge flow [AIAA PAPER 91-0880] p 635 A91-40558 using active vibration control p 646 A91-38549 p 616 A91-37832 A new facility to study three dimensional viscous flow using squeeze-film p 677 A91-39590 The control of rotor vibration Cycle analysis for a supersonic through flow fan and rotor-stator interaction in turbines p 657 A91-38207 dampers p 682 N91-24336 Numerical analysis of solid-fuel interactive vibration or Aerodynamics at the speed of sound Nonlinear analysis of composite shear webs with hote p 648 A91-40161 p 621 A91-39900 an aircraft integral tank p 6-Vibration problems in an aircraft design p 684 N91-24642 and correlation with tests Boundary layer tripping in supersonic flow Beechcraft starship strength certification p 648 A91-40165 p 623 A91-39960 p 684 N91-24643 Similarities and differences between environment tests A new pseudo-potential function model for rotational STRESS CONCENTRATION and reliability tests in view of vibration flow and its application to transonic-supersonic flow p 665 A91-40166 p 679 A91-40278 p 625 A91-40373 Actual stresses in notches - How applicable are the common stress concentration factors? Balancing of rotating machinery interferometric investigation of supersonic flow fields p 676 A91-38775 SUBSONIC AIRCRAFT p 627 N91-23082 with shock-shock interactions Aircraft performance p 649 A91-40511 STRESS CYCLES The effects on aerodynamic performance of designing SUBSONIC FLOW Fatigue crack growth modeling at elevated temperature supersonic wings for laminar flow control New methods in the theory of subsonic flows past thin [AD-A233040] p 654 N91-24197 using fracture mechanics p 671 A91-38812 p 614 A91-36699 airfoil configurations SUPERSONIC FLUTTER STRESS DISTRIBUTION Subsonic and supersonic combustion using noncircular Supersonic flutter analysis of clamped symmetric Influence of the refinement of structural calculation or p 674 A91-37414 deformable injectors composite panels using shear p 684 N91-24649 aircraft qualification procedures Three-dimensional composite velocity solutions for p 675 A91-37847 lements STRESS INTENSITY FACTORS p 616 A91-37841 subsonic/transonic flow SUPERSONIC INLETS Actual stresses in notches - How applicable are the High subsonic flow about a moving spoiler identifying Supersonic-hypersonic common stress concentration factors? p 659 N91-23160 a novel problem of wind tunnel interference aerospaceplane p 676 A91-38775 p 619 A91-38710 Theoretical evaluation of engine auxiliary inlet design STRESS MEASUREMENT for supersonic V/STOL aircraft [NASA-CR-187098] Procedure for determination of three-dimensional wind Residual stress control in developing processes for the tunnel wall interferences and wall adaptation in p 633 N91-24123 manufacture of compressor blades for gas turbine engines p 674 A91-37269 compressible subsonic flow using measured wall SUPERSONIC NOZZLES pressures The 2-D supersonic nozzle design STRIATION [DLR-FB-90-46] p 628 N91-23088 p 660 N91-23176 An experimental investigation of vortex pair interaction SUBSONIC WIND TUNNELS SUPERSONIC SPEED with a clean or contaminated free surface Aerodynamic characteristics of crescent and elliptic Interferometric investigation of supersonic flow fields p 680 N91-23419 ngs at high angles of attack p 624 A91-40219 p 627 N91-23082 with shock-shock interactions STRUCTURAL ANALYSIS A study of supersonic and hypersonic ramjet engines Numerical analysis of solid-fuel interactive vibration The NASA Langley laminar-flow-control experiment on in France from 1950 to 1974 (application on combined p 648 A91-40161 rept, supercritical airfoil: Suction coefficient analysis an aircraft integral tank p 658 N91-23149 cycle aircraft engines) [NASA-TM-4267] p 629 N91-24098 Analytical Qualification of Aircraft Structures Theoretical and experimental performance of a solid fuel p 683 N91-24638 [AGARD-R-772] Suckdown, fountain lift, and pressures induced on ramjet combustion cycle for hypersonic flight conditions several tandem jet V/STOL configurations
[NASA-TM-102817] p 63 p 660 N91-23170 Analytical certification of aircraft structures p 630 N91-24108 p 684 N91-24641 SUPERSONIC TRANSPORTS SUPERCHARGERS Euler analysis of a High-Speed Civil Transport concept Beechcraft starship strength certification p 684 N91-24643 Model 320-2: A compact advanced UAV turbojet Mach 3 p 624 A91-40217 p 663 N91-24292 Engine technology challenges for a 21st century high The role of structural analysis in airworthiness SUPERCRITICAL WINGS ed civil transport p 684 N91-24647 certification [NASA-TM-104363] p 636 N91-23098 Blunt-nosed swept supercritical LFC wings without nose Analytical methods for the qualification of helicopter p 622 A91-39936 Application of multidisciplinary optimization methods to flags p 684 N91-24650 sign of a supersonic transport The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis Probability approach for strength calculations [NASA-TM-104073] p 652 N91-23135 p 685 N91-24652 p 629 N91-24098 The 1989 high-speed civil transport studies [NASA-TM-4267] STRUCTURAL DESIGN [NASA-CR-4375] p 654 N91-24195 SUPERSONIC AIRCRAFT Study of thermal-expansion-molded, graphite-epoxy SUPERSONIC WIND TUNNELS Theoretical evaluation of engine auxiliary inlet design hat-stiffened sandwich panels Structure of the compressible turbulent shear layer p 675 A91-37845 for supersonic V/STOL aircraft p 616 A91-37830 A study of design p 646 A91-38752 Designing with composites p 633 N91-24123 [NASA-CR-187098] Dialogue on progress and issues in stability and transition process SUPERSONIC BOUNDARY LAYERS Actual stresses in notches - How applicable are the p 677 A91-39902 Second mode interactions in supersonic boundary Transition research in low-disturbance high-speed wind nnels p 621 A91-39919 common stress concentration factors? p 623 A91-39957 p 676 A91-38775 tunnels SUPERSONIC COMBUSTION Interferometric investigation of supersonic flow fields ith shock-shock interactions p 627 N91-23082 Ejection seat rocket cataput design for reduced G field Subsonic and supersonic combustion using noncircular ijectors p 674 A91-37414 p 646 A91-39385 with shock-shock interactions injectors Development of a quiet supersonic wind tunnel with a The Minipac II election seat program Experimental investigation on supersonic combustion p 647 A91-39390 cryogenic adaptive nozzle [NASA-CR-186769] p 657 A91-38203 p 669 N91-23195 Design techniques for dual mode ram-scramiet p 659 N91-23166 Hypersonic propulsion: Past and present SUPPORT SYSTEMS combustors p 657 N91-23148 Development of a quiet supersonic wind tunnel with a Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis SUPERSONIC COMBUSTION RAMJET ENGINES cryogenic adaptive nozzle 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] [NASA-CR-186769] p 669 N91-23195 Mach 4 testing of scramjet inlet mode AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p 615 A91-37418 p 626 A91-40561 SURFACE GEOMETRY p 691 N91-24084 Performance of an aerospace plane propulsion nozzle Flow around an unsteady thin wing close to curved round p 620 A91-39744 Soft hub for bearingless rotors p 615 A91-37769 [NASA-CR-177586] p 654 N91-24198 Effect of exhaust plume/afterbody interaction on ground On the stability of swept wing laminar boundary layers Nonlinear analysis of composite shear webs with holes p 615 A91-37770 installed scramjet performance p 622 A91-39933 p 684 N91-24642 and correlation with tests including curvature effects Experimental investigation on supersonic combustion The role of analysis in the design and qualification of SURFACE ROUGHNESS EFFECTS p 657 A91-38203 ite aircraft structures p 684 N91-24648 The effect of isolated roughness elements on transition Comparative study of different systems of combined STRUCTURAL DESIGN CRITERIA in attachment-line flows p 678 A91-39959 cycle propulsion p 658 N91-23152 SURFACE TEMPERATURE Air surveying and data analysis for dynamic response Hypersonic propulsion: Status and challenge missiles at swept-back wing tip p 647 A91-40156 Simulation of brush insert for leading-edge-passage p 658 N91-23153 convective heat transfer STRUCTURAL FAILURE Design techniques for dual mode ram-scramiei [NASA-TM-103801] p 679 N91-23409 Quantitative nondestructive evaluation: Requirements p 659 N91-23166 SURVEILLANCE RADAR for tomorrow's reliability p 681 N91-24074 combustors

SUPERSONIC COMPRESSORS

compressor blading

[AD-A232902]

Viscous design and analysis methods for transonic

p 682 N91-24530

Program plans for aviation safety research

Analytical methods for the qualification of helicopter

p 638 N91-24157

p 684 N91-24650

INIAR-90-321

structures

p 641 A91-37101

p 642 A91-37121

Evolution of clutter suppression techniques for air traffic

SSR signal discrimination from garbled replies

control and surveillance radar

Airborne Collision Avoidance System (ACAS) in	Integration of the TDWR and LLWAS wind shear	TEMPORAL RESOLUTION
controlled air traffic. Aspects of reciprocal influence in	detection system p 640 N91-24178	Temporally and spatially resolved flow in a two-stage
Secondary Surveillance Radar (SSR) radio loads (ETN-91-99253) p 644 N91-23105	National airspace system. Communications operational	axial compressor. II - Computational assessment [ASME PAPER 90-GT-299] p 620 A91-39048
[ETN-91-99253] p 644 N91-23105 SURVIVAL EQUIPMENT	concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185	TENSILE STRENGTH
An update on SKAD (survival kit air droppable)		Application of path-independent integrals to elevated
systems p 635 A91-39384	т	temperature crack growth p 671 A91-38819 TEST FACILITIES
SWEEP ANGLE Breaking down the delta wing vortex: The role of vorticity	·	Hypersonic propulsion: Status and challenge
in the breakdown process	T-39 AIRCRAFT	p 658 N91-23153
[NASA-CR-188235] p 630 N91-24109	Saberliner flight test for airborne wind shear forward	National Transonic Facility status p 669 N91-24133
SWEPT FORWARD WINGS	looking detection and avoidance radar systems	TEST PILOTS The art of flying qualities testing p 649 N91-23109
Forward sweep - A favorable concept for a laminar flow wing p 615 A91-37767	p 637 N91-24149	TEST STANDS
Analytical studies on static aeroelastic behavior of	TAIL ASSEMBLIES Metal matrix composite vertical tail fabrication	Development of B-1 antenna measurement test bed
forward-swept composite wing structures	[SME PAPER EM90-438] p 611 A91-36875	p 668 A91-37881
p 674 A91-37774	Design and construction of a composite airframe for	THERMAL EXPANSION Study of thermal-expansion-molded, graphite-epoxy
Flying qualities of the X-29 forward swept wing aircraft p 651 N91-23127	UAV research	hat-stiffened sandwich panels p 675 A91-37845
SWEPT WINGS	[AD-A232422] p 653 N91-23143	THERMAL FATIGUE
Analytical studies on static aeroelastic behavior of	TAIL ROTORS Model rotor icing tests in the NASA Lewis icing research	Modeling of creep-fatigue interaction effects on crack growth p 670 A91-38802
forward-swept composite wing structures p 674 A91-37774	tunnel	THERMAL RESISTANCE
Interactive three-dimensional boundary-layer method for	[NASA-TM-104351] p 661 N91-23184	Variable-property effects in supersonic wedge flow
transonic flow over swept wings p 616 A91-37829	TAIL SURFACES	p 616 A91-37832
A model for the experimental study of curvature effects	A study on sonic load of the vertical tail of F-7 aircraft p 648 A91-40171	THERMAL STABILITY Advanced thermally stable jet fuels development
on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691	TAKEOFF	program annual report. Volume 3: Fuel lubricity
Boundary layer control by a local heating of the wall	Microwave landing system modeling with application to	[AD-A232793] p 673 N91-24453
p 678 A91-39909	air traffic control	THERMAL STRESSES
Experimental and theoretical analysis of natural	[NASA-TM-102832] p 636 N91-23099	Water-cooling technique of high temperature gas turbine blade
transition on 'infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition	TAKEOFF RUNS Orientation measurements and transmission via Mode	[DE91-764238] p 681 N91-23506
of three-dimensional flows p 678 A91-39928	S at airports p 643 A91-38526	THERMODYNAMICS
Experiments on swept-wing boundary layers	TANDEM WING AIRCRAFT	Thermodynamic Alerter for Microbursts (TAMP)
p 622 A91-39932	Aerodynamic calculation of tandem wings in supersonic	p 640 N91-24179
On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933	flow by means of SLLT p 614 A91-36724	THERMOPLASTIC RESINS The design, manufacture, and test of a one-piece
Blunt-nosed swept supercritical LFC wings without nose	TARGET RECOGNITION	thermoplastic wing rib for tiltrotor aircraft
flaps p 622 A91-39936	Measurement of clutter suppression using a Quadrahedral p 674 A91-37106	[SME PAPER EM90-665] p 645 A91-36940
Instability features appearing on swept wing	Track initiation using MHT in dense environments	THIN AIRFOILS
configurations p 622 A91-39937 Development and interaction of instabilities in the	Multiple Hypotesis Tracking p 674 A91-37141	New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699
crossflow field p 622 A91-39938	TECHNOLOGICAL FORECASTING	airfoil configurations p 614 A91-36699 An efficient hybrid scheme for the solution of rotational
The experimental investigation of stability and receptivity	Comanche - Tomorrow's high-tech helicopter p 649 A91-40254	flow around advanced propellers p 629 N91-24104
of a swept-wing flow p 623 A91-39944	TECHNOLOGY ASSESSMENT	THIN WINGS
The effect of isolated roughness elements on transition in attachment-line flows p 678 A91-39959	Toward enhanced fighter combat effectiveness	Flow around an unsteady thin wing close to curved
Block implicit multigrid solution of the Euler equations	p 645 A91-37050	ground p 620 A91-39744
p 680 N91-23413	Tiltrotor developments p 612 A91-40180	THREE DIMENSIONAL BOUNDARY LAYER
The NASA Langley laminar-flow-control experiment on	Technology needs for high-speed rotorcraft	Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136	Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p. 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p. 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study.	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT)	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwlse pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 Small Engine Component Technology (SECT) study	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a file plate p 622 A91-39931 Experiments on swept-wing boundary layers
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft and design for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 [NASA-CR-175079] p 663 N91-24208	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing Preliminary results p 620 A91-39951 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate plate Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output	Technology needs for high-speed rotorcraft [NASA-CR-17578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft and design for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 P 659 N91-24137 P 659 N91-24137 P 659 N91-24137 P 659 N91-24137 P 659 N91-24138 P 659 N91-24138 SWEPTBACK WINGS P 659 N91-24138 SWEPTBACK WINGS P 659 N91-24138 SWEPTBACK WINGS P 659 N91-24138 P 659 N9	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwlse pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24210 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39933 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A23114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] P 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwlse pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A23114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2:	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A23114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2:	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A23422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39933 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p. 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p. 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p. 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p. 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p. 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p. 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p. 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p. 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p. 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION	hypersonic boundary layer with interaction p 614 A81-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A23114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175078] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TURE DISTRIBUTION]	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers on a flat plate p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft and design for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A23114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-LaRc Fight-Critical Digital Systems	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) study. [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175078] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028]	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers on a flat plate p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-CR-18027] p 658 N91-24200 SYSTEMS INTEGRATION	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers on a flat plate p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-39909 Experimental and theoretical analysis of natural
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p. 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p. 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p. 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p. 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p. 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p. 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p. 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p. 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p. 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p. 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028]	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175078] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-38909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 621 A91-39927
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-CR-18021] p 655 N91-24200 SYSTEMS INTEGRATION	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39932 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-39909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TH-4267] p. 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p. 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p. 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p. 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p. 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p. 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p. 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p. 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p. 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p. 655 N91-24200 SYSTEMS INTEGRATION Integration of four-dimensional guidance with total energy control system — integrated autopiiot/autothrottle control system design p. 665 A91-39410 Application of multidisciplinary optimization methods to	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers on a flat plate p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38974 Boundary layer control by a local heating of the wall p 678 A91-39909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 678 A91-39928 of three-dimensional flows p 678 A91-39928
The NASA Langley laminar-flow-control experiment on a swept, supercritical airioii: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwlse pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Deriver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 SYSTEMS INTEGRATION Integration of four-dimensional guidance with total energy control system — integrated autopilot/autothrottle control system design p 658 A91-39410 the design of a supersonic transport	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175078] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TH-104351] p 661 N91-29184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358 Advanced thermally stable jet fuels development	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39932 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-39909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis [NASA-TM-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 637 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-CR-182077] p 655 N91-24200 SYSTEMS INTEGRATION Integration of four-dimensional guidance with total energy control system — integrated autopilot/autothrottle control system design p 655 A91-39410 Application of multidisciplinary optimization methods to the design of a supersonic transport [NASA-TM-104073] p 652 N91-23135	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study (NASA-CR-175078] p 663 N91-24207 Small Engine Component Technology (SECT) study (NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study (NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358 Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39933 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-38909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition of three-dimensional flows p 678 A91-39928 Boundary layer tripping in supersonic flow
The NASA Langley laminar-flow-control experiment on a swept, supercritical airioii: Suction coefficient analysis [NASA-TH-4267] p 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p 653 N91-24137 Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwlse pressure gradient p 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144 Clutter modeling of the Deriver Airport and surrounding areas p 638 N91-24152 SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 SYSTEMS INTEGRATION Integration of four-dimensional guidance with total energy control system — integrated autopilot/autothrottle control system design p 658 A91-39410 the design of a supersonic transport	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175078] p 662 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TH-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358 Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity [AD-A232793] p 673 N91-24453 TEMPERATURE PROFILES	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers on a flat plate p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 615 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-38990 Experimental and theoretical analysis of natural transition on "infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition of three-dimensional flows p 678 A91-39928 Boundary layer tripping in supersonic flow fleds through compressor blade rows p 625 A91-40375
The NASA Langley laminar-flow-control experiment on a swept, supercritical airioii: Suction coefficient analysis [NASA-TH-4267] p. 629 N91-24098 Computational support of the X-29A Advanced Technology Demonstrator flight experiment p. 653 N91-24137 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p. 654 N91-24138 SWEPTBACK WINGS Cross-flow instability of 3-D boundary layers on a flat plate p. 622 A91-39931 Air surveying and data analysis for dynamic response of missiles at swept-back wing tip p. 647 A91-40156 Design and implementation of real-time computer coordinated force actuating system with multi-input/output [AD-A233114] p. 687 N91-24768 SYNTHETIC APERTURE RADAR Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p. 677 A91-39144 Clutter modeling of the Denver Airport and surrounding areas SYSTEMS ANALYSIS Aerodynamic preliminary analysis system 2. Part 2: User's manual [NASA-CR-182077] p. 627 N91-23081 SYSTEMS ENGINEERING The transient dynamic performances of a rotor-SFDB system during passage through resonance p. 678 A91-40130 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p. 655 N91-24200 SYSTEMS INTEGRATION Integration of four-dimensional guidance with total energy control system — integrated autopiiot/autothrottle control system design p. 655 A91-39410 Application of multidisciplinary optimization methods to the design of a supersonic transport [NASA-Theorem of weather sensing devices	Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136 Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle [NASA-CR-186769] p 669 N91-23195 NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028] p 655 N91-24200 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24205 Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24207 Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 Advanced Hypervelocity Aerophysics Facility Workshop [NASA-CP-10031] p 669 N91-24211 TECHNOLOGY UTILIZATION Design and construction of a composite airframe for UAV research [AD-A232422] p 653 N91-23143 Integration of weather sensing devices p 639 N91-24174 TEETERING Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 TEMPERATURE DISTRIBUTION Water-cooling technique of high temperature gas turbine blade [DE91-764238] p 681 N91-23506 TEMPERATURE EFFECTS Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Environmental exposure effects on composite materials for commercial aircraft [NASA-CR-187478] p 672 N91-24358 Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity [AD-A232793] p 673 N91-24453	hypersonic boundary layer with interaction p 614 A91-37176 Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829 Steady flow in a three-dimensional rectangular cavity yawed from the freestream turbulent boundary layer p 619 A91-38742 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing - Preliminary results p 620 A91-39691 Cross-flow instability of 3-D boundary layers on a flat plate p 622 A91-39931 Experiments on swept-wing boundary layers p 622 A91-39932 Development and interaction of instabilities in the crossflow field p 622 A91-39938 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089 THREE DIMENSIONAL FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies p 616 A91-37419 Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Toward automating the design of centrifugal impellers p 676 A91-38874 Boundary layer control by a local heating of the wall p 678 A91-39909 Experimental and theoretical analysis of natural transition on 'infinite' swept wing p 621 A91-39927 An evaluation of stability-based methods for transition of three-dimensional flows p 678 A91-39928 Boundary layer tripping in supersonic flow p 623 A91-39928 Computation of three-dimensional flow fields through

TURBOMACHINERY SUBJECT INDEX

Procedure for determination of three-dimensional wind	TRAJECTORY ANALYSIS	TRANSONIC NOZZLES
tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall	A vortex panel method for calculating aircraft downwash on parachute trajectories	Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid
pressures	[DE91-009764] p 627 N91-23085	and viscous flow computations
[DLR-FB-90-46] p 628 N91-23088	TRAJECTORY CONTROL Integration of four-dimensional guidance with total	[VKI-TN-174] p 680 N91-23437 TRANSONIC SPEED
Block implicit multigrid solution of the Euler equations p 680 N91-23413	energy control system integrated autopilot/autothrottle	The breakdown of the linearized theory and the role of
The 3-D Navier-Stokes analysis of crossing, glancing	control system design p 665 A91-39410	quadrupole sources in transonic rotor acoustics
shocks/turbulent boundary layer interactions [NASA-TM-104469] p 633 N91-24130	TRAJECTORY MEASUREMENT Evaluation of the phase distortions of the input signal	p 688 A91-39749 An initial investigation into methods of computing
THREE DIMENSIONAL MODELS	of a synthetic-aperture radar p 677 A91-39144	transonic aerodynamic sensitivity coefficients
Advanced computational models for analyzing high	TRAJECTORY OPTIMIZATION Navigation, guidance, and trajectory optimization for	[NASA-CR-188192] p 629 N91-24099
speed propulsive flowfields p 686 N91-24291 THRUST VECTOR CONTROL	hypersonic vehicles p 644 N91-23150	TRANSONIC WIND TUNNELS National Transonic Facility status p 669 N91-24133
Vectored propulsion, supermaneuverability and robot	Trajectory optimization considerations for ramjet engines p 658 N91-23151	Reynolds number effects on the transonic aerodynamics
aircraft Book p 649 A91-40501 Hot gas ingestion test results of a two-poster vectored	engines p 658 N91-23151 TRANSATMOSPHERIC VEHICLES	of a stender wing-body configuration p 634 N91-24134
thrust concept with flow visualization in the NASA Lewis	Airbreathing propulsion for transatmospheric flight	TRANSPORT AIRCRAFT
9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561	p 659 N91-23156 TRANSFER FUNCTIONS	Aeronautical research in the United States - Challenges
THRUST-WEIGHT RATIO	Lateral-direction tracking requirements from simulation	for the 1990's p 612 A91-38580
A general method for rotordynamic analysis	data p 686 A91-39436 TRANSIENT RESPONSE	Composites for a widebody p 612 A91-39852 Handling qualities guidelines for the design of fly-by-wire
p 677 A91-39585 THUNDERSTORMS	The transient dynamic performances of a rotor-SFDB	flight control systems for transport aircraft
Temperature lapse rate as an adjunct to wind shear	system during passage through resonance p 678 A91-40130	p 667 N91-23119
detection p 640 N91-24184 TILT ROTOR AIRCRAFT	Feasibility study in crack detection in aircraft stiffened	Observatory of new materials. Evolution perspectives for the materials used in civil transportation alroraft
The design, manufacture, and test of a one-piece	panels by pulse probing and deconvolution	[REPT-911-111-107] p 672 N91-23248
thermoplastic wing rib for tiltrotor aircraft	p 654 N91-24158 TRANSITION FLIGHT	Developing and utilizing an Euler computational method
[SME PAPER EM90-665] p 645 A91-36940 Tiltrotor developments p 612 A91-40180	Variable Sweep Transition Flight Experiment (VSTFE):	for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 1: Theory
TILT WING AIRCRAFT	Unified Stability System (USS). Description and users'	document
Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 N91-23136	manual [NASA-CR-181918] p 634 N91-24139	[NASA-CR-181924-VOL-1] p 632 N91-24118
TILTING ROTORS	TRANSITION FLOW	Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an
Soft hub for bearingless rotors	Experiments on swept-wing boundary layers p 622 A91-39932	aft-mounted turboprop transport. Volume 2: User guide
[NASA-CR-177586] p 654 N91-24198 TIME DEPENDENCE	instability features appearing on swept wing	[NASA-CR-181924-VOL-2] p 632 N91-24119
Modeling of creep-fatigue interaction effects on crack	configurations p 622 A91-39937	TRANSPORT PROPERTIES Real gas effects on hypersonic boundary-layer stability
growth p 670 A91-38802	TRANSONIC COMPRESSORS Viscous design and analysis methods for transonic	p 614 A91-36453
Fatigue crack growth modeling at elevated temperature using fracture mechanics p 671 A91-38812	compressor blading	TRENDS
TIME SERIES ANALYSIS	[AD-A232902] p 682 N91-24530	Fighter escape system - The next step forward p 646 A91-39382
Normalized predictive deconvolution - Multichannel time-series applications to human dynamics	TRANSONIC FLOW Subsonic and supersonic combustion using noncircular	TUNING
p 686 A91-37584	injectors p 674 A91-37414	Mechanical component diagnostic system
TITANIUM ALLOYS	Interactive three-dimensional boundary-layer method for transonic flow over swept wings p 616 A91-37829	[AD-A232126] p 656 N91-23146 TURBINE BLADES
Residual stress control in developing processes for the manufacture of compressor blades for gas turbine	Cell centered and cell vertex multigrid schemes for the	Unsteady pressure fluctuation on a highly loaded turbine
engines p 674 A91-37269	Navier-Stokes equations p 674 A91-37834	blade row p 619 A91-38702
Fatigue crack growth in monolithic titanium aluminides p 670 A91-38809	Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841	Water-cooling technique of high temperature gas turbine blade
NKK premium quality titanium master alloy	Calculation of steady and unsteady pressures on wings	[DE91-764238] p 681 N91-23506
p 672 A91-40425 TITANIUM COMPOUNDS	at supersonic speeds with a transonic small-disturbance code p 617 A91-38544	Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics
Titanium aluminides for aerospace applications	Acoustics of unsteady transonic flow	[NASA-CR-182109] p 683 N91-24551
p 671 A91-39302	p 687 A91-38688	TURBINE ENGINES
Radioluminescent (RL) lighting system development program	Steady linearised aerodynamics. III - Transonic p 620 A91-39223	Titanium aluminides for aerospace applications p 671 A91-39302
[DE91-009743] p 679 N91-23381	Aerodynamics at the speed of sound	Multi-heat addition turbine engine
TOLLMIEN-SCHLICHTING WAVES	p 621 A91-39900 Transonic analysis and design using an improved grid	[NASA-CASE-LEW-15094-1] p 660 N91-23180 A new facility to study three dimensional viscous flow
On the development of turbulent spots in plane Poiseuille flow p 678 A91-39904	p 624 A91-40137	and rotor-stator interaction in turbines
On the instability of hypersonic flow past a wedge	A new pseudo-potential function model for rotational	p 682 N91-24336
p 621 A91-39922 Theoretical study of Goertler vortices - Linear stability	flow and its application to transonic-supersonic flow p 625 A91-40373	TURBINE WHEELS A new facility to study three dimensional viscous flow
approach p 623 A91-39950	Computation of three-dimensional flow fields through	and rotor-stator interaction in turbines
TOOLING Moulded Mustang p 612 A91-39854	compressor blade rows p 625 A91-40375 Fluid dynamics for the study of transonic flow Book	p 682 N91-24336 Average-passage flow model development
TORSION	p 625 A91-40513	p 682 N91-24338
Asymptotic theory of bending-torsion flutter of high	Euler calculations of unsteady transonic flow in cascades	TURBOCOMPRESSORS Temporally and spatially resolved flow in a two-stage
aspect ratio wing in the torsion controlled domain p 675 A91-37846	[AIAA PAPER 91-1104] p 626 A91-40562	axial compressor. II - Computational assessment
TRACKING (POSITION)	A study of the noise mechanisms of transonic	[ASME PAPER 90-GT-299] p 620 A91-39048
Adaptive airborne track while scan p 642 A91-37139	blade-vortex interactions [NASA-CR-188199] p 627 N91-23084	TURBOFAN ENGINES Cycle analysis for a supersonic through flow fan
The handling qualities of the STOL and maneuver	Block implicit multigrid solution of the Euler equations	engine p 657 A91-38207
technology demonstrator from specification to flight test	p 680 N91-23413	NASA aeropropulsion research in support of propulsion systems of the 21st century
p 666 N91-23117 TRACKING FILTERS	The propagation of acoustic disturbances in the transonic flow fields of wings	[NASA-TM-104403] p 627 N91-23083
Track initiation using MHT in dense environments	[ESA-TT-1126] p 689 N91-23854	Small Engine Component Technology (SECT) studies
Multiple Hypotesis Tracking p 674 A91-37141 Angle-only tracking filter in modified spherical	Euler flow predictions for an oscillating cascade using	[NASA-CR-175080] p 663 N91-24206 Small Engine Component Technology (SECT) study
coordinates p 643 A91-39433	a high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107	[NASA-CR-175079] p 663 N91-24208
TRACKING PROBLEM	Transonic Symposium: Theory, Application and	TURBOJET ENGINES Comparative study of different systems of combined
Lateral-direction tracking requirements from simulation data p 686 A91-39436	Experiment, volume 2	cycle propulsion p 658 N91-23152
TRAILING EDGES	[NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow wind tunnel experiments	Turbojet potential for hypersonic flight
Experimental investigation of loading effects on compressor trailing-edge flowfields p 615 A91-37420	p 634 N91-24136	p 658 N91-23155 Small Engine Component Technology (SECT)
Composites for a widebody p 612 A91-39852	TRANSONIC FLUTTER	[NASA-CR-175078] p 662 N91-24205
Static measurements of slender delta wing rolling moment hysteresis p 625 A91-40223	Transonic flutter analysis of 2-D airfoils with 2 degrees of freedom p 665 A91-40169	Model 320-2: A compact advanced UAV turbojet p 663 N91-24292
An experimental investigation of vortex pair interaction	The propagation of acoustic disturbances in the	TURBOMACHINERY
with a clean or contaminated free surface	transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854	Design and development of aviation gas turbine engines Russian book p 657 A91-39201
p 680 N91-23419		

TURBOPROP AIRCRAFT		
Unified aeroacoustics ar	nalysis for high spee	d turboprop
aerodynamics and noise. V	olume 2: Developme	ent of theory
for wing shielding		
[NASA-CR-185192]	p 688	N91-23B49
Unified aeroacoustics ar		
aerodynamics and noise.		
for blade loading, wakes,	noise, and wing shie	elding
[NASA-CR-185193]	p 688	N91-23850
Unified aeroacoustics ar	nalysis for high spee	d turboprop
aerodynamics and noise	Volume 4: Compi	uter user's

manual for UAAP turboprop aeroacoustic code p 688 N91-23851 [NASA-CR-185194] Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer p 689 N91-23852 [NASA-CR-185195]

Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aff-mounted turboprop transport. Volume 1: Theory

[NASA-CR-181924-VOL-1] p 632 N91-24118 Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 p 632 N91-24119

TURBOPROP ENGINES

Small Engine Component Technology (SECT) study Program report [NASA-CR-175077]

p 662 N91-24204

TURBORAMJET ENGINES

Comparative study of different systems of combined p 658 N91-23152 cycle propulsion

TURBOROCKET ENGINES

Comparative study of different systems of combined p 658 N91-23152 cycle propulsion TURBULENCE

Status of turbulence Prediction System's AWAS 3

p 637 N91-24146 **TURBULENCE MODELS**

Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodies

p 615 A91-37419 Airfoil design method using Navier-Stokes p 646 A91-38550 Numerical study of twin-jet implingement upwash flow

p 619 A91-38736 Advanced computational models for analyzing high p 686 N91-24291 speed propulsive flowfields Average-passage flow model development

p 682 N91-24338

TURBULENT BOUNDARY LAYER

Unsteady wave structure near separation in a Mach 5 p 616 A91-37838 compression ramp interaction Inception length to a fully developed, fin-generated, shock-wave, boundary-layer interaction

p 617 A91-37842 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure p 675 A91-38693 gradient Steady flow in a three-dimensional rectangular cavity

yawed from the freestream turbulent boundary layer p 619 A91-38742

A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Preliminary results Receptivity and stability of the boundary layer at a high p 678 A91-39945

turbulence level An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream

p 626 N91-23078 A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Naviel

Stokes equations [NASA-TM-104407] p 628 N91-23089 The 3-D Navier-Stokes analysis of crossing, glancing

shocks/turbulent boundary layer interactions p 633 N91-24130 INASA-TM-1044691 Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting p 654 N91-24138 for spanwise pressure gradient

TURBULENT FLOW

of piezofoil-arrays

Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodie

p 615 A91-37419 Structure of the compressible turbulent shear layer p 616 A91-37830

Laminar-turbulent transition; Proceedings of the IUTAM Symposium, Ecole Nationale Superieure de l'Aeronautique et de l'Espace, Toulouse, France, Sept. 11-15, 1989

p 677 . A91-39901 On the development of turbulent spots in plane Poiseuille p 678 A91-39904 Investigations on flow instabilities on airfoils by means p 621 A91-39911

An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream p 626 N91-23078

Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170

Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125

TWO DIMENSIONAL BODIES

Transonic flutter analysis of 2-D airfoils with 2 degrees p 665 A91-40169 of freedom

TWO DIMENSIONAL FLOW

The stability to two-dimensional wakes and shear layers p 614 A91-36452 at high Mach numbers On the improvement of the supersonic lifting line p 614 A91-36695 theory Numerical investigation airfoil/jet/fuselage-undersurface flowfields in ground

effect p 617 A91-38541 On some physical aspects of airfoil dynamic stall

p 618 A91-38686 Application of vortex dynamics to simulations of p 676 A91-38706 two-dimensional wakes Secondary frequencies in the wake of a circular cylinder p 620 A91-39736 with vortex shedding

Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738

Boundary layer control by a local heating of the wall p 678 A91-39909 Second mode interactions in supersonic boundary p 623 A91-39957

The 2-D supersonic nozzle design p 660 N91-23176

TWO DIMENSIONAL MODELS

Moving surface boundary-layer two-dimensional airfoils control as applied to p 615 A91-37768 TWO PHASE FLOW

p 640 N91-24180 Status of heavy rain tests

ULTRAHIGH FREQUENCIES

RADAR performance experiments

p 639 N91-24168 SATURN: The next generation radio for NATO p 682 N91-24475

UNIFORM FLOW

Rotary oscillation control of a cylinder wake p 620 A91-39708

UNSTEADY AERODYNAMICS

Stability of hingeless rotors in three-dimensional unsteady aerodynamics hover using p 663 A91-36358

Unsteady, frequency-domain analysis of helicopter p 613 A91-36359 non-rotating lifting surfaces Simplification of nonlinear indicial response models Assessment for the two-dimensional airfoil case

p 664 A91-37771 Asymmetric vortices on a slender body of revolution p 616 A91-37827

Unsteady wave structure near separation in a Mach 5 p 616 A91-37838 compression ramp interaction Forebody vortex control with the unsteady bleed p 617 A91-37859 Calculation of steady and unsteady pressures on wings

at supersonic speeds with a transonic small-disturband pde p 617 A91-38544 Unsteady flow past an airfoil pitched at constant rate

p 617 A91-38679 Unsteady aerodynamic loading of delta wings for low not high angles of attack p 617 A91-38680 and high angles of attack Computation of axisymmetric slender bodies enclosing a jet efflux in pitching oscillatory motion

p 618 A91-38681 Numerical simulation of steady and unsteady asymmetric prtical flow p 618 A91-38683 vortical flow Visualization of the flow about a delta wing maneuvering

in pitch to very high angle of attack p 618 A91-38684 On some physical aspects of airfoil dynamic stall p 618 A91-38686

Unsteady separation on an impulsively set into motion p 618 A91-38694 Carafoli airfoil A new system for unsteady aerodynamics of moving p 618 A91-38695 wall Deep stall of an NACA 0012 airfoil induced by periodic

p 619 A91-38699 aerodynamic interference Unsteady pressure fluctuation on a highly loaded turbine n 619 A91-38702 Temporally and spatially resolved flow in a two-stage

axial compressor. II - Computational assessment
[ASME PAPER 90-GT-299] p 620 A9 p 620 A91-39048

Flow around an unsteady thin wing close to curved p 620 A91-39744 Aerodynamics at the speed of sound

p 621 A91-39900 Experiments on the unsteadiness associated with a p 624 A91-40220 ground vortex Modeling for unsteady aerodynamics of rectangular wing in incompressible flow using step responses

p 625 A91-40473 The propagation of acoustic disturbances in the transonic flow fields of wings

[ESA-TT-1126] p 689 N91-23854 Aerodynamic interactions between bodies in relative p 629 N91-24103 motion

UNSTEADY FLOW

Unsteady flow past an airfoil pitched at constant rate p 617 A91-38679 Numerical simulation of steady and unsteady asymmetric A91-38683 p 618

Acoustics of unsteady transonic flow

p 687 A91-38688 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure p 675 A91-38693 Unsteady separation on an impulsively set into motion arafoli airfoil p 618 A91-38694 Carafoli airfoil Analysis and control of low-speed forced unsteady

p 676 A91-38697 flow Unsteady pressure fluctuation on a highly loaded turbine p 619 A91-38702 Quantitative analysis of flow visualizations in ONERA

p 677 A91-39694 water tunnels Secondary frequencies in the wake of a circular cylinder p 620 A91-39736 with vortex shedding on swept wing p 622 A91-39937 Instability features appearing configurations Fluid dynamics for the study of transonic flow --- Book

p 625 A91-40513 Euler calculations of unsteady transonic flow in cascades

[AIAA PAPER 91-1104] p 626 A91-40562 Unsteady flow structure from swept edges subjected to controlled motion

[AD-A2327141 p 628 N91-23094 Aerodynamic interactions between bodies in relative p 629 N91-24103

Euler flow predictions for an oscillating cascade using high resolution wave-split scheme [NASA-TM-104377] p 630 N91-24107

Unsteady Navier-Stokes solutions for a low aspect ratio delta wing [AD-A233201]

ND-A233201] p 631 N91-24112 Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady [AD-A233569] p 631 N91-24115

UNSWEPT WINGS

Asymptotic theory of bending-torsion flutter of high aspect ratio wing in the torsion controlled domain p 675 A91-37846

UPWASH

Numerical study of twin-jet impingement upwash flow

p 619 A91-38736 USER MANUALS (COMPUTER PROGRAMS) Aerodynamic preliminary analysis system 2. Part 2:

User's manual [NASA-CR-182077] p 627 N91-23081 Unified aeroacoustics analysis for high speed turboprop

aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code p 688 N91-23851 [NASA-CR-185194]

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAB-2 [AD-A233483] p 631 N91-24114

Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 A general multiblock Euler code for propulsion

integration. Volume 2: User guide for BCON, pre-processor for grid generation and GMBE [NASA-CR-187484-VOL-2] p 632 N91-24121

A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code [NASA-CR-187484-VOL-3] p 632 N91-24122 ALDAS user's manual [NASA-TM-102831] p 687 N91-24757

V-22 AIRCRAFT

Tiltrotor developments p 612 A91-40180 Testing the tiltrotor flight control system

p 666 A91-40202

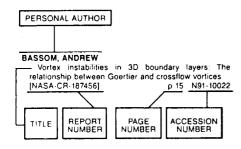
V/STOL AIRCRAFT

AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p p 691 N91-24084 SUBJECT INDEX WARNING SYSTEMS

Suckdown, fountain lift, and pressures induced on	Simulation of the flow past an impulsively started cylinder	An experimental investigation of vortex pair interaction
several tandem jet V/STOL configurations	using a discrete vortex method (AD-A233066) p 683 N91-24533	with a clean or contaminated free surface p 680 N91-23419
[NASA-TM-102817] p 630 N91-24108 Theoretical evaluation of engine auxiliary inlet design	[AD-A233066] p 683 N91-24533 VISIBILITY	An efficient hybrid scheme for the solution of rotational
for supersonic V/STOL aircraft	Air ambulance helicopter operational analysis	flow around advanced propellers p 629 N91-24104
[NASA-CR-187098] p 633 N91-24123	[DOT/FAA/RD-91/7] p 652 N91-23134 VISUAL FLIGHT RULES	Breaking down the delta wing vortex: The role of vorticity in the breakdown process
Static performance tests of a flight-type STOVL ejector	Air ambulance helicopter operational analysis	[NASA-CR-188235] p 630 N91-24109
[NASA-TM-104437] p 662 N91-24201	[DOT/FAA/RD-91/7] p 652 N91-23134 VOICE COMMUNICATION	An experimental analysis of critical factors involved in
VAPORIZING	SATURN: The next generation radio for NATO	the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110
Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91-24203	p 682 N91-24475	Aircraft wake vortices: An annotated bibliography
VARIABLE SWEEP WINGS	VORTEX ALLEVIATION The computation of induced drag with nonplanar and	(1923-1990) [AD-A233161] p 631 N91-24111
A320 - First of the computer-age aircraft p 645 A91-36354	deformed wakes p 630 N91-24106	Calculation of high angle of attack aerodynamics of
Aerodynamic characteristics of scissor-wing	VORTEX BREAKDOWN Breaking down the delta wing vortex: The role of vorticity	fighter configurations. Volume 2: User manual for
geometries p 624 A91-40216	in the breakdown process	VORSTAB-2 [AD-A233483] p 631 N91-24114
Effects of wing sweep on in-flight boundary-layer transition for a laminar flow wing at Mach numbers from	[NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in	MEGASODÁR experiment p 639 N91-24169
0.60 to 0.79	the breakdown process of leading edge vortex flows	Simulation of the flow past an impulsively started cylinder using a discrete vortex method
[NASA-TM-101701] p 683 N91-24555	[NASA-CR-188231] p 631 N91-24110	[AD-A233066] p 683 N91-24533
Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to	VORTEX FILAMENTS A vortex panel method for calculating aircraft downwash	VORTICITY
0.825	on parachute trajectories	Wing calculation in supersonic flow by means of the supersonic lifting line theory p 614 A91-36700
[NASA-TM-101712] p 683 N91-24556	[DE91-009764] p 627 N91-23085	On the Goertler vortex instability mechanism at
VELOCITY DISTRIBUTION	Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for	hypersonic speeds p 623 A91-39940
Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23175	VORSTAB-2	The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270
Effects of inlet distortion on the development of	[AD-A233483] p 631 N91-24114	Passive laminar flow control of crossflow vorticity
secondary flows in a subsonic axial inlet compressor	VORTEX FLAPS The performance of 60 deg delta wings: The effects	[NASA-CASE-LAR-13563-1] p 679 N91-23410 Simulation of the flow past an impulsively started cylinder
rotor [NASA-TM-104356] p 660 N91-23179	of leading edge radius on vortex flaps and the wing	using a discrete vortex method
VELOCITY MEASUREMENT	[CRANFIELD_AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects	[AD-A233066] p 683 N91-24533
Velocity sensor for an airborne optical air data system	of leading edge radius and vortex flaps	VORTICITY EQUATIONS Optimization of rotor performance in hover using a free
p 655 A91-38542	[CRANFIELD-AERO-9002] p 653 N91-23140	wake analysis performance in novel dailing a five
Static performance tests of a flight-type STOVL	VORTEX GENERATORS Application of vortex dynamics to simulations of	•
ejector	two-dimensional wakes p 676 A91-38706	W
[NASA-TM-104437] p 662 N91-24201	The effects of controlling vortex formation on the	
VERTICAL TAKEOFF AIRCRAFT Numerical investigation of	performance of a dump combustor p 672 N91-23270 An experimental investigation of vortex pair interaction	WAKES Secondary frequencies in the wake of a circular cylinder
airfoil/jet/fuselage-undersurface flowfields in ground	with a clean or contaminated free surface	with vortex shedding p 620 A91-39736
effect p 617 A91-38541	p 680 N91-23419	Aerodynamics and stabilization of combustion of
Tiltrotor developments p 512 A91-40180 VIBRATION	A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid	hydrogen jets injected into subsonic airflow p 629 N91-23164
Modal analysis of multistage gear systems coupled with	dynamics	Unified aeroacoustics analysis for high speed turboprop
gearbox vibrations	[NASA-TM-104436] p 633 N91-24131	aerodynamics and noise. Volume 3: Application of theory
[NASA-TM-103797] p 681 N91-23513	VORTEX SHEDDING	for blade loading, wakes, noise, and wing shielding
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p. 616 A91-37827 Forebody vortex control with the unsteady bleed technique p. 617 A91-37859	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration dampers p 677 A91-39590 VIBRATION TESTS	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique vortex shedding and lock-on in bluff body wakes p 675 A91-38689	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in biuff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration dampers squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test integration of vibration test and flutter analysis - A brief	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall
[NASA-TM-103797] p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film quappers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' D 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube	VORTEX SHEDDING Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] P 683 N91-24533 VORTICES	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES).
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an Impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' D 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an Impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems:
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film queers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results Flexure vibration test method of aviation tube p 648 A91-40170 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683	for blade loading, wakes, noise, and wing shielding [NASA-CH-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists'
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test in the flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow The effect of streamwise vortices on a turbulent	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DIR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40170 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39738 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693	for blade loading, wakes, noise, and wing shielding [NASA-CH-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor.
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration dampers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test in test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an Impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goerfler vortices - Linear stability	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DIR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40170 Prediction of test spectrum for gunfire vibration p 668 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 673 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test in the first of integration of vibration p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an Impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goerfler vortices - Linear stability	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40170 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results Flexure vibration test method of aviation tube p 648 A91-40170 Flexure vibration test method of aviation tube p 668 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-4075 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40220	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 637 N91-24141 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 624 A91-40220 Aircraft wake vortices: An assessment of the current situation	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero Products
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration p 665 A91-40168 Identification of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40220 Aircraft wake vortices: An assessment of the current situation [AD-A231658] p 626 N91-23079	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Status of 2 micron laser technology program p 637 N91-24144 Avionic laser multisensor program at Litton Aero Products p 637 N91-24143 Status of NASA's IR wind shear detection research
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film admpers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40170 Prediction of test spectrum for gunfire vibration p 666 A91-40172 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goerfler vortices - Linear stability approach p 623 A91-3950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 624 A91-40220 Aircraft wake vortices: An assessment of the current situation [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24144 Status of NASA's IR wind shear detection research p 637 N91-24144 Status of turbulence Prediction System's AWAS 3
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 668 A91-40172 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40220 Aircraft wake vortices: An assessment of the current situation [AD-A231658] p 626 N91-23079	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-1006-0PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero Products p 637 N91-24143 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24145
VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test integration of vibration p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 Viscous three-dimensional analyses for nozzles for	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an Impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goerfler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 624 A91-40220 Aircraft wake vortices: An assessment of the current situation [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero p 637 N91-24144 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24145 An airborne FLIR detection and warning system for low altitude wind shear
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23151 Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23151 The 3-D Navier-Stokes analysis of crossing, glancing	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39708 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex are p 624 A91-40126 Aircraft wake vortices: An assessment of the current situation [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash on parachule trajectories	for blade loading, wakes, noise, and wing shielding [NASA-CH-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-1006-0PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero Products p 637 N91-24145 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24144 Wind Shear radar program future plans
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 685 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23175 The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39950 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 629 A91-40126 Experiments on the unsteadiness associated with a ground vortex high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex in the unsteadiness associated with a ground vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash on parachule trajectories	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 637 N91-24144 Status of 2 micron laser technology program p 637 N91-24144 Status of NASA's IR wind shear detection research p 637 N91-24144 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24144 An airborne FLIR detection and warning system for low altitude wind shear radar program future plans p 637 N91-24147 Wind Shear radar program future plans
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23151 Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23151 The 3-D Navier-Stokes analysis of crossing, glancing	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39738 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex interactions [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash on parachule trajectories [DE91-009764] A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier	for blade loading, wakes, noise, and wing shielding [NASA-CH-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero Products p 637 N91-24143 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's SAWAS 3 p 637 N91-24145 Status of turbulence Prediction System's SWAS 3 p 637 N91-24145 Status of turbulence Prediction System's SWAS 3 p 637 N91-24145 Wind Shear radar program future plans p 637 N91-24147 Wind Shear radar program durure plans p 637 N91-24153
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 685 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Fluid dynamics for the study of transonic flow Book p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23151 Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 629 N91-23175 The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions [NASA-TM-104469] p 633 N91-24338	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach p 623 A91-39850 Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex on the unsteadiness associated with a ground vortex on the unsteadiness associated with a ground vortex on the unsteadiness associated with a ground vortex flow and the current situation [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash on parachule trajectories [DE91-009764] p 627 N91-23085 A study of three dimensional turbulent boundary layer expeatation and vortex flow control using the reduced Navier Stokes equations	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 637 N91-24141 Status of 2 micron laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24144 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24145 Status of turbulence Prediction System's AWAS 3 p 637 N91-24147 Wind Shear radar program future plans p 637 N91-24151 Radar simulation program upgrade and algorithm p 638 N91-24151 Radar simulation program upgrade and algorithm p 638 N91-24151 Signal processing techniques for clutter filtering and wind
(NASA-TM-103797) p 681 N91-23513 VIBRATION DAMPING ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 The control of rotor vibration using squeeze-film dampers p 677 A91-39590 VIBRATION TESTS Similarities and differences between environment tests and reliability tests in view of vibration p 665 A91-40166 Application of identification method of modal parameters to flight flutter test p 665 A91-40167 Integration of vibration p 665 A91-40168 Identification of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 Identification of nacelle modes from airplane GVT results p 648 A91-40170 Flexure vibration test method of aviation tube p 648 A91-40172 Prediction of test spectrum for gunfire vibration p 666 A91-40175 Vibration behavior of a labyrinth seal with through-flow p 679 A91-40241 VIDEO TAPES An overview of information resources in aviation p 690 N91-24091 VISCOUS FLOW Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 625 A91-40513 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 Viscous three-dimensional analyses for nozzles for hypersonic propulsion p 628 N91-23175 The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions [NASA-TM-104469] p 633 N91-24130 Average-passage flow model development	Asymmetric vortices on a slender body of revolution p 616 A91-37827 Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Vortex shedding and lock-on in bluff body wakes p 675 A91-38689 Rotary oscillation control of a cylinder wake p 620 A91-39708 Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39738 The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270 VORTEX SHEETS Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 VORTICES Forebody vortex control with the unsteady bleed technique p 617 A91-37859 Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683 The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure gradient p 675 A91-38693 Theoretical study of Goertler vortices - Linear stability approach Synchronous iterative method for computation of vortex flows at high angles of attack p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex p 624 A91-40126 Experiments on the unsteadiness associated with a ground vortex interactions [AD-A231658] p 626 N91-23079 A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084 A vortex panel method for calculating aircraft downwash on parachule trajectories [DE91-009764] A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier	for blade loading, wakes, noise, and wing shielding [NASA-CH-185193] p 688 N91-23850 MEGASODAR experiment p 639 N91-24169 WALL FLOW A new system for unsteady aerodynamics of moving wall p 618 A91-38695 On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940 WALL PRESSURE Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838 Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall pressures [DLR-FB-90-46] p 628 N91-23088 WARNING SYSTEMS Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development [DOT/FAA/CT-90/21] p 636 N91-23097 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance [LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection p 637 N91-24142 Status of 2 micron laser technology program p 637 N91-24143 Avionic laser multisensor program at Litton Aero Products p 637 N91-24143 Status of NASA's IR wind shear detection research p 637 N91-24145 Status of turbulence Prediction System's SAWAS 3 p 637 N91-24145 Status of turbulence Prediction System's SWAS 3 p 637 N91-24145 Status of turbulence Prediction System's SWAS 3 p 637 N91-24145 Wind Shear radar program future plans p 637 N91-24147 Wind Shear radar program durure plans p 637 N91-24153

Description, characteristics and testing of the NASA airborne radar p 638 N91-24156	RADAR performance experiments p 639 N91-24168	WING CAMBER Flow visualization study of a 1/48-scale AFTI/F111
airborne radar p 638 N91-24156 Airborne Wind Shear Detection and Warning Systems:	MEGASODAR experiment p 639 N91-24169	model to investigate horizontal tail flow disturbances
Third Combined Manufacturers' and Technologists'	Microburst avoidance simulation tests	[NASA-TM-101698] p 633 N91-24128
Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166	p 639 N91-24172	WING LOADING Calculation of steady and unsteady pressures on wings
Microburst avoidance simulation tests	Wind shear training applications for 91/135 p 639 N91-24173	at supersonic speeds with a transonic small-disturbance
p 639 N91-24172	NASA Langley flight test program p 639 N91-24175	code p 617 A91-38544
TDWR information on the flight deck p 640 N91-24176	TDWR information on the flight deck	Unsteady aerodynamic loading of delta wings for low and high angles of attack p 617 A91-38680
Integration of the TDWR and LLWAS wind shear	p 640 N91-24176	Nonlinear Aerodynamics and the Design of Wing Tips
detection system p 640 N91-24178	Orlando experiment p 640 N91-24177	[NASA-CR-188044] p 630 N91-24105
Thermodynamic Alerter for Microbursts (TAMP) p 640 N91-24179	Integration of the TDWR and LLWAS wind shear detection system p 640 N91-24178	WING OSCILLATIONS Asymptotic theory of bending-torsion flutter of high
Status of Sundstrand research p 640 N91-24183	Thermodynamic Alerter for Microbursts (TAMP)	aspect ratio wing in the torsion controlled domain
WATER	p 640 N <u>9</u> 1-24179	p 675 A91-37846
The LWC parameter - Some experimental results liquid water content in atmosphere p 685 A91-38388	Status of Sundstrand research p 640 N91-24183	Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme
Water droplet impingement on airfoils and aircraft engine	Temperature lapse rate as an adjunct to wind shear detection p 640 N91-24184	[NASA-TM-104377] p 630 N91-24107
inlets for icing analysis p 634 A91-38543	WIND TUNNEL NOZZLES	Calculation of high angle of attack aerodynamics of
WAVE PROPAGATION The propagation of acoustic disturbances in the	An isentropic compression-heated Ludweig tube	fighter configurations. Volume 3: Unsteady [AD-A233569] p 631 N91-24115
transonic flow fields of wings	transient wind tunnel p 673 A91-36450	WING PANELS
[ESA-TT-1126] p 689 N91-23854	WIND TUNNEL TESTS Mach 4 testing of scramjet inlet models	Study of thermal-expansion-molded, graphite-epoxy
WAVERIDERS	p 615 A91-37418	hat-stiffened sandwich panels p 675 A91-37845 WING PLANFORMS
Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116	Experimental investigation of loading effects on	Design of aircraft wings subjected to gust loads - A safety
WEAR TESTS	compressor trailing-edge flowfields p 615 A91-37420	index based approach p 675 A91-37851
Advanced thermally stable jet fuels development	ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772	WING PROFILES Discontinuous solutions for a three-dimensional
program annual report. Volume 3: Fuel lubricity [AD-A232793] p 673 N91-24453	A comparison between computation and experiment for	hypersonic boundary layer with interaction
WEATHER	flows around airfoil with slat and flap	p 614 A91-37176
Radiation transmission in adverse weather p 675 A91-37880	p 616 A91-37780	Instability features appearing on swept wing configurations p 622 A91-39937
Air ambulance helicopter operational analysis	Structure of the compressible turbulent shear layer	Aerodynamic characteristics of scissor-wing
[DOT/FAA/RD-91/7] p 652 N91-23134	p 616 A91-37830 Forebody vortex control with the unsteady bleed	geometries p 624 A91-40216
WEATHER FORECASTING	technique p 617 A91-37859	Analysis of circular elastic membrane wings p 625 A91-40472
Integration of weather sensing devices p 639 N91-24174	High subsonic flow about a moving spoiler identifying	WING SLOTS
WEBS (SUPPORTS)	a novel problem of wind tunnel interference p 619 A91-38710	A comparison between computation and experiment for
Nonlinear analysis of composite shear webs with holes and correlation with tests p 684 N91-24642	Investigations on flow instabilities on airfoils by means	flows around airfoil with slat and flap p 616 A91-37780
and correlation with tests p 684 N91-24642 WEDGE FLOW	of piezofoil-arrays p 621 A91-39911	WING TIP VORTICES
Variable-property effects in supersonic wedge flow	Experiments on swept-wing boundary layers	Tip vortex/airfoil interaction for a low Reynolds number
p 616 A91-37832	p 622 A91-39932 On the stability of swept wing laminar boundary layers	canard/wing configuration p 617 A91-38545 WING TIPS
On the instability of hypersonic flow past a wedge p 621 A91-39922	including curvature effects p 622 A91-39933	Air surveying and data analysis for dynamic response
WINCHES	Development and interaction of instabilities in the	of missiles at swept-back wing tip p 647 A91-40156
Airborne rescue system [NASA-CASE-ARC-11909-1] p 635 N91-23095	crossflow field p 622 A91-39938	Nonlinear Aerodynamics and the Design of Wing Tips [NASA-CR-188044] p 630 N91-24105
[NASA-CASE-ARC-11909-1] p 635 N91-23095 WIND PROFILES	Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219	WINGS
Analysis of numerical solutions for three-dimensional	Effects of canard position on the aerodynamic	On the improvement of the supersonic lifting line
lifting wing flows p 625 A91-40498 WIND SHEAR	characteristics of a close-coupled canard configuration at	theory p 614 A91-36695 Wing calculation in supersonic flow by means of the
Clutter rejection in Doppler weather radars used for	low speed p 649 A91-40495 An introduction to testing parachutes in wind tunnels	supersonic lifting line theory p 614 A91-36700
airport wind shear detection p 685 A91-37104	[AIAA PAPER 91-0858] p 668 A91-40556	Simulation of iced wing aerodynamics
Coherent lidar airborne windshear sensor - Performance evaluation p 655 A91-39873	Low Altitude High Speed Cargo Parachute system development - A status report	[NASA-TM-104362] p 628 N91-23086 Application of multidisciplinary optimization methods to
Airborne Wind Shear Detection and Warning Systems:	[AIAA PAPER 91-0880] p 635 A91-40558	the design of a supersonic transport
Third Combined Manufacturers' and Technologists'	Interferometric investigation of supersonic flow fields	[NASA-TM-104073] p 652 N91-23135
Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140	with shock-shock interactions p 627 N91-23082 The performance of 60 deg delta wings: The effects	Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190
CLASS: Coherent Lidar Airborne Shear Sensor.	of leading edge radius on vortex flaps and the wing	Unified aeroacoustics analysis for high speed turboprop
Windshear avoidance	[CRANFIELD-AERO-9004] p 628 N91-23092	aerodynamics and noise. Volume 2: Development of theory
[LMSC-F-415048] p 636 N91-24141 Continuous wave laser for wind shear detection	The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps	for wing shielding [NASA-CR-185192] p 688 N91-23849
p 637 N91-24142	[CRANFIELD-AERO-9002] p 653 N91-23140	Unified aeroacoustics analysis for high speed turboprop
Status of 2 micron laser technology program	A study of supersonic and hypersonic ramjet engines	aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding
p 637 N91-24143 Avionic laser multisensor program at Litton Aero	in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149	[NASA-CR-185193] p 688 N91-23850
Products p 637 N91-24144	Transonic Symposium: Theory, Application and	The propagation of acoustic disturbances in the
Status of NASA's IR wind shear detection research p 637 N91-24145	Experiment, volume 2	transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854
Status of turbulence Prediction System's AWAS 3	[NASA-CP-3020-VOL-2] p 634 N91-24132 Laminar-flow wind tunnel experiments	Variable Sweep Transition Flight Experiment (VSTFE):
p 637 N91-24146	p 634 N91-24136	Unified Stability System (USS). Description and users'
An airborne FLIR detection and warning system for low	Computational support of the X-29A Advanced	manual [NASA-CR-181918] p 634 N91-24139
altitude wind shear p 637 N91-24147 Saberliner flight test for airborne wind shear forward	Technology Demonstrator flight experiment p 653 N91-24137	WORKLOADS (PSYCHOPHYSIOLOGY)
looking detection and avoidance radar systems	Status of heavy rain tests p 640 N91-24180	Methodology for the analytical assessment of aircraft
p 637 N91-24149	WIND TUNNEL WALLS	handling qualities p 664 A91-37597 Simulation evaluation of a speed-guidance law for Harrier
Wind Shear radar program future plans p 637 N91-24151	Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in	approach transitions
Clutter modeling of the Denver Airport and surrounding	compressible subsonic flow using measured wall	[NASA-TM-102853] p 668 N91-24209
areas p 638 N91-24152	pressures [DLR-FB-90-46] p 628 N91-23088	v
Signal processing techniques for clutter filtering and wind	WIND TUNNELS p 626 Ma1-23066	X
shear detection p 638 N91-24154 Airborne radar simulation studies of the Denver July 11,	An isentropic compression-heated Ludweig tube	X-29 AIRCRAFT
1988 microburst p 638 N91-24155	transient wind tunnel p 673 A91-36450 WIND TURBINES	Flying qualities of the X-29 forward swept wing aircraft
Description, characteristics and testing of the NASA	Preference for an inertial degree of freedom describing	p 651 N91-23127
airborne radar p 638 N91-24156	the teeter motion of windturbine and helicopter rotors	Buffet induced structural/flight-control system
Airborne Wind Shear Detection and Warning Systems:	p 679 A91-40239	interaction of the X-29A aircraft
Third Combined Manufacturers' and Leconologiese	WINDSHIFT DS	[NASA-IM-101/351 D 652 N91-23133
Third Combined Manufacturers' and Technologists' Conference, part 1	WINDSHIELDS The nonlinear dynamic response analysis of the front	[NASA-TM-101735] p 652 N91-23133 Computational support of the X-29A Advanced
Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166	The nonlinear dynamic response analysis of the front windshield of Y12 under 'bird-impact' loads	Computational support of the X-29A Advanced Technology Demonstrator flight experiment
Conference, part 1	The nonlinear dynamic response analysis of the front	Computational support of the X-29A Advanced

YIELD STRENGTH


SUBJECT INDEX

Υ

YAG LASERS
Status of 2 micron laser technology program
p 637 N91-24143

YIELD STRENGTH
Improved silicon carbide for advanced heat engines
[NASA-CR-182289] p 672 N91-24451

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence

ABARBANEL, SAUL S. vith vortex shedding ACKVA, JOHANNES ADAMCZYK, JOHN J. ADAMSON, PAT ADELMAN, HENRY G. AHMED, S.

Secondary frequencies in the wake of a circular cylinder p 620 A91-39736

Preference for an inertial degree of freedom describing the teeter motion of windturbine and helicopter rotors p 679 A91-40239

Average-passage flow model development p 682 N91-24338

Status of turbulence Prediction System's AWAS 3 p 637 N91-24146

Analytical and experimental investigations of the oblique detonation wave engine concept p 660 N91-23169

High subsonic flow about a moving spoiler identifying a novel problem of wind tunnel interle

p 619 A91-38710

AIBA, TOSHIKI Track initiation using MHT in dense environments p 674 A91-37141

AL-ZUBAIDY, S. N. J. Toward automating the design of centrifugal impellers p 676 A91-38874

ALBUGUES, F.

How to know CMC [REPT-911-430-130]

p 672 N91-23262

ALEM, NABIH M. The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,

[AD-A232907] p 641 N91-24187 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,

p 641 N91-24188 [AD-A2333491

ALFREDSSON, P. H.

On the development of turbulent spots in plane Poiseuille p 678 A91-39904 ALMODOVAR, E. Small Engine Component Technology (SECT) study Program report

[NASA-CR-175077] p 662 N91-24204

ALSBROOKS, THOMAS H. Low Altitude High Speed Cargo Parachute system development - A status report

n 635 A91-40558 [A]AA PAPER 91-0880] ALTIZ. O.

Description, characteristics and testing of the NASA airborne radar p 638 N91-24156 AMIET, R. K.

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory for wing shielding

(NASA-CR-185192) o 688 N91-23849 AMUEDO, KURT C.

Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel

p 626 A91-40561 [AIAA PAPER 90-2268] AMZAJERDIAN, FARZIN

Avionic laser multisensor program at Litton Aero p 637 N91-24144 Products ANDERMAN, MENAHEM

Prismatic sealed Ni-Cd battery for aircraft power p 657 A91-38178

ANDERSON, B. T.

Correlation of boundary layer stability analysis with flight p 621 A91-39929 transition data ANDERSON, BERNHARD H.

A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navler Stokes equations [NASA-TM-104407] p 528 N91-23089

A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics

p 633 N91-24131 NASA.TM.1044361

ANDERSON, BIANCA TRUJILLO

Effects of wing sweep on in-flight boundary-layer transition for a laminar flow wing at Mach numbers from 0.60 to 0.79

[NASA-TM-101701] p 683 N91-24555 Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to

INASA-TM-1017121 p 683 N91-24556 ANDERSON, CHARLES D.

Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development

[DOT/FAA/CT-90/21] p 636 N91-23097 ANDERSON, E. C.

Real gas effects on hypersonic boundary-layer stability p 614 A91-36453

ANDERSON, JOHN D., JR.

Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116

ANDO, SHIGENORI

Aerodynamic characteristics of slender wing-gap-body p 615 A91-37777 combinations

ANDREL G. Airbreathing propulsion for transatmospheric fligh p 659 N91-23158

APPLEBY, R. A. A general multiblock Euler code for propulsion integration. Volume 2: User guide for BCON, pre-processor for grid generation and GMBE
[NASA-CR-187484-VOL-2] p 632 N91-24121

ARBON, ED Wind shear training applications for 91/135

ARDAVAN, H. The breakdown of the linearized theory and the role of quadrupole sources in transonic rotor acoustics

p 639 N91-24173

p 688 A91-39749

Laminar turbulent transition; Proceedings of the IUTAM Symposium, Ecole Nationale Superleure de l'Aeronautique et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901

Experimental and theoretical p 621 A91-39927 transition on 'infinite' swept wing Theoretical study of Goertler vortices - Linear stability p 623 A91-39950 approach Boundary layer tripping in supersonic flow p 623 A91-39960

ARPASI, DALE J.

Enhancing aeropropulsion research with high-speed interactive computing INASA-TM-1043741 p 687 N91-24796

ARTS, T.

Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations

p 680 N91-23437 {VKI-TN-1741 ASHLEY, H.

Unsteady aerodynamic loading of delta wings for low p 617 A91-38680 and high angles of attack ASHLEY, STEVEN

Comanche - Tomorrow's high-tech helicopter

p 649 A91-40254 ATAMANCHUK, T. M. Performance characteristics of hypersonic detonation

p 659 N91-23168 wave ramjets

p 639 N91-24167 LIDAR studies on microbursts

В

BAE. YOON-YEONG

Performance of an aerospace plane propulsion nozzle p 615 A91-37769

BAHR, BEHNAM Evaluation of automation for inspection of aging p 613 N91-24088

aircraft Program plans for aviation safety research INIAR-90-321 p 638 N91-24157

Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution p 654 N91-24158

Mechanical paint removal techniques for composite p 613 N91-24163

BAI. XUESONG

Transonic analysis and design using an Improved grid p 624 A91-40137

BAILEY, RANDALL E.

The flying qualities influence of delay in the fighter pilot's p 650 N91-23120 cuing environment BAILLIE, S. W.

An Investigation into the use of side-arm control for civil rotorcraft applications N91-23123 p 667 decision height windows for

decelerating IMC approaches in helicopters p 667 N91-23124 BAIN, KENNETH R.

Modeling of creep-fatigue interaction effects on crack p 670 A91-38802

BALSONE, STEPHEN J. Titanium aluminides for aerospace applications

p 671 A91-39302 BALUT, STEPHEN J.

Estimating fixed and variable costs of airframe

AD-A2326611 p 613 N91-23077 BANKE, FRED

Aircraft repair/general aviation quick tooling [SME PAPER EM90-178] p 611 p 611 A91-36944 BARANKIEWICZ, WENDY 8.

Static performance tests of a flight-type STOVL [NASA-TM-104437] p 662 N91-24201

BARNETT, MARK Average-passage flow model development

p 682 N91-24338

BARSON, JOHN V. The airbag as a supplement to standard restraint

systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, [AD-A232907] p 641 N91-24187

The airbag as a supplement to systems in the AH-1 and AH-64 at	standa	ard restrain
systems in the AH-1 and AH-64 at	tack he	licopters and
its role in reducing head strikes of	the co	pilot/gunner
volume 1	p 641	N91-24188
(AD-A233349) BARTHELEMY, JF. M.	•	
Application of multidisciplinary opti		n methods to
the design of a supersonic transport [NASA-TM-104073]	p 652	N91-23135
BARTHOLOMEW, P.	p 032	1451-25155
The role of structural analysis	is in a	nirworthiness
certification	p 684	N91-24647
BARTLETT, D. W.	-	
Correlation of boundary layer stabili	ity analy	sis with flight
transition data		A91-39929
On the stability of swept wing lam	inar bou	indary layers
including curvature effects	p 622	A91-39933
Laminar-flow flight experiments BASSANI, MAURIZIO	p 634	N91-24135
The LWC parameter - Some exper	imental	raculte
THE EVIC PARAMETER - SOME EXPOR		A91-38388
BATEMAN, DON	,	
Status of Sundstrand research	p 640	N91-24183
BATES, B. L.		
Computational support of the	X-29A	 Advanced
Technology Demonstrator flight expe		
	p 653	N91-24137
BATINA, JOHN T.		
Calculation of steady and unsteady		
at supersonic speeds with a transon code	p 617	
BATTERSON, J. G.	pun	A31-30344
Effects of horizontal tail ice on long	itudinal	aerodynamic
derivatives	p 665	
BAVA, RENZO	•	
Lateral-direction tracking requirem	ents fro	m simulation
data	n 686	A91-39436
	P 000	
BAXA, ERNEST G., JR.	-	
Signal processing techniques for clu	itter filter	ring and wind
Signal processing techniques for clu shear detection	itter filter	
Signal processing techniques for clu shear detection BEACH, TIM A.	p 638	ring and wind N91-24154
Signal processing techniques for clu shear detection	tter filter p 638 lopment	ring and wind N91-24154
Signal processing techniques for clu shear detection BEACH, TIM A. Average-passage flow model deve	p 638	ring and wind N91-24154
Signal processing techniques for clu shear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E.	p 638 lopment p 682	ring and wind N91-24154 N91-24338
Signal processing techniques for clu shear detection BEACH, TIM A. Average-passage flow model deve	p 638 lopment p 682	ring and wind N91-24154 N91-24338 r velocity
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of BECKER, KH.	p 638 lopment p 682 of low ai p 674	ring and wind N91-24154 N91-24338 r velocity A91-37410
Signal processing techniques for clustear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of	litter filter p 638 lopment p 682 of low ai p 674	ring and wind N91-24154 N91-24338 r velocity A91-37410
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model develope BECK, J. E. Airblast atomization at conditions of the conditions of	p 638 lopment p 682 of low ai p 674	ring and wind N91-24154 N91-24338 r velocity A91-37410
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of BECKER, KH. A general method for rotordynamic	otter filter p 638 lopment p 682 of low ai p 674 analysi p 677	ring and wind N91-24154 N91-24338 r velocity A91-37410 S A91-39585
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model develope BECK, J. E. Airblast atomization at conditions of BECKER, KH. A general method for rotordynamic BECKER, WAYNE Program plans for aviation safety re	itter filter p 638 lopment p 682 of low ai p 674 analysi p 677 esearch	ring and wind N91-24154 N91-24338 r velocity A91-37410 s A91-39585
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developed BECK, J. E. Airblast atomization at conditions of BECKER, KH. A general method for rotordynamic BECKER, WAYNE Program plans for aviation safety of [NIAR-90-32]	itter filter p 638 lopment p 682 of low ai p 674 analysi p 677 esearch p 638	ring and wind N91-24154 N91-24338 r velocity A91-37410 is A91-39585
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model develope BECK, J. E. Airblast atomization at conditions of BECKER, KH. A general method for rotordynamic BECKER, WAYNE Program plans for aviation safety re	lopment p 638 lopment p 682 of low ai p 674 analysi p 677 esearch p 638 uctures	ring and wind N91-24154 N91-24338 r velocity A91-37410 s A91-39585
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the condition of the conditions of the c	Interfilter p 638 Iopment p 682 of low air p 674 canalysis p 677 essearch p 638 uctures p 613	ring and wind N91-24154 N91-24338 r velocity A91-37410 S A91-39585 N91-24157
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developed BECK, J. E. Airblast atomization at conditions of BECKER, KH. A general method for rotordynamic BECKER, WAYNE Program plans for aviation safety of [NIAR-90-32]	Interfilter p 638 Iopment p 682 of low air p 674 canalysis p 677 essearch p 638 uctures p 613	ring and wind N91-24154 N91-24338 r velocity A91-37410 is A91-39585 N91-24157 N91-24160 composite
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the condition of the conditions of the c	of low air p 674 analysis p 677 esearch p 638 uctures p 613 uues for p 613	ring and wind N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24163
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model development BECK, J. E. Airblast atomization at conditions of the conditions	of low as p 674 canalysis p 677 esearch p 638 uctures p 613 uces for p 613 noce high	N91-24154 N91-24338 r velocity A91-37410 S A91-39585 N91-24160 composite N91-24163
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the condition	of low as p 674 canalysis p 677 esearch p 638 uctures p 613 uces for p 613 noce high	ring and wind N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24163
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the condition of the conditions of the c	of low aid p 674 analysis p 677 essearch p 638 auctures p 613 aues for p 613 analysis p 617 analysis p 613 aues for p 613 analysis p 613 aues for p 613 analysis p 613 aues for p 613 analysis p 613 aues for p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 613 analysis p 621 analysis p 621 analysis p 621 analysis p 621 analysis p 621 analysis p 622 analysis p 623 analysis p 623 analysis p 624 anal	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24163 i-speed wind A91-39919
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments BECKE, J. E. Airblast atomization at conditions of the condition	itter filter p 638 lopment p 682 of low air p 674 analysis p 677 essearch p 638 uses for p 613 noce high p 621 experime	N91-24154 N91-24338 Velocity A91-37410 S A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developed in the conditions of the condition	itter filter p 638 lopment p 682 of low air p 674 analysis p 677 essearch p 638 uses for p 613 noce high p 621 experime	N91-24154 N91-24338 Velocity A91-37410 S A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the condition of the conditions of the c	p 638 clopment p 682 of low ai p 674 clanalysis p 677 esearch p 638 cuctures p 613 cues for p 61	N91-24154 N91-24338 r velocity A91-37410 S A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): a and users'
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments of the Archard at a conditions f the Archard at a condition of the Archa	p 638 clopment p 682 of low ai p 674 clanalysis p 677 esearch p 638 cuctures p 613 cues for p 61	N91-24154 N91-24338 Velocity A91-37410 S A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the co	the filter filter filter filter p 638 lopment p 682 filter filter p 674 analysis p 677 analysis p 677 ep 638 guest for p 613 noce high p 621 experime p 634	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): and users'
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments of the Archard at a conditions f the Archard at a condition of the Archa	the filter filter filter p 638 clopment p 682 clopment p 682 clopment p 674 clopment p 674 clopment p 638 clopment p 638 clopment p 638 clopment p 638 clopment p 636 ckperition p 634 ckperition	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): and users'
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the	the filter filter filter p 638 clopment p 682 clopment p 682 clopment p 674 clopment p 674 clopment p 638 clopment p 638 clopment p 638 clopment p 638 clopment p 636 ckperition p 634 ckperition	ring and wind N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24157 N91-24160 composite N91-24169 and A91-39919 ent (VSTFE): and users' N91-24139
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the co	the filter filter p 638 lopment p 682 lopment p 682 lolpment p 674 analysis p 677 essearch p 638 louctures p 613 lous for p 658 louctures p 613 lous for p 654 kxperimer p 634 lal with p 679 esseures	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): and users' N91-24139
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model deve BECK, J. E. Airblast atomization at conditions of the	the filter than the filter than the filter p 638 to p 682 to p 677 to p 678 to p 678 to p 678 to p 638 to the filter p 638 to	N91-24154 N91-24338 r velocity A91-37410 S A91-39585 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): n and users' N91-24139 through-flow A91-40241
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments of the conditions of the condit	the filter than the filter than the filter p 638 to p 682 to p 677 to p 678 to p 678 to p 678 to p 638 to the filter p 638 to	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24160 composite N91-24163 a-speed wind A91-39919 ent (VSTFE): and users' N91-24139
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments of the conditions of the condit	the filter filter filter p 638 lopment p 682 of low air p 674 analysis p 677 essearch p 638 cuctures p 613 cuctures p 613 cuctures p 613 cuctures for p 634 al with p 679 sources attions p 630	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24160 composite N91-24163 -speed wind A91-39919 ent (VSTFE): n and users' N91-24139 through-flow A91-40241 induced on
Signal processing techniques for clushear detection BEACH, TIM A. Average-passage flow model developments of the conditions of the condit	ther filter filter than the filter filter p 638 comment p 682 of low as p 677 cesearch p 638 cuctures p 638 cuctures p 638 cuctures p 631 cuctures p 641 cape for p 613 cuctures p 634 cuctures p 634 cuctures p 635 cuctures p 637 cuctures p 638 cuctures p 637 cuctures p 637 cuctures p 638 cuc	N91-24154 N91-24338 r velocity A91-37410 s A91-39585 N91-24160 composite N91-24163 -speed wind A91-39919 ent (VSTFE): n and users' N91-24139 through-flow A91-40241 induced on

Correlation of boundary layer stability analysis with flight
transition data p 621 A91-39929 On the stability of swept wing laminar boundary layers
including curvature effects p 622 A91-39933
Laminar-flow flight experiments p 634 N91-24135
BASSANI, MAURIZIO The LWC parameter - Some experimental results
p 685 A91-38388
BATEMAN, DON
Status of Sundstrand research p 640 N91-24183 BATES, B. L.
Computational support of the X-29A Advanced
Technology Demonstrator flight experiment
p 653 N91-24137 BATINA, JOHN T.
Calculation of steady and unsteady pressures on wings
at supersonic speeds with a transonic small-disturbance
code p 617 A91-38544 BATTERSON, J. G.
Effects of horizontal tail ice on longitudinal aerodynamic
derivatives p 665 A91-38547
BAVA, RENZO
Lateral-direction tracking requirements from simulation data p 686 A91-39436
BAXA, ERNEST G., JR.
Signal processing techniques for clutter filtering and wind
shear detection p 638 N91-24154 BEACH, TIM A.
Average-passage flow model development
p 682 N91-24338
BECK, J. E. Airblast atomization at conditions of low air velocity
p 674 A91-37410
BECKER, KH.
A general method for rotordynamic analysis p 677 A91-39585
BECKER, WAYNE
Program plans for aviation safety research
[NIAR-90-32] p 638 N91-24157
Bonded/fusion repair of aircraft structures p 613 N91-24160
Mechanical paint removal techniques for composite
aircraft p 613 N91-24163
BECKWITH, 1. E. Transition research in low-disturbance high-speed wind
tunnels p 621 A91-39919
BEHBEHANI, ROXANNA
Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users'
manual
[NASA-CR-181918] p 634 N91-24139
BEHNKE, BERND Vibration behavior of a labyrinth seal with through-flow
p 679 A91-40241
BELLAVIA, DAVID C.
Suckdown, fountain lift, and pressures induced on several tandem jet V/STOL configurations
[NASA-TM-102817] p 630 N91-24108
BELLEUDY, J.
A new system for unsteady aerodynamics of moving
wall p 618 A91-38695 BEMENT, LAURENCE J.
Helicopter in-flight stores jettison p 671 A91-39389
BENCIC, TIMOTHY J.
Hot gas ingestion test results of a two-poster vectored
thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel
[AIAA PAPER 90-2268] p 626 A91-40561
BENCZUR-URMOSSY, GABOR
Prismatic sealed Ni-Cd battery for aircraft power p 657 A91-38178
BENDIKSEN, ODDVAR O.
Euler calculations of unsteady transonic flow in
Cascades
[AIAA PAPER 91-1104] p 626 A91-40562 BENN, K.
Small Engine Component Technology (SECT)
[NASA-CR-175078] p 662 N91-24205
BENNETT, ROBERT M.

Calculation of steady and unsteady pressures on wings at supersonic speeds with a transonic small-disturbance

p 617 A91-38544

			PERSONAL A	<i>UTHC</i>	OR INDEX
BENOIST, ROD			BONNER, E.		
Avionic laser multisensor prog			Aerodynamic preliminary analys	is syster	m 2. Part 1:
Products	p 637	N91-24144	Theory	- 000	ND4 00000
BENSHALOM, URI			[NASA-CR-182076]	p 626	N91-23080
Computerized system for static ar	nd fatigu	e large scale	BORIO, U.		
structural tests: A case study		1104 00500	Airbreathing propulsion for transat		
[IAITIC-87-1007]	p 681	N91-23522		b e2a	N91-23156
BENSTEIN, ELI H.			BOULAY, J. L.		
Model 320-2: A compact advance			LIDAR studies on microbursts	p 639	N91-24167
	p 663	N91-24292	BOWLES, ROLAND L.		
BERNHART, WALTER			Coherent lidar airborne windshear s		
Program plans for aviation safety			evaluation		A91-39873
[NIAR-90-32]	p 638	N91-24157	Airborne Wind Shear Detection ar		
BERNHART, WAYNE			Third Combined Manufacturers' a	ind lec	innologists.
Crashworthiness experiments	p 638	N91-24161	Conference, part 2	- 000	NO4 04440
BERNIUKOV, A. K.			[NASA-CP-10060-PT-2]	•	N91-24140
Functional-adaptive data process			Airborne Wind Shear Detection an		
navigation and landing systems	p 643	A91-39187	Third Combined Manufacturers'	and Ted	chnologists'
BERTIN, F.			Conference, part 1		
RADAR performance experiments			[NASA-CP-10060-PT-1]	p 639	N91-24166
	p 639	N91-24168	BOYNTON, J. L.		
BERTON, PIERRE			Unsteady pressure fluctuation on a		
A study of supersonic and hyper			blade row	p 619	A91-38702
in France from 1950 to 1974 (appl		N91-23149	BRABBS, THEODORE A.		
cycle aircraft engines)	p 636	1491-23149	Multi-heat addition turbine engine		
BEZOS, GAUDY	- 640	NO1 04100	[NASA-CASE-LEW-15094-1]	p 660	N91-23180
Status of heavy rain tests	p 040	N91-24180	BRACALENTE, E. M.		
BIELAWSKI, WILLIAM J.			Airborne radar simulation studies of	the Der	nver July 11,
Environmental exposure effects or	i compos	site materials	1988 microburst	p 638	N91-24155
for commercial aircraft [NASA-CR-187478]	n 672	N91-24358	BRAGG, M. B.		
	p 0/2	1451-24550	Simulation of iced wing aerodynam	liC5	
BIEZAD, DANIEL J. Normalized predictive deconvo	lution	Multichannel	[NASA-TM-104362]	p 628	N91-23086
time-series applications to human dy		Municipaline	BRASLOW, A. L.		
time-series applications to riginal of		A91-37584	Laminar-flow flight experiments	p 634	N91-24135
BILLET, M. L.	p 000	1.01 0100 1	BRAUN, M. J.	,	
Experiments on the unsteadiness	s associ	ated with a	Simulation of brush insert for lead	dina-edc	ne-nassage
ground vortex		A91-40220	convective heat transfer	J g Oug	,o passage
BILLIG, F. S.	F		[NASA-TM-103801]	p 679	N91-23409
Design techniques for dual	mode r	am-scramiet	BREER, MARLIN D.		
combustors		N91-23166	Water droplet impingement on airfoi	is and aid	rcraft engine
BIPPES. H.	,		inlets for icing analysis		A91-38543
A model for the experimental study	v of curv	ature effects	BRIERE, DOMINIQUE		
on transition of the boundary layer			The electrical flight control system	of A22	Airbue: A
Preliminary results		A91-39691	fault tolerant system	. OI HOE	o raious. A
Instability features appearing	on s	wept wing	[REPT-911-111-103]	p 667	N91-23192
configurations		A91-39937	BRIGGS, MARTIN	p	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
BJARKE, LISA J.			The English summer of 1990 - Furth	or araas	ace towards
Flow visualization study of a 1/4	8-scale	AFTI/F111	deregulation of the aviation and trave		
model to investigate horizontal tail fl			Corogulation of the aviation and have		A91-37801
[NASA-TM-10169B]	p 633	N91-24128	BRITT, CHARLES L.		
BLACK, G. THOMAS			Radar simulation program upgr	ade an	d algorithm
		1104 00444	oui onnoistion program upgi		

BLA MIL-STD-1797 is not a cookbook p 650 N91-23111 Do civil flying qualities requirements address military

missions for off-the-shelf procurement

p 650 N91-23115 BLAND, SAMUEL R.

Calculation of steady and unsteady pressures on wings at supersonic speeds with a transonic small-disturbance p 617 A91-38544 BLOM, A. F.

Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138

BLUME, H. J. C.

Description, characteristics and testing of the NASA p 638 N91-24156

Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-2413B

BOGUSLAEV, V. A. Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines p 674 A91-37269

BOLES, MICHAEL A. Theoretical evaluation of engine auxiliary inlet design for supersonic V/STOL aircraft [NASA-CR-187098] p 633 N91-24123

BOND, T. H. Effects of horizontal tail ice on longitudinal aerodynamic derivatives p 665 A91-38547

BOND, THOMAS H. Advanced ice protection systems test in the NASA Lewis icing research tunnel

[NASA-TM-103757] p 661 N91-23183 Model rotor icing tests in the NASA Lewis icing research tunnel NASA-TM-104351 p 661 N91-23184

BONHAUS, DARYL L. Euler analysis of a High-Speed Civil Transport concept at Mach 3 p 624 A91-40217

us: A 3192 vards 7801 p 638 N91-24153 Airborne radar simulation studies of the Denver July 11, p 638 N91-24155 1988 microburst BRITTON, RANDALL K. Model rotor icing tests in the NASA Lewis icing research tunnel [NASA-TM-104351] p 661 N91-23184 BROCKHAUS, R. A new method for estimating airspeed, attack angle and sideslip angle p 664 A91-37051 BROOKS, CUYLER W., JR. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis p 629 N91-2409B [NASA-TM-4267] BROWN, ALAN S. p 611 A91-36351 Wright Laboratory BRUCE, W. E., JR. National Transonic Facility status p 669 N91-24133 BRUDER, JOSEPH A. Measurement of clutter suppression using a uadrahedrał p 674 A91-37106 Quadrahedral BUCHACKER, E. Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114

Estimating fixed and variable costs of airframe

Designing with composites - A study of design p 646 A91-38752

Hardware-in-the-loop testing of the crest ejection seat

Pulse Doppler signature of a rotary-wing aircraft

p 613 N91-23077

p 643 A91-39756

p 647 A91-39394

BUI, JAMES

manufacturers

[AD-A232661]

BURGER, C. P.

process

BULLARD, BARRY D.

BURMEISTER, G. J.

control system

C

CAI, XIAOBIN Design and implementation of real-time computer	
coordinated force actuating system with	
multi-input/output	
[AD-A233114] p 687 N91-24768	
CALKINS, ROBERT B.	
The Minipac II ejection seat program p 647 A91-39390	
Recent escape system parachute efforts at Douglas	
Aircraft Company p 635 A91-39393	
CALUGI, DAVID	
Adaptive airborne track while scan	
p 642 A91-37139	
CAMBIER, JEAN-LUC Analytical and experimental investigations of the oblique	
detonation wave engine concept p 660 N91-23169	
CAMCI, C.	
A new facility to study three dimensional viscous flow	
and rotor-stator interaction in turbines p 682 N91-24336	
CAMPBELL, JAMES F.	
Interactive three-dimensional boundary-layer method for	
transonic flow over swept wings p 616 A91-37829	
CAMPBELL, STEVE Orlando experiment p 640 N91-24177	
Orlando experiment p 640 N91-24177 CANACCI, V.	
Simulation of brush insert for leading-edge-passage	
convective heat transfer	
[NASA-TM-103801] p 679 N91-23409	ı
CAO, MING The development and research on CAD for education	,
on aircraft design p 686 A91-38234	
CARDABA, A. BARRIO	
Nonlinear analysis of composite shear webs with holes	į
and correlation with tests p 684 N91-24642	!
CARLSON, LELAND A. An initial investigation into methods of computing	,
transonic aerodynamic sensitivity coefficients	,
[NASA-CR-188192] p 629 N91-24099)
CARTER, CHARLES R.	
406 MHz ELT signal spectra for Sarsat p 643 A91-39778	
F · · ·	•
CASALIS, G. Experimental and theoretical analysis of natura	ı
transition on 'infinite' swept wing p 621 A91-39927	,
CASE, A. M.	_
Navigation, guidance, and trajectory optimization for hypersonic vehicles p 644 N91-23150	r }
CASSEM BRIAN	•
Model 320-2: A compact advanced UAV turbojet	_
p 663 N91-24292	?
CAUGHEY, DAVID A. Block multigrid implicit solution of the Euler equations	5
of compressible fluid flow p 616 A91-37836	ô
CEBECI, T.	
Calculation of low Reynolds number flows at high angles of attack p 624 A91-40218	5 R
of attack p 624 A91-40218 CEBECI, TUNCER	•
An evaluation of stability-based methods for transition	n
of three-dimensional flows p 678 A91-3992	8
CELESTINA, MARK L. Average-passage flow model development	
p 682 N91-2433	8
CHAMBERS, RANDALL M.	
Program plans for aviation safety research (NIAR-90-32) p 638 N91-2415	7
[NIAR-90-32] p 638 N91-2415 CHAMIS, CHRISTOS C.	*
Probability approach for strength calculations	_
p 685 N91-2465	2
CHAMPIGNY, P. Supersonic-hypersonic inlet studies for)f
aerospaceplane p 659 N91-2316	Đ
CHANDLER, RICHARD	
Program plans for aviation safety research [NIAR-90-32] p 638 N91-2415	7
Crashworthiness experiments p 638 N91-2416	
CHEN. CG.	
Unsteady separation on an impulsively set into motio	n
CHEN. FJ.	
Transition research in low-disturbance high-speed win	d
tunnels p 621 A91-3991	9
CHEN, H. C. Developing and utilizing an Euler computational methor	od
for predicting the airframe/propulsion effects for a	п
aft-mounted turboprop transport. Volume 1: Theorem	ry
document 0.632 N91.2411	18
[NASA-CR-161924-VOL-1] p 632 N91-2411 Developing and utilizing an Euler computational metho	od
for predicting the airframe/propulsion effects for a	an
aft-mounted turboprop transport. Volume 2: User guid	10
INANA I M. INIMZA ULII - ZI D DJZ N9 *29 1	, 3

On the stability of swept wing laminar boundary layers cluding curvature effects p 622 A91-39933 including curvature effects Laminar-flow flight experiments COLUCCI, FRANK

technology demonstrator from specification to flight test CLARKE, ROBERT Buffet induced interaction of the X-29A aircraft [NASA-TM-101735] CLEVER, W. Aerodynamic preliminary analysis system 2. Part 1: Theory [NASA-CR-182076] COBBETT, JOHN A. Demonstration of a Laser Ordnance Initiation System in an F-16 sled COEN, P. G. Application of multidisciplinary optimization methods to the design of a supersonic transport [NASA-TM-104073] COLLIER, F. Biunt-nosed swept supercritical LFC wings without nose aps p 622 A91-39936 COLLIER, F. S., JR. Correlation of boundary layer stability analysis with flight transition data

A general multiblock Euler code for propulsion integration. Volume 1: Theory document CHEN, H. H. of three-dimensional flows of attack CHEN, S. H. hiade row CHEN, XU CHIN, SUEI fighter configurations. Volume 1: Steady [AD-A233482] VORSTAB-2 FAD-A2334831 fighter configurations. Volume 3: Unsteady [AD-A233569] p 63 CHO. MAENG-HYO CHOY, F. K. gearbox vibrations [NASA-TM-103797] CHUBACHI, TATSUO

Deep stall of an NACA 0012 airfoil induced by periodic [NASA-CR-187484-VOL-1] p 632 N91-24120 A general multiblock Euler code for propulsion integration. Volume 2: User guide for BCON, pre-processor aerodynamic interference p 619 A91-38699 COWLEY, STEPHEN On the instability of hypersonic flow past a wedge Integration. Volume 2: User guide for buch, pre-processor for grid generation and GMBE [NASA-CR-187484-VOL-2] p 632 N91-24121 A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code [NASA-CR-187484-VOL-3] p 632 N91-24122 p 621 A91-39922 European studies to investigate the feasibility of using 1000 ft vertical separation minima above FL 290. I p 642 A91-38217 CRAWFORD, MARK R. An evaluation of stability-based methods for transition The handling qualities of the STOL and maneuver p 678 A91-39928 technology demonstrator from specification to flight test Calculation of low Reynolds number flows at high angles p 666 N91-23117 p 624 A91-40218 NASA-LaRc Flight-Critical Digital Systems Technology Unsteady pressure fluctuation on a highly loaded turbine Workshop [NASA-CP-10028] p 619 A91-38702 p 655 N91-24200 CRUSE, T. A. Flexure vibration test method of aviation tube Probability approach for strength calculations p 648 A91-40172 p 685 N91-24652 CUELLAR, JOHN P., JR. Calculation of high angle of attack aerodynamics of Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity AD-A233482] p 631 N91-24113 Calculation of high angle of attack aerodynamics of p 673 N91-24453 [AD-A232793] CUNDIFF. JEFFREY S. fighter configurations. Volume 2: User manual for Reynolds number effects on the transonic aerodynamics p 631 N91-24114 of a slender wing-body configuration p 634 N91-24134 Calculation of high angle of attack aerodynamics of p 631 N91-24115 D Supersonic flutter analysis of clamped symmetric composite panels using shear deformable DA. REN A new method for estimating airspeed, attack angle and p 675 A91-37847 p 664 A91-37051 sideslip angle Modal analysis of multistage gear systems coupled with DAGENHART, J. R. Experiments on swept-wing boundary layers p 622 A91-39932 p 681 N91-23513 DAI, GUANZHONG Design and implementation of real-time computer Re-entry flight control of space plane using approximate p 664 A91-37778 coordinated force actuating perfect servo CIMBALA, J. M. multi-input/output [AD-A233114] Experiments on the unsteadiness associated with a p 624 A91-40220 DAILY, JIM ground vortex CITURS, KEVIN D. The handling qualities of the STOL and maneuver

p 666 N91-23117

p 652 N91-23133

p 626 N91-23080

p 646 A91-39377

p 652 N91-23135

p 621 A91-39929

p 634 N91-24135

p 612 A91-39852

p 612 A91-39854

p 659 N91-23166

p 640 N91-24178

p 630 N91-24108

p 646 A91-39385

p 620 A91-39738

Composites for a widebody

Design techniques for dual mode ram-scram

Integration of the TDWR and LLWAS wind shear

Suckdown, fountain lift, and pressures induced on

Ejection seat rocket catapult design for reduced G field

Further experiments on vortex formation around an

oscillating and translating airfoil at large incidences

several tandem jet V/STOL configurations

Moulded Mustang

CORDA, S.

combustors

CORNMAN, LARRY

detection system

CORSIGLIA, VICTOR R.

[NASA-TM-102817]

COUTANCEAU, MADELEINE

COSTIGAN, FRANK

influence

structural/flight-control system

COVERT, E. E.

system p 687 N91-24768 Integration of weather sensing devices p 639 N91-24174

DAMRON, JOHN Northrop advanced fighter crew protection system. I -Engineering development. II - System development, test p 647 A91-39395 and evaluation DASH, SANFORD M.

Advanced computational models for analyzing high p 686 N91-24291 speed propulsive flowfields DATTA, P. Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics

p 683 N91-24551 DAUBE, OLIVIER Further experiments on vortex formation around an

oscillating and translating airfoil at large incidences p 620 A91-39738

Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program (NASA-TP-2888) p 655 N91-24199 DAWSON, R.

Small Engine Component Technology (SECT)
[NASA-CR-175078] p 662 N p 662 N91-24205 DEBOER, W. P. Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft p 667 N91-23119

DEGANI, D. Asymmetric vortices on a slender body of revolution p 616 A91-37827

DEJARNETTE, FRED R. Interactive three-dimensional boundary-layer method for p 616 A91-37829 transonic flow over swept wings DELILLO, THOMAS K.

Program plans for aviation safety research
[NIAR-90-32] p 638 p 638 N91-24157 DELMORE, VICTOR E. Clutter modeling of the Denver Airport and surrounding p 638 N91-24152

DELUCA, D. P. Fatigue crack growth in monolithic titanium aluminides p 670 A91-38809 DEMEIS, RICHARD

Long-range aircraft are in demand p 611 A91-36353 DENNING, R. M.

Aerodynamics at the speed of sound p 621 A91-39900

DEPETRO, THOMAS G.	· E	FAVIER, D.
An overview of information resources in aviation	=	A new system for unsteady aerodynamics of moving
p 690 N91-24091	EARLY, M.	wall p 618 A91-38695
DESHPANDE, MANOHAR D	Small Engine Component Technology (SECT)	FENG, HAIYAN Modal analysis for fibre-carbon composite parts of an
Signal processing techniques for clutter filtering and wind shear detection p 638 N91-24154	[NASA-CR-175078] p 662 N91-24205 EASTBURG, STEVEN R.	airplane p 679 A91-40157
DETLEFSEN, WOLFGANG	An engineering study of attitude determination	FERMAN, M. A.
Orientation measurements and transmission via Mode	deficiencies of the Service Aircraft Instrumentation	A new technique and application for nonlinear acoustic fatigue of stiffened composite panels
S at airports p 643 A91-38526	Package (SAIP) [AD-A232055] p 656 N91-23145	p 687 A91-38863
DIJKSTRA, P. Theoretical and experimental performance of a solid fuel	[AD-A232055] p 656 N91-23145 EASTLAND, A. H.	FERNANDO, M. S. U. K.
ramjet combustion cycle for hypersonic flight conditions	Unsteady pressure fluctuation on a highly loaded turbine	Moving surface boundary-layer control as applied to
p 660 N91-23170	blade row p 619 A91-38702	two-dimensional airfoils p 615 A91-37768 FERRAN, A.
DIMICCO, R. G.	ECCLES, PETER J.	Observatory of new materials. Evolution perspectives
Steady flow in a three-dimensional rectangular cavity	Thermodynamic Alerter for Microbursts (TAMP)	for the materials used in civil transportation aircraft
yawed from the freestream turbulent boundary layer p 619 A91-38742	p 640 N91-24179 EDIRISINGHE, MOHAN J.	[REPT-911-111-107] p 672 N91-23248
DIMOTAKIS, P. E.	Fabrication of engineering ceramics by injection	FERRIS, J. C. Results of correlations for transition location on a
Rotary oscillation control of a cylinder wake	molding p 674 A91-37375	clean-up glove installed on an F-14 aircraft and design
p 620 A91-39708	EDWARDS, T. A.	studies for a laminar glove for the X-29 aircraft accounting
DINI, PAOLO	Effect of exhaust plume/afterbody interaction on installed scramiet performance p 615 A91-37770	for spanwise pressure gradient p 654 N91-24138
A computationally efficient modelling of laminar separation bubbles p 680 N91-23411	installed scramjet performance p 615 A91-37770 EICKHOFF, H.	FISHBEIN, SAMUEL B. Flight management systems p 666 A91-40517
DISIMILE, P. J.	Aerodynamics and stabilization of combustion of	FISHER, DAVID F.
Steady flow in a three-dimensional rectangular cavity	hydrogen jets injected into subsonic airflow	Evaluation of cloud detection instruments and
yawed from the freestream turbulent boundary layer	p 629 N91-23164	performance of laminar-flow leading-edge test articles
p 619 A91-38742	EL-MEHLAWY, F. Heat transfer in oscillating flows p 676 A91-38698	during NASA Leading-Edge Flight-Test Program [NASA-TP-2888] p 655 N91-24199
DIVAN, P. Aerodynamic preliminary analysis system 2. Part 2:	Heat transfer in oscillating flows p 676 A91-38698 ELANDS, P. J. M.	FLATMAN, J. C.
User's manual	Theoretical and experimental performance of a solid fuel	Surface activation of Concorde by Be-7
(NASA-CR-182077) p 627 N91-23081	ramjet combustion cycle for hypersonic flight conditions	p 690 N91-24983
DIXON, PETER G. C.	p 660 N91-23170	FLECKENSTEIN, HUBERT Air travel - System relating flight safety, aircraft, and
Soft hub for bearingless rotors	ELANGOVAN, R.	airports p 634 A91-38527
[NASA-CR-177586] p 654 N91-24198 DOERFLER, T.	Water droplet impingement on airfoils and aircraft engine inlets for icing analysis p 634 A91-38543	FLEMMING, ROBERT J.
Investigations on flow instabilities on airfoils by means	ELLIOTT. KATHY	Model rotor icing tests in the NASA Lewis icing research
of piezofoil-arrays p 621 A91-39911	Model 320-2: A compact advanced UAV turbojet	tunnel [NASA-TM-104351] p 661 N91-23184
DOLLING, DAVID S.	p 663 N91-24292	[NASA-TM-104351] p 661 N91-23184 FLOOD, JOSEPH D.
Unsteady wave structure near separation in a Mach 5	ELLIS, DAVID	Hot gas ingestion test results of a two-poster vectored
compression ramp interaction p 616 A91-37838	Program plans for aviation safety research [NIAR-90-32] p 638 N91-24157	thrust concept with flow visualization in the NASA Lewis
DOLLYHIGH, SAMUEL M. Euler analysis of a High-Speed Civil Transport concept	ELLWOOD, JEFFREY L.	9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561
at Mach 3 p 624 A91-40217	Design and construction of a composite airframe for	FORRESTER, D. A.
DON, WAI SUN	UAV research	European studies to investigate the feasibility of using
Secondary frequencies in the wake of a circular cylinder	[AD-A232422] p 653 N91-23143	1000 ft vertical separation minima above FL 290. I
with vortex shedding p 620 A91-39736	EMANUEL, GEORGE	p 642 A91-38217
DONG, B. Application of vortex dynamics to simulations of	Performance of an aerospace plane propulsion nozzle p 615 A91-37769	FOUGHNER, JEROME T., JR. Transonic Symposium: Theory, Application and
two-dimensional wakes p 676 A91-38706	EMDAD, H.	Experiment, volume 2
DONZIER, ALAIN	Calculation of high angle of attack aerodynamics of	[NASA-CP-3020-VOL-2] p 634 N91-24132
MEGASODAR experiment p 639 N91-24169	fighter configurations. Volume 1: Steady	FOX, CHARLES H., JR.
DOUBLIER, MICHEL	[AD-A233482] p 631 N91-24113	Reynolds number effects on the transonic aerodynamics of a slender wing-body configuration
Comparative study of different systems of combined cycle propulsion p 658 N91-23152	Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for	p 634 N91-24134
DOVGAL', A. V.	VORSTAB-2	FRANC, O.
Boundary layer control by a local heating of the wall	[AD-A233483] p 631 N91-24114	Oxidation resistant carbon/carbon materials
р 678 А91-39909	Calculation of high angle of attack aerodynamics of	[REPT-911-430-105] p 672 N91-23251 FRANCISCUS, LEO C.
DOVI, AUGUSTINE R.	fighter configurations. Volume 3: Unsteady	Multi-heat addition turbine engine
Application of multidisciplinary optimization methods to	[AD-A233569] p 631 N91-24115 EREMIN, V. V.	[NASA-CASE-LEW-15094-1] p 660 N91-23180
the design of a supersonic transport [NASA-TM-104073] p 652 N91-23135	Entropy effects of hypersonic flow past blunt delta	FRAZIER, THOMAS P.
DOWDY, PATRICK C.	wings p 615 A91-37181	Estimating fixed and variable costs of airframe manufacturers
Pulse Doppler signature of a rotary-wing aircraft	ERENGIL, MEHMET E.	[AD-A232661] p 613 N91-23077
p 643 A91-39756	Unsteady wave structure near separation in a Mach 5 compression ramp interaction p 616 A91-37838	FREUND, GEORGE A., JR.
New methods in the theory of subsonic flows past thin	ERLEBACHER, GORDON	Water droplet impingement on airfoils and aircraft engine
airfoil configurations p 614 A91-36699	Second mode interactions in supersonic boundary	inlets for icing analysis p 634 A91-38543
DRELA, MARK	layers p 623 A91-39957 ESSMAN, DOUGLAS J.	FRITCHMAN, B. M. Hardware-in-the-loop testing of the crest ejection seat
Viscous design and analysis methods for transonic	Turbojet potential for hypersonic flight	control system p 647 A91-39394
compressor blading	p 658 N91-23155	FU, Y. B.
[AD-A232902] p 682 N91-24530 DRING, R. P.	EVANS, JAMES E.	On the Goertler vortex instability mechanism at
Temporally and spatially resolved flow in a two-stage	Clutter rejection in Doppler weather radars used for airport wind shear detection p 685 A91-37104	hypersonic speeds p 623 A91-39940
axial compressor. II - Computational assessment	airport wind shear detection p 685 A91-37104 EVANS, R. H.	FULLER, C. R. Full-scale demonstration tests of cabin noise reduction
[ASME PAPER 90-GT-299] p 620 A91-39048	Lightning protection requirements for aircraft: A	using active vibration control p 646 A91-38549
DUNHAM, J. R.	proposed specification	FULLERTON, T. L.
NASA-LaRc Flight-Critical Digital Systems Technology Workshop	[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186 EXLEY, T.	A vortex panel method for calculating aircraft downwash
[NASA-CP-10028] p 655 N91-24200	Small Engine Component Technology (SECT) study.	on parachute trajectories
DUNN, K.	Program report	[AIAA PAPER 91-0875] p 626 A91-40557 A vortex panel method for calculating aircraft downwash
Aerodynamic preliminary analysis system 2. Part 1:	[NASA-CR-175077] p 662 N91-24204	on parachute trajectories
Theory [NASA-CR-182076] p 626 N91-23080		[DE91-009764] p 627 N91-23085
DUROCHER, CORT	F	
The role of organizations in professional development		G
p 690 A91-38367	FADDOUL, F. Kinetic study of a homogeneous propellant primary	-
DUVEAU, P.	flame, with and without additive p 671 A91-39690	GAITA, L.
Supersonic-hypersonic inlet studies for	FAROKHI, SAEED	New developments in the dynamic aeroelastic stability
aerospaceplane p 659 N91-23160	A study of three dimensional turbulent boundary layer	study of rotor blades p 673 A91-36698
DYER, C. S. Surface activation of Concorde by Be-7	separation and vortex flow control using the reduced Navier Stokes equations	GAL-OR, BENJAMIN Vectored propulsion, supermaneuverability and robot
p 690 N91-24983	[NASA-TM-104407] p 628 N91-23089	aircraft p 649 A91-40501

HALLIWELL, I. GOROKHOV, S. A. GALATI, GASPARE A new facility to study three dimensional viscous flow Entropy effects of hypersonic flow past blunt delta Evolution of clutter suppression techniques for air traffic and rotor-stator interaction in turbines p 615 A91-37181 p 641 A91-37101 control and surveillance radar GOTTLIEB, DAVID GALLEITHNER, H. Secondary frequencies in the wake of a circular cylinder HALLOCK, J. N. Development of MIL-8785C into a handling qualities p 620 A91-39736 with vortex shedding Aircraft wake vortices: An assessment of the current specification for a new European fighter aircraft GOULAIN, M. p 666 N91-23114 situation Noise inside aircraft fuselages subjected to airborne [AD-A231658] **GARCIA, ALAIN** Integration of propulsive systems: Selection and excitations Aircraft wake vortices: An annotated bibliography p 689 N91-23853 compromise GRADY, WALTER A. n 661 N91-23187 DEDT.011.111.1011 [AD-A233161] Do civil flying qualities requirements address military GARTENBERG, EHUD HANCOCK, G. J. missions for off-the-shelf procurement Airfoil transition and separation studies using an infrared High subsonic flow about a moving spoiler identifying p 650 N91-23115 p 624 A91-40215 imaging system a novel problem of wind tunnel interference GRAY, DAVID L. GATINEAU, R. J. Laboratory test and acoustic analysis of cabin treatment field-deployable digital acoustic measurement p 689 N91-24078 HANSMAN, JOHN svstem for propfan test assessment aircraft Microburst avoidance simulation tests p 690 N91-24844 GREENE, DAVID L. INASA-CR-1820751 Commercial aircraft fuel efficiency potential through GAUBLOMME, D. P. p 645 A91-38127 2010 Experiments on the unsteadiness associated with HANSON, A. W. GREENWOOD, STUART W. Lightning protection requirements for aircraft: A p 624 A91-40220 ground vortex Radiation transmission in adverse weather proposed specification GĂUDET, L. p 675 A91-37880 [RAE-TM-FS(F)-632-ISSUE-1-R] Visualisation of boundary layer transition p 623 A91-39964 GREGORY, BILL HANSON, D. B. US industry enters the green maze Unified aeroacoustics analysis for high speed turboprop GE. SEN p 685 A91-37049 Calculation and experimental study on sonic fatigue life erodynamics and noise. Volume 3: Application of theory GREK, G. R. for blade loading, wakes, noise, and wing shielding p 648 A91-40162 of aircraft structural panels Receptivity and stability of the boundary layer at a high [NASA-CR-185193] GE. YUNQI p 678 A91-39945 turbulence level Experimental investigation on supersonic combustion Unified aeroacoustics analysis for high speed turboprop GRIFFIN, O. M. p 657 A91-38203 aerodynamics and noise. Volume 5: Propagation of Vortex shedding and lock-on in bluff body wakes propeller tone noise through a fuselage boundary layer GE. ZUDE p 675 A91-38689 Integration of vibration test and flutter analysis - A brief [NASA-CR-185195] GRIMSTAD, GREGORY E.
Aircraft Command in Emergency Situations (ACES). introduction to 'a real-time flutter analysis system' HARBOUR, L. p 665 A91-40168 Small Engine Component Technology (SECT) studies [NASA-CR-175080] p 663 N91-24206 Phase 1: Concept development GEHSE, HARTMUT p 636 N91-23097 (DOT/FAA/CT-90/21) Canopy breaking system for non-delay pilot rescue HARDY, GORDON H. GRUDZINSKI, SIGMUND S. p 647 A91-39398 Simulation evaluation of a speed-guidance law for Harrier Development of B-1 antenna measurement test bed GERDES, RONALD M. p 668 A91-37881 approach transitions Simulation evaluation of a speed-guidance law for Harrier INASA-TM-1028531 **GU. ZHONGGUAN** approach transitions HARLOFF, G. J. Further research on mechanical model for 'ground [NASA-TM-102853] p 668 N91-24209 p 665 A91-40164 Viscous three-dimensional analyses for nozzles for resonance' of helicopters GHIA. K. N. hypersonic propulsion Analysis and control of low-speed forced unsteady GUNDY-BURLET, K. L. HARRADINE, P. J. Temporally and spatially resolved flow in a two-stage p 676 A91-38697 flow Safety of aging aircraft - Boeing programs for the axial compressor. !! - Computational assessment GHIA, U. 1990's p 620 A91-39048 Analysis and control of low-speed forced unsteady (ASME PAPER 90-GT-299) [AIAA PAPER 91-0909] p 676 A91-38697 flow GUSEV, JURII I. Design and development of aviation gas turbine p 657 A91-39201 HARRAH, STEVEN D. GIBBONS, MICHAEL D. Clutter modeling of the Denver Airport and surrounding Calculation of steady and unsteady pressures on wings engines 27088 at supersonic speeds with a transonic small-disturbance GUSTAVSSON, A. I. p 617 A91-38544 HARRAL, M. W. code Long time measurements of landing gear loads on SAAB GIBSON, J. C. Advanced airborne oxygen sensors SF-340 commuter aircraft The development of alternate criteria for FBW handling p 653 N91-2313B [FFA-TN-1990-53] p 666 N91-23113 HARRIS, CHARLES D. GUTMARK, E. GIÉN, P. H. The NASA Langley laminar-flow-control experiment on Subsonic and supersonic combustion using noncircular Flexural waves induced by electro-impulse deicing swept, supercritical airfoil: Suction coefficient analysis p 674 A91-37414 injectors p 676 A91-38776 [NASA-TM-4267] **GUY. R. WAYNE** GINBURG, DAVID M. Laminar-flow wind tunnel experiments Hypersonic propulsion: Status and challenge p 658 N91-23153 Metal matrix composite vertical tail fabrication p 611 A91-36875 ISME PAPER EM90-4381 HARTMANN, DIRK F. GINOVART, C. Identification strategies for crack shape determination studies Supersonic-hypersonic Н in rotors p 659 N91-23160 aerospaceolane HARVEY, WILLIAM D.
The NASA Langley laminar-flow-control experiment on GIURGIUTIU. V. HAAKE, F. K. New developments in the dynamic aeroelastic stability Fatigue crack growth in monolithic titanium aluminides swept, supercritical airfoil: Suction coefficient analysis p 673 A91-36698 study of rotor blades p 670 A91-38809 [NASA-TM-4267] GIUSTINIANI, PIERCARLO Evaluation of the performance of a RISC based real Laminar-flow wind tunnel experiments HAFF, K. W. Radioluminescent (RL) lighting system development time data processor in air traffic control rada Results of correlations for transition location on a p 642 A91-37145 program p 679 N91-23381 [DE91-009743] clean-up glove installed on an F-14 aircraft and design GLOSS, B. B. National Transonic Facility status p 669 N91-24133 HAGISAWA, TOSHIHIKO studies for a laminar glove for the X-29 aircraft accounting All solid-state ASR with adaptive pulse Doppler for spanwise pressure gradient **GOAS, JACQUES** p 641 A91-37107 Aeronautical meteorology - Safety and economics of HASCHKA, FRIEDRICH processing p 685 A91-38323 Prismatic sealed Ni-Cd battery for aircraft power commercial air transports HAHN CHARLES D. GOFING MICHAEL Analytical study of the effects of weight on Light The 2-D supersonic nozzle design HASLIM, LEONARD A. Helicopter (LH) exposure to ground-based weapons p 660 N91-23176 p 653 N91-23141 [AD-A232024] GOLDBERG, MATTHEW S. The costs and benefits of aircraft availability HEAVNER, RICHARD L. Analytical study of the effects of weight on Light p 613 N91-23076 FAD-A2326601 Helicopter (LH) exposure to ground-based weapons GONG, QINGXIANG p 653 N91-23141 [AD-A232024] Similarities and differences between environment tests and reliability tests in view of vibration Application of multidisciplinary optimization methods to HELLER, H. p 665 A91-40166 the design of a supersonic transport GORADIA, S. H. p 652 N91-23135 [NASA-TM-104073] Results of correlations for transition location on a [AGARD-AG-300-VOL-9] HALL, M. S. clean-up glove installed on an F-14 aircraft and design Vortex shedding and lock-on in bluff body wakes HELMERSSON, L. studies for a laminar glove for the X-29 aircraft accounting p 675 A91-38689 p 654 N91-24138 for spanwise pressure gradient SF-340 commuter aircraft HALL, P. GORDNIER, RAYMOND E. On the Goertler vortex instability mechanism at Three-dimensional composite velocity solutions for

hypersonic speeds

On the instability of hypersonic flow past a wedge

HALL, PHILIP

p 616 A91-37841

p 631 N91-24112

subsonic/transonic flow

delta wing

[AD-A233201]

Unsteady Navier-Stokes solutions for a low aspect ratio

Airborne rescue system
[NASA-CASE-ARC-11909-1] p 635 N91-23095 Theoretical evaluation of engine auxiliary inlet design for supersonic V/STOL aircraft [NASA-CR-187098] n 633 N91-24123 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques p 689 N91-24843 Long time measurements of landing gear loads on SAAB [FFA-TN-1990-53] p 653 N91-23138 HENDRICKS, R. C. Simulation of brush insert for leading-edge-passage convective heat transfer p 679 N91-23409 INASA-TM-1038011 **B-5**

p 623 A91-39940

p 621 A91-39922

p 682 N91-24336

p 626 N91-23079

p 631 N91-24111

p 619 A91-38710

p 639 N91-24172

p 641 N91-24186

p 688 N91-23850

p 689 N91-23852

p 663 N91-24206

p 668 N91-24209

p 629 N91-23175

p 612 A91-40563

p 638 N91-24152

p 655 A91-39387

p 629 N91-24098

p 634 N91-24136

p 679 A91-40234

p 629 N91-24098

p 634 N91-24136

p 654 N91-24138

p 657 A91-38178

p 687 A91-38863

p 614 A91-36695

p 614 A91-36700

HOUSH, CLINTON S. HERBER, ANDREAS JACOBS, J. H. Airborne Collision Avoidance System (ACAS) characteristics A new technique and application for nonlinear acoustic Aerodynamic p 624 A91-40216 fatigue of stiffened composite panels controlled air traffic. Aspects of reciprocal influence in aeintemoan Secondary Surveillance Radar (SSR) radio loads HSU. ANDREW T. p 644 N91-23105 Computational analysis of underexpanded jets in the HERBST, W. B. p 615 A91-37421 On the improvement of the supersonic lifting line hypersonic regime X-31A at first flight p 651 N91-23131 Wing calculation in supersonic flow by means of the HESS, RONALD A. The performance of 60 deg delta wings: The effects of leading edge radius on vortex flaps and the wing Methodology for the analytical assessment of aircraft supersonic lifting line theory Aerodynamic calculation of tandem wings in supersor p 664 A91-37597 p 628 N91-23092 handling qualities [CRANFIELD-AERO-9004] Identification of pilot-vehicle dynamics from simulation flow by means of SLLT The performance of 60 deg delta wings: The effects JAHSMAN, DIRCK and flight test p 664 A91-37598 of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p HEYMAN, JOSEPH S. p 653 N91-23140 Quantitative nondestructive evaluation: Requirements JALLADE, S. **HU. ZHONGHAN** p 681 N91-24074 for tomorrow's reliability The design and simulation of an intelligent flight control HEYSE, JOERG p 665 A91-40133 system JANSSON, D. G. The 2-D supersonic nozzle design **HUANG, WENCHAO** p 660 N91-23176 Application of acoustically treated honeycomb sandwich HINTON, DAVE panels in noise control of aircraft cabin JARRAH, M. A. M. Integrated data analysis of July 7, 1990 microburst p 648 A91-40160 p 685 N91-24170 **HUANG. ZEMIN** TDWR information on the flight deck and high angles of attack Air surveying and data analysis for dynamic respons p 640 N91-24176 of missiles at swept-back wing tip p 647 A91-40156 HIRSA, AMIR HOSSEIN An experimental investigation of vortex pair interaction HUFF. DENNIS L. JEGLEY, DAWN C. Euler flow predictions for an oscillating cascade using with a clean or contaminated free surface p 680 N91-23419 hat-stiffened sandwich panels high resolution wave-split scheme p 630 N91-24107 HIRSCHEL, E. H. [NASA-TM-104377] JENKINS, JERRY E. Analysis of numerical solutions for three-dimensional HUFFAKER, R. MILTON p 625 A91-40498 Coherent lidar airborne windshear sensor - Performance p 655 A91-39873 HIRSINGER, FRANCIS evaluation JIA. TIESHENG A study of supersonic and hypersonic ramjet engines HUMMEL, D. in France from 1950 to 1974 (application on combined Effects of canard position on the aerodynamic coordinated force p 658 N91-23149 cycle aircraft engines) characteristics of a close-coupled canard configuration at multi-input/output [AD-A233114] p 649 A91-40495 low speed Program plans for aviation safety research HUMPHREYS, W. W. p 638 N91-24157 [NIAR-90-32] The effect of streamwise vortices on a turbulent Bonded/fusion repair of aircraft structures boundary layer exposed to an unsteady adverse pressur p 613 N91-24160 p 675 A91-38693 gradient HODGES, DEWEY H. HUSSAINI, M. Y. Stability of hingeless rotors in hover using three-dimensional unsteady aerodynamics JIANG, CHANGSHENG Second mode interactions in supersonic boundary p 623 A91-39957 lavers p 663 A91-36358 **HUTCHINS, PETER** HOFFMAN, DANIEL J. JOHNS, ALBERT L. Fire detection system for aircraft cargo bays Environmental exposure effects on composite materials p 655 A91-36755 for commercial aircraft HUTCHINSON, JOHN J. [NASA-CR-187478] p 672 N91-24358 Program plans for aviation safety research [NIAR-90-32] p 638 HOFFMAN, M. J. p 638 N91-24157 Navigation, guidance, and trajectory optimization for JOHNSON, P. D. hypersonic vehicles p 644 N91-23150 HUYNH, H. T. Handling qualities guidelines for the design of fly-by-wire HOH, ROGER H. systems Determination of decision-height windows for flight control systems for transport aircraft JOHNSON, WALTER H. p 667 N91-23119 decelerating IMC approaches in helicopters p 667 N91-23124 HWANG, C. J. HOLDEMAN, J. D. Numerical investigation JONES, J. D. A CFD study of jet mixing in reduced flow areas for airfoil/jet/fuselage-undersurface flowfields in ground p 617 A91-38541 lower combustor emissions using active vibration control [NASA-TM-104411] p 661 N91-23185 HYNEK, DANIEL JONES, JESSE D. HOLDEMAN, JAMES D. Clutter rejection in Doppler weather radars used for Mixing of multiple jets with a confined subsonic crossflow. Summary of NASA-supported experiments and p 685 A91-37104 airport wind shear detection modeling [NASA-TM-104412] [DOT-FAA/CT-TN90/55] p 662 N91-24202 HOLLAND, K. P. JONES, W. R. Fatigue crack growth in monolithic titanium aluminides IMAI, HIROYUKI p 670 A91-38809 airborne rada Improvement of atmospheric flight performance of a HOLMES, B. J. JOSYULA, ESWAR space vehicle through sensitivity minimization Aerodynamic characteristics of crescent and elliptic p 664 A91-37779 p 624 A91-40219 wings at high angles of attack bodies INNOCENTI, MARIO HOLMES, BRUCE J. Lateral-direction tracking requirements from simulation Aeronautical research in the United States - Challeng p 686 A91-39436 for the 1990's p 612 A91-38580 flame, with and without additive Metrics for roll response flying quality p 650 N91-23118 Passive laminar flow control of crossflow vorticity JUILLEN, J. C. [NASA-CASE-LAR-13563-1] p 679 N91-23410 INOUE, S. transition on 'infinite' swept wing Research on aerodynamic control of blade tip clearance HOLMES, R. The control of rotor vibration using squeeze-film flow in air-cooled turbine Boundary layer tripping in supe [DE91-764223] p 660 N91-23182 damoers ISHIBASHI, TORAO HOLST, HARMUT SSR signal discrimination from garbled replies Procedure for determination of three-dimensional wind K p 642 A91-37121 tunnel wall interferences and wall adaptation in compressible subsonic flow using measured wall ISHIDA, TOSHIAKI NKK premium quality titanium master alloy KACHANOV, IU. S. p 672 A91-40425 IDLR-FB-90-461 p 628 N91-23088 ITOH, NOBUTAKE of a swept-wing flow HOMENTCOVSCHI, D. Cross-flow instability of 3-D boundary layers on a flat Steady linearised aerodynamics. III - Transonic KADOTA, KOSYU p 622 A91-39931 p 620 A91-39223 IWAMA, HISAO HOOPER, E. H. Track initiation using MHT in dense environments Beechcraft starship strength certification p 674 A91-37141

p 614 A91-36724 Helicopter in-flight stores jettison p 671 A91-39389 Theoretical study of Goertler vortices - Linear stability p 623 A91-39950 Designing with composites - A study of design p 646 A91-38752 Unsteady aerodynamic loading of delta wings for low p 617 A91-38680 Visualization of the flow about a delta wing maneuvering in pitch to very high angle of attack p 618 A91-38684 Study of thermal-expansion-molded, graphite-epoxy p 675 A91-37845 Simplification of nonlinear indicial response models -Assessment for the two-dimensional airfoil case p 664 A91-37771 Design and implementation of real-time computer actuating system p 687 N91-24768 A comparison between computation and experiment for flows around airfoil with slat and flap p 616 A91-37780 The design and simulation of an intelligent flight control p 665 A91-40133 Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel [AIAA PAPER 90-2268] p 626 A91-40561 An update on SKAD (survival kit air droppable) p 635 A91-39384 Modification meets Chapter 3 standards p 612 A91-40181 Full-scale demonstration tests of cabin noise reduction p 646 A91-38549 MLS mathematical model validation study using airborne MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests p 644 N91-24190 Description, characteristics and testing of the NASA p 638 N91-24156 Numerical study of hypersonic dissociated air past blunt p 616 A91-37835 Kinetic study of a homogeneous propellant primary p 671 A91-39690 Experimental and theoretical analysis of p 621 A91-39927 nic flow p 623 A91-39960 The experimental investigation of stability and receptivity Modeling for unsteady aerodynamics of rectangular wing in incompressible flow using step respons p 625 A91-40473 Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204

KAMINER, ISAAC

energy control system

p 668 N91-23194

Integration of four-dimensional guidance with total

p 665 A91-39410

HOOS, JON A.

HORI. NORIYUKI

using the Euler operator

Experiments on swept-wing boundary layers

Decoupled flight control via a model-following technique

p 684 N91-24643

p 622 A91-39932

p 664 A91-37595

JACOBI, L. Y.

FIAITIC-87-10061

IAI hypersonic wind tunnel

p 615 A91-37418

p 618 A91-38683

p 641 A91-37094

p 664 A91-37778

p 632 N91-24119

p 632 N91-24120

p 632 N91-24122

p 675 A91-37846

p 617 A91-38680

p 646 A91-38548

p 655 A91-39873

p 674 A91-37141

p 682 N91-24475

p 690 N91-24845

PERSONAL
KANAI, KIMIO Decoupled fl using the Eule KANDA, TEKAS Mach 4 test
KANDIL, O. A. Numerical sivortical flow KANG, BONGS4 Relative eff microwave im. KANNO, SHOKI. Re-entry flig perfect servo KAO, T. J. Developing for predicting aft-mounted t [NASA-CR-18 A general integration. V([NASA-CR-18 KARPOUZIAN, Asymptotic
aspect ratio w KARPOV, ALEI Design an
engines KATZ, AMNON One-on-one lookahead
KATZ, J. Unsteady and high angl KATZ, JOSEPH Static mea moment hyst KAUFMAN, A. Optimizatio wake analysi KAVAYA, MICI
Coherent li evaluation KAWAZOE, HI Track initia
KEATING, JAN SATURN:
KELLY, JEFFR Signal prov [NASA-CR-1 KERELIUK, S. An investig rotorcraft app Determina decelerating
KHAN, F. A. Tip vortex canard/wing KIM, K. S. Applicatio temperature KIRTLEY, KE

KIUCHI, EIICHI

light control via a model-following technique r operator p 664 A91-37595 н ing of scramjet inlet models mulation of steady and unsteady asymmetric ectiveness of 2-D vs. 1-D high resolution ageing CHI ht control of space plane using approximate and utilizing an Euler computational method the airframe/propulsion effects for an urboprop transport. Volume 2: User guide 1924-VOL-2] multiblock Euler code for propulsion olume 1: Theory document 7484-VOL-11 multiblock Euler code for propulsion plume 3: User guide for the Euler code 7484-VOL-31 GARRIEL c theory of bending-torsion flutter of high ving in the torsion controlled domain KSFLV. nd development of aviation gas turbine p 657 A91-39201 e helicopter combat simulated by chess-type p 668 A91-37775 erodynamic loading of delta wings for low les of attack surements of slender delta wing rolling eresis p 625 A91-40223 on of rotor performance in hover using a free dar airborne windshear sensor - Performance ROMICHI

ition using MHT in dense environments The next generation radio for NATO

cessing of aircraft flyover noise 875461 gation into the use of side-arm control for civil olications

p 667 N91-23123 of decision-height windows for IMC approaches in helicopters p 667 N91-23124

/airfoil interaction for a low Reynolds number p 617 A91-38545 n of path-independent integrals to elevated

p 671 A91-38819 crack growth VIN

Average-passage flow model development n 682 N91-24338

All solid-state ASR with adaptive pulse Doppler p 641 A91-37107 processing KLATTE, R. J. Unified aeroacoustics analysis for high speed turboprop

aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding p 688 N91-23850 NASA-CR-185193] KLINGMANN, B.

On the development of turbulent spots in plane Poiseuille p 678 A91-39904 flow KNOX, CHARLES E.

Flight tests show potential benefits of data link as primary p 643 A91-38577 communication medium KNOX, FRANCIS S.

A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system p 636 N91-23100

KOBAYAKAWA, MAKOTO
Improvement of atmospheric flight performance of a space vehicle through sensitivity minimization p 664 A91-37779 KOBLISH, T. R. Airblast atomization at conditions of low air velocity p 674 A91-37410

KOCH-PETERS, DOROTHEA Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization p 643 N91-23103 USSN-0720-78081

KOCH, RALPH Canopy breaking system for non-delay pilot rescue p 647 A91-39398

KOEHLER, R. Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114

KOHAMA, Y. Development and interaction of instabilities in the p 622 A91-39938 KOMURO. TOMOYUKI Mach 4 testing of scramjet inlet models

p 615 A91-37418 KOODALATTUPURAM, CHITHRABHANU An experimental study of an axisymmetric turbulent

boundary layer disturbed by a periodic freestream p 626 N91-23078 KOOPMAN, J.

Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflo p 629 N91-23164 KOPPER, F. C.

Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics p 683 N91-24551 NASA-CR-1821091 KORS, DAVID L.

Design considerations for combined air breathing-rocket propulsion systems p 659 N91-23158 [AIAA-90-0098]

KORTING, P. A. O. G. Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170

KOSUGE, YOSHIO Track initiation using MHT in dense environments p 674 A91-37141

KOUROUPIS, J. B. A simplified aerothermal heating method for p 619 A91-38787 axisymmetric blunt bodies KOVALEVSKAIA, A. E.

Design and development of aviation gas turbine p 657 A91-39201 engines KOZĽOV. V. V.

Receptivity and stability of the boundary layer at a high p 678 A91-39945 turbulence level KRAVCHENKO, A. G.

Characteristics of the reception by the antenna systems of a descending aircraft of signals from radio-beacon p 642 A91-37200 landing systems KREISS, W. T.

Model for IR sensor performance evaluation p 656 A91-39890 Applications and results KREMER, FRANS G. J.

Trajectory optimization considerations for ramjet p 658 N91-23151 KROO, ILAN

Nonlinear Aerodynamics and the Design of Wing Tips p 630 N91 24105 [NASA-CR-188044] The computation of induced drag with nonplanar and p 630 N91-24106 deformed wakes KROTHAPALLI, A.

Unsteady flow past an airfoil pitched at constant rate p 617 A91-38679 KUDO, KENJI

Mach 4 testing of scramlet inlet models p 615 A91-37418

KUENKLER, H. Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154

KUHN, PETER M.

An airborne FLIR detection and warning system for low 1997 do wind shear p 637 N91-24147

KUHN, RICHARD E. Suckdown, fountain lift, and pressures induced on several tandem jet V/STOL configurations p 630 N91-24108 [NASA-TM-102817]

KUNTZ. H. L. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft p 690 N91-24844 [NASA-CR-182075]

KUSUNOSE, K. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 p 632 N91-24119 KWON, O. J. Simulation of iced wing aerodynamics p 628 N91-23086 [NASA-TM-104362] KWON, OH J. Stability of hingeless rotors in hover using three-dimensional unsteady aerodynamics p 663 A91-36358

L

LADDEN, R. M. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory

for blade loading, wakes, noise, and wing shielding p 688 N91-23850 [NASA-CR-185193] Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code p 688 N91-23851 [NASA-CR-185194]

LAGRAFF, JOHN E. An isentropic compression-heated Ludweig tube

p 673 A91-36450 transient wind tunnel LAI. H. T. Viscous three-dimensional analyses for nozzles for

p 629 N91-23175 hypersonic propulsion LAKSHMINARAYANA, B.

A new facility to study three dimensional viscous flow and rotor-stator interaction in turbines p 682 N91-24336

LAMBERTDEROUVROIT, M. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid

and viscous flow computations p 680 N91-23437 [VKI-TN-174]

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 1: Steady p 631 N91-24113 [AD-A233482]

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAR-2

[AD-A233483] p 631 N91-24114 Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady [AD-A233569] p 63 p 631 N91-24115

LANDRY, MURPHY J. Demonstration of a Laser Ordnance Initiation System p 646 A91-39377 in an F-16 sled

LANG, JUERGEN Air travel - System relating flight safety, aircraft, and p 634 A91-38527

airports LANICH, W. Model for IR sensor performance evaluation

p 656 A91-39890 Applications and results LANKARANI, HAMID M. Feasibility study in crack detection in aircraft stiffened panels by pulse probing and deconvolution

p 654 N91-24158 Mechanical paint removal techniques for composite p 613 N91-24163

LARKIN, T. R. Small Engine Component Technology (SECT) study NASA-CR-175081] p 663 N91-24207 INASA-CR-1750811

LARSEN, JAMES M. Titanium aluminides for aerospace applications

p 671 A91-39302 LAYTON, DONALD Aircraft performance p 649 A91-40511

LEE, CALVIN K. Low Altitude High Speed Cargo Parachute system development - A status report [AIAA PAPER 91-0880] p 635 A91-40558

LEE. IN Supersonic flutter analysis of clamped symmetric

composite panels using shear deformable finite p 675 A91-37847 LEFEBVRE, A. H.

Airblast atomization at conditions of low air velocity p 674 A91-37410

LEGGETT, DAVID B. MIL-STD-1797 is not a cookbook p 650 N91-23111 LEROUX, C.

RADAR performance experiments p 639 N91-24168

LEVCHENKO, V. IA. Boundary layer control by a local heating of the wall p 678 A91-39909

LEVIN, DANIEL Static measurements of slender delta wing rolling p 625 A91-40223 moment hysteresis

A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid INASA-TM-1044361 p 633 N91-24131

LEWIS, MIKE NASA Langley flight test program p 639 N91-24175 LI. BINGGONG Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system Further research on mechanical model for 'ground resonance' of helicopters LIANG, JUNXIANG On digital electronic control system of aircraft engine LIBRESCU, LIVIU Analytical studies on static aeroelastic behavior of forward-swept composite wing structures Practical considerations in optimal and 4-dimensional flight management computations Calculation of low Reynolds number flows at high angles of attack Computation of axisymmetric slender bodies enclosing a jet efflux in pitching oscillatory motion LIOU, MENG-SING Computational analysis of underexpanded jets in the hypersonic regime Numerical simulation of steady and unsteady asymmetric vortical flow LIU. GAOLIAN A new pseudo-potential function model for rotational flow and its application to transonic-supersonic flow Numerical airfoil/jet/fuselage-undersurface flowfields in ground effect LIU, JIN Flexure vibration test method of aviation tube LIU, JINGHOU Experimental investigation on supersonic combustion Actual stresses in notches - How applicable are the common stress concentration factors? LIU, XINGZHOU LOCATELLI, J.

Experimental investigation on supersonic combustion p 657 A91-38203 Computation of three-dimensional flow fields through compressor blade rows p 625 A91-40375 Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences p 620 A91-39738

Validation of in-house and external software systems p 687 N91-24640 at Aerospatiale LOOMIS, MARK PAUL Interferometric Investigation of supersonic flow fields

p 627 N91-23082 with shock-shock interactions LOURENCO, L. Unsteady flow past an airfoil pitched at constant rate

p 617 A91-38679 LOVENGUTH, MARC

Technology needs for high-speed rotorcraft [NASA-CR-177578] p 652 p 652 N91-23136

Inception length to a fully developed, fin-generated, shock-wave, boundary-layer interaction p 617 A91-37842

LUCKRING, JAMES M. Reynolds number effects on the transonic aerodynamics

p 634 N91-24134 LUO. SHIJUN Synchronous iterative method for computation of vortex p 624 A91-40126 flows at high angles of attack

of a slender wing-body configuration

Full-scale demonstration tests of cabin noise reduction

using active vibration control p 646 A91-38549 LUPO, M.

Variable-property effects in supersonic wedge flow p 616 A91-37832 LYRINTZIS, A. S.

Acoustics of unsteady transonic flow p 687 A91-38688 LYRINTZIS, ANASTASIOS S.

A study of the noise mechanisms of transonic blade-vortex interactions [NASA-CR-188199] p 627 N91-23084

М

MA, GUOZHONG

p 665 A91-40168

p 665 A91-40164

p 657 A91-38209

p 674 A91-37774

p 686 A91-37585

p 624 A91-40218

p 618 A91-38681

p 615 A91-37421

p 618 A91-386B3

p 625 A91-40373

p 617 A91-38541

p 648 A91-40172

p 657 A91-38203

p 676 A91-38775

investigation

The planar elements method for computing the scattering field of flight vehicle p 674 A91-37052 MABEY, DENNIS G.

Calculation of steady and unsteady pressures on wings at supersonic speeds with a transonic small-disturbance

MACHA, J. M. An introduction to testing parachutes in wind tunnels [AIAA PAPER 91-0858] p 668 A91-40556 MACRET, JEAN-LUC

Oxidation resistant carbon/carbon materials [REPT-911-430-105] p 672 N91-23251

MADDALON, DAL V. Laminar-flow flight experiments p 634 N91-24135 Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program [NASA-TP-2888] p 655 N91-24199

MAGARI, PATRICK J. An isentropic compression-heated Ludweig tube transient wind tunnel p 673 A91-36450

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer p 689 N91-23852 [NASA-CR-185195] MAIURANO M

Airbreathing propulsion for transatmospheric flight p 659 N91-23156 MAJOROS, ANTHONY E.

Aircraft design for maintainability p 612 A91-38546 MAKHAN'KOV, V. V.

Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176

Real gas effects on hypersonic boundary-layer stability p 614 A91-36453 Transition research in low-disturbance high-speed wind

p 621 A91-39919 MALLWITZ, ROLAND

Airborne Collision Avoidance System controlled air traffic. Aspects of reciprocal influence in econdary Surveillance Radar (SSR) radio loads p 644 N91-23105 [ETN-91-99253]

MALONE J. R. Airfoil design method using the Navier-Stokes p 646 A91-38550 MANGOLD PETER

Integration of handling quality aspects into the aerodynamic design of modern unstable fighters p 667 N91-23125

MANKBADI, R. R. p 676 A91-38698 Heat transfer in oscillating flows MAO, ZHISHANG

Numerical analysis of solid-fuel interactive vibration on an aircraft integral tank p 648 A91-40161 MARCHAND, M.

Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114

MARESCA, C. A new system for unsteady aerodynamics of moving p 618 A91 38695 MARGUET, ROGER

A study of supersonic and hypersonic ramiet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149

MARTIN, CHRISTOPHER Technology needs for high-speed rotorcraft p 652 N91-23136 [NASA-CR-177578]

MARTIN, PHILIPPE The certification of the aircraft integrated propulsive system [REPT-911-111-102] p 661 N91-23188

MASUDA, S. Visual study of boundary layer transition on rotating flat p 623 A91-39941 olate

MASUYA, GORO Mach 4 testing of scramlet inlet mode

p 615 A91-37418 MATHEWS, BRUCE D.

Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems p 637 N91-24149 MATSUBARA M.

Visual study of boundary layer transition on rotating flat p 623 A91-39941 niete MATSUSHITA, H.

ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772

MATTHEWS, WILLIAM T. Model sensitivity in stress-strength reliability computations [AD-A2320231 p 681 N91-23554

MAVRIPLIS, DIMITRI J. Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125

MÁZZA, C. J. Adility: A rational development of fundamental metrics their relationship to flying qualities

p 651 N91-23129 MCCLURE, M. D.

Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data [AD-A232101] p 680 N91-23445

MCCOLGAN, C. J. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 3: Application of theory for blade loading, wakes, noise, and wing shielding

[NASA-CR-185193] p 688 N91-23850 Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's manual for UAAP turboprop aeroacoustic code [NASA-CR-185194] p 688 N91-23851

CONNELL, PATRICK The role of analysis in the design and qualification of composite aircraft structures p 684 N91-24648

p 684 N91-24648 MCCORMICK, DUANE C.

Experimental investigation of loading effects on compressor trailing-edge flowfields p 615 A91-37420 MCDONALD, DANN C.

Do civil flying qualities requirements address military missions for off-the-shelf procurement p 650 N91-23115

MCILVAINE, M. Calculation of low Reynolds number flows at high angles

of attack p 624 A91-40218

A review of high angle of attack requirements for combat aircraft p 651 N91-23130 MCKINNEY, L. W.

National Transonic Facility status p 669 N91-24133 MCKISSICK, BURNELL

Status of NASA's IR wind shear detection research p 637 N91-24145 MCMANUS, KEITH ROBERT

The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270

Advanced aircraft secondary power system design

p 656 A91-38007 MEHROTRA, S. C.

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 1: Steady [AD-A233482] p 831 N91-24113

[AD-A233482] p 631 N91-24113 Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAB-2

[AD-A2334831 p 631 N91-24114 Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady p 631 N91-24115 [AD-A2335691

MEISSNER, C. W., JR. NASA-LaRc Flight-Critical Digital Systems Technology Workshop [NASA-CP-10028]

p 655 N91-24200 MELLO, OLYMPIO A. F.

Unsteady, frequency-domain analysis of helicopter non-rotating lifting surfaces p 613 A91-36359 MENEES, GENE P

Analytical and experimental investigations of the oblique detonation wave engine concept p 660 N91-23169 MENTHE, R. W.

Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 4: Computer user's

manual for UAAP turboprop aeroacoustic code [NASA-CR-185194] p 688 M p 688 N91-23851 MERLEN, ALAIN

Stream functions for the hypersonic flow around quasi-pointed slender bodies at low angles of attack

p 621 A91-39832 MERRICK, VERNON K.

Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MERRILL, WALTER C.

Sensor failure detection for jet engines p 656 A91-37593

p 667 N91-23191

p 664 A91-37595

p 675 A91-37851

p 625 A91-40375

p 648 A91-40171

p 682 N91-24310

ρ 621 Α91-39911

p 660 N91-23182

p 665 A91-38547

p 665 A91-39410

p 684 N91-24650

p 641 N91-24186

p 624 A91-40220

p 649 A91-40495

p 620 A91-39738

p 643 A91-39776

p 622 A91-39938

p 664 A91-37778

p 673 A91-36698

p 672 A91-40425

p 629 N91-23174

p 638 N91-24152

satellite

for

NIEUWPOORT, ANTON M. H.

Advanced in an extension numbers tool in the NIASA Loude
Advanced ice protection systems test in the NASA Lewis icing research tunnel
[NASA-TM-103757] p 661 N91-23183
MEYER, P. K. Small Engine Component Technology (SECT) studies
[NASA-CR-175080] p 663 N91-24206
MEYER, ROBERT R., JR.
Effects of wing sweep on in-flight boundary-layer transition for a laminar flow wing at Mach numbers from
0.60 to 0.79
[NASA-TM-101701] p 683 N91-24555
Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to
0.825
[NASA-TM-101712] p 683 N91-24556
MEYER, T. G.
Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures p 682 N91-24310
MIALLIER, BERNARD
Current status and future prospects of air traffic control p 642 A91-38322
control p 642 A91-38322
Laminar-turbulent transition; Proceedings of the IUTAM
Symposium, Ecole Nationale Superieure de l'Aeronautique
et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901
MIKI, KAZUO
Aerodynamic characteristics of slender wing-gap-body
combinations p 615 A91-37777 MILLER, BRIAN A.
Fighter escape system - The next step forward
p 646 A91-39382
MILLER, M. Safety of aging aircraft - Boeing programs for the
1990's
[AIAA PAPER 91-0909] p 612 A91-40563
MINH, H. H. Theoretical study of Goertler vortices - Linear stability
approach p 623 A91-39950
MINODA, M.
Research on aerodynamic control of blade tip clearance
flow in air-cooled turbine [DE91-764223] p 660 N91-23182
MIROW, P.
Investigations on flow instabilities on airfoils by means of piezofoil-arrays p 621 A91-39911
of piezofoil-arrays p 621 A91-39911 MITCHELL, CLARK
Technology needs for high-speed rotorcraft
[NASA-CR-177578] p 652 N91-23136
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH
[NASA-CR-177578] p 652 N91-23136
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc.
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system
[NASA-CR-177578] p 652 N91-23136 MTCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MTCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F.
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOCK, D. T.
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOCK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes MOORHOUSE, DAVID J.
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system (AD-A232723) p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOCHOUSE, DAVID J. The handling qualities of the STOL and maneuver
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOCK, D. T. Application of vortex dynamics two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOCK, D. T. Application of vortex dynamics two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-23161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight lest p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ENNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design for spanwise pressure gradient p 654 N91-24138
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wind p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 554 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter MORKOVIN, M. V.
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter MORKOVIN, M. V. Dialogue on progress and issues in stability and transition
MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wick characteristics on progress and issues in stability and transition research
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122 MORKOVIN, M. V. Dialogue on progress and issues in stability and transition research p 677 A91-39902 MORSE, CHANNING S. ADFCS and NOTAR (trademark): Two ways to fix flying
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove Installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122 MORKOVIN, M. V. Dialogue on progress and issues in stability and transition research p 677 A91-39902 MORSE, CHANNING S. ADFCS and NOTAR (trademark): Two ways to fix flying qualities p 650 N91-23110
[NASA-CR-177578] p 652 N91-23136 MITCHELL, JOSEPH Crashworthiness experiments p 638 N91-24161 MITCHELL, ROBERT A. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system [AD-A232723] p 636 N91-23100 MIYAZAWA, Y. ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772 MODI, V. J. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOKHTARIAN, F. Moving surface boundary-layer control as applied to two-dimensional airfoils p 615 A91-37768 MOOK, D. T. Application of vortex dynamics to simulations of two-dimensional wakes p 676 A91-38706 MOORHOUSE, DAVID J. The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117 MORALEZ, ERNESTO Simulation evaluation of a speed-guidance law for Harrier approach transitions [NASA-TM-102853] p 668 N91-24209 MORGAN, H. L. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient p 654 N91-24138 MORGAN, J. MURRAY An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122 MORKOVIN, M. V. Dialogue on progress and issues in stability and transition research p 677 A91-39902 MORSE, CHANNING S. ADFCS and NOTAR (trademark): Two ways to fix flying

MOUNIR, H. NELSON, ROBERT C. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] **NEWMAN, ROBERT** Air ambulance helicopter operational analysis [DOT/FAA/RD-91/7] NI, XUEREN A numerical method for simulating drop test of landing gears NICHOLAS, O. P. Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft

Evaluation techniques for highly augmented aircraft **RADAR** performance experiments p 639 N91-24168 [DLR-FB-90-35] MOUSSEUX, MARC C. NIKIFORUK, PETER N. Experiments on swept-wing boundary layers Decoupled flight control via a model-following technique p 622 A91-39932 using the Euler operator MUELLER, T. J. NIKITIN. IU. M. Tip vortex/airfoil interaction for a low Reynolds number Design and development of aviation gas turbine ngines p 657 A91-39201 p 617 A91-38545 canard/wing configuration engines MUKHOPADHYAY, VIVEKANANDA NIKOLAIDIS, E. Control law synthesis and stability robustness Design of aircraft wings subjected to gust loads - A safety improvement using constrained optimization techniques index based approach p 686 A91-37591 NING. WEI MULLEN, R. L. Simulation of brush insert for leading-edge-passage Computation of three-dimensional flow fields through compressor blade rows convective heat transfer p 679 N91-23409 [NASA-TM-103801] NING. XUEZHEN MÙRAKAMI, ATSUO A study on sonic load of the vertical tail of F-7 aircraft Mach 4 testing of scramjet inlet models p 615 A91-37418 NISSLEY, D. M. MURPHY, S. D. Notched fatigue of single crystal PWA 1480 at turbine Automated CAD design for sculptured airfoil surfaces attachment temperatures p 673 A91-36943 [SME PAPER MS90-744] NITSCHE, W. MUZZY, WILLIAM H., III The airbag as a supplement to standard restraint Investigations on flow instabilities on airfoils by means systems in the AH-1 and AH-64 attack helicopters and of piezofoil-arrays its role in reducing head strikes of the copilot/gunner, NOSE, H. volume 1 Research on aerodynamic control of blade tip clearance p 641 N91-24188 [AD-A233349] flow in air-cooled turbine [DE91-764223] N 0 NAKAGAWA, KEIICHI NKK premium quality titanium master alloy p 672 A91-40425 O'MARA, T. M. NAKAMURA, HIROSHI Effects of horizontal tail ice on longitudinal aerodynamic All solid-state ASR with adaptive pulse Doppler derivatives p 641 A91-37107 O'SHAUGHNESSY PATRICK NAKAMURA, YOSHIAKI Integration of four-dimensional guidance with total A comparison between computation and experiment for energy control system flows around airfoil with slat and flap p 616 A91-37780 Analytical methods for the qualification of helicopter NAKAMURA, YUKINOBU structures Improvement of atmospheric flight performance of a ODAM, G. A. M. space vehicle through sensitivity minimization Lightning protection requirements for aircraft: A p 664 A91-37779 proposed specification NARRAMORE, J. C. [RAE-TM-FS(F)-632-ISSUE-1-R] Airfoil design method using the Navier-Stokes OEFELEIN, J. C. p 646 A91-38550 equations Experiments on the unsteadiness associated with a NAYUKI, TOSHIO ground vortex NKK premium quality titanium master alloy p 672 A91-40425 OELKER, H.-CHR. Effects of canard position on the aerodynamic NEAL, DONALD M. characteristics of a close-coupled canard configuration at Model sensitivity in stress-strength reliability low speed computations [AD-A232023] p 681 N91-23554 OHMI, KAZUO Further experiments on vortex formation around an NEBACK, H. E. oscillating and translating airfoil at large incidences Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an OHMORI, SHINGO aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 airborne antenna gain [NASA-CR-181924-VOL-2] communications NEINER, GEORGE Hot gas ingestion test results of a two-poster vectored OHTA, F. Development and interaction of instabilities in the thrust concept with flow visualization in the NASA Lewis crossflow field 9- by 15-foot low speed wind tunnel p 626 A91-40561 [AIAA PAPER 90-2268] OHTA, HIROBUMI Re-entry flight control of space plane using approximate **NELSON, HAROLD** National airspace system. Communications operational concept NAS-SR-136 perfect servo ONCESCU, F. p 640 N91-24185 (DOT/FAA/SE-91/1) New developments in the dynamic aeroelastic stability study of rotor blades NELSON, LOREN ONO, TAKANORI Continuous wave laser for wind shear detection p 637 N91-24142 NKK premium quality titanium master alloy NELSON, RICHARD S. ONOFRI, M. Application of cyclic damage accumulation life prediction Reacting shock waves in hypersonic propulsion model to high temperature components p 681 N91-24309 apolications

Clutter modeling of the Denver Airport and surrounding

An experimental evaluation of combustor liner materials

ONSTOTT, ROBERT G.

areas

OPPELT, J. B.

p 630 N91-24109

p 652 N91-23134

p 648 A91-40174

p 667 N91-23119

o 671 A91-38812

Fatigue crack growth modeling at elevated temperature

using fracture mechanics

PANDOLFINI, P. P.

Design techniques for dual mode ram-scramjet p 659 N91-23166 PAPADAKIS MICHAEL

Water droplet impingement on airfoils and aircraft engin p 634 A91-38543 PAPAGEORGIOU, DEMETRIOS T.

The stability to two-dimensional wakes at high Mach numbers p 614 A91-36452

PAPAMOSCHOU, DIMITRI Structure of the compressible turbulent shear layer p 616 A91-37830

PAPAZIAN, H. Forebody vortex control with the unsteady bleed p 617 A91-37859 technique

PARKINSON, A. G. p 679 A91-40278 Balancing of rotating machinery

PARSONS, MICHAEL L. Fire detection system for aircraft cargo bays

p 655 A91-36755

PATEL, VADANKUMAR M. test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system

p 636 N91-23100 PATERSON, ROBERT W.

Experimental investigation of loading effects on compressor trailing-edge flowfields p 615 A91-37420 PAUSDER, HEINZ-JUERGEN

Handling qualities evaluation for highly augment p 651 N91-23128 PEERHOSSAINI, H.

A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing p 620 A91-39691 Preliminary results

Numerical study of twin-jet impingement upwash flow

PELLETIER, DOMINIQUE H.

Three-dimensional finite element method analysis of turbulent flow over self-propelled slender bodie

p 615 A91-37419 PELLOUX, REGIS M. Modeling of creep-fatigue interaction effects on crack

p 670 A91-38802 PEPIN, FRANCOIS

Simulation of the flow past an impulsively started cylinder using a discrete vortex method (AD-A233066) p 683 N91-24533

PERES. P. How to know CMC

[REPT-911-430-130] p 672 N91-23262 PERSELLO, L. F. Differential GPS terminal area test results

p 644 N91-23106 [AD-A232668] PETERS, HANNS-JUERGEN

The limits of the landing process of aircraft p 653 N91-23137 IDLR-FB-90-491

PETERSEN, RICHARD H. Aeronautical research in the United States - Challenges p 612 A91-38580 for the 1990's

PETIAU. C. Influence of the refinement of structural calculation p 684 N91-24649 aircraft qualification procedures

PFENNINGER, W. Blunt-nosed swept supercritical LFC wings without nose

p 622 A91-39936 flaps PHILLIPS, J. M.

Deep stall of an NACA 0012 airfoil induced by periodic p 619 A91-38699 aerodynamic interference PICKERELL, THOMAS

National airspace system. Communications operational concept NAS-SR-136

p 640 N91-24185 (DOT/FAA/SE-91/1) PINDERA, J. T.

Actual stresses in notches - How applicable are the common stress concentration factors? p 676 A91-38775

PITTMAN, JAMES L. Euler analysis of a High-Speed Civil Transport concept

p 624 A91-40217 at Mach 3 POLIAKOV, A. M.

Entropy effects of hypersonic flow past blunt delta wings p 615 A91-37181

POLL D. I. A. The effect of isolated roughness elements on transition in attachment-line flows

p 678 A91-39959 POTAPCZUK, M. G. Simulation of iced wing aerodynamics

p 628 N91-23086 [NASA-TM-104362] Icing simulation: A survey of computer models and imental facilities p 628 N91-23087 INASA-TM-1043661

POULOSE, M. M.

Microwave landing system modeling with application to air traffic control [NASA-TM-102832] p 636 N91-23099

POZZI. A. Variable-property effects in supersonic wedge flow p 616 A91-37832

PREISSLER, HARALD

Equation decoupling - A new approach to the aerodynamic identification of unstable aircraft p 664 A91-37773

PRICE, FLOYD Kansas Aviation Review

p 613 N91-24087 [NIAR-91-3]

PRICE, ROBERT O. Methanol - An environmentally attractive alternative commercial aviation fuel p 670 A91-38129 PRIKLONSKAIA, V. I.

Evaluation of the phase distortions of the input signal p 677 A91-39144 of a synthetic-aperture radar PRUFTT D J

Radioluminescent (RL) lighting system development

DE91-0097431 p 679 N91-23381

PUJARA, L. R. A computer aided multivariable control systems design technique with application to aircraft flying qualities p 653 N91-23144 AD-A232549]

PINA SAM Northrop advanced fighter crew protection system. 1 -Engineering development. II - System development, test

p 647 A91-39395 and evaluation **PUYPLAT, DIDIER**

A320 - First of the computer-age aircraft p 645 A91-36354

Q

OI. PIOIAN

Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168

QIU. HUASHOU CAPP imitative system of aircraft assembly p 611 A91-37061

QU. JIANZHONG Application of identification method of modal parameters p 665 A91-40167 to flight flutter test

QUACKENBUSH, T. R. Optimization of rotor performance in hover using a free p 646 A91-38548 wake analysis

R

RACHNER, M.

Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164

RADESPIEL, R.

Cell centered and cell vertex multigrid schemes for the p 674 A91-37834 Navier-Stokes equations

Temporally and spatially resolved flow in a two-stage axial compressor. II - Computational assessmen p 620 A91-39048 [ASME PAPER 90-GT-299]

RAMAZANOV, M. P. Receptivity and stability of the boundary layer at a high p 678 A91-39945 turbulence level

RAMETTE, PHILIPPE Comparative study of different systems of combined cycle propulsion p 658 N91-23152 RAMEY D. W.

Radioluminescent (RL) lighting system development program

p 679 N91-23381

DE91-0097431 RAMM, HEINRICH J.

Fluid dynamics for the study of transonic flow p 625 A91-40513

RANAUDO, R. J. Effects of horizontal tail ice on longitudinal aerodynar p 665 A91-38547

RAND, OMRI Unsteady, frequency-domain analysis of helicopter

p 613 A91-36359 non-rotating lifting surfaces REDDY, D. R. Viscous three-dimensional analyses for nozzles for p 629 N91-23175

hypersonic propulsion The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions p 633 N91-24130 [NASA-TM-104469] REDDY, T. S. R.

Euler flow predictions for an oscillating cascade using a high resolution wave-split scheme p 630 N91-24107 [NASA-TM-104377]

REDEKER, G.

Forward sweep - A favorable concept for a laminar flow p 615 A91-37767 wing

REDIESS, HERMAN A. National remote computational flight research facility

[NASA-CR-179432] REEHORST. A. L.

Effects of horizontal tail ice on longitudinal aerodynamic p 665 A91-38547 REINMANN J. J.

Icing simulation: A survey of computer models and experimental facilities [NASA-TM-104366] p 628 N91-23087

RENZO, BAVA Flying qualities experience on the AMX aircraft

p 650 N91-23112 RESHOTKO, E.

Dialogue on progress and issues in stability and transition p 677 A91-39902

REYNOLDS, THOMAS L. Aircraft Command in Emergency Situations (ACES). nase 1: Concept development

p 636 N91-23097 [DOT/FAA/CT-90/21] REYNOLDS, W. C.

The effect of streamwise vortices on a turbulent boundary layer exposed to an unsteady adverse pressure p 675 A91-38693 gradient RIBAUD, YVES

Compact heat exchanger for an inverse components

RICCOBONO, ALDO Adaptive airborne track while scan

p 642 A91-37139 RILEY, M. F.

Application of multidisciplinary optimization methods to the design of a supersonic transport

p 652 N91-23135 INASA-TM-1040731 ROBERTS, A. S., JR.

Airfoil transition and separation studies using an infrared imaging system ROBERTS, EDWARD O. p 624 A91-40215

The technical challenges of the crew escape p 612 A91-39392 technologies program

ROBERTSON, ROY E.

Wind Shear radar program future plans

p 837 N91-24151 ROCKWELL, DONALD

Unsteady flow structure from swept edges subjected to controlled motion p 628 N91-23094

[AD-A232714] ROHATGI, UPENDRA S.

Fluid Machinery Forum - 1990; ASME Spring Meeting, University of Toronto, Canada, June 4-7, 1990,

Proceedings p 676 A91-38869 ROKHSAZ, KAMRAN

of scissor-wing p 624 A91-40216 Aerodynamic characteristics geometries ROLLBUHLER, R. JAMES

Fuel-rich, catalytic reaction experimental results [NASA-TM-104423] p 662 N91 p 662 N91-24203

RONQUILLO, KENNETH L. Low Altitude High Speed Cargo Parachute system

ment - A status report [AIAA PAPER 91-0880] p 635 A91-40558 ROSEN, A.

Ground resonance of a helicopter with inter-connected p 645 A91-36360 blades ROSKAM, JAN

Evolution of airplane stability and control - A designer's p 665 A91-39401 viewpoint

ROSS, ARTHUR One-on-one helicopter combat simulated by chess-type okahead p 668 A91-37775

lookahead ROWLAND, WAYNE D.

field-deployable digital acoustic measurement p 689 N91-24078 system

ROZENDAAL, RODGER A. Variable Sweep Transition Flight Experiment (VSTFE):

Unified Stability System (USS). Description and users' manual

[NASA-CR-181918] p 634 N91-24139 RUAN, Y. F.

Modal analysis of multistage gear systems coupled with gearbox vibrations [NASA-TM-103797] p 681 N91-23513

RUBERTUS, C. S. Advanced aircraft secondary power system design

p 656 A91-38007 RUBIN, STANLEY G.

Three-dimensional composite velocity solutions for p 616 A91-37841 subsonic/transonic flow RUDY, DAVID H.

Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736

Aero-thermal investigation of linear turbine guide vane cascad	a highly loade le. A test case	ed transonic for inviscid
and viscous flow computations [VKI-TN-174] RUTHERFORD, JOHN	p 680	N91-23437
Technology needs for high-sp [NASA-CR-177578]	eed rotorcraft p 652	N91-23136
S		
SADECK, JAMES E. Low Altitude High Speed	Cargo Paraci	nute system
development - A status report [AIAA PAPER 91-0880]	p 635	
SAINTE-MARIE, MARTINE The certification of the aircr	aft integrated	propulsive
system [REPT-911-111-102]	p 661	N91-2318B
SAIZ, J. M. BLANCO Nonlinear analysis of compos	site shear web	s with holes
and correlation with tests	p 684	N91-24042
Water-cooling technique of hi	gh temperatur	
[DE91-764238]	p 681	N91-23506
Flight mechanics/air navigat Scientific report of the German	ion research in Air and Spa	field. A 1990 ce Research
Organization [ISSN-0720-7808]	р 643	N91-23103
SALIVAR, G. C. Fatigue crack growth in mon	olithic titanium	n aluminides
SANCHEZTARIFA, C.	•	A91-38809
Hypersonic propulsion: Past	and present p 657	N91-23148
SANDNES, M. Spot welded thermoplastic [SME PAPER EM90-489]	composite p 645	access door A91-36942
SANKAR, L. N. Airfoil design method u	using the h	Navier-Stokes A91-38550
equations Dynamic stall of an oscillation	ng circulation p 617	control airfoil
Simulation of iced wing aero [NASA-TM-104362]	p 628	N91-23086
		hover using
three-dimensional unsteady a	p 660	A91-36358
SANS, C. Supersonic-hypersonic aerospaceplane		udies for N91-23160
SARIC, WILLIAM S. Experiments on swept-wing	boundary lay p 623	ers 2 A91-39932
SATO, TADASHI Re-entry flight control of spe	ace plane usin	g approximate 4 A91-37778
perfect servo SCALLION, WILLIAM I. Advanced Hypervelocity	•	
Workshop [NASA-CP-10031]		9 N91-2421
SCANLON, CHARLES H. Flight tests show potential b	enefits of data	link as primar
communication medium SCHADOW, K. C. Subsonic and supersonic c	•	3 A91-3857 ina noncircula
injectors SCHAEUFELE, HORST	p 67	4 A91-3741
Equation decoupling aerodynamic identification of	A new app unstable airc	raft
SCHAFFNER, P. Description, characteristic	p 66 s and testing	of the NAS
Description, and assertance	- 0	a NOT SALE

SANKAR, L. N.			•		
Airfoil design	n method	usina	the Na	vier-Stokes	
equations	,		p 646	A91-38550	
Dynamic stall	of an oscilla	itina circ	ulation co	ntrol airfoil	
Dynamic stan	Ol all booms		p 617	A91-38677	
Simulation of	nod wind a	erodynar	nics		
[NASA-TM-1043	2621	J. 00 J. 10.	p 628	N91-23086	
SANKAR, LAKSH			,		
Stability of		rotors	in ho	ver using	
three-dimension	wheatean in	aprodyr	amics		
(firee-diffier islori	a unsteady	uoi ou,	n 663	A91-36358	
CANC C			F		
SANS, C. Supersonic-hy	narennic	inlet	studi	ies for	
aerospaceplane			p 659	N91-23160	
SARIC, WILLIAM			F		
Experiments	on ewont-wi	na boun	dary laver:	5	
Expeniments	OII SHOPE III	ng boon	p 622	A91-39932	
SATO, TADASHI			F		
Re-entry fligh	t control of s	nace ola	ne usina a	pproximate	
perfect servo	1 00/10/0/0/	puos p	n 664	A91-37778	
SCALLION, WILL	IAMI		F		
Advanced	Hyperveloc	ity A	erophysics	s Facility	
Workshop	riypervoloc	,	v F J	•	
[NASA-CP-100	211		p 669	N91-24211	
SCANLON, CHA	DIECH		,		
Flight tests st	neco III.	l benefit:	s of data lin	ik as primary	r
communication	medium	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p 643	A91-38577	
SCHADOW, K. C					
Subsonic and	r. rt eunare∧nia	combu	stion using	noncircular	ŕ
injectors	o obporco		p 674	A91-37414	i
COUATHETIE L	IORST		•		
Equation de	ecoupling -	A ne	w approa	ach to the	ŧ
aerodynamic id	tentification	of unsta	ble aircraf	t	
acrodynamic			p 664	A91-37773	3
SCHAFFNER, P.			•		
Description,	characteris	tics and	I testing o	f the NASA	١
airborne radar			p 638	N91-24156	3
COUEDDED DO	MINIQUE		-		
Comparative	study of c	lifferent	systems (of combined	t
cycle propulsion	on .		p 658	N91-2315	2
SCHETZ JOSEI	PH A.				
Three-dime	nsional finit	e eleme	nt method	i analysis o	ıf
turbulent flow	over self-pro	pelled s	slender bo	dies	
10/00/21/1	•		p 615	A91-3741	9
SCHIMMEL, MO	RRY L.				_
Helicopter in	n-flight store	s jettiso	n p 671	A91-3938	9
CALI ICKENMA	IFR HERBI	ERT			
Airborne Wi	ind Shear D	etection	and Warn	ing Systems	3
Third Combin	ned Manufa	acturers	' and Te	chnologists	3
Conference, p					
[NASA-CP-10	060-PT-2]		p 636	N91-2414	C
Airborne W	ind Shear D	etection	and Warr	ning System:	S
Third Combi	ned Manuf	acturer	s' and Te	chnologist	S
Conference, p	part 1				
[NASA-CP-10	060-PT-1]		p 639	N91-2416	iŧ
•					

SCHMATZ, M. A. Analysis of numerical solutions for three-dimensional lifting wing flows p 625 A91-40498	SHEU, M. J. Computa a jet efflux
SCHNEIDER, W. Small Engine Component Technology (SECT) study.	SHEVARE, G
Program report [NASA-CR-175077] p 662 N91-24204 SCHRADER, J. H.	Low-orde
Description, characteristics and testing of the NASA airborne radar p 638 N91-24156	Vibration
SCHREIBER, OLIVIER Aerodynamic interactions between bodies in relative motion p 629 N91-24103	SHIH, C. Unstead
SCHUERMAN, THOMAS M. SATURN: The next generation radio for NATO p 682 N91-24475	SHIN, JAIW(Advance icing resea
SCHULTZ, F. J. Radioluminescent (RL) lighting system development program	[NASA-TM
[DE91-009743] p 679 N91-23381	SSR sign
Navigation, guidance, and trajectory optimization for hypersonic vehicles p 644 N91-23150 SCHWARZ, J.	Characte of a desc
Spot welded thermoplastic composite access door [SME PAPER EM90-489] p 645 A91-36942 SEDBON, GILBERT	landing sy SHREWSBU Dynamic
Accent on hypersonic p 669 A91-36625 SEGAWA, K. Development and interaction of instabilities in the	SHUCH, H. I
crossflow field p 622 A91-39938	collision ri SICLARI, M
Ground resonance of a helicopter with inter-connected blades p 645 A91-36360 SELBERG, BRUCE P.	Euler ar at Mach 3 SIMPSON, I
Aerodynamic characteristics of scissor-wing geometries p 624 A91-40216 SETTLES, GARY S.	Full-sca using acti SIMS, CHES
Inception length to a fully developed, fin-generated, shock-wave, boundary-layer interaction p 617 A91-37842	Non me real?
SEWALL, WILLIAM G. Laminar-flow wind tunnel experiments	SINCLAIR, An airb altitude w
p 634 N91-24136 SEWERSKY, R. A. Mechanical component diagnostic system	SINGH, B. Small [NASA-C
[AD-A232126] p 656 N91-23146	SIRBAUGH Compu
Application of identification method of modal parameters to flight flutter test p 665 A91-40167	subscale experime (AD-A23)
Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107	SISLIAN, J Perform wave ran
SHAFRANEK, D. Handling qualities guidelines for the design of fly-by-wire flight control systems for transport aircraft p 667 N91-23119	SMART, Al Velocit
SHAHWAN, E. J. The design manufacture, and test of a one-piece	SMITH, C. A CFD
thermoplastic wing rib for tiltrotor aircraft [SME PAPER EM90-665] p 645 A91-36940 SHAN, PENG	lower co [NASA-T SMITH, HC
Cycle analysis for a supersonic through flow fan engine p 657 A91-38207	Crash SMITH, RC Flying
SHANAHAN, DENNIS F. The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and	SMITH, ST
its role in reducing head strikes of the copilot/gunner, volume 2 [AD-A232907] p 641 N91-24187	The c deforme SOBEL, K
The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,	Robus space ui SOBIESZO
volume 1 [AD-A233349] p 641 N91-24188	A syst [NASA-` SOBOTA,
SHANGE, JOSEPH S. Numerical study of hypersonic dissociated air past blunt bodies p 616 A91-37835	8-1B l system SOURISS
SHANKAR, S. R. Designing with composites - A study of design process p 646 A91-38752	Valida at Aeros SOVA, G.
SHARKAWY, A. Designing with composites - A study of design	Aeroc User's r [NASA-
SHAW, ROBERT J. Engine technology challenges for a 21st century high	SPACHT, Aero
speed civil transport [NASA-TM-104363] p 636 N91-23098 SHE, GONGFAN	User's ([NASA- SPALAR]
CAPP imitative system of aircraft assembly p 611 A91-37061	Direc SRIDHAF
SHEIKH, S. I. Navigation, guidance, and trajectory optimization for hypersonic vehicles p 644 N91-23150	Appli

HEU, M. J. Computation of axisymmetric slend	ler bodies enclosing
a jet efflux in pitching oscillatory moti	on p 618 A91-38681
HEVARE, G. R. Low-order panel method for internal	al flows p 625 A91-40225
HI, RONGMING Vibration problems in an aircraft de	esign p 648 A91-40165
HIH, C. Unsteady flow past an airfoil pitche	ed at constant rate
NOWIAL MIKE	p 617 A91-38679
Advanced ice protection systems te icing research tunnel	
[NASA-TM-103757] SHIOMI, KAKUICHI	p 661 N91-23183
SSR signal discrimination from gar SHKURUPII, O. K.	rbled replies p 642 A91-37121
Characteristics of the reception by of a descending aircraft of signals	the antenna systems
landing systems SHREWSBURY, G. D.	p 642 A91-37200
Dynamic stall of an oscillating circ	ulation control airfoil p 617 A91-38677
SHUCH, H. PAUL Near midair collisions as an indicat collision risk	lor of general aviation p 635 N91-23096
SICLARI, MICHAEL J. Euler analysis of a High-Speed Ci	ivil Transport concept
at Mach 3	p 624 A91-40217
Full-scale demonstration tests of using active vibration control	cabin noise reduction p 646 A91-38549
SIMS, CHESTER T. Non metallic materials for gas turb real?	nine engines - Are they p 671 A91-40178
SINCLAIR, PETER C. An airborne FLIR detection and w	·
altitude wind shear	p 637 N91-24147
Small Engine Component Tech [NASA-CR-175079]	nology (SECT) study p 663 N91-24208
SIRBAUGH, J. R. Computation of inlet reference	plane flow-field for a
subscale free-jet forebody/inlet more experimental data [AD-A232101]	p 680 N91-23445
SISLIAN, J. P. Performance characteristics of I	hypersonic detonation
wave ramjets	p 659 N91-23168
Velocity sensor for an airborne of SMITH, C. E.	ptical air data system p 655 A91-38542
A CFD study of jet mixing in re lower combustor emissions	educed flow areas for
[NASA-TM-104411] SMITH, HOWARD	p 661 N91-23185
Crashworthiness experiments	p 638 N91-24161
Flying qualities of the X-29 forwards SMITH, STEPHEN	ard swept wing aircraft p 651 N91-23127
The computation of induced dra deformed wakes	ag with nonplanar and p 630 N91-24106
SOBEL, KENNETH M. Robust eigenstructure assignme	nt with structured state
space uncertainty SOBIESZCZANSKI-SOBIESKI, JAR A system approach to aircraft or	OSLAW ptimization
[NASA-TM-104074] SOBOTA, MARK S. B-1B high AOA testing in the eval	p 654 N91-24196
system SOURISSEAU, J. C. Validation of in-house and exte	p 651 N91-23126
at Aerospatiale	p 687 N91-24640
Aerodynamic preliminary analy User's manual	p 627 N91-23081
[NASA-CR-182077] SPACHT, L.	·
Aerodynamic preliminary ana User's manual	p 627 N91-23081
[NASA-CR-182077] SPALART, P. R. Direct numerical study of cross	,
CDIDUAD I K	p 678 A91-39956
Application of multiple-input/ procedures to flight test data	single-output analysis p 647 A91-39420

SRIVASTAVA, RAKESH	Calculation of high angle of attack aerodynamics of	THANGJITHAM, SUROT
An efficient hybrid scheme for the solution of rotationa flow around advanced propellers p 629 N91-24104	fighter configurations. Volume 2: User manual for	Analytical studies on static aeroelastic behavior of
STACK, JOHN P.	VORSTAB-2 [AD-A233483] p 631 N91-24114	forward-swept composite wing structures
Laminar-flow wind tunnel experiments	Calculation of high angle of attack approximantics of	
p 634 N91-24136 STALLARD, DAVID V.	fighter configurations. Volume 3: Unsteady	The art of flying qualities testing p 649 N91-2310
Angle-only tracking filter in modified spherical	[AD-A233569] p 631 N91-24115	THOMAS, RICHARD W.
coordinates p 643 A91-39433		The handling qualities of the STOL and maneuve technology demonstrator from specification to flight test
STAUTER, R. C.	on parachute trajectories	p 666 N91-2311
Temporally and spatially resolved flow in a two-stage axial compressor. If - Computational assessment	[AIAA PAPER 91-0875] p 626 A91-40557	THOMAS, RUSSELL H.
[ASME PAPER 90-GT-299] p 620 A91-39048	Low Altitude High Speed Cargo Parachute system	Three-dimensional finite element method analysis o
STEINBACH, D.	development - A status report [AIAA PAPER 91-0880] p 635 A91-40558	turbulent flow over self-propelled slender bodies p 615 A91-37419
A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing .	A vortex panel method for calculating aircraft downwash	THOMPSON, JOHN R.
Preliminary results p 620 A91-39691	on parachute trajectories	The introduction of off-line programming techniques to
STEINBERG, BERNARD D.	[DE91-009764] p 627 N91-23085	the robotic assembly of aircraft structures [SME PAPER MS90-276] p 611 A91-36898
Relative effectiveness of 2-D vs. 1-D high resolution microwave imageing p 641 A91-37094	SUZUKI, S.	TILMANN, CARL P.
microwave imageing p 641 A91-37094 STEINHARDT, E.	ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772	The effects on aerodynamic performance of designing
A general method for rotordynamic analysis	SUZUKI, SHINJI	supersonic wings for laminar flow control [AD-A233040] c.654 N91-24197
p 677 A91-39585	Modeling for unsteady aerodynamics of rectangular wing	[AD-A233040] p 654 N91-24197 TIMME, ADALBERT
STEPHENS, ROBERT L.	in incompressible flow using step responses	Flight mechanics/air navigation research field. A 1990
A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system	p 625 A91-40473 SWAFFORD, TIMOTHY W.	Scientific report of the German Air and Space Research
[AD-A232723] p 636 N91-23100	Euler flow predictions for an oscillating cascade using	Organization [ISSN-0720-7808] p 643 N91-23103
STIX, GARY	a high resolution wave-split scheme	[ISSN-0720-7808] ρ 643 N91-23103 TIMOFEEV, V. A.
Along for the ride? p 656 A91-40550	[NASA-TM-104377] p 630 N91-24107	Boundary layer control by a local heating of the wall
STOLLERY, J. L.	SWANSON, D. E. Development and demonstration of CREST	TIMOFEEVA, T. V. p 678 A91-39909
The performance of 60 deg delta wings: The effects of leading edge radius on vortex flaps and the wing	Development and demonstration of CREST subsystems p 646 A91-39380	Detection of traces of water in aviation kerosenes by
[CRANFIELD-AERO-9004] p 628 N91-23092	SWANSON, G. A.	gas chromatography p 670 A91-37182
The performance of 60 deg delta wings: The effects	Notched fatigue of single crystal PWA 1480 at turbine	TOBAK, M.
of leading edge radius and vortex flaps	attachment temperatures p 682 N91-24310	Asymmetric vortices on a slender body of revolution
[CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction	SWANSON, R. C. Cell centered and cell vertex multigrid schemes for the	TOKUMARU, P. T. p 616 A91-37827
relevant to intake flows p 628 N91-23161	Navier-Stokes equations p 674 A91-37834	Rotary oscillation control of a cylinder wake
STONOR, THOMAS	SZUCH, JOHN R.	p 620 A91-39708
Air traffic control today and tomorrow	Enhancing aeropropulsion research with high-speed	TOMPKINS, J. A. Radioluminescent (RL) lighting system development
p 642 A91-38215 STORM, WARK	interactive computing [NASA-TM-104374] p 687 N91-24796	program
Status of 2 micron laser technology program	p 007 1187-24790	[DE91-009743] p 679 N91-23381
p 637 N91-24143	T	TOWNSEND, D. P. Modal analysis of multistage gear systems coupled with
STORTZ, MICHAEL W.	·	gearbox vibrations
Simulation evaluation of a speed-guidance law for Harrier approach transitions	TAIRA, SHINICHI	[NASA-TM-103797] p 681 N91-23513
(NASA-TM-102853) p 668 N91-24209	High gain airborne antenna for satellite	TOWNSEND, JAMES C.
STRAZISAR, ANTHONY J.	communications p 643 A91-39776	Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736
Enhancing aeropropulsion research with high-speed	TAKAI, MASAMI A new architecture and expert system for aircraft design	TRAVERSE, PASCAL
interactive computing [NASA-TM-104374] p 687 N91-24796	synthesis p 652 N91-23132	The electrical flight control system of A320 Airbus: A
[NASA-TM-104374] p 587 N91-24796 STRICKER, JEFFREY M.	TAKEZAWA, IEHISA	fault tolerant system [REPT-911-111-103] p 667 N91-23192
Turbojet potential for hypersonic flight	NKK premium quality titanium master alloy	TRAYBAR, JOSEPH J. p 667 N91-23192
p 658 N91-23155	p 672 A91-40425 TALIA. JORGE E.	Determination of decision-height windows for
STRICKLAND, J. H.	Feasibility study in crack detection in aircraft stiffened	decelerating IMC approaches in helicopters
A vortex panel method for calculating aircraft downwash on parachute trajectories	panels by pulse probing and deconvolution	TRENT, WILLIAM
[AIAA PAPER 91-0875] p 626 A91-40557	p 654 N91-24158	National airspace system. Communications operational
A vortex panel method for calculating aircraft downwash	Mechanical paint removal techniques for composite aircraft p.613 N91-24163	concept NAS-SR-136
on parachute trajectories [DE91-009764] p 627 N91-23085	aircraft p 613 N91-24163 TALPALLIKAR, M. V.	[DOT/FAA/SE-91/1] p 640 N91-24185 TRUSCOTT, P. R.
[DE91-009764] p 627 N91-23085 STUCKE, MONICA A.	A CFD study of jet mixing in reduced flow areas for	Surface activation of Concorde by Be-7
Titanium aluminides for aerospace applications	lower combustor emissions	p 690 N91-24983
p 671 A91-39302	[NASA-TM-104411] p 661 N91-23185	TSENG, VINCENT Y. Fire detection system for aircraft cargo bays
STURDIVANT, VERNON R.	TANAKA, MASATO High gain airborne antenna for satellite	p 655 A91-36755
Automatic aircraft paint stripping [SME PAPER MS90-280] p 611 A91-36895	communications p 643 A91-39776	TU, Y. K.
[SME PAPEH MS90-280] p 611 A91-36895 STURGESS, G. J.	TAO, DEPING	Modal analysis of multistage gear systems coupled with gearbox vibrations
Coolant side heat transfer with rotation. Task 3 report:	Cycle analysis for a supersonic through flow fan	[NASA-TM-103797] p 681 N91-23513
Application of computational fluid dynamics	engine p 657 A91-38207 TAPOSU, I.	TURK, M.
[NASA-CR-182109] p 683 N91-24551 SU, T. Y.	The influence of altitude and speed variations over the	Small Engine Component Technology (SECT)
A general multiblock Euler code for propulsion	aircraft flight control response during the longitudinal	[NASA-CR-175078] p 662 N91-24205 TYSON, KAREN W.
integration. Volume 1: Theory document	nonlinear manoeuvres p 664 A91-36722	The costs and benefits of aircraft availability
[NASA-CR-187484-VOL-1] p 632 N91-24120	TARARYKIN, O. I. The experimental investigation of stability and receptivity	[AD-A232660] p 613 N91-23076
A general multiblock Euler code for propulsion integration. Volume 2: User guide for BCON, pre-processor	of a swept-wing flow p 623 A91-39944	
for grid generation and GMBE	TARG, RUSSELL	U
[NASA-CR-187484-VOL-2] p 632 N91-24121	Coherent lidar airborne windshear sensor - Performance	
A general multiblock Euler code for propulsion	evaluation p 655 A91-39873 CLASS: Coherent Lidar Airborne Shear Sensor.	UEDA, T. ACT wind-tuppel experiments of a transport
integration. Volume 3: User guide for the Euler code [NASA-CR-187484-VOL-3] p 632 N91-24122	Windshear avoidance	ACT wind-tunnel experiments of a transport-type wing p 615 A91-37772
[NASA-CR-187484-VOL-3] p 632 N91-24122 SUDHAKAR, K.	[LMSC-F-415048] p 636 N91-24141	USUI, H.
Low-order panel method for internal flows	TAT, V. V.	Research on aerodynamic control of blade tip clearance
p 625 A91-40225	Correlation of boundary layer stability analysis with flight transition data p. 621 A91-39929	flow in air-cooled turbine
SUGIMOTO, TAKESHI	TCHOUBINEH, A.	[DE91-764223] p 660 N91-23182
Analysis of circular elastic membrane wings p 625 A91-40472	Model for IR sensor performance evaluation	W
\$UNDARAM, P.	Applications and results p 656 A91-39890 TEN HAVE, J. M.	V
Calculation of high angle of attack aerodynamics of	European studies to investigate the feasibility of using	V'IUNOV, SERGEI A.
fighter configurations. Volume 1: Steady [AD-A233482] p 631 N91-24113	1000 ft vertical separation minima above EL 290. I	Design and development of aviation gas turbine
[AU-A233482] p 631 N91-24113	p 642 A91-38217	engines p 657 A91-39201

n 629 N91-23164

p 667 N91-23191

p 617 A91-37859

p 618 A91-38694

p 671 A91-39302

p 627 N91-23083

p 674 A91-37414

WIFGAND, H.

VACZY, C. M.

W

Deep stall of an NACA 0012 airfoil induced by periodic
aerodynamic interference p 619 A91-38699 VAN DAM, C. P.
Aerodynamic characteristics of crescent and elliptic
wings at high angles of attack p 624 A91-40219 VAN DOMMELEN, L.
Unsteady flow past an airfoil pitched at constant rate
ρ 617 A91-38679 VAN STONE, R. H.
Application of path-independent integrals to elevated
temperature crack growth p 671 A91-38819
VANDULLEMEN, H. A. Evaluation of the qualification of the structure of a
passenger aircraft by analysis and full-scale testing p 684 N91-24645
VANECK, T.
Unsteady aerodynamic loading of delta wings for low and high angles of attack p 617 A91-38680
and high angles of attack p 617 A91-38680 VANENGELEN, J. A. J.
Handling qualities guidelines for the design of fly-by-wire
flight control systems for transport aircraft p 667 N91-23119
VANGEL, MARK G.
Model sensitivity in stress-strength reliability computations
[AD-A232023] p 681 N91-23554
VANGERPEN, JON
Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583
VANKA, S. P.
Numerical study of twin-jet impingement upwash flow p 619 A91-38736
VEMURU, C. S.
Blunt-nosed swept supercritical LFC wings without nose flaps p 622 A91-39936
VENKATAKRISHNAN, V.
Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125
[NASA-CR-187564] p 633 N91-24125 VENKAYYA, V. B.
Analytical certification of aircraft structures
p 684 N91-24641 VERAAR, R. G.
Theoretical and experimental performance of a solid fuel
ramjet combustion cycle for hypersonic flight conditions
p 660 N91-23170 VICROY, DAN D.
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems:
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F.
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W.
p 660 N91-23170 VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J.
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R.
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing larminar boundary layers including curvature effects p 622 A91-39933
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D.
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 628 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 629 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 688 A91-39386
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 628 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188231] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 629 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 688 A91-39386
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 628 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188231] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396 VONGRUENHAGEN, WOLFGANG Handling qualities evaluation for highly augmented helicopters VORACEK, DAVID F.
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396 VONGRUENHAGEN, WOLFGANG Handling qualities evaluation for highly augmented helicopters p 651 N91-23128
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396 VONGRUENHAGEN, WOLFGANG Handling qualitites evaluation for highly augmented helicopters p 651 N91-23128 VORACEK, DAVID F. Buffet induced structural/flight-control system interaction of the X-29A aircraft [NASA-TM-101735] p 652 N91-23133
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396 VONGRUENHAGEN, WOLFGANG Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 VORACEK, DAVID F. Buffet induced structural/flight-control system interaction of the X-294 aircraft [NASA-TM-101735] p 652 N91-23133
VICROY, DAN D. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Estimate of heavy rain performance effect p 640 N91-24182 VIGNAU, F. Boundary layer tripping in supersonic flow p 623 A91-39960 VIJGEN, P. M. H. W. Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219 VIKEN, J. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 VISBAL, M. R. On some physical aspects of airfoil dynamic stall p 618 A91-38686 VISSER, KENNETH D. Breaking down the delta wing vortex: The role of vorticity in the breakdown process [NASA-CR-188235] p 630 N91-24109 An experimental analysis of critical factors involved in the breakdown process of leading edge vortex flows [NASA-CR-188231] p 631 N91-24110 VOGEL, MARTIN G. Simulation of G(x) forces using horizontal impulse accelerators p 668 A91-39396 VONGRUENHAGEN, WOLFGANG Handling qualitites evaluation for highly augmented helicopters p 651 N91-23128 VORACEK, DAVID F. Buffet induced structural/flight-control system interaction of the X-29A aircraft [NASA-TM-101735] p 652 N91-23133

406 MHz ELT signal spectra for Sarsa

Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow WACHSPRESS, D. A. Optimization of rotor performance in hover using a free p 646 A91-38548 wake analysis WILHELM, KNUT WAGGONER, E. G. Evaluation techniques for highly augmented aircraft Computational support of the X-29A Advanced [DLR-FB-90-35] Technology Demonstrator flight experiment WILLIAMS, D. R. p 653 N91-24137 Forebody vortex control with the unsteady bleed WAGNER, R. D. technique Correlation of boundary layer stability analysis with flight WILLIAMS, J. C., III p 621 A91-39929 transition data Unsteady separation on an impulsively set into motion On the stability of swept wing faminar boundary layers Carafoli airfoil p 622 A91-39933 including curvature effects WILLIAMS, KATHERINE A. WAGNER, RICHARD D. Titanium aluminides for aerospace applications p 634 N91-24135 Laminar-flow flight experiments Evaluation of cloud detection instruments WILLIS, EDWARD A. performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program NASA aeropropulsion research in support of propulsion systems of the 21st century p 655 N91-24199 A-TP-28881 [NASA-TM-104403] WALCHLI, LAWRÉNCE A WILSON, K. J. Flying qualities of the X-29 forward swept wing aircraft Subsonic and supersonic combustion using noncircular p 651 N91-23127 injectors WALKER, M. J. WITCOFSKI, ROBERT D. A review of high angle of attack requirements for combat p 651 N91-23130 Workshop WANG, BAOLU [NASA-CP-10031] Prediction of test spectrum for gunfire vibration p 666 A91-40175 WOLF, D. F. WANG FENGSHAN Identification of nacelle modes from airplane GVT p 648 A91-40170 results WOLF, STEPHEN D. WANG, QIAN-XI Flow around an unsteady thin wing close to curved cryogenic adaptive nozzle around p 620 A91-39744 [NASA-CR-186769] WANG, RUOSONG WONG, T.-C. Some analysis of decision-making in the test manufacture of military aircraft [AD-A233111] vortical flow p 613 N91-24093 WOODS, E. J. WANG, YUREN Experimental investigation on supersonic combustion p 657 A91-38203 WANIE, K. M. Analysis of numerical solutions for three-dimensional WOODSON, SHAWN H. p 625 A91-40498 lifting wing flows WARDWELL, DOUGLAS A. transonic flow over swept wings Suckdown, fountain lift, and pressures induced on WRENN, GREGORY A. several tandem jet V/STOL configurations p 630 N91-24108 [NASA-TM-102817] WATKINS, JOHN W. NASA-TM-1040731 Deployment optimization and human factors considerations for low-altitude troop parachutes WRIGHT, KENNETH D., II [AIAA PAPER 91-0889] p 635 A91-40559 WATTS, MICHAEL E. WU, ZHANG ALDAS user's manual [NASA-TM-102831] p 687 N91-24757 flows at high angles of attack WUENNENBERG, HORST WEINGOLD, HARRIS D. Experimental investigation of loading effects on compressor trailing-edge flowfields p 615 A91-37420 WEN JIAN The nonlinear dynamic response analysis of the front windshield of Y12 under 'bird-impact' loads p 648 A91-40158 procedures to flight test data WENIGER, RICHARD J. Robotic sensors for aircraft paint stripping [SME PAPER MS90-282] p 673 A91-36896 X WENTZ, WILLIAM H. Program plans for aviation safety research **XU. GUANGOI** p 638 N91-24157 [NIAR-90-32] WERLE, H. Quantitative analysis of flow visualizations in ONERA p 677 A91-39694 water tunnels XU, JIADONG WEYER, THOMAS H. Activities report of the DLR HSSN-0938-21941 p 691 N91-24086 **XU, JIANKANG** WEYH RERNHARDT Preference for an inertial degree of freedom describing the teeter motion of windturbine and helicopter rotors p 679 A91-40239 XUE, Y. WHALEN, THOMAS J. Improved silicon carbide for advanced heat engine p 672 N91-24451 [NASA-CR-182289] blade-vortex interactions WHEELER, CRAIG [NASA-CR-188199] Ejection seat rocket catapult design for reduced G field p 646 A91-39385 Υ WHITE, DEWEY W., JR. Literature review on geotextiles to improve pavements for general aviation airports

p 669 N91-23199

p 668 A91-39396

p 615 A91-37767

[AD-A232871]

accelerators

wina

p 643 A91-39778

WHITE, RICHARD P., JR.

Simulation of G(x) forces using horizontal impulse

Forward sweep - A favorable concept for a laminar flow

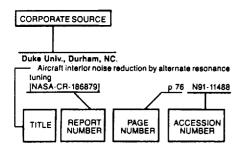
Advanced Hypervelocity Aerophysics Facility p 669 N91-24211 A dynamic analysis of the SRB parachute system [AIAA PAPER 91-0838] p 670 A91-4 p 670 A91-40555 Development of a quiet supersonic wind tunnel with a p 669 N91-23195 Numerical simulation of steady and unsteady asymmetric p 618 A91-38683 Advanced aircraft secondary power system design p 656 A91-38007 Aircraft electrical system computer simulation p 657 A91-38037 Interactive three-dimensional boundary-layer method for p 616 A91-37829 Application of multidisciplinary optimization methods to the design of a supersonic transport p 652 N91-23135 A field-deployable digital acoustic p 689 N91-24078 Synchronous iterative method for computation of vortex p 624 A91-40126 Handling qualities of highly augmented unstable aircraft summary of an AGARD-FMP working group effort p 666 N91-23116 Application of multiple-input/single-output analysis p 647 A91-39420 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system' p 665 A91-40168 The planar elements method for computing the scattering field of flight vehicle p 674 A91-37052 The transient dynamic performances of a rotor-SFDB system during passage through resonance p 678 A91-40130 Acoustics of unsteady transonic flow p 687 A91-38688 A study of the noise mechanisms of transonic p 627 N91-23084 YADLIN, YORAM Block multigrid implicit solution of the Euler equations p 616 A91-37836 of compressible fluid flow

Block implicit multigrid solution of the Euler equations

Aerodynamic characteristics of slender wing-gap-body

YAMAMOTO, YUZO

combinations


p 680 N91-23413

p 615 A91-37777

YANG, JS. Design of aircraft wings subjected to	gust lo	ads - A safety
index based approach		A91-37851
YANG, JUEMIN Numerical analysis of solid-fuel in	teractive	vibration on
an aircraft integral tank YANG, LIXIN	p 648	A91-40161
Experimental investigation on supe	ersonic	combustion
VANO E V	p 657	A91-38203
YANG, S. Y. Numerical investigat	tion	of
airfoil/jet/fuselage-undersurface fl	owfield	s in ground
effect YAO, YUFENG	p 617	A91-38541
Transonic flutter analysis of 2-D a		
of freedom YASUHARA, MICHIRU	p 665	A91-40169
A comparison between computation		kperiment for
flows around airfoil with slat and flap	р 616	A91-37780
YEAGLEY, S. H.	•	
Automated CAD design for sculp [SME PAPER MS90-744]		noi surfaces A91-36943
YOKOMIZO, T.	•	
Moving surface boundary-layer of two-dimensional airfoils		is applied to A91-37768
YOUNG, RONALD	•	
Evaluation of cloud detection performance of laminar-flow leading		ments and lest articles
during NASA Leading-Edge Flight-Te	st Progr	ram
[NASA-TP-2888] YU, N. Y.	p 655	N91-24199
Developing and utilizing an Euler co		
for predicting the airframe/propu aft-mounted turboprop transport.		
document		
[NASA-CR-181924-VOL-1] Developing and utilizing an Euler of	p 632 omputati	N91-2411B ional method
for predicting the airframe/propu aft-mounted turboprop transport. Vo		
[NASA-CR-181924-VOL-2]		N91-24119
[NASA-CR-181924-VOL-2] YU, WANGLING	p 632	N91-24119
[NASA-CR-181924-VOL-2]	p 632 with stn	N91-24119
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty	p 632 with stn	N91-24119 uctured state
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment	p 632 with stn	N91-24119 uctured state
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J.	p 632 with str p 686	N91-24119 actured state A91-39417
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s	p 632 with str p 686	N91-24119 actured state A91-39417
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797]	p 632 with str p 686	N91-24119 actured state A91-39417
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations	p 632 with stn p 686 ystems p 681	N91-24119 uctured state A91-39417 coupled with N91-23513
(NASA-CR-181924-VOL-2) YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations (NASA-TM-103797) ZARUBIN, V. A. Sensitivity analysis, optimization, in finite element systems	p 632 with str. p 686 ystems p 681 and data	N91-24119 uctured state A91-39417 coupled with N91-23513
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization,	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT)
(NASA-CR-181924-VOL-2) YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations (NASA-TM-103797) ZARUBIN, V. A. Sensitivity analysis, optimization, in finite element systems ZEINER, P. Small Engine Component Technolo (NASA-CR-175078)	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, infinite element systems ZEINER, P. Small Engine Component Technology	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE' p 662	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technole [NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE' p 662	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, inite element systems ZEINER, P. Small Engine Component Technola [NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in avagas chromatography ZHOU, XINHAI Computation of three-dimensional	p 632 with strain p 686 ystems p 681 and dat p 677 ogy (SE p 662 riation k p 670 flow fie	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technol [NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in av gas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows	p 632 with strain p 686 ystems p 681 and dat p 677 ogy (SE p 662 riation k p 670 flow fie	N91-24119 actured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technologinal Engine Component Technological Engi	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE p 662 riation k p 670 flow fie p 625 on soni	N91-24119 actured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear sigearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technole [NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels	ystems p 681 and dat p 677 ogy (SE p 662 riation k p 675	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technologinal Engine Component Technological Engi	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE: p 662 iation k p 670 flow fit p 625 on son p 648 ag an im	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 to fatigue life A91-40162 proved grid
(NASA-CR-181924-VOL-2) YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations (NASA-TM-103797) ZARUBIN, V. A. Sensitivity analysis, optimization in finite element systems ZEINER, P. Small Engine Component Technologinas (NASA-CR-175078) ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design usin ZIEMIANSKI, JOSEPH A.	p 632 with str. p 686 yystems p 681 and dat p 677 p 662 iiation k p 670 flow fite p 625 on soni p 648 iig an im p 624	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life A91-40162 proved grid Ä91-40137
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technological States of the sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technological States of the sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technological States of the sensitivity and systems ZEINER, P. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design using the sensitivity of the sensitivity and design using the sensitivity of the sensitivity and design using the sensitivity of the sensitivity o	p 632 with str. p 686 yystems p 681 and dat p 677 p 662 iiation k p 670 flow fite p 625 on soni p 648 iig an im p 624	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life A91-40162 proved grid Ä91-40137
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, in finite element systems ZEINER, P. Small Engine Component Technologinas (NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design usin ZIEMIANSKI, JOSEPH A. NASA aeropropulsion research in systems of the 21st century [NASA-TM-104403]	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE: iation k p 670 flow fit p 625 on son p 648 g an im p 624	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life A91-40162 proved grid Ä91-40137
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technolo (NASA-CR-175078] ZHERBTSOV, V. L. Detection of traces of water in av gas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design usin systems of the 21st century [NASA-TM-104403] ZILBERMAN, M.	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE: iation k p 670 flow fit p 625 on son p 648 g an im p 624	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life A91-40162 proved grid A91-40137
(NASA-CR-181924-VOL-2) YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear s gearbox vibrations (NASA-TM-103797) ZARUBIN, V. A. Sensitivity analysis, optimization, in finite element systems ZEINER, P. Small Engine Component Technologinasis (NASA-CR-175078) ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design usin ZIEMIANSKI, JOSEPH A. NASA aeropropulsion research in systems of the 21st century (NASA-TM-104403) ZILBERMAN, M. IAI hypersonic wind tunnel [IAITIC-87-1006]	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE: iation k p 670 flow fit p 625 on son p 648 g an im p 624	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 ic fatigue life A91-40162 proved grid A91-40137
[NASA-CR-181924-VOL-2] YU, WANGLING Robust eigenstructure assignment space uncertainty Z ZAKRAJSEK, J. J. Modal analysis of multistage gear sigearbox vibrations [NASA-TM-103797] ZARUBIN, V. A. Sensitivity analysis, optimization, finite element systems ZEINER, P. Small Engine Component Technola [NASA-CR-175078] ZHEREBTSOV, V. L. Detection of traces of water in avigas chromatography ZHOU, XINHAI Computation of three-dimensional compressor blade rows ZHOU, ZHILUN Calculation and experimental study of aircraft structural panels ZHU, ZIQIANG Transonic analysis and design usin systems of the 21st century [NASA-TM-104403] ZILBERMAN, M. IAI hypersonic wind tunnel	p 632 with stn p 686 ystems p 681 and dat p 677 ogy (SE: p 662 iation k p 670 flow fit p 625 on son p 648 g an im p 624 upport p 627	N91-24119 uctured state A91-39417 coupled with N91-23513 a support in A91-39230 CT) N91-24205 erosenes by A91-37182 elds through A91-40375 to fatigue life A91-40137 of propulsion N91-23083 N91-23194

Temperature lapse rate as an adjunct to wind shear detection p 640 N91-24184

Typical Corporate Source index Listing

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

Advanced Technologies, Inc., Newport News, VA. Soft hub for bearingless rotors INASA-CR-1775861 p 654 N91-24198 Advisory Group for Aerospace Research and Development, Neullly-Sur-Seine (France). Flying Qualities [AGARD-CP-508] p 649 N91-23108 Hypersonic Combined Cycle Propulsion [AGARD-CP-479] p 657 N91-23147 AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p 691 N91-24084 Analytical Qualification of Aircraft Structures [AGARD-R-772] p 683 N91-24638 AGARD flight test techniques series. Volume 9: Aircraft exterior noise measurement and analysis techniques [AGARD-AG-300-VOL-9] p 689 N91-2 p 689 N91 24843 Aeritalia S.p.A., Turin (Italy). Flying qualities experience on the AMX aircraft p 650 N91-23112 Aerojet TechSystems Co., Sacramento, CA. Design considerations for combined air breathing-rocket propulsion systems p 659 N91-23158 [AIAA-90-00981

Aeronautical Research Inst. of Sweden Stockholm. Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138

Aeronautical Systems Div., Wright-Patterson AFB, OH. Do civil flying qualities requirements address military missions for off-the-shelf procurement

p 650 N91-23115 Aerospatiale, Toulouse (France). Integration of propulsive systems: Selection and compromise p 661 N91-23187 [REPT-911-111-101] The certification of the aircraft integrated propulsive system p 661 N91-23188 [REPT-911-111-102]

The electrical flight control system of A320 Airbus: A fault tolerant system TREPT-911-111-1031 p 667 N91-23192 Observatory of new materials. Evolution perspectives for the materials used in civil transportation aircraft p 672 N91-23248 [REPT-911-111-107] Noise inside aircraft fuselages subjected to airborne excitations [REPT-911-111-104] p 689 N91-23853 Validation of in-house and external software systems at Aerospatiale p 687 N91-24640 Aerospatiale Aquitaine, Saint-Medard en Jalles Oxidation resistant carbon/carbon materials p 672 N91-23251 [REPT-911-430-105] How to know CMC [REPT-911-430-130] p 672 N91-23262 Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH. MIL-STD-1797 is not a cookbook p 650 N91-23111 The effects on aerodynamic performance of designing supersonic wings for laminar flow control p 854 N91-24197 [AD-A233040] Air Force Systems Command, Wright-Patterson AFB, Some analysis of decision-making in the test manufacture of military aircraft p 613 N91-24093 [AD-A2331111 Design and implementation of real-time computer actuating coordinated force system multi-input/output p 687 N91-24768 (AD-A2331141 Air Force Wright Aeronautical Labs., Wright-Patterson AFB, OH. Three-dimensional composite velocity solutions for subsonic/transonic flow p 616 A91-37841 Analytical Services and Materials, Inc., Hampton, VA. On the stability of swept wing laminar boundary layers including curvature effects p 622 A91-39933 Blunt-nosed swept supercritical LFC wings without nose p 622 A91-39936 flaps Arizona State Univ., Tempe. Experiments on swept-wing boundary layers p 622 A91-39932 Army Aeromedical Research Lab., Fort Rucker, AL. A test of the American Safety Flight Systems, Inc. prebreather/portable oxygen system IAD-A2327231 p 636 N91-23100 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner,

[AD-A232907] p 641 N91-24187 The airbag as a supplement to standard restraint systems in the AH-1 and AH-64 attack helicopters and its role in reducing head strikes of the copilot/gunner, [AD-A233349] Army Aviation Systems Command, Cleveland, OH. Effects of Inlet distortion on the development of secondary flows in a subsonic axial inlet compressor p 660 N91-23179 [NASA-TM-104356] Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208 p 663 N91-24208 Army Engineer Waterways Experiment Station, Vicksburg, MS. Analytical study of the effects of weight on Light

Helicopter (LH) exposure to ground-based weapons

for general aviation airports [AD-A232871]

Model

computations

[AD-A232023]

Army Lab. Command, Watertown, MA.

Literature review on geotextiles to improve pavements

sensitivity in stress-strength reliability

p 653 N91-23141

p 669 N91-23199

p 681 N91-23554

Arnold Engineering Development Center, Arnold Air Force Station, TN. Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data p 680 N91-23445 [AD-A2321011 Avco Lycoming Div., Stratford, CT. Small Engine Component Technology (SECT) study. Program report [NASA-CR-175077] p 662 N91-24204 В Beech Aircraft Corp., Wichita, KS.
Beechcraft starship strength certification p 684 N91-24643 Bell Helicopter Co., Fort Worth, TX. Airfoil design method using the Navier-Stokes p 646 A91-38550

equations Boeing Commercial Airplane Co., Seattle, WA. Aircraft Command in Emergency Situations (ACES). Phase 1: Concept development

(DOT/FAA/CT-90/21) p 636 N91-23097 Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 1: Theory

[NASA-CR-181924-VOL-1] p 632 N91-24118 Developing and utilizing an Euler computational method for predicting the airframe/propulation effects for an aft-mounted turboprop transport. Volume 2: User guide [NASA-CR-181924-VOL-2] p 632 N91-24119 A general multiblock Euler code for propulsion integration. Volume 1: Theory document

[NASA-CR-187484-VOL-1] p 832 N91-24120 A general multiblock Euler code for propulsion Integration. Volume 2: User guide for BCON, pre-processor p 632 N91-24120 for grid generation and GMBE [NASA-CR-187484-VOL-2] p 632 N91-24121

A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code [NASA-CR-187484-VOL-3] p 632 N91-24122 Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and users'

[NASA-CR-181918] p 634 N91-24139 Environmental exposure effects on composite materials

[NASA-CR-187478] p 672 N91-24358 Boeing Military Airplane Development, Wichita, KS.

Water droplet impingement on airfoils and aircraft engine inlets for icing analysis p 634 A91-38543 British Aerospace Public Ltd. Co., Preston (England).

The development of alternate criteria for FBW handling ualities p 666 N91-23113 qualities A review of high angle of attack requirements for combat

p 651 N91-23130 aircraft Brown Univ., Providence, Rl.

Secondary frequencies in the wake of a circular cylinde with vortex shedding p 620 A91-39736

C

Cairo Univ. (Egypt). Heat transfer in oscillating flows p 676 A91-38698 California Inst. of Tech., Pasadena Simulation of the flow past an impulsively started cylinder using a discrete vortex method [AD-A233066] p 683 N91-24533 California Univ., Berkeley. Interferometric investigation of supersonic flow fields with shock-shock interactions p 627 N91-23082 Near midair collisions as an indicator of general aviation plass N91-23096 collision risk California Univ., Davis. Identification of pilot-vehicle dynamics from simulation p 664 A91-37598 and flight test Aerodynamic characteristics of crescent and elliptic lings at high angles of attack p 624 A91-40219 wings at high angles of attack

California Univ., Los Angeles.	Deutsche Forschungsanstalt fuer Luft- und Raumfahrt,	An efficient hybrid scheme for the solution of rotational flow around advanced propellers p 629 N91-24104
Euler calculations of unsteady transonic flow in cascades	Goettingen (Germany, F.R.). Procedure for determination of three-dimensional wind	Grumman Aerospace Corp., Bethpage, NY.
[AIAA PAPER 91-1104] p 626 A91-40562	tunnel wall interferences and wall adaptation in	Euler analysis of a High-Speed Civil Transport concept
Integrated multidisciplinary optimization of actively controlled fiber composite wings p 667 N91-23190	compressible subsonic flow using measured wall pressures	at Mach 3 p 624 A91-40217
controlled fiber composite wings p 667 N91-23190 Calspan Advanced Technology Center, Buffalo, NY.	[DLR-FB-90-46] p 628 N91-23088	
The flying qualities influence of delay in the fighter pilot's	Dornler System G.m.b.H., Friedrichshafen (Germany, F.R.).	H
cuing environment p 650 N91-23120	Handling qualities of highly augmented unstable aircraft	
Canadair Ltd., Montreal (Quebec). The role of analysis in the design and qualification of	summary of an AGARD-FMP working group effort	Hamilton Standard, Windsor Locks, CT. Unified aeroacoustics analysis for high speed turboprop
composite aircraft structures p 684 N91-24648	p 666 N91-23116 Integration of handling quality aspects into the	aerodynamics and noise. Volume 3: Application of theory
Central Research Inst. of Electric Power Industry,	aerodynamic design of modern unstable fighters	for blade loading, wakes, noise, and wing shielding [NASA-CR-185193] p 688 N91-23850
Tokyo (Japan). Water-cooling technique of high temperature gas turbine	p 667 N91-23125 Douglas Aircraft Co., Inc., Long Beach, CA.	Unified aeroacoustics analysis for high speed turboprop
blade	The 1989 high-speed civil transport studies	aerodynamics and noise. Volume 4: Computer user's
[DE91-764238] p 681 N91-23506 Cincinnati Univ., OH.	[NASA-CR-4375] p 654 N91-24195	manual for UAAP turboprop aeroacoustic code [NASA-CR-185194] p 688 N91-23851
Three-dimensional composite velocity solutions for	E	Unified aeroacoustics analysis for high speed turboprop
subsonic/transonic flow p 616 A91-37841	E	aerodynamics and noise. Volume 5: Propagation of
Analysis and control of low-speed forced unsteady flow p 676 A91-38697	European Space Agency, Paris (France).	propeller tone noise through a fuselage boundary layer [NASA-CR-185195] p 689 N91-23852
Clemson Univ., SC.	The propagation of acoustic disturbances in the	[NASA-CR-185195] p 689 N91-23852 High Technology Corp., Hampton, VA.
Signal processing techniques for clutter filtering and wind	transonic flow fields of wings [ESA-TT-1126] p 689 N91-23854	Real gas effects on hypersonic boundary-layer stability
shear detection p 638 N91-24154 Coherent Technologies, Inc., Boulder, CO.	Exeter Univ. (England).	p 614 A91-36453
Coherent lidar airborne windshear sensor - Performance	On the Goertler vortex instability mechanism at hypersonic speeds p 623 A91-39940	Transition research in low-disturbance high-speed wind
evaluation p 655 A91-39873	nypersonic speeds p d25 A31-35540	tunnels p 621 A91-39919
Colorado State Univ., Fort Collins. An airborne FLIR detection and warning system for low	F	Correlation of boundary layer stability analysis with flight transition data p 621 A91-39929
altitude wind shear p 637 N91-24147	•	On the stability of swept wing laminar boundary layers
Computer Resource Management, Inc., Herndon, VA.	Federal Aviation Administration, Atlantic City, NJ.	including curvature effects p 622 A91-39933
National airspace system. Communications operational	Differential GPS terminal area test results [AD-A232668] p 644 N91-23106	Blunt-nosed swept supercritical LFC wings without nose
concept NAS-SR-136 [DOT/FAA/SE-91/1] p 640 N91-24185	An investigation into the use of side-arm control for civil	flaps p 622 A91-39936
Construcciones Aeronauticas S.A., Madrid (Spain).	rotorcraft applications p 667 N91-23123	Aerodynamic characteristics of crescent and elliptic wings at high angles of attack p 624 A91-40219
Nonlinear analysis of composite shear webs with holes	Determination of decision-height windows for decelerating IMC approaches in helicopters	Honeywell, Inc., Minneapolis, MN.
and correlation with tests p 684 N91-24642 Continuum Dynamics, Inc., Princeton, NJ.	p 667 N91-23124	Navigation, guidance, and trajectory optimization for
Optimization of rotor performance in hover using a free	MLS mathematical model validation study using airborne	hypersonic vehicles p 644 N91-23150
wake analysis p 646 A91-38548	MLS data from Atlantic City International Airport Boeing 727 elevation shadowing flight tests	Honeywell, Inc., Phoenix, AZ. Integration of weather sensing devices
Cornell Univ., Ithaca, NY. Block implicit multigrid solution of the Euler equations	[DOT-FAA/CT-TN90/55] p 644 N91-24190	p 639 N91-24174
p 680 N91-23413	Federal Aviation Administration, Cambridge, MA. Aircraft wake vortices: An assessment of the current	Temperature lapse rate as an adjunct to wind shear
Cranfield inst. of Tech., Bedford (England).	situation	detection p 640 N91-24184
The performance of 60 deg delta wings: The effects	[AD-A231658] p 626 N91-23079	_
of leading edge radius on vortex flaps and the wing [CRANFIELD-AERO-9004] p 628 N91-23092	Federal Aviation Administration, Washington, DC. Precision runway monitor demonstration report	1
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198	I
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems:	Illinois Univ., Urbans. Numerical study of bein-let implement unwash flow
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198	Illinois Univ., Urbana. Numerical study of twin-jet implingement upwash flow p 619 A91-38736
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H.,
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems:	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.).
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Saint Cloud (France).	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy).	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leeding edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH.	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10080-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy).	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leeding edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH.	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10080-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA.
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassauit-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arilington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands).	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990)	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassauit-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.).	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Ceil centered and cell vertex multigrid schemes for the	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames.
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.).	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NSA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI.	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellechaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 884 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 832 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10080-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB1-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport.
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 884 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Alrcraft Industries Ltd., Ben-Gurion Alirport. Real time estimation of aircraft angular attitude
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 686 N91-23114 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 859 N91-23156 Flight Safety Foundation, Inc., Arilington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines (NASA-CR-182289) p 672 N91-24451	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Iows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters p 851 N91-23128 Evaluation techniques for highly augmented aircraft	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10080-PT-1] p 639 N91-24166 Aviation system capital investment plan [P891-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT)	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leeding edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 686 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] p 667 N91-23191	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione 3.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Artington, VA. Wind shear training applications for 91/135 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines (NASA-CR-182289) p 672 N91-24451 G G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 Industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8765C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] p 667 N91-23191 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.).	Precision runway monitor demonstration report [AD-A232871] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-18289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH.	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 686 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] p 667 N91-23129 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10080-PT-1] p 639 N91-24166 Aviation system capital investment plan (P891-150268) p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-2465 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-18289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1004] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8765C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] p 667 N91-23191 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.).	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Itaty). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines (NASA-CR-162289) p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN.	Numerical study of twin-jet implingement upwash flow p 619 A91-38736 industrieanlagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 larael Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1004] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Tranaportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented p 651 N91-23128 [DLR-FB-90-35] p 667 N91-23191 Deutsche Forschungsanstaft fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10080-PT-1] p 639 N91-24166 Aviation system capital investment plan (P891-150268) p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-2465 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-18289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 853 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 828 N91-23161 D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 686 N91-23114 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 The limits of the landing process of aircraft	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione 3.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-2465 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines (NASA-CR-18289) p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolle, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 George Washington Univ., Washington, DC.	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Iows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 80 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Saint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualifies evaluation for highly augmented helicopters Evaluation techniques for highly augmented p 651 N91-23128 Evaluation techniques for highly augmented pictoraft p 667 N91-23191 Deutsche Forschungsanstaft fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 The limits of the landing process of aircraft [DLR-FB-90-49] Trajectory optimization considerations for ramjet	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-18289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 George Washington Univ., Washington, DC. Effects of horizontal tail ice on longitudinal aerodynamic	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 686 N91-23114 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] p 667 N91-23191 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23137 Trajectory optimization considerations for ramjet engines p 658 N91-23151	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10080-PT-1] p 639 N91-24166 Aviation system capital investment plan [P891-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] General Electric Co., Clincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 George Washington Univ., Washington, DC. Effects of horizontal tail ice on longitudinal aerodynamic derivatives p 685 A91-38547	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 Industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 Institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 Implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 Institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 Iows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 Israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23103 The limits of the landing process of aircraft [DLR-FB-90-49] p 658 N91-23151 Aerodynamics and stabilization of combustion of	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 663 N91-24207 George Washington, DC. Effects of horizontal tail ice on longitudinal aerodynamic derivatives p 665 A91-38547 Georgia Inst. of Tech., Atlanta. Airfoil design method using the Navier-Stokes	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522 Johns Hopkins Univ., Laurel, MD. Design techniques for dual mode ram-scramjet p 859 N91-23186 Jordan Univ. of Science and Technology, Irbid. Unsteady serodynamic loading of delta wings for low
[CRANFIELD-AERC-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERC-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Devolopment of MIL-8785C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters p 651 N91-23128 Evaluation techniques for highly augmented aircraft [DLR-FB-90-35] Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization [ISSN-0720-7808] p 643 N91-23137 Trajectory optimization considerations for ramjet engines p 659 N91-23151 Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow p 629 N91-23164	Precision runway monitor demonstration report [AD-A232671] p 669 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB1-150268] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Netherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] g 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 George Washington Univ., Washington, DC. Effects of horizontal tail ice on longitudinal aerodynamic derivatives p 685 A91-38547 Georgia Inst. of Tech., Atlanta. Airfoil design method using the Navier-Stokes equations	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft Industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522 Johns Hopkins Univ., Laurel, MD. Design techniques for dual mode ram-scramjet combustors p 659 N91-23186 Jordan Univ. of Science and Technology, Irbid. Unsteady serodynamic loading of delta wings for low and high angles of attack p 617 A91-38680
[CRANFIELD-AERO-9004] p 628 N91-23092 The performance of 60 deg delta wings: The effects of leading edge radius and vortex flaps [CRANFIELD-AERO-9002] p 653 N91-23140 Some aspects of shock-wave boundary layer interaction relevant to intake flows p 628 N91-23161 D D D Dassault-Breguet Aviation, Seint Cloud (France). Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24649 Dayton Univ., OH. Hypersonic aerodynamics fellowships [AD-A233584] p 632 N91-24116 Department of Transportation, Cambridge, MA. Aircraft wake vortices: An annotated bibliography (1923-1990) [AD-A233161] p 631 N91-24111 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations p 674 A91-37834 Development of MIL-8765C into a handling qualities specification for a new European fighter aircraft p 666 N91-23114 Handling qualities evaluation for highly augmented helicopters Evaluation techniques for highly augmented p 651 N91-23128 Evaluation techniques for highly augmented pictory p 667 N91-23191 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Cologne (Germany, F.R.). Flight mechanics/air navigation research field. A 1990 Scientific report of the German Air and Space Research Organization (ISSN-0720-7808) p 643 N91-23103 Trajectory optimization considerations for ramjet engines p 658 N91-23151 Aerodynamics and stabilization of combustion of hydrogen jets injected into subsonic airflow	Precision runway monitor demonstration report [AD-A232871] p 689 N91-23198 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2 [NASA-CP-10060-PT-2] p 636 N91-24140 Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-24166 Aviation system capital investment plan [PB91-150288] p 644 N91-24189 Flat Aviazione S.p.A., Turin (Italy). Airbreathing propulsion for transatmospheric flight p 659 N91-23156 Flight Safety Foundation, Inc., Arlington, VA. Wind shear training applications for 91/135 p 639 N91-24173 Fokker B.V., Schipol-Oost (Natherlands). Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645 Ford Motor Co., Dearborn, MI. Improved silicon carbide for advanced heat engines [NASA-CR-182289] p 672 N91-24451 G Garrett Turbine Engine Co., Phoenix, AZ. Small Engine Component Technology (SECT) [NASA-CR-175078] p 662 N91-24205 General Electric Co., Cincinnati, OH. Application of path-independent integrals to elevated temperature crack growth p 671 A91-38819 General Motors Corp., Indianapolis, IN. Small Engine Component Technology (SECT) study [NASA-CR-175081] p 683 N91-24207 George Washington Univ., Washington, DC. Effects of horizontal tail ice on longitudinal aerodynamic derivatives p 685 A81-38547 Georgia Inst. of Tech., Attanta. Airloid design method using the Navier-Stokes	Numerical study of twin-jet impingement upwash flow p 619 A91-38736 industrieaniagen-Betriebsgesellschaft m.b.H., Ottobrunn (Germany, F.R.). Airbreathing propulsion for space transport: New concepts, special problems and attempts at solutions p 658 N91-23154 institute for Computer Applications in Science and Engineering, Hampton, VA. Second mode interactions in supersonic boundary layers p 623 A91-39957 implicit solvers for unstructured meshes [NASA-CR-187564] p 633 N91-24125 institute for Defense Analyses, Alexandria, VA. The costs and benefits of aircraft availability [AD-A232660] p 613 N91-23076 Estimating fixed and variable costs of airframe manufacturers [AD-A232661] p 613 N91-23077 lows State Univ. of Science and Technology, Ames. Simulation of a combined-cycle engine [NASA-CR-188232] p 683 N91-24583 israel Aircraft industries Ltd., Ben-Gurion Airport. Real time estimation of aircraft angular attitude [IAITIC-87-1004] p 649 N91-23107 IAI hypersonic wind tunnel [IAITIC-87-1006] p 668 N91-23194 Computerized system for static and fatigue large scale structural tests: A case study [IAITIC-87-1007] p 681 N91-23522 Johns Hopkins Univ., Laurel, MD. Design techniques for dual mode ram-scramjet p 859 N91-23186 Jordan Univ. of Science and Technology, Irbid. Unsteady serodynamic loading of delta wings for low

Activities report of the DLR [ISSN-0938-2194]

L

Natio

Natio

Lehigh Univ., Bethlehem, PA. Unsteady flow structure from swept	t ednes subjected
to controlled motion	
Litton Aero Products, Moorpark, CA.	628 N91-23094
Avionic laser multisensor progra	m at Litton Aero 637 N91-24144
Lockheed Aeronautical Systems Co., I	Burbank, CA.
Laboratory test and acoustic analysis for propfan test assessment aircraft	of cabin treatment
[NASA-CR-182075] Lockheed Engineering and Sciences C	690 N91-24844
VA.	
Calculation of steady and unsteady p at supersonic speeds with a transonic	small-disturbance
code Signal processing of aircraft flyover	p 617 A91-38544
[NASA-CR-187546]	p 690 N91-24845
Lockheed Missiles and Space Co., Pal Coherent lidar airborne windshear se	nsor - Performance
evaluation CLASS: Coherent Lidar Airborni	p 655 A91-39873
Windshear avoidance	
[LMSC-F-415048]	p 636 N91-24141
M	
Magnavox Co., Fort Wayne, IN.	
SATURN: The next generation radio	for NATO
Massachusetts Inst. of Tech., Cambrid	p 682 N91-24475 d ge .
Microburst avoidance simulation tes	
Viscous design and analysis meth	
compressor blading [AD-A232902]	p 682 N91-24530
Massachusetts Inst. of Tech., Lexingt Orlando experiment	on. p 640 N91-24177
MCAT Inst., San Jose, CA.	
Development of a quiet supersonic cryogenic adaptive nozzle	
[NASA-CR-186769] McDonnell Aircraft Co., Saint Louis, N	p 669 N91-23195 4O .
Hot has innestion test results of a t	wo-poster vectored
thrust concept with flow visualization 9- by 15-foot low speed wind tunnel	
[AIAA PAPER 90-2268] McDonnell-Douglas Helicopter Co., M	p 626 A91-40561 esa. AZ.
ADFCS and NOTAR (trademark): To	wo ways to fix flying p 650 N91-23110
qualities Technology needs for high-speed re	otorcraft
[NASA-CR-177578] Messerschmitt-Boelkow-Blohm G.m.b	p 652 N91-23136
(Germany, F.R.).	p 651 N91-23131
X-31A at first flight Analytical methods for the qualification	cation of helicopter
structures	p 684 N91-24650
Michigan Univ., Ann Arbor. An experimental investigation of vo	ortex pair interaction
with a clean or contaminated free sui	face р680 N91-23419
Micro Craft, Inc., Tullahoma, TN.	or a low appact ratio
Unsteady Navier-Stokes solutions fi delta wing	
[AD-A233201] Minnesota Univ., Minneapolis.	p 631 N91-24112
A study of the noise mechan	nisms of transonic
blade-vortex interactions [NASA-CR-188199]	p 627 N91-23084
Missouri Univ., Rolla.	of scissor-wing
Aerodynamic characteristics geometries	p 624 A91-40216
Mitre Corp., McLean, VA. Thermodynamic Alerter for Microbi	ursts (TAMP)
	p 640 N91-241/9
Motoren- und Turbinen-Union Mueno (Germany, F.R.).	
The 2-D supersonic nozzle design	p 660 N91-23176

Ν

National Aeronautical Establishment, Ottawa (Ontario). An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire p 651 N91-23122 helicopter An investigation into the use of side-arm control for civil p 667 N91-23123 rotorcraft applications Determination of decision-height windows for decelerating IMC approaches in helicopters p 667 N91-23124

	NASA, Lewis Hesearch Center
ational Aeronautics and Space Administration. Ames	Application of multidisciplinary optimization methods to
Research Center, Moffett Field, CA.	the design of a supersonic transport
Effect of exhaust plume/afterbody interaction on	[NASA-TM-104073] p 652 N91-23135
installed scramjet performance p 615 A91-37770	Hypersonic propulsion: Status and challenge
Asymmetric vortices on a slender body of revolution	p 658 N91-23153
p 616 A91-37827	Passive laminar flow control of crossflow vorticity
Temporally and spatially resolved flow in a two-stage	[NASA-CASE-LAR-13563-1] p 679 N91-23410
axial compressor. II - Computational assessment	Quantitative nondestructive evaluation: Requirements
[ASME PAPER 90-GT-299] p 620 A91-39048	for tomorrow's reliability p 681 N91-24074
Direct numerical study of crossflow instability	A field-deployable digital acoustic measurement system p 689 N91-24078
p 678 A91-39956	system p 689 N91-24078 The NASA Langley laminar-flow-control experiment on
Static measurements of slender delta wing rolling	a swept, supercritical airfoil: Suction coefficient analysis
moment hysteresis p 625 A91-40223	[NASA-TM-4267] p 629 N91-24098
Airborne rescue system	Transonic Symposium: Theory, Application and
[NASA-CASE-ARC-11909-1] p 635 N91-23095	Experiment, volume 2
Microwave landing system modeling with application to	[NASA-CP-3020-VOL-2] p 634 N91-24132
	National Transonic Facility status p 669 N91-24133
air traffic control (NASA-TM-102832) p 636 N91-23099	Reynolds number effects on the transonic aerodynamics
	of a slender wing-body configuration
Analytical and experimental investigations of the oblique detonation wave engine concept p 660 N91-23169	p 634 N91-24134
	Laminar-flow flight experiments p 634 N91-24135
The computation of induced drag with nonplanar and	Laminar-flow wind tunnel experiments
deformed wakes p 630 N91-24106	p 634 N91-24136
Suckdown, fountain lift, and pressures induced on	Computational support of the X-29A Advanced
several tandem jet V/STOL configurations	Technology Demonstrator flight experiment
[NASA-TM-102817] p 630 N91-24108	p 653 N91-24137
Simulation evaluation of a speed-guidance law for Harrier	Results of correlations for transition location on a
approach transitions (NASA-TM-102853) p 668 N91-24209	clean-up glove installed on an F-14 aircraft and design
[/#/6// /// /	studies for a laminar glove for the X-29 aircraft accounting
ALDAS user's manual [NASA-TM-102B31] p 687 N91-24757	for spanwise pressure gradient p 654 N91-24138
[NASA-TM-102831] p 687 N91-24/57 lational Aeronautics and Space Administration. Hugh	Airborne Wind Shear Detection and Warning Systems
L. Dryden Flight Research Facility, Edwards, CA.	Third Combined Manufacturers' and Technologists
Correlation of boundary layer stability analysis with flight	Conference, part 2
transition data p 621 A91-39929	[NASA-CP-10060-PT-2] p 636 N91-24140
Flying qualities of the X-29 forward swept wing aircraft	Status of 2 micron laser technology program
p 651 N91-23127	p 637 N91-2414
Buffet induced structural/flight-control system	Status of NASA's IR wind shear detection research
interaction of the X-29A aircraft	p 637 N91-2414
[NASA-TM-101735] p 652 N91-23133	Clutter modeling of the Denver Airport and surrounding
Flow visualization study of a 1/48-scale AFTI/F111	areas p 638 N91-2415
model to investigate horizontal tail flow disturbances	Airborne radar simulation studies of the Denver July 11 1988 microburst p 638 N91-2415
[NASA-TM-101698] p 633 N91-24128	
Effects of wing sweep on in-flight boundary-layer	Description, characteristics and testing of the NAS/ airborne radar p 638 N91-2415
transition for a laminar flow wing at Mach numbers from	Airborne Wind Shear Detection and Warning Systems
0.60 to 0.79	Third Combined Manufacturers' and Technologists
[NASA-TM-101701] p 683 N91-24555	
Effects of wing sweep on boundary-layer transition for	Conference, part 1 [NASA-CP-10060-PT-1] p 639 N91-2416
a smooth F-14A wing at Mach numbers from 0.700 to	Integrated data analysis of July 7, 1990 microburst
0.825	p 685 N91-2417
[NASA-TM-101712] p 683 N91-24556	NASA Langley flight test program p 639 N91-2417
National Aeronautics and Space Administration.	TDWR information on the flight deck
Langley Research Center, Hampton, VA.	p 640 N91-2417
Real gas effects on hypersonic boundary-layer stability	Status of heavy rain tests p 640 N91-2418
p 614 A91-36453	Otalias of floary fam.
Control law synthesis and stability robustness	Estimate of heavy rain performance effect p 640 N91-2418
improvement using constrained optimization techniques p 686 A91-37591	
Interactive three-dimensional boundary-layer method for	A system approach to aircraft optimization [NASA-TM-104074] p 654 N91-2419
transonic flow over swept wings p 616 A91-37829	
transonic flow over swept wings p 616 A91-37829 Cell centered and cell vertex multigrid schemes for the	Evaluation of cloud detection instruments an
	performance of laminar-flow leading-edge test article
Navier-Stokes equations p 674 A91-37834 Study of thermal-expansion-molded, graphite-epoxy	during NASA Leading-Edge Flight-Test Program [NASA-TP-2888] p 655 N91-2419
hat-stiffened sandwich panels p 675 A91-37845	
Calculation of steady and unsteady pressures on wings	NASA-LaRc Flight-Critical Digital Systems Technolog
at supersonic speeds with a transonic small-disturbance	Workshop [NASA-CP-10028] p 655 N91-2420
0 IN 100544	[14V9W-CL-10050] h 000 [491-5450

tra N ha p 617 A91-38544 Effects of horizontal tail ice on longitudinal aerodynamic code p 665 A91-38547 derivatives Airfoil design method using the Navier-Stokes p 646 A91-38550 equations Flight tests show potential benefits of data link as primary ommunication medium p 643 A91-38577 communication medium Aeronautical research in the United States - Challenges p 612 A91-38580 for the 1990's Numerical simulation of steady and unsteady asymmetric p 618 A91-38683 vortical flow p 671 A91-39389 Helicopter in-flight stores jettison Secondary frequencies in the wake of a circular cylinder p 620 A91-39736 with vortex shedding Coherent lidar airborne windshear sensor - Performance p 655 A91-39873 evaluation Transition research in low-disturbance high-speed wind p 621 A91-39919 Correlation of boundary layer stability analysis with flight p 621 A91-39929 transition data Experiments on swept-wing boundary layers

p 622 A91-39932 On the stability of swept wing laminar boundary layers p 622 A91-39933 including curvature effects Second mode interactions in supersonic boundary p 623 A91-39957 Transport concept Euler analysis of a High-Speed Civil p 624 A91-40217 Aerodynamic characteristics of crescent and elliptic p 624 A91-40219 wings at high angles of attack

p 658 N91-23153 inar flow control of crossflow vorticity p 679 N91-23410 LAR-13563-1] nondestructive evaluation: Requirements p 681 N91-24074 reliability loyable digital acoustic measurement p 689 N91-24078 angley laminar-flow-control experiment on rcritical airfoil: Suction coefficient analysis p 629 N91-24098 671 Symposium: Theory, Application and lume 2 p 634 N91-24132 20-VOL-2] p 669 N91-24133 nsonic Facility status imber effects on the transonic aerodynamics ring-body configuration p 634 N91-24134 p 634 N91-24135 w flight experiments w wind tunnel experiments p 634 N91-24136 nal support of the X-29A Advanced emonstrator flight experiment p 653 N91-24137 correlations for transition location on a e installed on an F-14 aircraft and design aminar glove for the X-29 aircraft accounting p 654 N91-24138 pressure gradient ind Shear Detection and Warning Systems: ned Manufacturers' and Technologists 060-PT-2] p 636 N91-24140 micron laser technology program p 637 N91-24143 ASA's IR wind shear detection research p 637 N91-24145 leling of the Denver Airport and surrounding p 638 N91-24152 dar simulation studies of the Denver July 11, prst p 638 N91-24155 characteristics and testing of the NASA p 638 N91-24156 /ind Shear Detection and Warning Systems: ined Manufacturers' and Technologists 060-PT-11 p 639 N91-24166 data analysis of July 7, 1990 microburst p 685 N91-24170 gley flight test program p 639 N91-24175 rmation on the flight deck p 640 N91-24176 p 640 N91-24180 eavy rain tests of heavy rain performance effect p 640 N91-24182 approach to aircraft optimization p 654 N91-24196 04074] of cloud detection instruments and of laminar-flow leading-edge test articles Leading-Edge Flight-Test Program p 655 N91-24199 lc Flight-Critical Digital Systems Technology p 655 N91-24200 00281 Hypervelocity Aerophysics Facility Advanced Workshop p 669 N91-24211 [NASA-CP-10031] National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH. Computational analysis of underexpanded jets in the p 615 A91-37421 hypersonic regime Sensor failure detection for jet engines p 656 A91-37593 Effects of horizontal tail ice on longitudinal aerodynamic p 665 A91-38547 derivatives p 676 A91-38698 Heat transfer in oscillating flows Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9. by 15-foot low speed wind tunnel p 626 A91-40561 [AIAA PAPER 90-2268] NASA aeropropulsion research in support of propulsion systems of the 21st century [NASA-TM-104403] p 627 N91-23083 Simulation of iced wing aerodynamics p 628 N91-23086 [NASA-TM-104362] icing simulation: A survey of computer models and merimental facilities [NASA-TM-104366] A study of three dimensional turbulent boundary layer separation and vortex flow control using the reduced Navier Stokes equations [NASA-TM-104407] p 628 N91-23089

Ē

Ī

Engine technology challenges for a 21s	st century high	Office National d'Etudes et de Recherches	S
speed civil transport [NASA-TM-104363] p 63	6 N91-23098	Aerospatiales, Modane (France). A study of supersonic and hypersonic ramjet engines	Con Diago State Hala GA
Effects of inlet distortion on the de		in France from 1950 to 1974 (application on combined	San Diego State Univ., CA. Unsteady aerodynamic loading of delta wings for low
secondary flows in a subsonic axial inl		cycle aircraft engines) p 658 N91-23149	and high angles of attack p 617 A91-38680
rotor	0 104 00470	Office National d'Etudes et de Recherches Aerospatiales, Paris (France).	Static measurements of slender delta wing rolling
[NASA-TM-104356] p 66 Multi-heat addition turbine engine	0 N91-23179	Compact heat exchanger for an inverse components	moment hysteresis p 625 A91-40223
	0 N91-23180	engine p 659 N91-23157	Sandia National Labs., Albuquerque, NM. A vortex panel method for calculating aircraft downwash.
Advanced ice protection systems test in the	ne NASA Lewis	Supersonic-hypersonic inlet studies for aerospaceplane p 659 N91-23160	on parachute trajectories
icing research tunnel [NASA-TM-103757] p 66	1 N91-23183	LIDAR studies on microbursts p 639 N91-24167	[DE91-009764] p 627 N91-23085
Model rotor icing tests in the NASA Lewis		Oklahoma Univ., Norman.	Advanced thermally stable jet fuels development program annual report. Volume 3: Fuel lubricity
tunnet	-	Performance of an aerospace plane propulsion nozzle p 615 A91-37769	[AD-A232793] p 673 N91-24453
[NASA-TM-104351] p 66 A CFD study of jet mixing in reduced	1 N91-23184	Old Dominion Univ., Norfolk, VA.	Schimmel Co., Saint Louis, MO. Helicopter in-flight stores jettison p 671 A91-39389
lower combustor emissions	now areas ioi	Numerical simulation of steady and unsteady asymmetric vortical flow p 618 A91-38683	Science Applications International Corp., Fort
	1 N91-23185	Airfoil transition and separation studies using an infrared	Washington, PA.
Simulation of brush insert for leading-e convective heat transfer	dge-passage	imaging system p 624 A91-40215	Advanced computational models for analyzing high speed propulsive flowfields p 686 N91-24291
	9 N91-23409	An experimental study of an axisymmetric turbulent boundary layer disturbed by a periodic freestream	Sener S.A., Madrid (Spain).
Modal analysis of multistage gear system	s coupled with	p 626 N91-23078	Hypersonic propulsion: Past and present
gearbox vibrations [NASA-TM-103797] p 68	1 N91-23513	Ophir Corp., Lakewood, CO. Continuous wave laser for wind shear detection	p 657 N91-23148 Service Technique de la Navigation Aerienne, Paris
Euler flow predictions for an oscillating of		p 637 N91-24142	(France).
a high resolution wave-split scheme		· _	RADAR performance experiments
[NASA-TM-104377] p 630 The 3-D Navier-Stokes analysis of cros	N91-24107	P	ρ 639 N91-24168 Societe Europeenne de Propulsion, Suresnes (France).
shocks/turbulent boundary layer interaction		Pennsylvania State Univ., University Park.	Comparative study of different systems of combined
(NASA-TM-104469) p 633	3 N91-24130	inception length to a fully developed, fin-generated.	cycle propulsion p 658 N91-23152
A design strategy for the use of vortex manage inlet-engine distortion using comp		shock-wave, boundary-layer interaction	Sparta, Inc., Laguna Hille, CA. National remote computational flight research facility
dynamics	diational noid	p 617 A91-37842 Experiments on the unsteadiness associated with a	[NASA-CR-179432] p 668 N91-24210
	N91-24131	ground vortex p 624 A91-40220	Stanford Univ., CA.
Static performance tests of a flight- ejector	type STOVL	A computationally efficient modelling of laminar	Unsteady aerodynamic loading of delta wings for low and high angles of attack p 617 A91-38680
	N91-24201	separation bubbles p 680 N91-23411 A new facility to study three dimensional viscous flow	A new architecture and expert system for aircraft design
Mixing of multiple jets with a confir		and rotor-stator interaction in turbines	synthesis p 652 N91-23132
crossflow. Summary of NASA-supported exp modeling	periments and	p 682 N91-24336 Pisa Univ. (Italy).	The effects of controlling vortex formation on the performance of a dump combustor p 672 N91-23270
	N91-24202	Metrics for roll response flying qualities	Nonlinear Aerodynamics and the Design of Wing Tips
Fuel-rich, catalytic reaction experimental		p 650 N91-23118 Pratt and Whitney Aircraft, East Hartford, CT.	[NASA-CR-188044] p 630 N91-24105
[NASA-TM-104423] p 662 Average-passage flow model development	N91-24203	Application of cyclic damage accumulation life prediction	Sundstrand Data Control, Inc., Redmond, WA. Status of Sundstrand research p 640 N91-24183
	N91-24338	model to high temperature components	Sverdrup Technology, Inc., Arnold AFS, TN.
Probability approach for strength calculat		p 681 N91-24309 Pratt and Whitney Aircraft, West Paim Beach, FL.	Computation of inlet reference plane flow-field for a
Enhancing aeropropulsion research wit	5 N91-24652	Coolant side heat transfer with rotation. Task 3 report:	subscale free-jet forebody/inlet model and comparison to experimental data
interactive computing	mg., opcoo	Application of computational fluid dynamics [NASA-CR-182109] p 683 N91-24551	[AD-A232101] p 680 N91-23445
	N91-24796	Prins Maurits Lab. TNO, Rijswijk (Netherlands).	Sverdrup Technology, Inc., Cleveland, OH.
National Aerospace Lab., Tokyo (Japan). Research on aerodynamic control of blade	tin clearance	Theoretical and experimental performance of a solid fuel	Computational analysis of underexpanded jets in the hypersonic regime p 615 A91-37421
flow in air-cooled turbine		ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170	Viscous three-dimensional analyses for nozzles for
[DE91-764223] p 660 National Center for Atmospheric Research	N91-23182 Boulder		hypersonic propulsion p 629 N91-23175 Syracuse Univ., NY.
co.	, 200,00,	R	An isentropic compression-heated Ludweig tube
Integration of the TDWR and LLWAS detection system p 640	wind shear N91-24178		transient wind tunnel p 673 A91-36450
Naval Air Development Center, Warminster		Remtech, S.A., Paris (France). MEGASODAR experiment p 639 N91-24169	Systems Control Technology, Inc., Arlington, VA. Air ambulance helicopter operational analysis
Agility: A rational development of fundam	nental metrics	Research Triangle Inst., Newport News, VA.	[DOT/FAA/RD-91/7] p 652 N91-23134
and their relationship to flying qualities p 651	N91-23129	Radar simulation program upgrade and algorithm	T
Naval Postgraduate School, Monterey, CA.		development p 638 N91-24153 Rockwell international Corp., Cedar Rapids, IA.	I .
Design and construction of a composite UAV research	airframe for	Wind Shear radar program future plans	Technische Univ., Brunswick (Germany, F.R.).
	N91-23143	p 637 N91-24151	Airborne Collision Avoidance System (ACAS) in
An engineering study of altitude		Rockwell International Corp., Los Angeles, CA. Aerodynamic preliminary analysis system 2. Part 1:	controlled air traffic. Aspects of reciprocal influence in Secondary Surveillance Radar (SSR) radio loads
deficiencies of the Service Aircraft Inst Package (SAIP)	iromentation	Theory	[ETN-91-99253] p 644 N91-23105
[AD-A232055] p 656	N91-23145	[NASA-CR-182076] p 626 N91-23080	Tel-Aviv Univ. (Israel). Secondary frequencies in the wake of a circular cylinder.
New Jersey Inst. of Tech., Newark. The stability to two-dimensional wakes and	i shear lavers	Aerodynamic preliminary analysis system 2. Part 2: User's manual	with vortex shedding p 620 A91-39736
	A91-36452	[NASA-CR-182077] p 627 N91-23081	Teledyne CAE, Toledo, OH.
North Carolina State Univ., Raleigh. Interactive three-dimensional boundary-lay	or mathed for	Rome Univ. (Italy). Reacting shock waves in hypersonic propulsion	Small Engine Component Technology (SECT) study [NASA-CR-175079] p 663 N91-24208
	A91-37829	applications p 629 N91-23174	Model 320-2: A compact advanced UAV turbojet
Theoretical evaluation of engine auxiliary	inlet design	Royal Aerospace Establishment, Bedford (England).	p 663 N91-24292 Teledyne/McCormick Selph, Hollister, CA.
for supersonic V/STOL aircraft [NASA-CR-187098] p 633	N91-24123	Calculation of steady and unsteady pressures on wings at supersonic speeds with a transonic small-disturbance	Helicopter in-flight stores jettison p 671 A91-39389
Notre Dame Univ., IN.		code p 617 A91-38544	Test Squadron (6510th), Edwards AFB, CA.
Breaking down the delta wing vortex: The re in the breakdown process	ole of vorticity	Handling qualities guidelines for the design of fly-by-wire	B-1B high AOA testing in the evaluation of a stall inhibitor system p 651 N91-23126
	N91-24109	flight control systems for transport aircraft p 667 N91-23119	Texas A&M Univ., College Station.
An experimental analysis of critical factor	rs involved in	Royal Aerospace Establishment, Farnborough	Flexural waves induced by electro-impulse deicing forces p 676 A91-38776
the breakdown process of leading edge von [NASA-CR-188231] p 631	tex flows N91-24110	(England).	An initial investigation into methods of computing
		Lightning protection requirements for aircraft: A proposed specification	transonic aerodynamic sensitivity coefficients
0		[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-24186	[NASA-CR-188192] p 629 N91-24099 Texas Univ., Arlington.
Only Didge Melicani Lab. 771		The role of structural analysis in airworthiness certification p 684 N91-24647	Inception length to a fully developed, fin-generated,
Oak Ridge National Lab., TN. Radioluminescent (RL) lighting system d	levelopment	Royal Aircraft Establishment, Farnborough (England).	shock-wave, boundary-layer interaction p 617 A91-37842
program	·	Surface activation of Concorde by Be-7	Thomas (Dieter), Fuerstenfeldbruck (Germany, F.R.).
[DE91-009743] p 679	N91-23381	p 690 N91-24983	The art of flying qualities testing p 649 N91-23109

Wright State Univ. CORPORATE SOURCE

Toronto Univ., Downsview (Ontario).

Performance characteristics of hypersonic detonation wave ramjets p 659 N91-23168

Turbulence Prediction Systems, Boulder, CO.

Status of turbulence Prediction System's AWAS 3

p 637 N91-24146

United Technologies Corp., West Palm Beach, FL.

Mechanical component diagnostic system

p 656 N91-23146 [AD-A232126]

United Technologies Research Center, East Hartford,

Temporally and spatially resolved flow in a two-stage axial compressor. II - Computational assessment

p 620 A91-39048 [ASME PAPER 90-GT-299] Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory

for wing shielding [NASA-CR-185192]

Notched fatigue of single crystal PWA 1480 at turbine ttachment temperatures p 682 N91-24310 attachment temperatures

Vigyan Research Associates, Inc., Hampton, VA.

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 1: Steady

[AD-A233482]

[AD-A23482] p 631 N91-24113
Calculation of high angle of attack aerodynamics of fighter configurations. Volume 2: User manual for VORSTAR-2

[AD-A233483]

p 631 N91-24114

Calculation of high angle of attack aerodynamics of fighter configurations. Volume 3: Unsteady [AD-A233569] p 63 p 631 N91-24115

Von Karman inst. for Fluid Dynamics,

Rhode-Saint-Genese (Belgium).

Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations

p 680 N91-23437

W

Westinghouse Defense and Electronic Systems

Center, Baltimore, MD.

Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems

p 637 N91-24149

Wichita State Univ., KS.

Water droplet impingement on airfoils and aircraft engine inlets for icing analysis p 634 A91-38543

Kansas Aviation Review

p 613 N91-24087 [NIAR-91-3] Evaluation of automation for inspection of aging ircraft p 613 N91-24088

aircraft An overview of information resources in aviation

p 690 N91-24091
Program plans for aviation safety research

[NIAR-90-32] p 638 N91-24157 Feasibility study in crack detection in aircraft stiffened p 638 N91-24157

panels by pulse probing and deconvolution

p 654 N91-24158

Bonded/fusion repair of aircraft structures

p 613 N91-24160 p 638 N91-24161

Crashworthiness experiments Mechanical paint removal techniques for composite

aircraft p 613 N91-24163 Williams International, Walled Lake, MI.

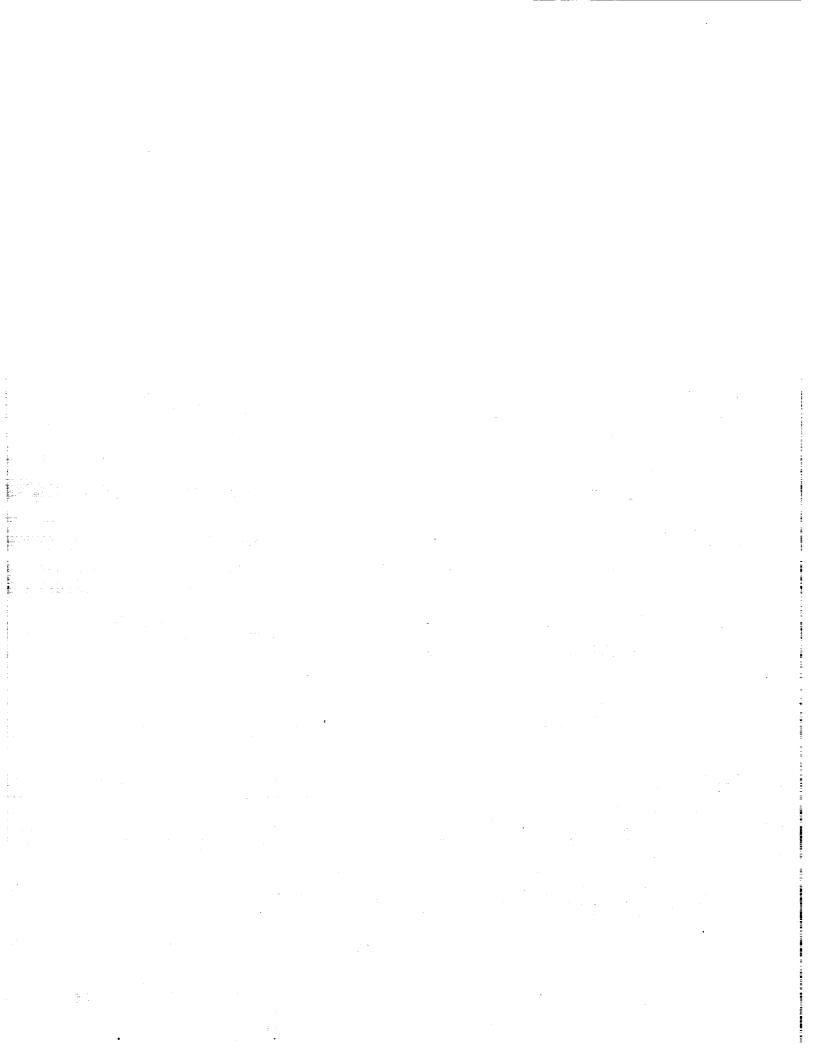
Small Engine Component Technology (SECT) studies [NASA-CR-175080] p 663 N91-24206

Wright Research Development Center,

Wright-Patterson AFB, OH.

The handling qualities of the STOL and maneuver technology demonstrator from specification to flight test p 666 N91-23117

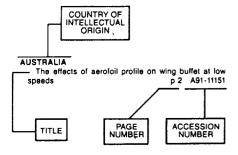
Turbojet potential for hypersonic flight


p 658 N91-23155

An experimental evaluation of combustor liner materials for solid fuel ramjet testing p 670 N91-24289

Analytical certification of aircraft structures p 684 N91-24641

Wright State Univ., Dayton, OH.


A computer aided multivariable control systems design technique with application to aircraft flying qualities [AD-A232549] p 653 N91-23144

September 1991

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 269)

Typical Foreign Technology Index Listing

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

В

BELGIUM

Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations [VKI-TN-174] p 680 N91-23437

C

CANADA

Decoupled flight control via a model-following technique p 664 A91-37595 using the Euler operator Moving surface boundary-layer control as applied to p 615 A91-37768 two-dimensional airfoils Actual stresses in notches - How applicable are the common stress concentration factors?

p 676 A91-38775 An update on SKAD (survival kit air systems p 635 A91-39384 406 MHz ELT signal spectra for Sarsat

p 643 A91-39778

p 612 A91-40180 Tiltrotor developments An initial study into the influence of control stick characteristics on the handling qualities of a fly-by-wire helicopter p 651 N91-23122

An investigation into the use of side-arm control for civil p 667 N91-23123 rotorcraft applications windows for

Determination of decision-height widecelerating IMC approaches in helicopters p 667 N91-23124

Performance characteristics of hypersonic detonation p 659 N91-23168 wave ramjets

The role of analysis in the design and qualification of p 684 N91-24648 composite aircraft structures CHINA, PEOPLE'S REPUBLIC OF

A new method for estimating airspeed, attack angle and p 664 A91-37051 sideslip angle

The planar elements method for computing the p 674 A91-37052 scattering field of flight vehicle

CAPP imitative system of aircraft assembly p 611 A91-37061

Experimental investigation on supersonic combustion p 657 A91-38203

Cycle analysis for a supersonic through flow fan ngine p 657 A91-38207 engine

On digital electronic control system of aircraft engine p 657 A91-38209

Flow around an unsteady thin wing close to curved p 620 A91-39744 around

Synchronous iterative method for computation of vortex p 624 A91-40126 flows at high angles of attack

The transient dynamic performances of a rotor-SFD8 system during passage through resonance

p 678 A91-40130 The design and simulation of an intelligent flight control

p 665 A91-40133 Transonic analysis and design using an improved grid p 624 A91-40137

Air surveying and data analysis for dynamic response p 647 A91-40156 of missiles at swept-back wing tip Modal analysis for fibre-carbon composite parts of an p 679 A91-40157 airplane

The nonlinear dynamic response analysis of the front windshield of Y12 under 'bird-impact' loads

p 648 A91-40158 Application of acoustically treated honeycomb sandwich

panels in noise control of aircraft cabin p 648 A91-40160 Numerical analysis of solid-fuel interactive vibration on

p 648 A91-40161 an aircraft integral tank Calculation and experimental study on sonic fatigue life p 648 A91-40162 of aircraft structural panels Further research on mechanical model for 'ground p 665 A91-40164 resonance' of helicopters Vibration problems in an aircraft design

p 648 A91-40165 Similarities and differences between environment tests

and reliability tests in view of vibration p 685 A91-40166 Application of identification method of modal parameters

to flight flutter test p 665 A91-40167 Integration of vibration test and flutter analysis - A brief introduction to 'a real-time flutter analysis system

p 665 A91-40168 Transonic flutter analysis of 2-D airfoils with 2 degrees freedom p 665 A91-40169 of freedom Identification of nacelle modes from airplane GVT

p 648 A91-40170 A study on sonic load of the vertical tail of F-7 aircraft p 648 A91-40171

Flexure vibration test method of aviation tube p 648 A91-40172

A numerical method for simulating drop test of landing p 648 A91-40174

Prediction of test spectrum for gunfire vibration p 666 A91-40175 A new pseudo-potential function model for rotational

flow and its application to transonic-supersonic flow p 825 A91-40373

Computation of three-dimensional flow fields through ompressor blade rows p 625 A91-40375 compressor blade rows Some analysis of decision-making in the test

ufacture of military aircraft p 613 N91-24093 [AD-A233111]

Design and implementation of real-time computer system coordinated force actuating mutti-input/output [AD-A233114] p 887 N91-24768

Ε

EGYPT

p 676 A91-38698 Heat transfer in oscillating flows

F

FRANCE

Aeronautical meteorology - Safety and economics of p 685 A91-38323 commercial air transports A new system for unsteady aerodynamics of moving p 618 A91-38695 A model for the experimental study of curvature effects on transition of the boundary layer on a swept wing

p 620 A91-39691 Preliminary results Quantitative analysis of flow visualizations in ONERA p 677 A91-39694 water tunnels

Stream functions for the hypersonic flow around quasi-pointed slender bodies at low angles of attack p 621 A91-39832 Laminar-turbulent transition; Proceedings of the IUTAM

Symposium, Ecole Nationale Superleure de l'Aeronautique et de l'Espace, Toulouse, France, Sept. 11-15, 1989 p 677 A91-39901 analysis of natural Experimental and theoretical

transition on 'infinite' swept wing p 621 A91-39927 Theoretical study of Goertler vortices - Linear stability p 623 A91-39950 approach Boundary layer tripping in supersonic flow

p 623 A91-39960 Flying Qualities

p 649 N91-23108 [AGARD-CP-508] Hypersonic Combined Cycle Propulsion

[AGARD-CP-479] p 657 N91-23147 A study of supersonic and hypersonic ramjet engines in France from 1950 to 1974 (application on combined cycle aircraft engines) p 658 N91-23149 Comparative study of different systems of combined ρ 658 cycle propulsion Compact heat exchanger for an inverse components p 659 N91-23157 engine

o 659 N91-23160 serospaceolane Integration of propulsive systems: Selection

compromise [REPT-911-111-101] p 661 N91-23187 The certification of the aircraft integrated propulsive

[REPT-911-111-102] p 661 N91-23188 The electrical flight control system of A320 Airbus: A

fault tolerant system [REPT-911-111-103] p 867 N91-23192 Observatory of new materials. Evolution perspectives for the materials used in civil transportation aircraft

[REPT-911-111-107] p 672 N91-23248 meterials Oxidation resistant carbon/carbon

p 672 N91-23251 [REPT-911-430-105] How to know CMC [REPT-911-430-130]

p 672 N91-23262 Noise inside aircraft fuselages subjected to airborne (REPT-911-111-104) n 689 N91-23853

AGARD highlights 91/1, March 1991 [AGARD-HIGHLIGHTS-91/1] p **69**1 N91-24084

LIDAR studies on microbursts N91-24167 p 639 **RADAR performance experiments** p 639 N91-24168

MEGASODAR experiment p 639 N91-24169 Analytical Qualification of Aircraft Structure

p 683 N91-24638 [AGARD-R-772] Validation of in-house and external software systems p 687 N91-24640 at Aerospatiale Influence of the refinement of structural calculation on aircraft qualification procedures p 684 N91-24849 AGARD flight test techniques at ries. Volume 9: Aircraft

exterior noise measurement and analysis techniques
[AGARD-AG-300-VOL-9] p 689 N91-24843

G

GERMANY, FEDERAL REPUBLIC OF

Forward sweep - A favorable concept for a laminar flow p 615 A91-37767 Equation decoupling - A new approach to the aerodynamic identification of unstable aircraft A91-37773 p 664

Orientation measurements and transmission via Mode	Real time
S at airports p 643 A91-38526	[IAITIC-87-11
Air travel - System relating flight safety, aircraft, and airports p 634 A91-38527	IAI hyperse
Canopy breaking system for non-delay pilot rescue	Computeri
p 647 A91-39398	structural tes [IAITIC-87-10
A general method for rotordynamic analysis	ITALY
p 677 A91-39585 Investigations on flow instabilities on airfoils by means	Evolution of
of piezofoil-arrays p 621 A91-39911	control and s Adaptive a
Instability features appearing on swept wing	/ Outputo u
configurations p 622 A91-39937	Evaluation
Identification strategies for crack shape determination in rotors p 679 A91-40234	time data applications
Preference for an inertial degree of freedom describing	Variable-pr
the teeter motion of windturbine and helicopter rotors p 679 A91-40239	The LWC
Vibration behavior of a labyrinth seal with through-flow	THE CHO
p 679 A91-40241	Flying qual
Effects of canard position on the aerodynamic	Metrics for
characteristics of a close-coupled canard configuration at low speed p 649 A91-40495	141011103 101
Analysis of numerical solutions for three-dimensional	Airbreathin
lifting wing flows p 625 A91-40498	Reacting
Procedure for determination of three-dimensional wind tunnel wall interferences and wall adaptation in	applications
compressible subsonic flow using measured wall	
pressures	
[DLR-FB-90-46] p 628 N91-23088 Flight mechanics/air navigation research field. A 1990	IARAN
Scientific report of the German Air and Space Research	JAPAN All solid-s
Organization [ISSN-0720-7808] p 643 N91-23103	processing
[ISSN-0720-7808] p 643 N91-23103 Airborne Collision Avoidance System (ACAS) in	SSR signal
controlled air traffic. Aspects of reciprocal influence in	Track initia
Secondary Surveillance Radar (SSR) radio loads [ETN-91-99253] p 644 N91-23105	14
The art of flying qualities testing p 649 N91-23109	Mach 4 tes
Development of MIL-8785C into a handling qualities	ACT wind-t
specification for a new European fighter aircraft p 666 N91-23114	Aerodynam
Handling qualities of highly augmented unstable aircraft	combinations
summary of an AGARD-FMP working group effort p 666 N91-23116	Re-entry fli
Integration of handling quality aspects into the	perfect servo Improveme
aerodynamic design of modern unstable fighters	space vehicle
p 667 N91-23125 Handling qualities evaluation for highly augmented	A comparis
helicopters p 651 N91-23128	flows around
X-31A at first flight p 651 N91-23131 The limits of the landing process of aircraft	
[DLR-FB-90-49] p 653 N91-23137	The develo
Trajectory optimization considerations for ramjet	Further ex
engines p 658 N91-23151 Airbreathing propulsion for space transport: New	oscillating an
concepts, special problems and attempts at solutions	High gal
p 658 N91-23154 Aerodynamics and stabilization of combustion of	communication
hydrogen jets injected into subsonic airflow	Cross-flow plate
p 629 N91-23164	Developme
The 2-D supersonic nozzle design p 660 N91-23176	crossflow field Visual stud
Evaluation techniques for highly augmented aircraft	plate
[DLR-FB-90-35] p 667 N91-23191 The propagation of acoustic disturbances in the	NKK premi
transonic flow fields of wings	Analysis of
[ESA-TT-1126] p 689 N91-23854	•
Activities report of the DLR [ISSN-0938-2194] p 691 N91-24086	Modeling for in incompress
Analytical methods for the qualification of helicopter	ii r ii loori prose
structures p 684 N91-24650	Research of
1	flow in air-cod (DE91-76422
•	Water-cool
INDIA	blade [DE91-76423
Application of multiple-input/single-output analysis	JORDAN
procedures to flight test data p 647 A91-39420 Low-order panel method for internal flows	Visualizatio
p 625 A91-40225	in pitch to ver
INTERNATIONAL ORGANIZATION A320 - First of the computer-age aircraft	
p 645 A91-36354	
European studies to investigate the feasibility of using	KOREA(SOUTH
1000 ft vertical separation minima above FL 290. I p 642 A91-38217	Supersoni composite
Current status and future prospects of air traffic	composite ;
control p 642 A91-38322	

estimation of aircraft angular attitude p 649 N91-23107 0041 0061 o 668 N91-23194 zed system for static and fatigue large scale its: A case study p 681 N91-23522 0071 of clutter suppression techniques for air traffic p 641 A91-37101 surveillance radar irborne track while scan p 642 A91-37139 of the performance of a RISC based real processor in air control radar p 642 A91-37145 roperty effects in supersonic wedge flow p 616 A91-37832 parameter - Some experimental results p 685 A91-38388 lities experience on the AMX aircraft p 650 N91-23112 roll response flying qualities p 650 N91-23118 ig propulsion for transatmospheric flight p 659 N91-23156 shock waves in hypersonic propulsion p 629 N91-23174 J state ASR with adaptive pulse Dopple p 641 A91-37107 discrimination from garbled replies p 642 A91-37121 ition using MHT in dense environments p 674 A91-37141 sting of scramjet inlet models p 615 A91-37418 transport-type wing p 615 A91-37772 tunnel experiments of a nic characteristics of slender wing-gap-body p 615 A91-37777 ight control of space plane using approximate p 664 A91-37778 nt of atmospheric flight performance of a a through sensitivity minimization p 664 A91-37779 son between computation and experiment for airfoil with slat and flap p 616 A91-37780 opment and research on CAD for education p 686 A91-38234 sign operiments on vortex formation around an d translating airfoil at large incidences p 620 A91-39738 airbome antenna for satellite p 643 A91-39776 instability of 3-D boundary layers on a flat n 622 A91-39931 ent and interaction of instabilities in the p 622 A91-39938 ly of boundary layer transition on rotating flat p 623 A91-39941 um quality titanium master alloy p 672 A91-40425 circular elastic membrane wings p 625 A91-40472 or unsteady aerodynamics of rectangular wing sible flow using step responses p 625 A91-40473 in aerodynamic control of blade tip clearance oled turbine p 660 N91-23182 ing technique of high temperature gas turbine p 681 N91-23506 on of the flow about a delta wing maneuvering ry high angle of attack p 618 A91-38684

ISRAEL

Ground resonance of a helicopter with inter-connected p 645 A91-36360 blades Secondary frequencies in the wake of a circular cylinder with vortex shedding p 620 A91-39736 Vectored propulsion, supermaneuverability and robot p 649 A91-40501

c flutter analysis of clamped symmetric using shear deformable finite p 675 A91-37847

K

N

NETHERLANDS

Theoretical and experimental performance of a solid fuel ramjet combustion cycle for hypersonic flight conditions p 660 N91-23170

Evaluation of the qualification of the structure of a passenger aircraft by analysis and full-scale testing p 684 N91-24645

O

OTHER

Toward automating the design of centrifugal impellers p 676 A91-38874

ROMANIA (RUMANIA)

On the improvement of the supersonic lifting line theory p 614 A91-36695 New developments in the dynamic aeroelastic stability study of rotor blades p 673 A91-36698 New methods in the theory of subsonic flows past thin airfoil configurations p 614 A91-36699 Wing calculation in supersonic flow by means of the supersonic lifting line theory p 614 A91-36700 The influence of altitude and speed variations over the aircraft flight control response during the longitudinal nonlinear manoeuvres p 664 A91-36722 nonlinear manoeuvres Aerodynamic calculation of tandem wings in supersonic flow by means of SLLT p 614 A91-36724 Steady linearised aerodynamics. III - Transonic p 620 A91-39223

S

SPAIN

Hypersonic propulsion: Past and present

p 657 N91-23148 Nonlinear analysis of composite ear webs with holes p 684 N91-24642 and correlation with tests SWEDEN

On the development of turbulent spots in plane Poiseuille ow p 678 A91-39904 flow Long time measurements of landing gear loads on SAAB SF-340 commuter aircraft [FFA-TN-1990-53] p 653 N91-23138 SYRIA

Kinetic study of a homogeneous propellant primary flame, with and without additive p 671 A91-39690

Т

TAIWAN

investigation airfoil/jet/fusetage-undersurface flowfields in ground effect p 617 A91-38541 Computation of axisymmetric slender bodies enclosing a jet efflux in pitching oscillatory motion p 618 A91-38681

U.S.S.R.

Discontinuous solutions for a three-dimensional hypersonic boundary layer with interaction p 614 A91-37176 Entropy effects of hypersonic flow past blunt delta wings p 615 A91-37181
Detection of traces of water in aviation kerosenes by gas chromatography p 670 A91-37182 Characteristics of the reception by the antenna systems

of a descending aircraft of signals from radio-beacon landing systems p 642 A91-37200 Residual stress control in developing processes for the manufacture of compressor blades for gas turbine engines p 674 A91-37269 Evaluation of the phase distortions of the input signal of a synthetic-aperture radar p 677 A91-39144
Functional-adaptive data processing in airborne radio

p 643 A91-39187 navigation and landing systems Design and development of aviation gas turbine ngines p 657 A91-39201

nite element systems p 677 A91-39230
Boundary layer control by a local heating of the wall p 678 A91-39909 The experimental investigation of stability and receptivity of a swept-wing flow p 623 A91-39944

Receptivity and stability of the boundary layer at a high urbulence level p 678 A91-39945 turbulence level UNITED KINGDOM Accent on hypersonic p 669 A91-36625

The introduction of off-line programming techniques for the robotic assembly of aircraft structures [SME PAPER MS90-276] p 6 p 611 A91-36898 FOREIGN TECHNOLOGY INDEX

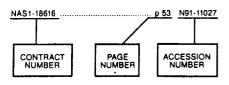
UNITED KINGDOM

US industry enters the green maze	
p 685 A91-3704	19
Fabrication of engineering ceramics by injection	n
molding p 674 A91-373	
The English summer of 1990 - Further progress toward	İs
deregulation of the aviation and travel industry	
p 690 A91-3780	1
Air traffic control today and tomorrow	
p 642 A91-382	15
High subsonic flow about a moving spoiler identifying	
a novel problem of wind tunnel interference	.8
p 619 A91-387	10
Fighter escape system - The next step forward p 646 A91-3938	22
F	2
Advanced airborne oxygen sensors	
p 655 A91-393	
The control of rotor vibration using squeeze-fit	
dampers p 677 A91-3959	
The breakdown of the linearized theory and the role	of
quadrupole sources in transonic rotor acoustics	
p 688 A91-397	49
Composites for a widebody p 612 A91-398	52
Moulded Mustang p 612 A91-398	54
Aerodynamics at the speed of sound	
p 621 A91-399	00
On the instability of hypersonic flow past a wedge	
p 621 A91-399	22
F	at
The effect of isolated roughness elements on transition attachment-line flows p. 678 A91-399	
In actaonine in the incident	9
Visualisation of boundary layer transition	
p 623 A91-399	
Balancing of rotating machinery p 679 A91-402	
The performance of 60 deg delta wings: The effect	is
of leading edge radius on vortex flaps and the wing	
[CRANFIELD-AERO-9004] p 628 N91-230	
The development of alternate criteria for FBW handling	ng
qualities p 666 N91-231	
Handling qualities guidelines for the design of fly-by-wi	re
flight control systems for transport aircraft	
p 667 N91-231	19
A review of high angle of attack requirements for comb	at
aircraft p 651 N91-231	30
The performance of 60 deg delta wings: The effect	
of leading edge radius and vortex flaps	
[CRANFIELD-AERO-9002] p 653 N91-231	ΔN
Some aspects of shock-wave boundary layer interacti	
	A
Eight and protection of the control	^
proposed specification	
[RAE-TM-FS(F)-632-ISSUE-1-R] p 641 N91-241	
The role of structural analysis in airworthine	
certification p 684 N91-246	47
Surface activation of Concorde by Be-7	
p 690 N91-249	

•

e deletionere e est est de lechel de le les les est est en en e

2) _El


.

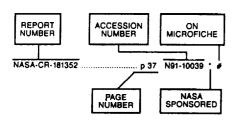
•

.

· ...

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.


AF PROJ. 2307	p 628	N91-23094
	p 682	N91-24530
AF PROJ. 2308	p 683	N91-24533
AF PROJECT 2302P101	p 671	A91-39302
AF PROJECT 2302P1	p 671	A91-36812
AF-AFOSR-0155-88	p 683	N91-24533
	p 628	N91-23094
		N91-24530
AF-AFOSR-0373-89	p 682	A91-38680
AF-AFOSR-84-0099	p 617	
	p 618	A91-38684
AF-AFOSR-86-0082	p 617	A91-37842
AF-AFOSR-86-0090	p 676	A91-38706
AF-AFOSR-86-0112	p 616	A91-37838
AF-AFOSR-87-0074	p 676	A91-38697
AF-AFOSR-89-0042	p 623	A91-39940
AF-ARFOSR-90-0093	p 620	A91-39736
DA PROJ. 1L1-81101-AH-45	p 662	N91-24204
	p 662	N91-24205
	p 663	N91-24206
	p 663	N91-24207
	p 663	N91-24208
DA PROJ. 1L1-61102-AH-45	p 660	N91-23179
DA PROJ. 1L1-62211-A-47-A	p 681	N91-23513
DA PROJ. 3E1-62787-A-878	p 636	N91-23100
DA PROJ. 3M1-62787-A-878	p 641	N91-24188
DAAG29-82-K-0094	p 663	A91-36358
DAAJ02-87-C-0015	p 656	N91-23146
DAAL03-86-G-0040	p 632	N91-24116
DAAL03-88-C-0003	p 663	A91-36358
DE-AC04-76DP-00789	p 668	A91-40556
	p 626	A91-40557
	p 627	N91-23085
	p 673	N91-24453
DE-AC05-84OR-21400	p 679	N91-23381
DFG-HU-254/8	p 649	A91-40495
DRET-87-272	p 618	A91-38695
DTFA01-87-C-00014	p 652	N91-23134
DTFA01-91-Y-01004	p 640	N91-24185
DTFA03-89-C-00061	p 636	N91-23097
DTFA03-90-C-00050	p 638	N91-24157
FY1455-89-N-0635	p 673	N91-24453
F33601-89-C-0045	p 631	N91-24112
F33615-83-C-3603	p 650	N91-23120
F33615-85-C-5029	p 670	A91-38809
F33615-86-C-5044	p 611	A91-36895
r33013-80-U-3044	p 673	A91-36896
E00545 03 C 0045		
F33615-87-C-3615	p 653	N91-23144
F33615-87-C-3616	p 631	N91-24113
	p 63 1	N91-24114
	p 631	N91-24115
F49620-85-C-0027	p 616	A91-37841

E40000 BC C /	0100	_	617	A91-37859
F49620-86-C-0	0133		617	
F49620-86-C-(0134	р	620	A91-39708
F49620-86-K-0	0020	n	675	A91-38693
F49620-88-C-0	0053		686	A91-39417
NAG1-1032		P	622	A91-39932
NAG1-1156			630	N91-24109
117.G (-1150			631	N91-24110

			686	A91-37591
NAG1-732			624	A91-40219
NAG1-735		р	624	A91-40215
NAG1-753		D	676	A91-38697
			629	N91-24099
			615	A91-37769
			617	A91-37842
NAG1-8			616	A91-37841
NAG1-937		p	622	A91-39932
NAG1-975		D	624	A91-40216
	***************************************		624	A91-40220
	***************************************		627	N91-23084
			627	N91-23084
NAG3-284		р	676	A91-38776
NAG3-566		р	634	A91-38543
NAG3-608			633	N91-24123
111.55.55			673	A91-36450
				N91-24583
			683	
			672	N91-24358
			634	N91-24139
NAS1-18000			686	A91-37591
NAS1-18015			626	N91-23060
			627	N91-23081
NIAC4 40000				A91-39873
NAS1-18029			655	
NAS1-18036			690	N91-24844
NAS1-18107	*******************************	Р	620	A91-39738
		D	623	A91-39940
NAS1-18240			624	A91-40219
NAS1-18378			654	N91-24195
NAS1-18584			618	A91-38683
			622	A91-39936
NAS1-18605			614	A91-36452
		P	620	A91-39736
		•	633	N91-24125
NAS1-18703				
NAS1-18703		p	632	N91-24118
NAS1-18703		P	632 632	N91-24118 N91-24119
NAS1-18703		PP	632 632 632	N91-24118 N91-24119 N91-24120
NAS1-18703		999	632 632 632 632	N91-24118 N91-24119 N91-24120 N91-24121
NAS1-18703		99999	632 632 632 632 632	N91-24118 N91-24119 N91-24120
NAS1-18703 NAS1-18925		99999	632 632 632 632	N91-24118 N91-24119 N91-24120 N91-24121
NAS1-18925		000000	632 632 632 632 632 638	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153
NAS1-18925 NAS1-19000		0000000	632 632 632 632 632 638 690	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845
NAS1-18925 NAS1-19000 NAS2-12211		00000000	632 632 632 632 638 690 668	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24210
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789			632 632 632 632 638 690 668 646	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24210 A91-38548
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070			632 632 632 632 638 690 668 646 652	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24210 A91-38548 N91-23136
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157			632 632 632 632 638 690 668 646 652 654	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2455 N91-24108 N91-23136 N91-24198
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288			632 632 632 632 638 690 668 646 652 654 681	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24210 A91-38548 N91-23136 N91-24308
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288			632 632 632 632 638 690 668 646 652 654	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2455 N91-24108 N91-23136 N91-24198
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288			632 632 632 632 638 690 668 646 652 654 681 683	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24210 A91-38548 N91-23136 N91-24308
NAS1-18925 NAS1-18905 NAS2-12211 NAS2-122189 NAS2-13070 NAS2-131070 NAS3-23288 NAS3-23691			632 632 632 632 638 690 668 646 652 654 681 683 688	N91-24118 N91-24119 N91-24120 N91-24121 N91-24153 N91-2453 N91-24510 A91-38548 N91-24198 N91-24198 N91-24509 N91-24551
NAS1-18925 NAS1-18905 NAS2-12211 NAS2-122189 NAS2-13070 NAS2-131070 NAS3-23288 NAS3-23691			632 632 632 632 638 690 668 646 652 654 681 683 688	N91-24118 N91-24119 N91-24120 N91-24121 N91-24121 N91-2455 N91-2455 N91-2450 N91-24309 N91-24309 N91-24384 N91-23849 N91-23849
NAS1-18925 NAS1-18905 NAS2-12211 NAS2-122189 NAS2-13070 NAS2-131070 NAS3-23288 NAS3-23691			632 632 632 632 638 690 668 646 652 654 681 683 688 688	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24153 N91-2453 N91-24309 N91-24309 N91-23849 N91-23840 N91-23850 N91-23850 N91-23850
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12730 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720			632 632 632 632 638 690 668 646 652 654 681 683 688 688 688	N91-24118 N91-24119 N91-24120 N91-24121 N91-24123 N91-24845 N91-24850 N91-24210 A91-38548 N91-24309 N91-24309 N91-24309 N91-23849 N91-23850 N91-23850 N91-23850 N91-23850
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720			632 632 632 632 638 690 668 646 652 654 681 683 688 688 688 688 688 688	N91-24118 N91-24119 N91-24120 N91-24121 N91-24121 N91-2455 N91-2455 N91-24210 A91-38548 N91-24309 N91-24309 N91-24309 N91-23850 N91-23850 N91-23850 N91-23850 N91-23850 N91-23850 N91-23850
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720			532 632 632 632 638 690 668 646 652 654 688 688 688 688 688 688 688 688 687	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24153 N91-2453 N91-24309 N91-24309 N91-2350 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23940 NAS3-23940 NAS3-23940			532 632 632 632 638 690 668 646 652 654 681 683 688 688 688 688 688 688 689 671 672	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24210 A91-38548 N91-22136 N91-24398 N91-24398 N91-23850 N91-23851 N91-23852 N91-24310 N91-24310 N91-24310 N91-24310
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23940 NAS3-24541			532 632 632 632 638 690 668 646 652 654 681 688 688 688 688 688 688 688 688 688	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-23850 N91-23850 N91-23851 N91-23851 N91-23851 N91-23851 N91-23851 N91-244510 A91-38819 N91-244510 A91-34819 N91-24451
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23939 NAS3-23940 NAS3-24541			532 632 632 632 638 690 686 652 654 688 688 688 688 688 688 688 688 688 68	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24210 A91-38548 N91-22136 N91-24398 N91-24398 N91-23850 N91-23851 N91-23852 N91-24310 N91-24310 N91-24310 N91-24310
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24544 NAS3-24541 NAS3-24541			532 632 632 632 638 690 686 652 654 688 688 688 688 688 688 688 688 688 68	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24198 N91-24198 N91-24198 N91-24551 N91-23850 N91-23850 N91-23851 N91-23851 N91-23851 N91-23850 N91-23850 N91-2451 N91-2450 N91-2450 N91-2450 N91-2450 N91-2450
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13070 NAS2-13157 NAS3-23891 NAS3-23990 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542			532 632 632 632 638 690 686 652 654 681 688 688 688 688 688 688 688 688 688	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-24210 A91-38548 N91-22136 N91-24309 N91-24551 N91-23850 N91-23851 N91-23852 N91-24310 N91-244310 N91-244310 N91-24206
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23920 NAS3-23940 NAS3-23484 NAS3-24541 NAS3-24542 NAS3-24544			532 532 532 632 633 636 658 654 652 654 681 688 688 688 688 688 687 672 663 663 663 663 663	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2455 N91-2456 N91-24198 N91-2459 N91-23850 N91-23850 N91-23851 N91-23851 N91-23851 N91-23851 N91-2451 N91-2451 N91-24208 N91-24208 N91-24208 N91-24208
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544			532 532 632 632 632 636 688 686 681 683 688 688 688 688 688 688 688 688 688	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24198 N91-24198 N91-24198 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23851 N91-24451 N91-24450 N91-24450 N91-24205 N91-24205 N91-24205
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-1273070 NAS2-13157 NAS3-23288 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545			532 632 632 633 636 636 658 654 654 681 688 688 688 688 688 688 688 683 683 683	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-2455 N91-24198 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-2391 NAS3-2391 NAS3-23940 NAS3-24544 NAS3-24542 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544 NAS3-24544			532 532 532 632 633 636 653 654 655 654 668 688 688 688 688 689 667 672 663 663 663 663 663 663 663 663 663 66	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24309 N91-23850 N91-23851 N91-23850 N91-23851 N91-24510 A91-38819 N91-244510 A91-24208 N91-24208 N91-24208 N91-24208 N91-24204
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24542 NAS3-24545			532 632 632 632 638 690 668 646 654 681 683 686 688 688 689 682 671 663 663 663 662 662 663 663 663 663 663	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24158 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23851 N91-23851 N91-2451 N91-2450 N91-24204 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-23185
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24542 NAS3-24545			532 632 632 632 638 690 668 646 654 681 683 686 688 688 689 682 671 663 663 663 662 662 663 663 663 663 663	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24309 N91-23850 N91-23851 N91-23850 N91-23851 N91-24510 A91-38819 N91-244510 A91-24208 N91-24208 N91-24208 N91-24208 N91-24204
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24542 NAS3-24545			532 632 632 632 638 690 688 652 654 681 688 688 688 688 688 689 667 672 663 663 662 662 662 661 661 661 661 661 661 661	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24158 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23851 N91-23851 N91-2451 N91-2450 N91-24204 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-24205 N91-23185
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24543 NAS3-24544 NAS3-24545 NAS3-24547 NAS3-24547 NAS3-24548			532 532 532 632 633 636 636 658 652 654 681 683 688 688 689 682 662 662 661 617 617 618	N91-24118 N91-24119 N91-24120 N91-24121 N91-24122 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23850 N91-24501 N91-24208 N91-24208 N91-24208 N91-24208 N91-24208 N91-24208 N91-24208 N91-24208 N91-24204 A91-36884 A91-38684 A91-38684
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24543 NAS3-24544 NAS3-24545 NAS3-24547 NAS3-24547 NAS3-24548			532 632 632 632 638 690 684 652 654 688 688 688 688 688 663 663 663 663 663	N91-24118 N91-24120 N91-24121 N91-24122 N91-24153 N91-24845 N91-24138 N91-24309 N91-24399 N91-24551 N91-23850 N91-23851 N91-23851 N91-23850 N91-23851 N91-24450 N91-2450 N91-2450 N91-2450 N91-2420 N91-2420 N91-2420 N91-2420 N91-2420 N91-2420 N91-2420 N91-2420 N91-2420 A91-38880 A91-38880
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-24542 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24547 NAS3-25574 NAS3-25574 NAS3-25574 NAS3-25567			532 632 632 633 638 668 646 652 688 688 688 688 689 682 667 663 663 663 664 661 671 683 663 664 665 665 665 665 665 665 665 665 665	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-24513 N91-24198 N91-24309 N91-2451 N91-23850 N91-23851 N91-23851 N91-23851 N91-24310 N91-24310 N91-24204 N91-24204 N91-24204 N91-24205 N91-24310 N91-24204 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-24310 N91-38680 A91-38680 A91-38680 A91-38680
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23720 NAS3-23910 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542 NAS3-24544 NAS3-24543 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567 NAS3-2567			532 532 532 633 636 638 646 652 654 688 688 688 688 688 689 661 662 663 663 664 663 664 665 665 665 665 665 665 665 665 665	N91-24118 N91-24119 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24309 N91-23850 N91-23850 N91-23851 N91-23850 N91-24501 N91-24501 N91-24204 N91-2420
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-233691 NAS3-23720 NAS3-23940 NAS3-24542 NAS3-24542 NAS3-24543 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-24545 NAS3-2454			532 532 632 632 638 658 646 652 688 688 688 688 687 672 663 663 663 663 661 617 617 617 625 663 653	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-24845 N91-24158 N91-24309 N91-2459 N91-23136 N91-23136 N91-23850 N91-23850 N91-23851 N91-23850 N91-23851 N91-2450 N91-2450 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24205 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24204 N91-24205 N91-24204 N91-24204 N91-24204 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205 N91-24204 N91-24205
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24542 NAS3-24541 NAS3-24542 NAS3-24544 NAS3-24547 NAS3-25574 NAS3-25574 NAS3-25574 NAS3-25567 NCA2-192 NCA2-192 NCA2-287	1		532 532 632 633 638 658 658 652 681 683 688 688 688 689 682 683 662 663 661 617 617 617 617 617 617 617 617 617	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-2453 N91-2459 N91-2459 N91-2459 N91-23850 N91-23850 N91-23851 N91-23851 N91-24204 N
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23939 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24545 NAS3-25967 NCA2-192 NCA2-287 NCC2-804 NCC2-804 NCC2-8083 NSERC-A-293	1		532 532 632 632 638 646 654 681 683 688 688 688 688 681 672 671 672 683 662 663 663 663 663 663 663 663 663 66	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24551 N91-23850 N91-23851 N91-23850 N91-23851 N91-2450
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23939 NAS3-23940 NAS3-24541 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24545 NAS3-25967 NCA2-192 NCA2-287 NCC2-804 NCC2-804 NCC2-8083 NSERC-A-293	1		532 532 632 632 638 646 654 681 683 688 688 688 688 681 672 671 672 683 662 663 663 663 663 663 663 663 663 66	N91-24118 N91-24129 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-2453 N91-2459 N91-2459 N91-2459 N91-23850 N91-23850 N91-23851 N91-23851 N91-24204 N
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-233691 NAS3-23720 NAS3-23940 NAS3-24542 NAS3-24542 NAS3-24543 NAS3-24545 NAS3-24547 NAS3-24547 NAS3-24548 NAS3-24548 NAS3-24548 NAS3-24549 NAS3-24548 NAS3-2454	1 9 10150		532 532 632 632 639 658 659 658 652 654 681 688 688 688 688 689 681 662 661 617 617 617 625 659 659 661 661 665 661 661 665 665 665 665 665	N91-24118 N91-24120 N91-24120 N91-24121 N91-24123 N91-24153 N91-2453 N91-2453 N91-24198 N91-24309 N91-24551 N91-23850 N91-23851 N91-23850 N91-23851 N91-2450
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24547 NAS3-25574 NAS3-25574 NAS3-25574 NAS3-25567 NCA2-192 NCA2-287 NCC2-804	1 9 10150 0434		532 532 632 632 638 659 658 654 681 688 688 688 688 689 682 671 683 663 663 663 663 661 661 671 683 663 663 663 663 663 663 663 663 663	N91-24118 N91-24120 N91-24121 N91-24121 N91-24123 N91-24153 N91-2453 N91-24510 A91-323136 N91-24309 N91-24551 N91-23850 N91-23850 N91-23850 N91-24300 N91-2451 N91-23850 N91-24204 A91-40562 N91-24206 N91-24206 N91-24208 N91-24208 N91-24208 N91-24208 N91-24208 N91-38680 A91-38680 A91-39786 A91-37788 A91-37788
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13070 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23940 NAS3-24544 NAS3-24541 NAS3-24544 NAS3-24544 NAS3-24545 NAS3-25967 NCA2-192 NCA2-287 NCA2-2887 NCC2-804 NCC2-804 NCC2-8083 NSERC-A-293 NS	1 9 10150 00434 00239		532 532 632 632 639 668 669 668 665 668 668 668 668 668 668 668 669 661 672 663 664 665 665 667 662 663 665 665 665 665 665 665 665 665 665	N91-24118 N91-24120 N91-24121 N91-24122 N91-24153 N91-24551 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-24501 A91-38684 A91-38684 A91-38684 A91-38684 A91-38584 A91-38758 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12789 NAS2-13157 NAS3-23288 NAS3-233691 NAS3-23720 NAS3-23940 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24545 NAS3-24547 NAS3-24547 NAS3-25574 NAS3-2557	1 9 10150 00434 00239 00513		532 532 632 632 632 636 653 654 665 654 668 668 668 668 668 668 668 668 669 671 672 663 664 661 672 665 665 665 665 665 665 665 665 665 66	N91-24118 N91-24120 N91-24121 N91-24122 N91-24123 N91-24153 N91-24845 N91-24136 N91-24198 N91-24198 N91-24909 N91-24551 N91-23859 N91-23851 N91-23851 N91-23851 N91-2458 N91-24205 N91-242
NAS1-18925 NAS1-19000 NAS2-12211 NAS2-12780 NAS2-13157 NAS3-23288 NAS3-23691 NAS3-23720 NAS3-23720 NAS3-23940 NAS3-24541 NAS3-24542 NAS3-24543 NAS3-24544 NAS3-24547 NAS3-25574 NAS3-25574 NAS3-25567 NCC2-596 NCC2-596 NCC2-804 NCC2-803 NSERC-A-218	1 9 10150 00434 00239		532 532 632 632 632 636 658 658 658 668 688 688 688 689 681 671 672 683 684 685 681 681 681 681 681 681 681 681 681 681	N91-24118 N91-24120 N91-24121 N91-24122 N91-24153 N91-24551 N91-24309 N91-24551 N91-23850 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-23850 N91-23851 N91-24501 A91-38684 A91-38684 A91-38684 A91-38684 A91-38584 A91-38758 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768 A91-37768

505-10-03	p 687	N91-2479
505-59-00		N91-24190
505-60-11-01		N91-2413
505-60-21		N91-24556
505-60-31-01		N91-24199
505-60-4X		N91-2455
505-60-41-01	0.634	N91-24139
505-61-21-03		N91-24096
505-61-71		N91-2410
300-01-77	p 668	N91-24208
505-62-12		N91-23083
505-62-21	p 683	N91-24551
505-62-52		N91-2308
303-02-32	p 660	N91-23179
	p 679	N91-23408
	p 633	N91-24130
	p 633	N91-24131
505-62-71		N91-24201
	p 672	ND1-24451
505-63-1A		N91-23513
505-63-36		N91-24358
505-63-50-05		N91-24350
505-63-50		
	p 654	N91-24196
505-64-12		N91-24140
	p 639	N91-24166
505-66-21-03		N91-24200
505-68-71		N91-24210
505-67-21		N91-23099
505-68-10	p 628	N91-23086
	p 628	N91-23067
505-68-11		N91-23183
	p 661	N91-23184
505-68-30	p 633	N91-24123
505-90-52-01	p 633	N91-24125
506-40-41-02		N91-24211
508-49-11-01		N91-23080
	p 627	N91-23081
532-06-21		N91-24757
532-06-37	p 652	N91-23136
533-02-11	p 633	N91-24128
	p 652	N91-23133
535-03-01		N91-23849
	p 688	N91-23850
	p 688	N91-23851
	p 689	N91-23852
	p 630	N91-24107
535-03-10-01	p 632	N91-24118
	p 632	N91-24119
	p 632	N91-24120
	p 632	N91-24121
	p 632	N91-24122
535-03-11-04		N91-24844
535-05-01		N91-24204
	p 662	N91-24205
	p 663	N91-24206
	p 663	N91-24207
,,	р 663	N91-24208
537-01-02-01		N91-24195
537-01-11		N91-24203
537-02-00		N91-23098
537-02-21		N91-23185
507.00.00	p 662	N91-24202
537-03-20	b я 80	N91-24845

·

Typical Report Number Index Listing

Listings in this index are arranged alphanumerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A-90144	*************	. p 630	N91-24108	٠,,
			N91-24757	
			N91-23099	
			N91-24209	
			N91-24198	
		•		
AD-A231658		p 626	N91-23079	#
AD-A232023	***************************************	p 681	N91-23554	#
AD-A232024		p 653	N91-23141	#
AD-A232055			N91-23145	#
AD-A232101		p 680	N91-23445	#
AD-A232126			N91-23146	#
AD-A232422			N91-23143	#
AD-A232549		p 653	N91-23144	#
AD-A232660		p 613	N91-23076	#
AD-A232661		p 613	N91-23077	#
AD-A232668	***************************************	p 644	N91-23106	#
AD-A232671		p 669	N91-23198	#
AD-A232714		p 628	N91-23094	#
AD-A232723	***************************************	p 636	N91-23100	#
AD-A232793		p 673	N91-24453	#
AD-A232871		p 669	N91-23199	#
AD-A232902		p 682	N91-24530	#
AD-A232907		p 641	N91-24187	#
AD-A233040		p 654	N91-24197	#
AD-A233066		p 683	N91-24533	#
AD-A233111		p 613	N91-24093	#
AD-A233114		p 687	N91-24768	#
AD-A233161		p 631	N91-24111	#
AD-A233201	***************************************	p 631	N91-24112	#
AD-A233349		p 641	N91-24188	#
AD-A233482		p 631	N91-24113	#
AD-A233483		p 631	N91-24114	ij.
AD-A233569		p 631	N91-24115	#
AD-A233584		p 632	N91-24116	¥
AD-A233712		p 641	N91-24186	#
		p 613	N91-23076	#
AD-E501360		p 613	N91-23077	#
AEDC-TR-90-2	21	p 680	N91-23445	#
AFOSR-91-01	39TR	p 628	N91-23094	#
AFOSR-91-01	65TR	p 683	N91-24533	#
AFOSR-91-01	84TR	p 682	N91-24530	#
· · · · · ·	-			~
AGARD-AG-26	00-VOL-9	p 589	N91-24843	ш
אייים אייים איייים	JO- TUL-8	h 008	N#1-24843	#
ACADO CO 13				
AGARD-CP-47			N91-23147	#
AGARD-CP-50	8	p 649	N91-23108	#
AGARD-HIGH	LIGHTS-91/1	p 691	N91-24084	#

AGARD-R-772 p 683 N91-24638 #

AIAA PAPER 90-2268		
AIAA DADED 01 0020	p 626	3 A91-40561 #
	p 670	A91-40555 #
	p ooc	A91-40556 #
AIAA PAPER 91-0875	p 626	A91-40557 #
AIAA PAPER 91-0880	- 605	
AIAA PAPER 91-0889	р 635	A91-40559 #
AIAA PAPER 91-0909	р 612	. A91-40563 #
AIAA PAPER 91-1104		
7	p 020	781-40302 F
AIAA-90-0098	p 659	N91-23158 #
AIAA-91-1758		
AIAA-91-2458	р 662	
AIAA-91-2460	p 661	N91-23185 * #
AIAA-91-2463		
AIAA-91-2474	p 633	N91-24131 * #
ARO-23758.2-EG-F	p 632	N91-24116 #
	p 002	1101.541.10
4614E 0406D 00 07 000		
ASME PAPER 90-GT-299	. p 620	A91-39048 * #
AVSCOM-TR-86-C-10	n 662	N91-24208 * #
AVECOM TO SEC.	. p 003	
AVSCOM-TR-86-C-11	. р 562	N91-24205 " #
AVSCOM-TR-86-C-12	. p 662	N91-24204 * #
AVSCOM-TR-86-C-8	D RA2	N91-24207 * #
AVSCOM-TR-86-C-9	p 963	
AVSCOM-TR-90-C-012	. p 660	N91-23179 * #
AVSCOM-TR-90-C-033	0.681	N91-23513 * #
AVSCOM-TR-90-D-24	- 658	
71000m-111-80-0-24	. р өзө	N91-23146 #
BR116373	. p 641	N91-24186 #
CONF-9104171-7	a 827	NO1 2200E #
OOM 9104171-7	. p 02/	N91-23085 #
CRANFIELD-AERO-9002	p 653	N91-23140 #
CRANFIELD-AERO-9004	0.628	N91-23092 #
	POED	HALLESONE N
OD:		
CRIE-T-89059	p 681	N91-23506 #
DE91-009743	- 670	NOT BOOK #
		N91-23381 #
DE91-009764	p 627	N91-23085 #
DE91-764223	0.660	N91-23182 #
DE91-764238	h 00 :	N91-23508 #
DLR-FB-88-13	p 689	N91-23854 #
DLR-FB-90-35	0.667	N91-23191 #
DLR-FB-90-46		
	b 050	N91-23088 #
DLR-FB-90-49	p 653	N91-23137 #
DOT-FAA/CT-TN90/55	n R44	NG1-24100 #
DOT-FAA/CT-TN90/55	р 644	N91-24190 #
	•	
DOT-VNTSC-FAA-90-6	p 626	N91-24190 # N91-23079 #
	p 626	
DOT-VNTSC-FAA-90-6	p 626	N91-23079 #
DOT-VNTSC-FAA-90-6DOT-VNTSC-FAA-90-7	p 626 p 631	N91-23079 # N91-24111 #
DOT-VNTSC-FAA-90-6	p 626 p 631	N91-23079 # N91-24111 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48	p 626 p 631 p 644	N91-23079 # N91-24111 # N91-23106 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48	p 626 p 631 p 644	N91-23079 # N91-24111 # N91-23106 #
DOT-VNTSC-FAA-90-6DOT-VNTSC-FAA-90-7	p 626 p 631 p 644	N91-23079 # N91-24111 # N91-23106 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21	p 626 p 631 p 644 p 636	N91-23079 # N91-24111 # N91-23106 # N91-23097 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30	p 626 p 631 p 644 p 636	N91-23079 # N91-24111 # N91-23106 # N91-23097 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29	p 626 p 631 p 644 p 636 p 631 p 626	N91-23079 # N91-24111 # N91-23106 # N91-23097 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29	p 626 p 631 p 644 p 636 p 631 p 626	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-FT-1	p 626 p 631 p 644 p 636 p 631 p 626 o 639	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/RD-90/21 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-1	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 636	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 # N91-24160 # N91-24140 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 636 p 659	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-23079 # N91-24166 * N91-24140 * N91-23198 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/RD-90/21 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-1	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 636 p 659	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 # N91-24160 # N91-24140 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 639 p 659 p 652	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-23079 # N91-24166 * N91-24140 * N91-23198 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 639 p 659 p 652	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * N91-24140 * N91-23198 # N91-23134 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 639 p 659 p 652	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-23079 # N91-24166 * N91-24140 * N91-23198 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/RD-90/21 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 636 p 639 p 636 p 659 p 652 p 640	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 * # N91-24166 * # N91-24140 * # N91-23134 # N91-23134 # N91-23134 # N91-24185 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 636 p 639 p 636 p 659 p 652 p 640	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * N91-24140 * N91-23198 # N91-23134 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/RD-90/21 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 636 p 639 p 636 p 659 p 652 p 640	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 * # N91-24166 * # N91-24140 * # N91-23134 # N91-23134 # N91-23134 # N91-24185 #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/SE-91/1 D8-54961	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 636 p 669 p 652 p 640 p 634	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-23198 # N91-23194 # N91-23194 # N91-24185 # N91-24139 * # N91-24139 * #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 636 p 659 p 652 p 640 p 634	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 * # N91-24140 * # N91-24185 # N91-23134 # N91-24185 # N91-24189 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-23179 * #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/SE-91/1 D8-54961 E-5583 E-5893	p 626 p 631 p 644 p 636 p 631 p 626 p 639 p 659 p 659 p 652 p 640 p 634 p 650 p 650	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24160 * # N91-24140 * # N91-23134 # N91-24185 # N91-24139 * # N91-24179 * # N91-24179 * # N91-24177 * # N91-24107 * #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013	p 626 p 631 p 644 p 636 p 631 p 636 p 639 p 636 p 659 p 652 p 640 p 634 p 634	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 * # N91-24140 * # N91-24185 # N91-23134 # N91-24185 # N91-24189 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-24199 * # N91-23179 * #
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013	p 626 p 631 p 644 p 636 p 631 p 636 p 639 p 636 p 659 p 652 p 640 p 634 p 634	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-23198 # N91-23194 # N91-24139 * * N91-24139 * * N91-24139 * * N91-24139 * N91-24139 * N91-24139 * N91-24139 * N91-24139 *
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-80-7 DOT/FAA/CT-TN90/48 DOT/FAA/RD-90/29 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6085	p 626 p 631 p 644 p 636 p 631 p 626 p 636 p 636 p 659 p 652 p 640 p 634 p 630 p 660 p 661	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24140 # N91-24140 # N91-23198 # N91-23194 # N91-24185 # N91-24139 * # N91-24139 * # N91-24139 * # N91-23183 * # N91-23183 * # N91-23513 * * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-23513 * N91-
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/SE-91/1 D8-54961 E-5583 E-6013 E-6085 E-6085	p 626 p 631 p 644 p 636 p 639 p 639 p 639 p 659 p 659 p 650 p 630 p 630 p 661 p 661 p 661 p 661	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 # N91-23196 # N91-23134 # N91-24185 # N91-24199 * # N91-24199 * # N91-24199 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23199 * # N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6085 E-6093 E-6131	P 626 P 631 P 644 P 636 P 639 P 639 P 659 P 652 P 640 P 634 P 660 P 631 P 661 P 661 P 661 P 661 P 662	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-23198 # N91-23194 # N91-24185 # N91-24185 # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24189 * # N91-24107 * # N91-23513 * # N91-23513 * # N91-2360 * # N91-24201 * * N91-24201 * * N91-24201 * * N91-24201 * * N91-24201
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/SE-91/1 D8-54961 E-5583 E-6013 E-6085 E-6085	P 626 P 631 P 644 P 636 P 639 P 639 P 659 P 652 P 640 P 634 P 660 P 631 P 661 P 661 P 661 P 661 P 662	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-24166 # N91-23196 # N91-23134 # N91-24185 # N91-24199 * # N91-24199 * # N91-24199 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23193 * # N91-23199 * # N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/5 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/15 DOT/FAA/RD-91	p 626 p 631 p 644 p 636 p 636 p 639 p 636 p 639 p 652 p 640 p 630 p 650 p 661 p 661 p 661	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24140 # N91-24140 # N91-23198 # N91-23194 # N91-24185 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23184 # N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6085 E-6093 E-6131 E-6136 E-6158	P 626 P 631 P 644 P 636 P 636 P 636 P 636 P 659 P 652 P 650 P 650 P 650 P 651 P 651 P 651 P 652 P 652 P 652 P 652	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 # N91-23196 # N91-23134 # N91-24185 # N91-24185 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23183 # N91-23184 # N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/2-PT-2 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/7 DOT/FAA/RD-91/3 E-5583 E-5933 E-6013 E-6085 E-6093 E-6136 E-6158 E-6158	P 626 P 631 P 644 P 636 P 636 P 639 P 639 P 659 P 652 P 640 P 634 P 660 P 651 P 661 P 661 P 662 P 662 P 662 P 658	N91-23079 # N91-24111 # N91-23106 # N91-23106 # N91-23097 # N91-24166 * # N91-23198 # N91-23194 # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24139 * # N91-24107 * # N91-23183 * # N91-23183 * # N91-23184 * # N91-23009 * # N91-23184 * # N91-23184 * # N91-23184 * # N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * * * N91-23009 * N91-23009 * * N91-23009 * * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009 * N91-23009
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/5 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/5 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6013 E-6085 E-6093 E-6158 E-6158 E-6158 E-6158 E-6158	p 626 p 631 p 644 p 636 p 639 p 639 p 659 p 652 p 640 p 631 p 660 p 651 p 660 p 661 p 661 p 662 p 662 p 662 p 658	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-24140 * # N91-23198 # N91-23194 # N91-23194 # N91-23183 * # N91-23183 * # N91-23183 * # N91-23183 * # N91-23183 * # N91-23086 * # N91-23086 * # N91-23086 * # N91-23087 * * N91-23087 * * N91-23087 * * N91-23087 * * N91-23087 * * N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/5 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/5 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6013 E-6085 E-6093 E-6158 E-6158 E-6158 E-6158 E-6158	p 626 p 631 p 644 p 636 p 639 p 639 p 659 p 652 p 640 p 631 p 660 p 651 p 660 p 661 p 661 p 662 p 662 p 662 p 658	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-24140 * # N91-23198 # N91-23194 # N91-23194 # N91-23183 * # N91-23183 * # N91-23183 * # N91-23086 * # N91-23086 * # N91-23086 * # N91-23086 * # N91-23086 * # N91-23087 * * N91-23087 * * N91-23087 * * N91-23
DOT-VNTSC-FAA-90-6 DOT-VNTSC-FAA-90-7 DOT/FAA/CT-TN90/48 DOT/FAA/CT-90/21 DOT/FAA/RD-90-30 DOT/FAA/RD-90/29 DOT/FAA/RD-91/2-PT-1 DOT/FAA/RD-91/5 DOT/FAA/RD-91/5 DOT/FAA/RD-91/7 DOT/FAA/RD-91/1 D8-54961 E-5583 E-5933 E-6013 E-6085 E-6093 E-6158 E-6158 E-6158 E-6158 E-6158	P 626 P 631 P 636 P 636 P 639 P 639 P 659 P 659 P 652 P 640 P 630 P 661 P 681 P 681 P 682 P 686 P 636 P 636 P 636 P 636 P 636 P 636 P 636 P 636 P 636	N91-23079 # N91-24111 # N91-23106 # N91-23097 # N91-24111 # N91-23079 # N91-24166 * # N91-24140 * # N91-23198 # N91-23194 # N91-23194 # N91-23183 * # N91-23183 * # N91-23183 * # N91-23183 * # N91-23183 * # N91-23086 * # N91-23086 * # N91-23086 * # N91-23087 * * N91-23087 * * N91-23087 * * N91-23087 * * N91-23087 * * N91-23

p 627 N91-23083 * # p 628 N91-23069 * # p 661 N91-23185 * #

E-6233 E-6238

E 0000				

E-6318	***************************************	р 633	3 N91-24130	•
		-		•
		р 689	N91-23854	. 1
ETN-91-99063				- 1
ETN-91-99067				- 4
ETN-91-99060		р 653		1
ETN-91-99079	_			- 1
ETN-91-99107				- 1
ETN-91-99114				- 1
ETN-91-99252				
ETN-91-99253 ETN-91-99265				- 4
		. p 661		- 1
ETN-91-99266				- 4
ETN-91-99267				
ETN-91-99268 ETN-91-99271				. 4
ETN-91-99277				- 4
ETN-91-99302				4
ETN-91-99312				
ETN-91-99331				
ETN-91-99332			N91-24186	. 4
ETN-91-99333			N91-23140	
				Ä
	53	-		*
FTD-ID(RS)T-0	166-90 716-90	р 687 р 613	N91-24768 N91-24093	#
GARRETT-21-	5776-2A	p 662	N91-24205	٠,
H-1489		- 465	N91-24210	
			N91-24210 N91-24556	
			N91-24128 N91-24555	-
	***************************************		N91-24555	. #
H-190/	********************************	p 652	N91-23133	. #
IAITIC-87-1004		p 649	N91-23107	
IAITIC-87-1008			N91-23107	#
IAITIC-87-1007			N91-23522	7
		p 001	1481-23322	
ICASE-91-40	•••••••••••••••••••••••••••••••••••••••	p 633	N91-24125	#
IDA-P-2401		p 613	N91-23077	#
			N91-23076	7
		•		"
IDA/HQ-90-355	36	p 613	N91-23077	#
IDA/HQ-90-358	134	p 613	N91-23076	#
ISBN-1-871564		p 653	N91-23140	Ü
ISBN-1-871564	-05-0	p 628	N91-23092	#
ISBN-92-835-05		p 657	N91-23147	#
ISBN-92-835-06		p 649	N91-23108	#
ISBN-92-835-06		p 683	N91-24638	#
ISBN-92-835-06	312-X	p 669	N91-24843	ř
	_			
ISSN-0171-134	2	p 628	N91-23088	#
ISSN-0720-7800	3	p 643	N91-23103	#
ISSN-0938-219-	4 3	p 691	N91-24086	#
ISSN-0939-296	<u> </u>	p 653	N91-23137	
ISSN-0939-296;	3	p 667	N91-23191	#
ITM 66 BEAAS		40	1104 00405	,,
TITOO-GOUGE	***************************************	p 049	N91-23107	#
				*
111Y-00-550U5		p 561	N91-23522	#
L-16502-VOL-2		p 63 4	N91-24132 *	#
L-16509	***************************************	p 655	N91-24199 *	
L-16774	***************************************	p 629	N91-24098 *	
LMSC-F-415048		p 636	N91-24141 *	,
LR-31879	***************************************	p 69 0	N91-24844 *	#
LU-AFOSR-FR-		p 628	N91-23094	#

LYC-86-11	p 662	N91-24204 * #	NASA-CR-175079	. р 663	N91-24208 * #	SME PAPER EM90-665	p 645	A91-36940
			NASA-CR-175080		N91-24206 * #			
L9KVAE-FR-91001	p 652	N91-23136 " #	NASA-CR-175081		N91-24207 * #	SME PAPER MS90-276		
100 00 04 0	- 004	NO4 00FF4 #	NASA-CR-177578 NASA-CR-177588		N91-23136 * # N91-24198 * #	SME PAPER MS90-280SME PAPER MS90-282		
MTL-TR-91-3	p 661	N91-23554 #	NASA-CR-179432		N91-24210 * #	SME PAPER MS90-744		
NAL-TM-620	n 660	N91-23182 #	NASA-CR-181918		N91-24139 * #		,	1101 000 10
11/L-11/11-020	p 000	1101 20102 #	NASA-CR-181924-VOL-1		N91-24118 * #	TAMRF-5802-91-01	p 629	N91-24099 * #
NAS 1.15:101698	р 633	N91-24128 * #	NASA-CR-181924-VOL-2		N91-24119 * #			
NAS 1.15:101701	p 683	N91-24555 * #	NASA-CR-182075		N91-24844 * #	TELEDYNE-CAE-2224	p 663	N91-24208 ° #
NAS 1.15:101712			NASA-CR-182076		N91-23080 * #	LIC DATENT ADDL CN 440000	- 075	NO1 2000E 1 #
NAS 1.15:101735			NASA-CR-182077 NASA-CR-182109		N91-23081 * # N91-24551 * #	US-PATENT-APPL-SN-418320 US-PATENT-APPL-SN-608494		
NAS 1.15:102817 NAS 1.15:102831	p 630	N91-24108 * #	NASA-CR-182289		N91-24451 * #	US-PATENT-APPL-SN-647902		
NAS 1.15:102832			NASA-CR-185192		N91-23849 * #		,	
NAS 1.15:102853			NASA-CR-185193	p 688	N91-23850 * #	USAARL-91-5	p 636	N91-23100 #
NAS 1.15:103757			NASA-CR-185194		N91-23851 * #	USAARL-91-6-VOL-1		
NAS 1.15:103797	p 681	N91-23513 * #	NASA-CR-185195		N91-23852 * #	USAARL-91-6-VOL-2	p 641	N91-24187 #
NAS 1.15:103801	р 679	N91-23409 * #	NASA-CR-186769 NASA-CR-187098		N91-23195 * # N91-24123 * #	VKI-TN-174	- ean	NO1 22427 #
NAS 1.15:104073NAS 1.15:104074			NASA-CR-187478		N91-24358 * #	*KI-114-174	p 000	1451-25451 #
NAS 1.15:104074	p 654 n 881	N91-23184 * #	NASA-CR-187484-VOL-1		N91-24120 * #	WES/MP/GL-91-3	p 669	N91-23199 #
NAS 1.15:104356			NASA-CR-187484-VOL-2		N91-24121 * #			
NAS 1.15:104362			NASA-CR-187484-VOL-3	. p 632	N91-24122 * #	WES/TR/EL-91-2	p 653	N91-23141 #
NAS 1.15:104363			NASA-CR-187546		N91-24845 * #	75.0 Table 1 Co.		
NAS 1.15:104366			NASA-CR-187564		N91-24125 * #	WL-TM-91-303	p 654	N91-24197 #
NAS 1.15:104374	p 687	N91-24796 * #	NASA-CR-188044 NASA-CR-188192		N91-24105 * # N91-24099 * #	WL-TR-91-3033-VOL-1	n 631	N91-24113 #
NAS 1.15:104377			NASA-CR-188199		N91-23084 * #	WL-TR-91-3033-VOL-2		
NAS 1.15:104403 NAS 1.15:104407			NASA-CR-188231		N91-24110 * #	WL-TR-91-3033-VOL-3		
NAS 1.15:104411			NASA-CR-188232		N91-24583 * #			
NAS 1.15:104412			NASA-CR-188235		N91-24109 * #	WRDC-TR-90-2079-VOL-3		N91-24453 #
NAS 1.15:104423	p 662	N91-24203 ° #	NASA-CR-4375	. р 654	N91-24195 * #	WRDC-TR-90-3069		
NAS 1.15:104436	p 633	N91-24131 * #	NASA-TM-101698	P 600	NO1 24120 # #	WRDC-TR-90-3075	p 631	N91-24112 #
NAS 1.15:104437	p 662	N91-24201 * #	NASA-TM-101698 NASA-TM-101701		N91-24128 # N91-24555 #			
NAS 1.15:104469			NASA-TM-101712		N91-24556 * #	-		
NAS 1.15:4267 NAS 1.26:175077			NASA-TM-101735		N91-23133 * #			
NAS 1.26:175078			NASA-TM-102817		N91-24108 * #			
NAS 1.26:175079			NASA-TM-102831		N91-24757 " #			
NAS 1.26:175080	p 663	N91-24206 * #	NASA-TM-102832		N91-23099 * #			
NAS 1.26:175081			NASA-TM-102853		N91-24209 * #			
NAS 1.26:177578			NASA-TM-103757 NASA-TM-103797		N91-23183 " # N91-23513 " #			
NAS 1.26:177586 NAS 1.26:179432			NASA-TM-103801		N91-23409 *#			
NAS 1.26:181918	p 634	N91-24139 * #	NASA-TM-104073		N91-23135 " #			
NAS 1.26:181924-VOL-1			NASA-TM-104074		N91-24196 * #			
NAS 1.26:181924-VOL-2	p 632	N91-24119 * #	NASA-TM-104351		N91-23184 * #			
NAS 1.26:182075	p 690	N91-24844 * #	NASA-TM-104356		N91-23179 * #			
NAS 1.26:182076			NASA-TM-104362 NASA-TM-104363		N91-23086 * # N91-23098 * #	-		
NAS 1.26:182077	p 627	N91-23081 * #	NASA-TM-104366		N91-23087 * #			
NAS 1.26:182109 NAS 1.26:182289			NASA-TM-104374		N91-24796 * #			
NAS 1.26:185192			NASA-TM-104377		N91-24107 * #			
NAS 1.26:185193			NASA-TM-104403	p 627	N91-23083 * #			
NAS 1.26:185194	p 688	N91-23851 * #	NASA-TM-104407		N91-23089 * #			
NAS 1.26:185195	р 689	N91-23852 * #	NASA-TM-104411		N91-23185 * #			
NAS 1.26:186769	р 669	N91-23195 * #	NASA-TM-104412 NASA-TM-104423		N91-24202 # N91-24203 * #			
NAS 1.26:187098	p 633	N91-24123 * # N91-24358 * #	NASA-TM-104436		N91-24131 * #			
NAS 1.28:187478			NASA-TM-104437					
NAS 1.26:187484-VOL-1 NAS 1.26:187484-VOL-2	p 632	N91-24121 * #	NASA-TM-104469					
NAS 1.26:187484-VOL-3			NASA-TM-4267	p 629	N91-24098 * #			
NAS 1.26:187546	p 690	N91-24845 * #			reservation and a second			
NAS 1.26:187564	р 633	N91-24125 * #	NASA-TP-2888	p 655	N91-24199 * #			
NAS 1.26:188044			NIAR-90-32	- E20	NO1 24157 #			
NAS 1.26:188192	p 629	N91-24099 * #	NIAR-90-32					
NAS 1.26:188199 NAS 1.26:188231				-				
NAS 1.26:188232			ORNL/TM-11648	p 679	N91-23381 #			•
NAS 1.26:188235	p 630	N91-24109 * #	·	_				-
NAS 1.26:4375	p 654	N91-24195 * #	PAPER-91-1053	p 652	N91-23133 * #			
NAS 1.55:10028	p 655	N91-24200 * #	DD04 (50000	- 617	NO 34100 #			
NAS 1.55:10031			PB91-150268	p 644	MA1-5419A #			
NAS 1.55:10060-PT-1			PWA-5930-29	o 683	N91-24551 " #			
NAS 1.55:10060-PT-2 NAS 1.55:3020-VOL-2	p 634	NG1-24140 #	- 7 - B/b	, , ,,,,,	112.1.21221"			
NAS 1.60:2888	p 655	N91-24199 * #	RAE-TM-FS(F)-632-ISSUE-1-REV	p 641	N91-24186 #			
NAS 1.71:ARC-11909-1	p 635	N91-23095 * #	• •	•				
NAS 1.71:LAR-13563-1			REPT-074-021-M-005					
NAS 1.71:LEW-15094-1			REPT-412U-3181-29		N91-24200 #			
		NO4 00005 * #	REPT-911-111-101		N91-23187 # N91-23188 #			
NASA-CASE-ARC-11909-1	р 635	M91-23095 * #	REPT-911-111-102					
NASA-CASE-LAR-13563-1	n 870	N91-23410 * #	REPT-911-111-104					
14A9A-0A9E-LAN-13993-1	p ora	.101-204-10 #	REPT-911-111-107	p 672	N91-23248 #			
NASA-CASE-LEW-15094-1	n 660	N91-23180 * #	REPT-911-430-105	p 672	N91-23251 #			
	p 000		REPT-911-430-130	p 672	N91-23262 #			
NASA-CP-10028	р оос		7121 1 01 1 400 100 111111111111111111111	•				
	р 655	N91-24200 * #		-				
NASA-CP-10031	р 655 р 669	N91-24200 * # N91-24211 * #	SAND-90-2178C	-				
NASA-CP-10031 NASA-CP-10060-PT-1	p 655 p 669 p 639	N91-24200 ° # N91-24211 ° # N91-24166 ° #	SAND-90-2178C	p 627	N91-23085 #			
NASA-CP-10031 NASA-CP-10060-PT-1 NASA-CP-10060-PT-2	p 655 p 669 p 639 p 636	N91-24200 * # N91-24211 * # N91-24166 * # N91-24140 * #		p 627	N91-23085 #			
NASA-CP-10031 NASA-CP-10060-PT-1	p 655 p 669 p 639 p 636	N91-24200 * # N91-24211 * # N91-24166 * # N91-24140 * #	SAND-90-2178C	p 627 p 656	N91-23085 # N91-23146 # A91-36944			
NASA-CP-10031 NASA-CP-10060-PT-1 NASA-CP-10060-PT-2	p 655 p 669 p 639 p 636 p 634	N91-24200 ° # N91-24211 ° # N91-24166 ° # N91-24140 ° # N91-24132 ° #	SAND-90-2178C	p 627 p 656 p 611 p 611	N91-23085 # N91-23146 # A91-36944 A91-36875			

Typical Accession Number **Index Listing**

Listings in this index are arranged alphanumerically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A91-36351 #	p 611	A91-37593 *	p 656
A91-36353 #	p 611	A91-37595	p 664
A91-36354 #	p 645	A91-37597	p 664
A91-36357	p 645	A91-37598 *	p 664
A91-36358	p 663	A91-37767 #	p 615
	p 613	A91-37768 #	p 615
A91-36359 A91-36360	p 613 p 645	A91-37769 *#	p 615
A91-36450 *	p 673	A91-37770 "#	p 615
A91-36452 *	p 814	A91-37771 #	p 664
A91-36453 *	p 614	A91-37772 #	p 615
A91-36625	p 669	A91-37773 #	p 664
A91-36695 #	p 614	A91-37774 #	p 674
A91-36698 #	p 673	A91-37775 #	p 668
A91-36699 #	p 614	A91-37777 # A91-37778 #	p 615 p 664
A91-36700 #	p 614	A91-37779 #	p 664
A91-36722 #	ρ 664	A91-37780 #	p 616
A91-36724 #	p 614	A91-37801	p 890
A91-36755	p 655	A91-37827 * #	p 616
A91-36875	p 611	A91-37829 * #	p 616
A91 36895	p 611	A91-37830 #	p 616
A91-36896	p 673	A91-37832 #	p 616
A91-36898	p 611	A91-37834 * #	p 674
A91-36940	p 645	A91-37835 #	p 616
A91-36942	p 645	A91-37836 #	p 616
A91-36943	p 673	A91-37838 #	p 616
A91-36944	p 611	A91-37841 *#	p 616
A91-37049	p 685	A91-37842 #	p 617
A91-37050	p 645	A91-37845 *#	0 675
A91-37051 #	p 664	A91-37846 #	p 675
A91-37052 #	p 674	A91-37847 #	p 675
A91-37061 #	p 611	A91-37851 #	p 675
A91-37094	p 641	A91-37859 #	p 617
A91-37101	p 641	A91-37880	p 675
A91-37104	p 685	A91-37881 #	p 668
A91-37106	p 674	A91-38007	p 656
A91-37107	p 641	A91-38037	p 657
A91-37121	p 642	A91-38127	p 645
A91-37139	p 642	A91-38129	p 670
A91-37141	p 674	A91-38178	p 657
A91-37145	ρ 642	A91-38203 #	p 657
A91-37176	p 614	A91-38207 #	p 657
A91-37181	p 615	A91-38209 #	p 657
A91-37182	ρ 670 - 545	A91-38215	p 642
A91-37200 A91-37269	p 542 p 574	A91-38217	p 642
A91-37269 A91-37375	p 674 p 674	A91-38234 #	p 686
A91-37410 #	p 674	A91-38322	p 642
A91-37410 #	p 674 p 674	A91-38323	p 685
A91-37418 #	p 615	A91-38367 #	p 690
A91-37419 #	p 615	A91-38388 #	p 685
A91-37420 #	p 615	A91-38526	p 643
A91-37421 *#	p 615	A91-38527	p 634
A91-37584	p 686	A91-38541 #	p 617
A91-37585	p 686	A91-38542 #	p 655
A91-37591 *	p 686	A91-38543 *#	p 634
			,

A91-38544 *# A91-38545 #	р 617 р 617
A91-38545 # A91-38546 #	p 612
A91-38547 #	p 665
A91-38548 "#	p 646
A91-38549 #	p 646
A91-38550 *#	p 646
A91-38577 *# A91-38580 *#	ρ 643 p 612
A91-38677	p 617
A91-38679	p 617
A91-38680 *	р 617 р 618
A91-38681 A91-38683	p 618
A91-38684 *	p 618
A91-38686	p 618
A91-38688 A91-38689	р 687 р 675
A91-38693	p 675
A91-38694	p 618
A91-38695 A91-38697 *	р 618 р 676
A91-38698 *	p 676
A91-38699	p 619
A91-38702	p 619
A91-38706 A91-38710	р 676 р 619
A91-38736	p 619
A91-38742	p 619
A91-38752	р 646 р 676
A91-38775 A91-38776 *	p 676
A91-38787	p 619
A91-38602	p 670
A91-38809 A91-38812	р 670 р 671
A91-38819 "	p 671
A91-38863	p 687
A91-38869 A91-38874	p 676 p 676
A91-39048 "#	p 620
A91-39144	p 677
A91-39187 A91-39201	p 643 p 657
A91-39223	p 620
A91-39230	p 677
A91-39302 A91-39377	р 671 р 646
A91-39380	p 646
A91-39382	p 646
A91-39384	p 635
A91-39385 A91-39387	p 646 p 655
A91-39389 *	p 671
A91-39390	p 647
A91-39392 A91-39393	p 612 p 635
A91-39394	p 647
A91-39395	p 647
A91-39396 A91-39398	p 668 p 647
A91-39401 #	p 665
A91-39410 #	p 665
A91-39417 # A91-39420 #	p 686
A91-39433 #	p 647 p 643
A91-39436 #	p 686
A91-39585	p 677
A91-39590 A91-39690 #	р 677 р 671
A91-39691 #	p 620
A91-39694 #	р 677 р 620
A91-39708 A91-39736 *	
	U 02V
A91-39738	p 620 p 620
A91-39744	p 620 p 620
A91-39744 A91-39749	p 620 p 620 p 688
A91-39744 A91-39749 A91-39756 A91-39776	p 620 p 620
A91-39744 A91-39749 A91-39756 A91-39776 A91-39778	p 620 p 620 p 688 p 643 p 643 p 643
A91-39744 A91-39749 A91-39756 A91-39776 A91-39778 A91-39832	p 620 p 620 p 688 p 643 p 643 p 643 p 643
A91-39744 A91-39749 A91-39756 A91-39776 A91-39778	p 620 p 620 p 688 p 643 p 643 p 643

A91-39873 *#	p 655
A91-39890	p 656
A91-39900	p 621
A91-39901	p 677
A91-39902	p 677
A91-39904	p 678
A91-39909	p 678
A91-39911	p 621
A91-39919 *	p 621
A91-39922	p 621
A91-39927	p 621
A91-39928	p 678
A91-39929	p 621
A91-39931	p 622
A91-39932 *	p 622 p 622
A91-39933 * A91-39936 *	p 622
A91-39937	p 622
A91-39938	p 622
A91-39940 *	p 623
A91-39941	p 623
A91-39944	p 623
A91-39945	p 678
A91-39950	p 623
A91-39956 *	p 678
A91-39957 *	p 623
A91-39959	p 678
A91-39960	p 623
A91-39964	p 623
A91-40126 #	p 624
A91-40130 #	p 678
A91-40133 #	p 665
A91-40137 #	p 624
A91-40156 #	p 647
A91-40157 # A91-40158 #	p 679
A91-40160 #	р 648 р 648
A91-40161 #	p 648
A91-40162 #	p 648
A91-40164 #	p 665 p 648
A91-40166 #	p 665
A91-40167 #	ρ 665
A91-40168 #	p 665
A91-40169 #	p 665
A91-40170 #	p 648
A91-40171 #	p 548
A91-40172 #	p 648 p 648
A91-40175 #	p 666
A91-40178	p 671
A91-40180	p 612
A91-40181	р 612
A91-40202	р 666
A91-40203	p 648 p 624
A91-40216 *#	p 624
A91-40217 *#	p 624
A91-40218 #	p 624
A91-40219 * #	p 624
A91-40220 * #	p 624
A91-40223 *#	p 625
A91-40225 #	p 625
A91-40234	p 679
A91-40239	p 679
A91-40241	p 679
A91-40254 #	p 649
A91-40278	p 679
A91-40373 #	p 625
A91-40375 #	p 625
A91-40425	p 672
A91-40472 #	p 625
A91-40473 #	p 625
A91-40495	p 649
A91-40498	p 625 p 649
A91-40501	
A91-40511	p 649
A91-40511	p 649
A91-40513	p 625
A91-40517 #	p 686
A91-40511	p 649
A91-40513	p 625
A91-40517 #	p 666
A91-40550	p 656
A91-40511	p 649
A91-40513	p 625
A91-40517 #	p 686

A91	-40558 -40559	#	p 635
A91	-40559	#	p 635
A91	-40561	٠,	p 626
A91	-40562	٠,	p 626
A91	-40563	#	p 612
		_	
	-23076 -23077	#	p 613 p 613
Not	-23078	#	p 626
N91	-23079	#	p 626
NO	22000	#	p 626
N91	-23081	*#	p 627
N91	-23082		p 627
N91	-23063	* #	p 627
N91	-23084 -23085	. #	p 627 p 627
NO	-23003 -2308A	٠,	p 628
N91	-23086 -23087	٠,	p 628
N91	-23088	*#	p 628
N91	-23089	• #	p 628
N91	-23092	#	p 628
N91	-23094	. #	p 628 p 635
MAI	-23095 -23096		p 635
NO1	-23097	#	p 636
N91	-23098	٠,	p 636
N91	-23099	.,	p 636
N91	-23100		p 636
N91	-23103	*	p 643
N91	-23105 -23106	*	p 644
MOI	-23100	7	p 644 p 649
NO1	-221AB	************	p 649
N91	-23109	,	p 649
N91	-23110	#	p 650
N91	-23111 -23112	#	p 650
N91	-23112	*	p 650
NOT	-23113 -23114	7	p 666 p 666
NQ1	.23115	7	p 650
N91	-23116 -23117	ï	p 666
N91	-23117		p 666
N91	-23118 -23119	•	p 650
NYI	-23119	7	p 667 p 650
NIG4	20122	ï	p 651
N91	-23123 -23124	ï	p 667
N91	-23124		p 667
N91	-23125 -23126	•	p 667
NO	-23126	٠,	p 651 p 651
NO1	.23128	ï	p 651
NO1	-23129	Į	p 651
N91	-23130 -23131	#	p 651
N91	-23131	#	p 651
NUI	-23132	٠.	p 652
NG1	-23133 -23134	ï	p 652 p 652
NO 1	.22125	* * *	D 652
N91	-23136 -23137	•#	p 652
N91	-23137	#	p 653
N91	-23138 -23140		p 653 p 653
NO	-23140	7	p 653 p 653
	-23143	,	p 653
N91	-23144	*************	p 653
N91	-23145	#	p 656
	-23146 -23147	#	p 656 p 657
No	-23147	#	p 657 p 657
N91	-23149	, i	p 658
NO1	-23150	#	p 644
N91	-23151 -23152	#	p 658
N91	-23152	#	p 658 p 658
MOI	-23153 -23154	#	p 658 p 658
	-23155	ř	p 658
N91	-23156	#	p 659
N91	-23157	#	p 659
N91	-23158	#	p 659
	-23160 -23161	#	p 659 p 628
N91	-23164	#	p 629
		.,	, ,_,

N91-23166				
N91-23166 #	p 659		N91-24152 °#	p 638
N91-23168 #			N91-24153 * #	p 638
N91-23169 * # N91-23170 #	р 660 р 660		N91-24154 * # N91-24155 * #	
N91-23174 #	p 629		N91-24156 * #	p 638
N91-23175 * # N91-23176 #			N91-24157 #	p 638
N91-23176 # N91-23179 *#	ρ660 ρ660		N91-24158 # N91-24160 #	р 654 р 613
N91-23180 * #	p 660		N91-24161 #	p 638
N91-23182 # N91-23183 *#	p 660 p 661		N91-24163 # N91-24166 * #	p 613 p 639
N91-23184 *#	p 661		N91-24167 *#	p 639
N91-23185 * #			N91-24168 * #	p 639
N91-23187 # N91-23188 #	p 661 p 661		N91-24169 *# N91-24170 *#	p 639 p 685
N91-23190	p 667		N91-24172 * #	p 639
N91-23191 # N91-23192 #	р 667 р 6 67		N91-24173 * # N91-24174 * #	p 639 p 639
N91-23194 #	p 668		N91-24175 *#	p 639
N91-23195 * # N91-23198 #	p 669		N91-24176 * # N91-24177 * #	p 640
N91-23199 #	p 669 p 669		N91-24178 *#	р 640 р 640
N91-23248 #	p 672		N91-24179 *#	p 640
N91-23251 # N91-23262 #	p 672 p 672		N91-24180 * # N91-24182 * #	р 640 р 640
N91-23270	p 672		N91-24183 ° #	p 640
N91-23381 # N91-23409 *#	р 679 р 679		N91-24184 * # N91-24185 #	p 640
N91-23410 *#	p 679		N91-24186 #	р 540 р 641
N91-23411	p 680		N91-24187 #	p 641
N91-23413 N91-23419	p 680 p 680		N91-24188 # N91-24189 #	p 641 p 644
N91-23437 #	p 680		N91-24190 #	p 644
N91-23445 # N91-23506 #	p 680 p 681		N91-24195 * # N91-24196 * #	p 654
N91-23513 *#	p 681		N91-24197 #	p 654 p 654
N91-23522 #	p 681		N91-24198 * #	p 654
N91-23554 # N91-23849 *#	р 681 р 688		N91-24199 "# N91-24200 "#	p 655 p 655
N91-23850 * #	p 688		N91-24201 "#	p 662
N91-23851 * # N91-23852 * #	p 688 p 689		N91-24202 * # N91-24203 * #	p 662 p 662
N91-23853 #	p 689		N91-24204 #	p 662
N91-23854 # N91-24074 * #	p 689		N91-24205 * # N91-24206 * #	p 662
N91-24078 *#	p 681 p 689		N91-24207 *#	p 663 p 663
N91-24084 #	p 691		N91-24208 *#	p 663
N91-24086 # N91-24087 #	р 691 р 613		N91-24209 *# N91-24210 *#	p 668 p 668
N91-24088 #	p 613		N91-24211 #	p 669
N91-24091 # N91-24093 #	p 690		N91-24289 #	p 670
N91-24098 *#	p 613 p 629		N91-24291 # N91-24292 #	p 686 p 663
N91-24099 *#	p 629		N91-24309 * #	p 681
N91-24103 N91-24104	p 529 p 529		N91-24310 * # N91-24336 * #	p 682 p 682
N91-24105 *#	p 630		N91-24338 * #	p 682
N91-24106 * # N91-24107 * #	p 630 p 630		N91-24358 * # N91-24451 * #	p 672 p 672
N91-24108 *#	p 630		N91-24453 #	p 673
N91-24109 * # N91-24110 * #	p 630		N91-24475 #	p 682
N91-24110 * # N91-24111 #	p 631 p 631		N91-24530 # N91-24533 #	p 682 p 683
N91-24112 #	p 631		N91-24551 *#	p 683
N91-24113 # N91-24114 #	p 631 p 631		N91-24555 *# N91-24556 *#	p 683 p 683
N91-24115 #	p 631		N91-24583 *#	p 683
N91-24116 # N91-24118 "#	p 632 p 632		N91-24638 # N91-24640 #	p 683 p 687
N91-24119 *#	p 632		N91-24641 #	p 684
N91-24120 * # N91-24121 * #	p 632 p 632		N91-24642 #	p 684
N91-24122 °#	p 632		N91-24643 # N91-24645 #	p 684 p 684
N91-24123 *#	p 633		N91-24647 #	p 684
N91-24125 ° # N91-24128 ° #	p 633 p 633		N91-24648 # N91-24649 #	p 684 p 684
N91-24130 *#	p 63 3		N91-24650 #	p 684
N91-24131 *# N91-24132 *#	p 633 p 634			p 685 p 687
N91-24133 *#	p 669			p 687
N91-24134 * #	p 634			p 687
N91-24135 * # N91-24136 * #	p 634 p 634			p 689 p 690
N91-24137 *#	p 653		N91-24845 * #	p 690
N91-24138 * # N91-24139 * #	p 654 p 634		N91-24983 *#	p 690
N91-24140 ° #	p 636			
N91-24141 "#	p 636			
N91-24142 "# N91-24143 "#	p 637 p 637			
N91-24144 *#	p 637			
N91-24145 * # N91-24146 * #	p 637 p 637			
N91-24147 "#	p 637			
N91-24149 * #	p 637			
N91-24151 *#	ρ 637	1		

G-2

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A91-10000 Series)

Publications announced in *IAA* are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at \$10.00 per document (up to 50 pages), additional pages \$0.25 each. Standing order microfiche are available at the rate of \$1.45 per microfiche for *IAA* source documents and \$1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is \$2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N91-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, VA 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report number* shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, DC 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of \$1.50 each, postage free.
- Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 52 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 52 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are *not* sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 supplements and annual index are available from the National Technical Information Service (NTIS) on standing order subscription as PB91-914100, at price code A04. Current values for the price codes are listed on page APP-5. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, DC 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

European Space Agency-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Engineering Sciences Data Unit International P.O. Box 1633 Manassas, Virginia 22110

Engineering Sciences Data Unit International, Ltd. 251-259 Regent Street London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Center for AeroSpace Information P.O. Box 8757 BWI Airport, Maryland 21240 National Aeronautics and Space Administration Scientific and Technical Information Program (NTT) Washington, DC 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, DC 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey Library National Center MS 95012201 Sunrise Valley Drive Reston, Virginia 22092

U.S. Geological Survey Library 2255 North Gemini Drive Flagstaff, Arizona 86001

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Library Box 25046 Denver Federal Center, MS914 Denver, Colorado 80225

NTIS PRICE SCHEDULES

(Effective January 1, 1991)

Schedule A STANDARD PRICE DOCUMENTS AND MICROFICHE"

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
A01	\$ 8.00	\$ 16.00	
A02	11.00	22.00	
A03	15.00	30.00	
A04-A05	17.00	34.00	
A06-A09	23.00	46.00	
A10-A13	31.00	62.00	
A14-A17	39.00	78.00	
A18-A21	45.00	90.00	
A22-A25	53.00	106.00	
A99	•	•	
N01	60.00	120.00	
N02	59.00	118.00	
N03	20.00	40.00	

Schedule E **EXCEPTION PRICE DOCUMENTS** AND MICROFICHE"

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
E01	\$10.00	\$ 20.00	
E02	12.00	24.00	
E03	14.00	28.00	
E04	16.50	33.00	
E05	18.50	37.00	
E06	21.50	43.00	
E07	24.00	48.00	
E08	27.00	54.00	
E09	29.50	59.00	
E10	32.50	65.00	
E11	35.00	70.00	
E12	38.50	77.00	
E13	41.00	82.00	
E14	45.00	90.00	
E15	48.50	97.00	
E16	53.00	106.00	
E17	57.50	115.00	
E18	62.00	124.00	
E19	69.00	138.00	
E20	80.00	160.00	
E99	*	•	

^{*} Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges U.S., Canada, Mexico - ADD \$3.00 per TOTAL ORDER All Other Countries - ADD \$4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

^{**} Effective January 1, 1991, the microfiche copy of any new document entering the NTIS collection will be priced the same as the paper copy of the document.

restant to the control of the contro

<u>:</u>		
•		•
-	•	
·		
·		
·		

1. Report No.	Government Acces	sion No.	Recipient's Catalog	No.
NASA SP-7037(269)				
4. Title and Subtitle			5. Report Date	
Aeronautical Engineering	4 000)		September 199	
A Continuing Bibliography (Supplemen	(269)		Performing Organiz	ation Code
			NTT	
7. Author(s)			8. Performing Organiz	ation Report No.
			10. Work Unit No.	
Performing Organization Name and Address				
NASA Scientific and Technical Information Program		-	11. Contract or Grant I	do.
			11. Contract of Grant 1	•0.
			·	
			13. Type of Report and	
12. Sponsoring Agency Name and Address			Special Publica	ation
National Aeronautics and Space Admir	nistration	ŀ	14. Sponsoring Agenc	v Code
Washington, DC 20546			,	,
15. Supplementary Notes				
16. Abstract	er i di i		ale e NIAMA e elemente.	
This bibliography lists 539 reports, art	ticles and other doc	cuments introduced into	the NASA scientific	and technical
information system in August 1991.				
·				
			•	
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Aeronautical Engineering		Unclassified - Unlimited		
Aeronautics		Subject Category -	U1	
Bibliographies				
19. Security Classif. (of this report)	20. Security Classif. (d	of this page)	21. No. of Pages	22. Price *
Unclassified	Unclassified		158	A08/HC

FEDERAL REGIONAL DEPOSITORY LIBRARIES

ALABAMA AUBURN UNIV. AT MONTGOMERY LIBRARY

Documents Dept. 7300 University Drive Montgomery, AL 36117-3596 (205) 244-3650 FAX: (205) 244-0678

UNIV. OF ALABAMA

Amelia Gayle Gorgas Library Govt. Documents Box 870266 Tuscaloosa, AL 35487-0266 (205) 348-6046 FAX: (205) 348-8833

ARIZONA DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS

Federal Documents Third Floor State Capitol 1700 West Washington Phoenix, AZ 85007 (602) 542-4121 FAX: (602) 542-4400; 542-4500

ARKANSAS ARKANSAS STATE LIBRARY

State Library Services One Capitol Mall Little Rock, AR 72201 (501) 682-2869

CALIFORNIA CALIFORNIA STATE LIBRARY

Govt. Publications Section 914 Capitol Mall - P.O. Box 942837 Sacramento, CA 94237-0001 (916) 322-4572 FAX: (916) 324-8120

COLORADO UNIV. OF COLORADO - BOULDER

Norlin Library Govt. Publications Campus Box 184 Boulder, CO 80309-0184 (303) 492-8834 FAX: (303) 492-2185

DENVER PUBLIC LIBRARY

Govt. Publications Dept. BS/GPD 1357 Broadway Denver, CO 80203 (303) 571-2135

CONNECTICUT **CONNECTICUT STATE LIBRARY**

231 Capitol Avenue Hartford, CT 06106 (203) 566-4971 FAX: (203) 566-3322

FLORIDA

UNIV. OF FLORIDA LIBRARIES

Documents Dept. Library West Gainesville, FL 32611-2048 (904) 392-0366 FAX: (904) 392-7251

GEORGIA UNIV. OF GEORGIA LIBRARIES

Govt. Documents Dept. Jackson Street Athens, GA 30602 (404) 542-8949 FAX: (404) 542-6522

HAWAII UNIV. OF HAWAII

Hamilton Library Govt. Documents Collection 2550 The Mail Honolulu, HI 96822 (808) 948-8230 FAX: (808) 956-5968

IDAHO

UNIV. OF IDAHO LIBRARY **Documents Section**

Moscow, ID 83843 (208) 885-6344 FAX: (208) 885-6817

ILLINOIS

ILLINOIS STATE LIBRARY

Reference Dept. 300 South Second Springfield, IL 62701-1796 (217) 782-7596 FAX: (217) 524-0041

INDIANA

INDIANA STATE LIBRARY

Serials/Documents Section 140 North Senate Avenue Indianapolis, IN 46204 (317) 232-3678 FAX: (317) 232-3728

UNIV. OF IOWA LIBRARIES

Govt. Publications Dept Washington & Madison Streets Iowa City, IA 52242 (319) 335-5926 FAX: (319) 335-5830

KANSAS

UNIV. OF KANSAS

Govt. Documents & Map Library 6001 Malatt Hall Lawrence, KS 66045-2800 (913) 864-4660 FAX: (913) 864-5380

KENTUCKY

UNIV. OF KENTUCKY LIBRARIES

Govt. Publications/Maps Dept. Lexington, KY 40506-0039 (606) 257-3139 FAX: (606) 257-1563; 257-8379

LOUISIANA

LOUISIANA STATE UNIV.

Middleton Library Govt. Documents Dept. Baton Rouge, LA 70803 (504) 388-2570 FAX: (504) 388-6992

LOUISIANA TECHNICAL UNIV.

Prescott Memorial Library Govt. Documents Dept. 305 Wisteria Street Ruston, LA 71270-9985 (318) 257-4962 FAX: (318) 257-2447

TRI-STATE DOCUMENTS DEPOSITORY

Raymond H. Fogler Library Govt. Documents & Microforms Dept. Univ. of Maine Оголо, МЕ 04469 (207) 581-1680

MARYLAND UNIV. OF MARYLAND

Govt. Documents/Maps Unit College Park, MD 20742 (301) 454-3034 FAX: (301) 454-4985

MASSACHUSETTS BOSTON PUBLIC LIBRARY

Govt. Documents Dept 666 Boylston Street Boston, MA 02117 (617) 536-5400 ext. 226 FAX: (617) 267-8273; 267-8248

MICHIGAN DETROIT PUBLIC LIBRARY

5201 Woodward Avenue Detroit, MI 48202-4093 (313) 833-1440; 833-1409 FAX: (313) 833-5039

LIBRARY OF MICHIGAN

Govt. Documents Unit P.O. Box 30007 Lansing, MI 48909 (517) 373-0640 FAX: (517) 373-3381

MINNESOTA UNIV. OF MINNESOTA

Wilson Library Govt. Publications Library 309 19th Avenue South Minneapolis, MN 55455 (612) 624-5073 FAX: (612) 626-9353

MISSISSIPPI

UNIV. OF MISSISSIPPI J.D. Williams Library Federal Documents Dept. 106 Old Gym Bldg. University, MS 38677 (601) 232-5857 FAX: (601) 232-5453

MISSOURI

UNIV. OF MISSOURI - COLUMBIA

Ellis Library Govt. Documents Columbia, MO 65201 (314) 882-6733 FAX: (314) 882-8044

MONTANA UNIV. OF MONTANA

Maureen & Mike Mansfield Library Documents Div. Missoula, MT 59812-1195

(406) 243-6700 FAX: (406) 243-2060

NEBRASKA

UNIV. OF NEBRASKA - LINCOLN

D.L. Love Memorial Library Documents Dept. Lincoln, NE 68588 (402) 472-2562

NEVADA UNIV. OF NEVADA

Reno Library Govt. Publications Dept.

Reno, NV 89557 (702) 784-6579 FAX: (702) 784-1751

NEW JERSEY NEWARK PUBLIC LIBRARY

U.S. Documents Div. 5 Washington Street -P.O. Box 630

Newark, NJ 07101-0630 (201) 733-7812 FAX: (201) 733-5648

NEW MEXICO

UNIV. OF NEW MEXICO General Library

Govt. Publications Dept. Albuquerque, NM 87131-1466 (505) 277-5441 FAX: (505) 277-6019

NEW MEXICO STATE LIBRARY

325 Don Gaspar Avenue Santa Fe, NM 87503 (505) 827-3826 FAX: (505) 827-3820

NEW YORK NEW YORK STATE LIBRARY

Documents/Gift & Exchange Section Federal Depository Program Cultural Education Center Albany, NY 12230 (518) 474-5563 FAX: (518) 474-5786

NORTH CAROLINA UNIV. OF NORTH CAROLINA -CHAPEL HILL

CB#3912, Davis Library BA/SS Dept.—Documents Chapel Hill, NC 27599 (919) 962-1151 FAX: (919) 962-0484

NORTH DAKOTA NORTH DAKOTA STATE UNIV. LIBRARY

Documents Office Fargo, ND 58105 (701) 237-8886 FAX: (701) 237-7138 In cooperation with Univ. of North Dakota, Chester Fritz Library Grand Forks

OHIO STATE LIBRARY OF OHIO

Documents Dept. 65 South Front Street Columbus, OH 43266 (614) 644-7051 FAX: (614) 752-9178

OKLAHOMA OKLAHOMA DEPT. OF LIBRARIES

U.S. Govt. Information Div. 200 NE 18th Street Oklahoma City, OK 73105-3298 (405) 521-2502, ext. 252, 253 FAX: (405) 525-7804

OKLAHOMA STATE UNIV.

Edmon Low Library Documents Dept. Stillwater, OK 74078 (405) 744-6546 FAX: (405) 744-5183

OREGON PORTLAND STATE UNIV.

Millar Library 934 SW Harrison - P.O. Box 1151 Portland, OR 97207

(503) 725-3673 FAX: (503) 725-4527 **PENNSYLVANIA**

STATE LIBRARY OF PENN. Govt. Publications Section Walnut St. & Commonwealth Ave. -P.O. Box 1601 Harrisburg, PA 17105 (717) 787-3752

SOUTH CAROLINA

CLEMSON UNIV.

Cooper Library
Public Documents Unit Clemson, SC 29634-3001 (803) 656-5174 FAX: (803) 656-3025 In cooperation with Univ. of South Carolina, Thomas Cooper Library, Columbia

TENNESSEE MEMPHIS STATE UNIV. LIBRARIES

Govt. Documents

Memphis, TN 38152 (901) 678-2586 FAX: (901) 678-2511

TEXAS

TEXAS STATE LIBRARY

United States Documents P.O. Box 12927 - 1201 Brazos Austin, TX 78711 (512) 463-5455 FAX: (512) 463-5436

TEXAS TECH. UNIV. LIBRARY

Documents Dept Lubbock, TX 79409 (806) 742-2268 FAX: (806) 742-1920

UTAH STATE UNIV.

Merrill Library & Learning Resources Center, UMC-3000 Documents Dept. Logan, UT 84322-3000 (801) 750-2684 FAX: (801) 750-2677

VIRGINIA

UNIV. OF VIRGINIA Alderman Library

Govt. Documents Charlottesville, VA 22903-2498 (804) 924-3133 FAX: (804) 924-4337

WASHINGTON WASHINGTON STATE LIBRARY

Document Section MS AJ-11 Olympia, WA 98504-0111 (206) 753-4027 FAX: (206) 753-3546

WEST VIRGINIA WEST VIRGINIA UNIV. LIBRARY

Govt. Documents Section P.O. Box 6069 Morgantown, WV 26506 (304) 293-3640

WISCONSIN ST. HIST. SOC. OF WISCONSIN LIBRARY

Govt. Publications Section 816 State Street Madison, WI 53706 (608) 262-2781 FAX: (608) 262-4711 In cooperation with Univ. of Wisconsin-Madison, Memorial Library

MILWAUKEE PUBLIC LIBRARY

Documents Div. 814 West Wisconsin Avenue Milwaukee, WI 53233 (414) 278-2167 FAX: (414) 278-2137

WYOMING WYOMING STATE LIBRARY

Supreme Court & Library Bldg. Govt. Publications Cheyenne, WY 82002 (307) 777-5920 FAX: (307) 777-6289 National Aeronautics and Space Administration Code NTT

Washington, D.C. 20546-0001

Official Business Penalty for Private Use, \$300

National Aeronautics and Space Administration

Washington, D.C. 20546

SPECIAL FOURTH CLASS MAIL

Postage an Fees Paid National Aeronautics and Space Administration NASA-451

Official Business Penalty for Private Use \$300

L2 001 SP7037-269911017S090569A NASA CENTER FOR AEROSPACE INFORMATION ACCESSIONING DEPT P 0 BOX 8757 BWI ARPRT BALTIMORE MD 21240

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return