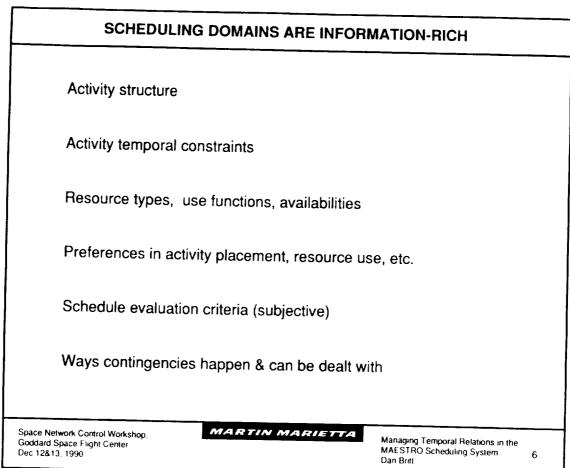


INTRODUCTION			
Scheduling defined			
Why scheduling is hard			
Scheduling domains are information-rich			
An effective scheduling approach - Use as much information as possible while keeping the computational workload manageable			
MAESTRO adhers to this principle via resource opportunity calculation and temporal constraint propagation			
How MAESTRO manages temporal relations			
Space Network Control Workshop, MARTIN MARIETTA Managing Temporal Relations in the Goddard Space Flight Center MAESTRO Scheduling System Dec 12&13, 1990 Dan Britt			


DEFINITIONS		
Activity - A sequence of operations, steps or executed, accomplishes one or mo associated resource, conditions, sta requirements, all of which must be accomplish its goal(s).	re goals. Each activity has ate, and timing	
Scheduling - The specification of start and er making up activities, and the sp to be used for each, if there are	ecification of resources	
Viable Schedule - A timeline of activity perfor the performances can succ given the truth of the assur schedule was based.	Cessfully be executed	
Space Network Control Workshop, Goddard Space Flight Center Dec 128 13, 1990	4 Managing Temporal Relations in the MAESTRO Scheduling System Dan Britt	

-			
	i	÷	•

Activity Structure	· · · · · · · · · · · · · · · · · · ·					
subtasks	duratio min	on max	dela min	ay max		
A1 - Power Up	3	3	n/a	n/a		
A2 - Self test	1	I.	0	0		
A3 - Calibrate	4	6	0	5		
A4 - Repoint	1	10	0	10		
A5 - Collect Data	18	36	0	10		
A6 - Power Down	3	3	0	0		
Resource Use						
resources subtasks	ATMOS Instrument	Power	Data	Vibration	Sun excl angle	Day/night
A1 - Power Up	x	100 w			<u> </u>	
A2 - Self test	×	100 w	4 kbps			
A3 - Calibrate	x	250 w	l kops			
A4 - Repoint	x	400 w		causes 1000	μg	
A5 - Collect Data	x	200 w	2 kbps	< 650 μg	> 32 deg	daylight only
A6 - Power Down	×					

WHY SCHEDULING IS HARD		
 Desirability - Difficulty in determining schedule, given that different people, goals and priorities. 	when you've got a good agencies, etc. have differing	
2) Stochasticity - Unpredictability in the scheduling problematical.	domain that makes predictive	
 Tractability - Computational completed of the scheduling problem. 	kity of the domain, the "size"	
 Decidability - It may be provably imp which produces an optimal schedule of optimality chosen. 	possible to find an algorithm e, depending on the definition	
H. Van Dyke Parunak - "Why Scheduling Proceedings of the 1987 Material Handlin Institute of Technology, September 1987.	g rocus (nesearch rorunn), deorgia	
Space Network Control Workshop, Goddard Space Flight Center Dec 12813, 1990	Managing Temporal Relations in the MAESTRO Scheduling System 4 Dan Britt	

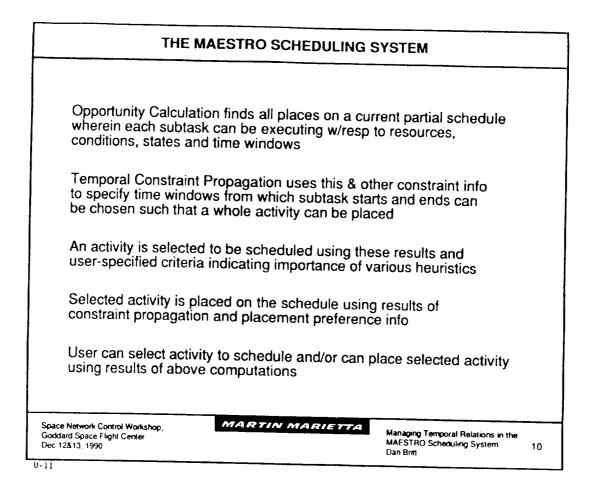
TRACTABILITY	
Scheduling - searching a large, many-dimensional pro which are scattered viable schedules.	oblem space, throughout
Given 100 activities using any of 100 resources and s this space contains aproximately 10 ^{300,000} possible sc	starting at any of 100 times hedules.
Viable schedules make up a tiny percentage of all sc	hedules.
"Good" schedules can constitute a small fraction of a	Il viable schedules.
Optimal schedules can make up a small percentage	of all "good" schedules.
MARTIN MARIETTA	
Space Network Control Workshop, Goddard Space Flight Center Dec 12&13, 1990	Managing Temporal Relations in the MAESTRO Scheduling System 5 Dan Britt
U-6 235	

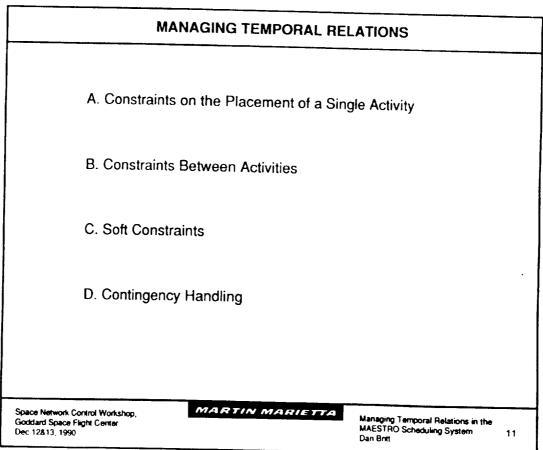
U-7

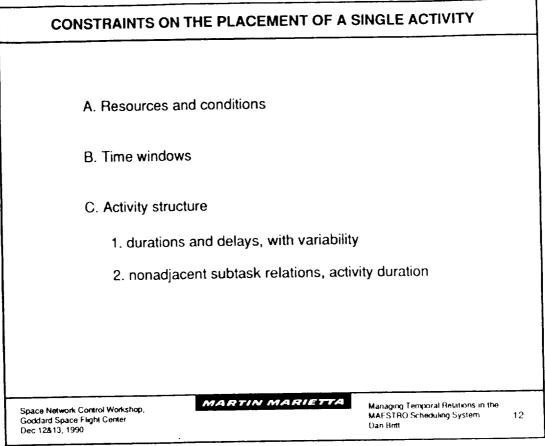
 12) Resource and conditions availabilities 13) States of schedule-relevant objects 14) Interactions between resources 15) Position on timeline of events and already-scheduled activities 16) User preferences in activity or subtask placement 17) Preferences in subtask resource use 18) Preferences in ways to satisfy temporal constraints 19) Priority of each activity should be scheduled 20) Number of times each activity should be scheduled 21) Time period being scheduled over 22) Average frequencies of various failures 23) Typical times for repair& maintenance 24) Ways to continue an interrupted activity 25) Time available to create a schedule being executed 27) Importance of minimally satisfying lots of requests vs that of 28) Importance of getting on high-priority activity done vs getting 28) Importance of getting on high-priority activity done vs getting 	Domain Information Usable By A Scheduler Some or all of the following is available in a typical scheduling domain. Other information may be available as well. 1) Structure of each activity (number of subtasks, operations or steps) 2) Subtask durations, delays between subtasks for each activity 3) Subtask resource and conditions requirements, choices between resources used

236

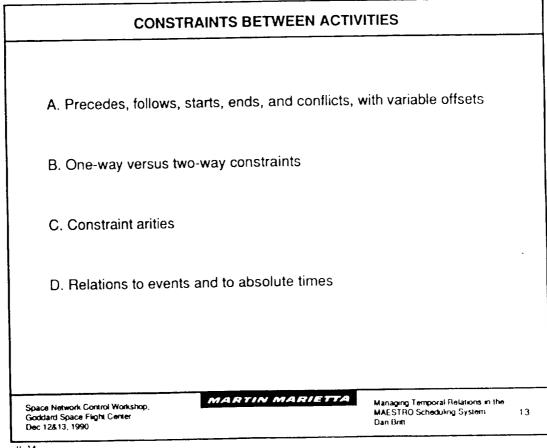
such that the whole activity can be placed subtask are satisfiable. 32) Time windows from which to choose subtask starts and ends 31) Time windows during which all resource requirements for a Percent resource use, percentage of activity requests satisfied, and other schedule evaluation metrics 29) Summed activity resource requirements 30) Ways two or more activities can fit together or will conflict and fixed delays between them, but this information cannot

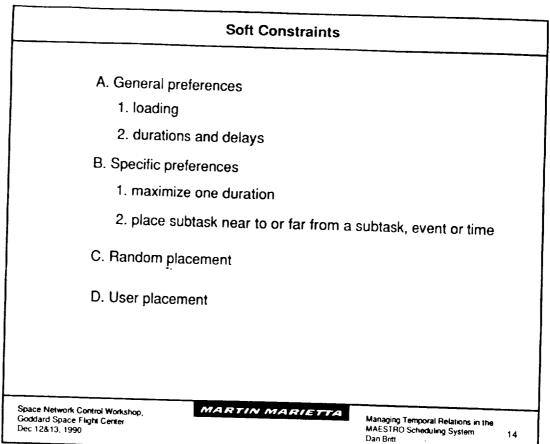

useful information:

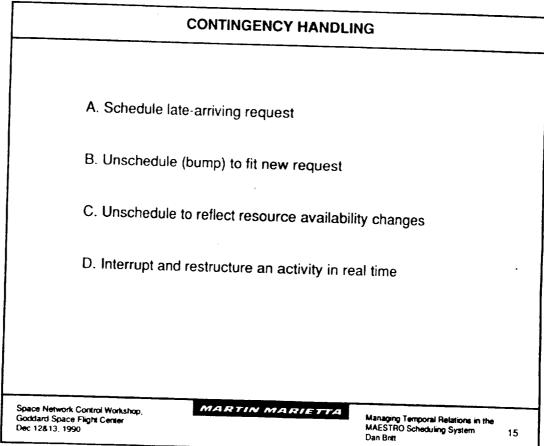

The preceding information can be used to generate other potentially


placement. Also, some of the information listed earlier will be subjectively determined, and these determinations can vary over time and between people, though this will not necessarily make this In most scheduling domains an important piece of information cannot be determined - why an activity cannot be scheduled. It may be possible to list all the reasons why an activity cannot be scheduled at a particular time, with fixed durations for its subtasks efficiently be determined for activities which allow variability in kind of information unuseful.

AN APPROACH TO SCHEDULING				
Represent all available domain information to scheduling	g system			
Perform computations which analyze input info and synt other info while not incurring unacceptable overhead	hesize			
Use domain info and synthesized info to incrementally n decisions which remove "bad" schedules from the searc while keeping "good" ones	nake h space			
Do not allow representable constraint violations, ruling o vast majority of the search space implicitly	ut the			
	emporal Relations in the Scheduling System 9			


U-9





U-13

U-15

