
_ASA
_TechniCal

per
_163

October 1991

d

._ : _R - -=: - -::.::

=,..

:±i--_- .....

A Generalized Method

for Multiple Robotic
Manipulator Programming
Applied to Vertical-Up
Welding

Kenneth R. Fernandez,

George E. Cook,

Kristinn Andersen,

Robert Joel Barnett,

and Saleh Zein-Sabattou

GENERALIZEO METHOD FCR

MANIPULATOR PROG_A_HING
WELDING (NASA) 30 p

CSCL 13I

(NASA-TP-3163) A

HULTIPLE ROBOTIC
APPLIED TO VERTICAL-UP

I

" L

='"4== = t

//v-._/

p. O

N92-I1218

Unclas
OOk8110

.... _ ...... _,._......7̧ , : =

m
mz

I

https://ntrs.nasa.gov/search.jsp?R=19920002000 2020-03-17T15:08:24+00:00Z





NASA
Technical

Paper
3163

1991

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

A Generalized Method

for Multiple Robotic
Manipulator Programming
Applied to Vertical-Up
Welding

Kenneth R. Fernandez

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama

George E. Cook,

Kristinn Andersen,

Robert Joel Barnett,

and Saleh Zein-Sabattou

Vanderbilt University

Nashville, Tennessee





TABLE OF CONTENTS

Page

INTRODUCTION ................................................................................................................ 1

WELDING CONSTRAINTS: VERTICAL-UP VERSUS DOWNHAND

ORIENTATION ....................................................................................................... 3

THE GENERALIZED PROGRAMMING METHODOLOGY ................................ 5

PROGRAMMING FOR VERTICAL-UP WELDING ............................................... 15

GRAPHIC SIMULATION RESULTS ........................................................................... 18

DISCUSSION AND CONCLUSIONS ............................................................................ 19

REFERENCES .................................................................................................................... 20

,2 "r-

iii PRECEDING PAGE BLAIqK NOT FILMED



LIST OF ILLUSTRATIONS

Figure Title

1. Simulation of saddle welding. Viewed from above (a) and

o

Page

from the front of the robot (b) .............................................................................. 21

Nozzle welding. This example simulates a weld on the space

shuttle main engine ................................................................................................. 22

iv



DEFINITION OF SYMBOLS

Symbol

CAD

CAM

DOF

_E_

Err(i)

f-err

G

g
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I
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variable transformation for link i in a robotic manipulator

computer aided design

computer aided manufacturing

degrees-of-freedom

fixed transformation for an end effector

variable transformation. (the difference between the actual

and the desired torch location in the part coordinate frame.)

a forcing function, used to eliminate the difference between the

actual and the desired torch location in the part coordinate

frame

fixed transformation from the last link of the positioner to the

part coordinate frame

the workcell gravity vector

gas tungsten arc welding

an identity matrix

a Jacobian matrix

millimeter

Marshall Space Flight Center

N degrees-of-freedom

National Aeronautics and Space Administration
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P(i)
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S

VPPAW

Z

variable robot path transformation, defined in a part

(workpiece) coordinate frame

ROBOt SIMulation package

second

transformation matrix for a 6 DOF manipulator

variable polarity plasma arc welding
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UNUSUAL TERMS

downhand welding - Welding with the part maintained in an orientation such that

the weld puddle lies in a horizontal plane.

vertical-up welding - Welding with the part maintained in an orientation such that

its surface plane at the weld puddle is vertical, and the traveling motion of

the puddle, relative to the part, is up.

off-line programming - A method of specifying the motion path of a robot in an

external computer.

wire feed - When welding with a nonconsumable electrode, the filler metal is usually

supplied to the welding process in the form of a wire fed into the arc directly

in front of the electrode as it moves along the weld seam.
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A GENERALIZED METHOD FOR

MULTIPLE ROBOTIC MANIPULATOR PROGRAMMING

APPLIED TO VERTICAL-UP WELDING

INTRODUCTION

The work presented in this paper is an extension of a past research effort to

automate the programming of robotic mechanisms and positioners to satisfy

geometrical constraints arising in robotic arc welding. The research, which forms

the basis of the methodology used here, was originally carried out by Fernandez and

Cook and published by NASA [1]. The work was demonstrated using the

constraints imposed on the robotic manipulators by the gas tungsten arc welding

(GTAW) process. The basic methodology developed by Fernandez and Cook,

however, was very general and applicable to a variety of other welding processes.

This was emphasized and discussed further by Andersen et al. [2], where specific

modifications to the original programming algorithm necessary to facilitate vertical-

up welding were given. In this paper, the full details for adapting the original

algorithm for vertical-up welding are presented. Furthermore, graphical simulations

are illustrated to verify the results from the algorithm modifications.

The practical problems reduced or eliminated by the programming algorithm

are now summarized. Each teach point along any given weld has to be programmed

with certain constraints satisfied. The workpiece has to be appropriately oriented,

the torch tip has to be appropriately positioned and oriented, the wire feed

mechanism should be oriented in a certain way, and welding speed is to be

controllable at all times. The first three requirements can be met with considerable

patience on the programmer's behalf using a robot and a positioner, manually



guided with a teach pendant. Although viable, this approach is tedious and prone to

programming errors. In an integrated CAD/CAM system, this step may not be

easily achievable without an algorithm such as the one presented here. Most

welding systems have more than 6 DOF and the problem of how to coordinate the

redundant joints and simultaneously satisfy the welding constraints has to be

resolved. The fourth requirement, programmability for constant or controllable

welding speed, is provided for by neither the teach-pendant approach nor the

unmodified CAD/CAM approach.

A programmer using the proposed algorithm can save substantial time and

ensure accuracy by applying the algorithm in the following manner. In the case of

programming the weld path by guiding the robot with a teach pendant, the pro-

grammer can orient the workpiece by aligning the positioner joints into any conve-

nient position at the beginning of the programming sequence as well as at any time

throughout the programming process. The torch is guided to the first teach point on

the workpiece, where the programmer ensures only adequate proximity to the de-

sired teach point location and the desired torch orientation with respect to the work-

piece. The programmer does not have to be concerned with wire feed orientation

or workpiece orientation. This procedure can be repeated for all teach points. In

the case of a CAD/CAM system, the coordinates and desired torch orientations at

the selected teach points can be extracted from the workpiece data, from which all

information for the algorithm can be derived. In either case, the desired welding

speed or speeds are also specified. From this information, the proposed welding

algorithm calculates the positioner, robot joint angles, and robot speeds required to

make the weld with the desired welding constraints. In short, a process which was,

at best, a series of tedious trial-and-error operations is turned into a relatively

straightforward, one-pass task using the proposed algorithms.
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WELDING CONSTRAINTS: VERTICAL-UP VERSUS DOWNHAND

ORIENTATION

The various arc welding processes, such as GTAW and variable polarity

plasma arc welding (VPPAW), demand that the welded workpiece and the welding

torch be appropriately positioned and oriented at all times during welding to yield

satisfactory welds. Additionally, the speed of the torch tip with respect to the

surface of the workpiece has to be fully controllable.

The VPPAW process is used in a number of welding tasks at NASA,

including welding on the space shuttle and planned welding on the space station. It

utilizes a nonconsumable electrode which sustains the welding arc on the workpiece.

The basic elements of the plasma arc torch are the electrode and the orifice. A

relatively small flow of an inert gas (e.g., argon) is guided through the orifice to form

the arc plasma. The arc may either be sustained between the electrode and the

workpiece (transferred arc) or between the electrode and the constricting nozzle

(nontransferred arc). Keyhole welding, a specific condition of VPPAW, is achieved

with certain combinations of base metal thicknesses, gas flow rates, currents, and

torch travel speeds. The weld pool is relatively small and contains a hole

penetrating completely through the base metal. Manual VPPAW, as well as the

GTAW process, can be carried out in most welding positions. Automatic VPPAW

is more limited in terms of possible welding positions, and keyhole welding is

frequently preferred with the torch always traveling vertically up along the seam.

The workpiece is held by a part positioner, which may be viewed as an

N-DOF robotic mechanism itself. The robot (manipulator) holds the welding torch,

including the electrode, shielding gas nozzle, wire feeder which supplies the molten

weld pool with reinforcement material, and other associated hardware as applicable.
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To obtain a satisfactory weld, the torch and the workpiece have to be manipulated

in certain manners, depending on the applied welding process. The first

requirement is that the torch tracks the joint to be welded within acceptable

tolerances. Secondly, the orientation of both the workpiece and the torch has to be

appropriate for the welding process. When the VPPAW process is applied, the

workpiece has to be aligned so that the welded spot is on a vertical surface at all

times, and, furthermore, the workpiece may have to be rotated so that the molten

spot moves vertically up during the entire welding pass. The term "vertical-up

welding" is derived from these requirements. In the case of the GTAW process, on

the other hand, the molten weld pool is always on a horizontal surface section of

the workpiece. The arc plasma is directed from the torch above the workpiece and

down into the pool, which gives rise to the term "downhand welding." The

workpiece orientation requirements for the different welding processes are usually

accomplished with the part positioner.

Regarding the torch manipulator there are a number of requirements, or

constraints, which have to be met as well. Usually the filler wire is fed from the

front of the arc plasma as it moves along the welded joint. The angles between the

arc plasma flow, the workpiece surface, and the instantaneous direction of the torch

travel may need to be maintained at specific values of orientation during an entire

weld pass. Finally, the speed of the torch tip, with respect to the workpiece surface,

has to be completely controlled. Typically, the speed is kept constant at a value

selected by the operator. For applications where the positioner is stationary during

the entire welding pass this is a trivial task. In cases requiring simultaneous,

coordinated movements of the positioner and the manipulator, however, speed

control becomes more complex. The simultaneous motion of the positioner and the

manipulator constitute complications for programming the teach points for the

positioner and the manipulator as well. The methodology described in this paper
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simplifies programming robotic welding systemswhere the constraints discussed

above must be simultaneously satisfied.

THE GENERALIZED PROGRAMMING METHODOLOGY

A short review of the generalized programming algorithm, developed by

Fernandez and Cook [1], is given in this section. Further details can be found in this

original NASA paper. Robotic terminology and notations adhere largely to the

conventions given by Paul [3].

The proposed weld path programming methodology is most clearly outlined

by reference to the coordinate transformation chains through the manipulator on

one hand and through the part positioner on the other. The position and the ori-

entation of the robot (or, more precisely, a coordinate system attached to the robot

base) with respect to the world coordinate system is specified by the fixed transfor-

mation matrix _ZR. Note that this allows the system user to select the world coordi-

nates arbitrarily. Therefore, the user may select the world coordinate system so that

it coincides with the robot base coordinate system, in which case the displacement

and rotations specified by _ZR are zero. The total transformation relating the final

link of the robot to its base coordinate system is specified by the variable matrix

TR(i ) which changes as the robot moves along the programmed points designated by

the index i. For each program point the elements of T R are functions of one or

more joint variables. Here, it is assumed that the joint variables of the robot are

01R, 82R , ..., 06R. The welding torch, or end effector, is mounted on the end link of

the robot. The location of a coordinate system attached to the torch, with respect to

the end link, is specified by the fixed transformation matrix E. For the torch to track

the welding seam and be properly oriented with respect to the seam, the total
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transformation Z-_ TR(i) E has to be appropriately specified for each programmed

point, i.

The positioner side of the transform chain is specified similarly. The

positioner location in the world coordinates is specified by the fixed transformation

Zp. The location of a coordinate system attached to the positioner mounting frame

with respect to the positioner base coordinates is Tp(i). Only two joint variables,

01p and 02p , are assumed here for the positioner. Each workpiece, or part, mounted

on the positioner is assigned a coordinate system, which is fixed with respect to the

part. The transformation from the positioner mounting frame to the part coordinate

system is specified by the fixed transformation G. Now that a fixed coordinate

system has been defined with respect to the workpiece, the trajectory of the welded

seam is specified. To match the manipulator and positioner transform chains, the

transformation P(i) (programmed point i on workpiece with respect to part frame) is

specified so that the welding torch coordinates coincide with the coordinates of the

programmed point on the workpiece:

Z R ZR(i ) E = Zp Tp(i)tiP(i) (1)

for all programmed points, i.

The purpose of the generalized programming algorithm is to calculate the

eight joint variables, 0;p, 02p, and 01n, 02R, through 06n, for each programmed point

so that the following four requirements are fulfilled at all times:

o Torch position control: The torch tip has to track the weld seam and

be properly oriented with respect to the seam throughout the entire

sequence of programmed points.
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o Workpie¢¢ orientation control: While the torch has to be appro-

priately oriented with respect to welded seam at each programmed

point, the part should simultaneously be appropriately oriented in the

workcell. For example, this orientation depends on whether vertical-

up or downhand welding is applied.

. Wire feed orientation control: The wire feed contact tube is to be

properly oriented in front of the moving torch throughout the entire

weld sequence.

. Speed control: The speed of the torch tip, relative to the part surface,

is to be controllable. A special case of this is the constant speed re-

quirement usually desired.

Basically, the first three control tasks are accomplished by determining the

error, or difference, between the actual and desired vector relationships, and then

Newton's algorithm is iteratively applied to reduce this difference to zero. Once the

desired positions of the torch manipulator and the robot have been determined, the

velocity of each joint is calculated, based on the desired welding speed.

The part of the overall algorithm which controls and maintains torch position

with respect to the workpiece illustrates the general concept. Before the algorithm

is executed, the two transform chains, through the welding manipulator and through

the workpiece positioner, are generally not identical (because T R and Tp are not yet

determined), and the difference is represented by an error transformation Err:

Er___r = E "1 TR-I(i ) ZR-1 Zp Tp(i) (3 P(i) (2)



This error transformation is the transformation between the desired torch location

(position and orientation in the part frame) to be reached by the algorithm and the

actual, initial location. When the actual location equals the desired location, Err

becomes the identity matrix. Generally, the error Err can be represented as

successive operations of rotations and translations. Before the torch position

control part of the algorithm is implemented, the eight joint variables of the system,

01p, 02e (two positioner joints), and 01R, 02R,...,O6R (six manipulator joints), may

have some arbitrary values. These eight variables have to be determined so that Err

becomes the identity matrix. In general, there is no closed-form solution to this

problem, and therefore an iteration method has to be applied. A six-element vector

variable, or forcing function, f6p_err, is constructed from the three position errors

and the three rotation errors, so that it becomes zero when the torch is correctly

positioned and oriented. This is when Err becomes the identity matrix.

It may be helpful to keep in mind how a zero is found for an arbitrary

function, f(x), of one variable using Newton's method. A new value for x is

iteratively calculated and tried until the corresponding function value is reduced

below a specified threshold:

xj+ 1 = xj - [1/f'(xj)]f(xj) (3)

until

f2(x) < _ (4)

In this one-dimensional case f' (xj) is the first derivative of f(x), evaluated at the jth

iteration estimate of x and E, the convergence criterion, is a small constant. This
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approachcanbe extendedto functions of more than one variable, such as f6p_err. In

that case the iteration algorithm becomes:

_j+l = 0j -[8/aO_f6p_err(O_j)l'lf6p_err(_) (5)

until

[f6_6_6__.err(0_)]T[f6p_err(_0)]< _ (6)

Here, the variable _0jis an eight-element vector consisting of the eight system joint

variables, as they are evaluated at the jth step of the iteration process.

Differentiation of the f6p.err(_0) matrix yields its Jacobian, which relates joint

angle rates to torch displacement and rotation rates. In this case the Jacobian, J, is

a 6-by-8 matrix of the following form:

I

ax/aoI ... ax/ae
ay/ae1 ... ax/ae
az/ao1 ... ax/ae
aCx/ae I ... a#x/a(
a¢,/aeI ... aeJac
a_/ae I ... ae_/a_

(7)

where, e.g., J2,3 is the differential of the torch y-coordinate in the part frame with re-

spect to the second joint in the system. 0¢x denotes a differential rotation about the

x axis, and similar notations hold for rotations about the y and z axes. Each column

of the Jacobian matrix is composed of three translational derivatives, followed by

three rotational derivatives.

The Jacobian for any robotic mechanism is readily calculated as long as all

link coordinates are assigned according to the Denavit-Hartenberg conventions,

which are discussed by Paul [3]. Because the joint variables of _0are eight while the
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forcing function vector, f6p.er r, contains only six variables, the system is

underdetermined. In other words, the system is redundant and an infinite number

of solutions exists for 9.. One approach to resolving this is to replace the inverse of

the Jacobian with its pseudoinverse. This guarantees a unique solution for 0_which

minimizes the joint displacements in the least-square sense. For further control of

the convergence, the inverted Jacobian may be multiplied by a constant scalar, h,

which determines the step size for the iterations. Finally, different weights for the

elements of f6p_err may be preferred in the convergence criterion. This is

accomplished by multiplication by a diagonal weighting matrix K. The resulting

iteration algorithm for torch position control is therefore:

0j+l = _0j - h [JT(jjT)q I f6p_err(_0j) (8)

[f6p.err(0)]TK[f6p_err(0)] < 6 (9)

These equations describe only the algorithm for position and orientation

control of the torch with respect to the welded part. Constraints for appropriate

workpiece orientation for vertical-up or downhand welding and wire feed

orientation control require additional calculations along similar lines.

Proper workpiece orientation at each point along the weld joint is basically

achieved by defining a two-element vector forcing function, _---err' and the two

positioner joint variables are iteratively manipulated until this function becomes

zero. For vertical-up welding, this function can be the cross product of a vector

tangent to the welded seam and the gravity vector of the workcell. The iteration

algorithm will alter the two positioner joint variables until the seam tangent

becomes vertical. For downhand welding, the forcing function is defined as the

cross product of the vector normal to the workpiece surface and the gravity vector.

In that case, the algorithm iteratively orients the workpiece until its surface becomes

10



horizontal at the welding point. The generality of the basic methodology is clearly

illustrated in that a simple redefinition of _--_err adapts the algorithm to a new

welding process with totally different workpiece orientation requirements.

It should be noted that forcing both f6p_err and _--_err to zero yields eight

equations, and with the eight joint variables available in the system, there is only

one set of solutions for the joint variables. In this case the normal inverse, rather

than the pseudoinverse, of the system Jacobian can be used. A new forcing function,

f8t_err, is composed of the elements of f6p.er r and _---err" Again, using Newton's

method, the resulting set of equations can be solved for the joint variables stored in

_0:

_+1 = _0j - h j-1 f8t_err(_0j) (10)

[f8t_err(0)]T K [f8t_err(0)] < E (11)

The joint values resulting from this algorithm ensure that the torch is properly

positioned and oriented with respect to the weld seam, and the workpiece is

appropriately oriented based on the welding process being used.

In most welding applications, the wire fed into the molten pool is applied

from the front of the welding torch as it moves along the seam. This constraint has

to be added to the robotic welding system while maintaining proper torch position

and workpiece orientation. However, because the system is already fully de-

termined (eight equations for eight unknown variables), addition of one more

constraint requires either an additional DOF or relaxation of one of the previous

constraints. Rotation of the torch about the approach axis is irrelevant as far as the

already established constraints are concerned, and therefore that DOF will be used

here for wire feed control.
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Again, a forcing function for aligning the wire feed orientation is determined.

This scalar forcing function, flw_err, is defined so that it becomes zero when the

vector along the wire feed direction is co-planar with the tangent to the weld path

and the normal to the workpiece surface.

To satisfy all of the previously stated constraints, the user of these algorithms

determines all eight joint variables using the iterative calculations used to make

f6p_er r and _---g-err equal to zero. Then one of the eight solutions is revised by the

following algorithm:

06R,j+ 1 = 06Rj + h L/w_er r (12)

k (flt_err)2 < _ (13)

Therefore, the last joint variable of the robot, O6R , as calculated here, replaces the

one calculated previously when f8t.er r Was forced to zero. The resulting vector of

the eight joint variables, 0__(i),can be determined for each programmed point, i, in

the same manner, and thus the calculated joint values will satisfy the required

welding constraints.

Control of the torch speed in the part frame is an important concern for

welding. A typical requirement is to keep the speed of the torch tip along the

welding trajectory at a specified, constant value. It should be noted that in a multi-

ple manipulator system (e.g., one that consists of a welding robot and a part posi-

tioner) the welding speed is not the same as the speed programmed on the robot.

The former is specified in the part frame while the latter is measured with respect to

the world frame. A speed of 2 mm/s along the weld seam may be obtained by a

stationary torch (in the world frame) while the positioner rotates the workpiece to

achieve the desired welding speed. Another scenario might consist of a robot
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moving the torch with a speed of 10 mm/s in the world coordinates and the

positioner moving the workpiece so that the weld pool moves in the same direction

at 8 mm/s, still resulting in a net speed of 2 mm/s in the part frame. Because the

actual movements of the positioner and the robot are not trivially defined after the

downhand welding algorithms have redefined the joint angles, certain measures

have to be taken to ensure controlled welding speed.

The original joint angles of the system are transformed by the welding con-

straint algorithms into a new set of angles for each of the programmed points. As a

result, the new IR(i) and Ip(i) can be found for each programmed teach point

along the weld. Assume that the welding speed (i.e., torch speed in the part frame)

is specified and assumed to be constant for each segment i, connecting teach points

i-1 and i. These desired speeds in the part frame can be designated by the scalars

Vp(i) which may vary from one segment to another. For constant speed throughout

the entire welding pass, all Vp(i) are equal. Now, recall that the programmed teach

points in the part frame are defined by a time-varying matrix P(i) which is of the

following form:

P(i)

np,x °P,x ap,x PP,x

np,y Op,y ap,y pp,y

n_,z °_,z a_,z P_,z
(14)

Specifically, the position of each programmed point in the part frame is specified by

the fourth column of this matrix, and thus the distance between any adjacent pro-

grammed points is readily found. The time required to traverse a given segment i,

T(i), is found as the part frame distance between points i-1 and i, divided by the

welding speed required for segment i:

13



T(i) ,/{ [Pp,x(i)-Pp,x(i-1)]2,,
÷ lPp,,(i)-Pp v(i-1)]_

+ [pglz(i)-pp',z(i-1)]'_ } / Vv(i) (15)

Now, recall that the position and orientation of the torch tip in world coordinates is

given by _ZR TR(i ) E. This results in a 4-by-4 matrix of which the fourth column is

the world frame position of the end effector coordinates:

Z R IR(i ) E

nR,x °R,x aR,x PR,x

nR,y °R,y aR,y PR,y

n_,z °_,z a_,z Pl_,z
(16)

By calculating the segment lengths or distances between successive 12-vectors from

this equation and dividing them by the time lengths required for each segment, the

desired speed of the torch in the world frame, Va(i), is obtained:

VR(i) = ./{ [ PRx(i) - PR,x(i "1) 12
+[ Pa',v(i) - Pa,y(i-1) 12
+[ pa,z(i) _ pR,z(i_l) ]z } / T(i) (17)

A more compact form for VR(i ) is

I112R(i)- 12R(i-1) [1
VR(i ) = Vp(i) (18)

[[12p(i) - 12p(i-1) 1[

which yields the required speed of the end effector in world coordinates for each

segment i. These values can be downloaded with the teach points to the actual

robot. Note that even when the same welding speed is required throughout all pro-

grammed segments (i.e., Vp(i) is constant for all i) the torch speed VR(i), in the
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world frame, will in general vary due to the interactions between the robot and the

part positioner.

PROGRAMMING FOR VERTICAL-UP WELDING

The preceding section has summarized the general approach of the

programming algorithm. Further details, using downhand welding constraints as an

example, were given in the original NASA Technical Paper by Fernandez and

Cook [1]. In this section the specific details, required to accomplish vertical-up

welding, are given.

A new orientation of the workpiece is the only change required to convert

the robotic programming from downhand welding to vertical-up welding. Torch

position and orientation relative to the workpiece, wirefeed orientation, and speed

control are all unchanged.

Referring to the original presentation of the robotic path programming

algorithm, the workpiece orientation requirements were demonstrated for

downhand welding. In that example, a vector n_g(i), perpendicular to the workpiece

surface at each programmed point i, was determined. This vector was oriented

"into" the workpiece, i.e., in the same general direction as the arc plasma flow. The

forcing function, _--_g-err'was defined as:

_-_-g-err,downhand = R ([Zp Alp A2p G .n_g0)] × g) (19)

and it was reduced to zero through iterative adjustments of the two positioner joint

variables. In essence, this forcing function was the cross product of the vector

normal to the workpiece surface and the gravity vector, g. Clearly, this cross
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product becomeszero when the gravity vector and the normal vector are parallel,

i.e., when the tangent plane to the workpiece surface is horizontal.

To achieve vertical-up workpiece orientation, only a minor modification of

the algorithm suffices. The basic approach is simply to replace the normal vector to

the workpiece surface with the tangent to the weld seam. Two approaches to

obtaining the tangent vector are mentioned here. The first one is to use the

normalized secant vector, connecting teach points 12(i-1) and 12(i), as an

approximation to the tangent:

12(i) - t2(i-1)
nl(i) = (20)

II120) - 12(i-1)U

The second approach is to calculate the tangent using the coordinate vector frame

assigned to the torch. This was the method used to implement the graphical

simulations illustrated in this paper. Assume that the convention of Fernandez and

Cook [1] is maintained where the "approach" vector (a) of the torch is aligned along

the arc plasma flow. The "orientation" vector (o) is tangent to the workpiece

surface, but it is perpendicular to the travel direction and is pointed to the right with

respect to the traveling torch. Finally, the "normal" vector (n) is perpendicular to

these two, so that:

n = oxa (21)

If the arc plasma flow is perpendicular to the workpiece surface, the normal vector,

n, can serve as the tangent to the workpiece. If the electrode is to be tilted from the

perpendicular orientation, as may sometimes be the case, the coordinates from _n

must be saved for the tangent vector before such tilting is implemented:
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n2(i) =n0)electrode perpendicular to part surface (22)

Therefore, either n 1 or n 2 may be used for the tangent vector, a t. In either case the

forcing function for vertical-up welding becomes:

_---g-err,vert-up = " R ([Zp Alp A2p G at(i)] x g) (23)

i.e., _ng(i) from the downhand welding algorithm is simply replaced by nt(i ) to

implement vertical-up welding. Furthermore, the minus sign arises from the fact

that the vector nt(i ) converges to point up, opposite to the gravity vector which

points down. The truncation matrix, R, is defined as:

0 1 0 0 ]R = 0 0 1 0 (24)

As previously, by augmenting the torch position error function and the

vertical-up error function, a single error forcing function, f8t_err, for torch position

and vertical-up welding control is obtained:

f6p-errfSt.err = (25)

L_-_-g-elrt

and this error vector becomes 0 when the torch is properly positioned and aligned

with respect to the workpiece and when the workpiece is properly aligned with

respect to the workcell gravity vector. In the same fashion as before, the _0vector,

which consists of all joint angles in this fully determined system, can be determined

by Newton's iteration method:
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0j+ i = 0j - h j-I fSt_err(_0j) (26)

[f__St.err(0)]TK[f_8_8t.err(0) ] < _ (27)

The simple modification of _-_-g-errto f2h_err is all that is needed to convert the

algorithm from downhand welding to vertical-up welding. Therefore, the remaining

sections in the algorithm are unchanged.

GRAPHIC SIMULATION RESULTS

To verify and demonstrate the accuracy of the modified algorithm, computer

simulations of vertical-up welding were implemented. The modeled robot is the

Cincinnati-Milacron T3-776, which has six revolute joints. The positioner is an

Advanced Robotics RP-25. It has two revolute joints, one revolving the mounting

plate in its plane and one to tilt it off the horizontal orientation. In addition to these

two DOF, the positioner height can be indexed off-line, but the index parameter is

usually assumed fixed for any given application. For the simulations ROBOSIM, a

graphic simulation package developed by Fernandez [4], was employed in

conjunction with FORTRAN programs, used for implementation of the robot weld

path programming algorithm. These simulations were run on a

Hewlett-Packard 9000/350-SRX workstation.

The workpiece used for the vertical-up welding simulation consists essentially

of two cylinder sections joined by the weld. It will be used in the planned space

station berthing port. A weld of this type is frequently referred to as a saddle weld.

Sequential images of the saddle welding simulation, after the weld programming

algorithm has been applied, are shown in figures l(a) and (b). Figure l(a) shows

the simulation from a viewpoint above the robotic manipulator, while Figure l(b) is

18



viewed along the horizontal plane. Figure 2 shows simulation of a saddle weld

which is performed on the space shuttle main engine. Although this particular weld

is usually carried out in a downhand orientation using the GTAW process, it was

simulated here to more clearly illustrate the vertical-up weld programming

algorithm. This example illustrates clearly how the workpiece and the torch are

oriented with respect to each other and, with respect to the workcell, throughout the

entire weld. Close examination of these simulations reveal that the vertical-up

welding requirements are met.

DISCUSSION AND CONCLUSIONS

A generalized robotic programming algorithm, applied to vertical-up

welding, has been demonstrated. The fundamental algorithm has been published by

Fernandez and Cook in an earlier NASA technical paper, and necessary

modifications and simulations for vertical-up welding have been presented here.

The vertical-up welding method is particularly important for VPPAW, which is

extensively used in NASA applications. It has been demonstrated that adaptation of

the programming algorithm to vertical-up welding requires only minor

modifications.
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Figure 2. Nozzle welding.

This example simulates a weld on the space shuttle main engine.
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