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TURBULENT FLUID MOTION III-

Basic Continuum Equations

Robert G. Deissler

National Aeronautics and Space Administration
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SUMMARY

A derivation of the continuum equations used for the analysis of turbulence is given.

These equations include the continuity equation, the Navier-Stokes equations, and the heat

transfer or energy equation. An experimental justification for using a continuum approach for

the study of turbulence is also given.

INTRODUCTION

The Navier-Stokes equations, with the other continuum equations for fluids, form the

basis for the analysis of turbulence in this series. One might, in fact, refer to that analysis as a

Navier-Stokes theory of turbulence. Therefore a derivation of the Navier-Stokes equations and

of the other fluids equations seems appropriate, if the series is to be reasonably self-contained.

Moreover, the derivations given here, at least those for the Navier-Stokes equations, proceed

from fewer assumptions than do those generally given.

3.1 JUSTIFICATION OF THE USE OF A CONTINUUM APPROACH FOR TURBULENCE

Most workers in fluid dynamics, since the early days of the science, have ignored the
molecular structure of fluids. They consider fluids as continua for the purpose of mathematical

analysis. This point of view is generally justified by pointing out that the macroscopic lengths

in most fluid-dynamic problems are many times as large as the corresponding molecular lengths.

This may be true even if the flow is turbulent, the characteristic lengths of the turbulence being

much larger than the molecular lengths.

In the case of turbulent flow, however, there may be some question about the size of the
smallest important lengths. According to the spectral theory of turbulence, to be discussed

later, there is no definite lower limit on eddy size. But the presence of viscosity might be

expected to limit the efficacy of the smallest eddies. For that reason most workers feel intui-

tively that the molecular structure of the fluid is unimportant for turbulence analysis. (An

exception would be highly rarefied gases.)

However there is a solid experimental basis for a continuum theory of turbulence. This
lies in the excellent macroscopic correlation of data for fluids of widely different molecular struc-

ture. For instance gases and liquids have completely different molecular structures. The mole-

cules in a gas are generally so far apart that each molecule can interact with only one other

molecule at a time. In a liquid, on the other hand, each closely spaced molecule interacts



simultaneouslywith manyothers.1 In spite of this considerable difference in structure,

experimental data for turbulent flow of liquids correlate well macroscopically with those for

gases.

Figure 3-1 compares experimental fully developed turbulent friction factors at various

Reynolds numbers for water and for air flowing at low speeds in smooth pipes. Fully developed

means that the time-averaged velocity does not vary with time or axial position. The dimen-

sionless friction factor f is the ratio of time-averaged walt-shear stress r-w to dynamic pressure

(1/2)PUa 2, Ua is the velocity averaged with respect to time and cross-sectional area, D is the
pipe diameter, 9 is the density, and v is the kinematic viscosity. It can be shown from the

equations for continuum fluid flow (to be considered later in this chapter) that f is a function

only of Reynolds number for a fully developed low-speed continuum flow (see section 3.3.1). If

the molecular structure were important, at least one additional dimensionless group would be

required (e.g., the ratio of intermolecular distance to the tube diameter). In spite of the great
differences between the molecular structures of water and air, the macroscopic or continuum cor-

relation of the experimental data in figure 3-1 is excellent. General experience in correlating

data for turbulent flow of liquids and gases indicates results similar to those in figure 3-1. It

thus appears that a continuum theory of turbulence which ignores differences between the mole-
cular structures of various fluids is realistically based.

where p is the density and u 1
direction this becomes

3.2 EQUATION OF CONTINUITY

(Conservation of Mass)

The rate of mass flow per unit area in the xl-direction is

m 1 = PUl,

is the velocity component in the Xl-direction. In the xi-

(3-1)

m i = pup (3-2)

If m i is measured at xi, then at xi + Axi, m i is replaced by

Ax(i ) ÷ ...(no sum on i),m i ÷ __

o_mi

Ox(i)

where m i has been expanded in a Taylor series. For small Ax i only the first two terms need

be retained. Then the change in m i in going from xi to x i + Ax i is (0mi/0x(i)) Ax(i ).

1There is an interesting analogy between the theory of liquids and the theory of strong

turbulence. In both theories interactions among many modes or degrees of freedom must be
considered.



Considera smallstationary volume element AxIAX2AX3 _ AX. 2 The net flow of mass

into the element through all the faces in a short time At is -(&ni/0xi)AxAt (sum on i).
Equating this to the change of mass within the element in time At gives

0m i
0PAt Ax = - At Ax

0t 0x i

or, using equation (3-2),

Op = _ (_(PUi) (3-3)

Ot Oxi

which is the continuity equation for a compressible fluid. If the fluid is incompressible, equa-

tion (3-3) becomes

Oui

Oxi

=0. (3-4)

That is, for an incompressible flow, the net rate of flow of fluid through tlle faces of a small
volume element Ax is zero.

3.3 NAVIER-STOKES EQUATIONS

(Conservation of Momentum)

3.3.1 The Stress Tensor

3.3.1.1 Experimental basis and the f_mdamental assumption. - We begin with the basic

experimental fact concerning the motion of a viscous Newtonian fluid: In a pure shearing
motion the shear stress is proportional to the velocity gradient. 3 If, for instance, the velocity is

ul, in the Xl-direction , and the velocity gradient is in the x2-direction , the shear stress a21 is

2A volume of arbitrary shape together with Gauss's theorem (divergence theorem), is often

used in the derivation of the conservation equations, ttowever the use of a small rectangular

volume element is more direct and gives results as general as does the method which uses
Gauss's theorem. Moreover the derivation of Gauss's theorem generally makes use of small
volume elements.

3In most derivations of the Navier-Stokes equations the normal components _ well as the

shear components of the stress are assumed proportional to a velocity gradient. However, the

relations for the normal components are difficult to verify experimentally and are not specified
here. Rather they come naturally out of the derivation.
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du1
0"21 = _ --, (3-5)

dx 2

where the scalar # is called the viscosity and is a property of the fluid but not of its motion.

Equation (3-5) is found experimentally to be an excellent assumption for a great many liquids

and gases. It gives the shear stress on a nonrotating face 2 (normal to x2) of a small cube of
fluid which is deforming in shear. We can also write equation (3-5) as

d02] (3-6)
0"21 = -_--'

dt

where d021/dt is the time rate of change of the angle between the intersecting faces 1 and 2

(respectively normal to x 1 and x2) of the deforming cube; the angle 021 is measured from face

2 to face 1. If we change the rate of rotation of the cube as a whole but keep d021/dt constant,

0,'21 will not change; it is the rate of deformation of the cube, not its rotation rate, that deter-

mines its state of stress. But both faces 1 and 2 now rotate, whereas before, (eq. (3-5)) only face
1 rotated. In general, for two intersecting faces i and j of a cube deforming in shear, those

faces being initially normal to x i and xj respectively, we can write for the shear stress

0"ji = -# d0ji, for i . j (3-7)
dt

in place of equation (3-6), where d0ji/dt is the time rate of change of the angle between faces
i and j, the angle 0.. is originally r/2, and 0".. is the shear stress on the face initially normal

to xj. For two interJsecting faces of a cube deforJming in shear, but which are initially normal to

x_ and x; in a rotated (nonrotating) coordinate system, we write, instead of equation (3-7),

dO._
* J' for i *j, (3-7a)

0"ji = - # -_--'

where d0j]/dt is the time rate of change of tile angle between the two faces which are

initially normal to x_ and xj, and aji is the shear stress on the face initially normal to x_.

Equation (3-7) or (3-7a) is taken to apply in a general viscous flow, in which all faces of the

deforming cube of fluid may rotate and move normally, and for all orientations of the cube. The

viscosity # is a scalar, so that it is invariant with rotations. Our fundamental assumption can
be stated somewhat formally as follows: There exists at each point in the fluid a scalar

called the viscosity, such that for all orientations of the initially normal face pair (i, j), equa-
tion (3-7) or (3-7a) holds.

Since equation (3-7) applies in a general viscous flow in which all faces of a fluid cube may

rotate, - d0ji/dt is given in the x i coordinate system by

_ dOji dui duj
= + (3-8)

dt Oxj Ox i

or, in the x: system,
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dOj* * *_ = GaUi + O_lj

at
Using equations (3-7) and (3-8), the expression for the shear stress is

#fOUl + 0uJ],fori _,j.

(3-Sa)

(3-9)

In the rotated coordinate system x*, equations (3-7a) and (3-8a) give

aJi=P[- j +
(3-9a)

3.3.1.2 The expression for the stress tensor. - As shown in section 2.4.2 (ref. 5), a stress is

a second-order tensor, so that the general expression for aji must be such. As it stands, aji in

equation (3-9) (or aji in eq. (3-9a)) is not a tensor because of the qualifying statement i _' j. If

we remove that statement, then # (0ui/0x j + 0uj/Oxi) is a second-order tensor; as shown in
section 2.4.1 (ref. 5), the spatial derivative of a vector is a second-order tensor, as is the sum of

second-order tensors and the product of a scalar and a second-order tensor. Since the sum of

tensors of the same order is also a tensor, the general expression for aji may contain a term

(which may in turn be a sum of terms) in addition to g(0ui/0x j + Ouj/0xi), call it Bji,

so that

aji = #_,Oxj + _ii + Bji

(3-10)

where, in contrast to equation (3-9), i, j = 1, 2, or 3. Using equations (2-11) and (2-14) (ref. 5),

we get, in a rotated coordinate system x]',

, f0uT HI •
-1.[N *

But to ensure that the shear components are still given by equation (3-9) or ((3-9a)), the

additional term Bji or Bji must be zero for i _ j. However, one cannot know that a partic-

ular second-order tensor which is zero for i _ j, say ¢_.., is necessarily the complete Br, unless
jl

it can be shown that it is the most general second-order tensor which is zero for i _ j.4 ''

(3-10a)

Thus we need to determine the form of Bji , that being the most general second-order
tensor for which

4For example, one might imagine that a second-order tensor which is zero for i _ j could

depend on the motion of the fluid, as well as on pressure forces that are not necessarily
accompanied by motion.



Bji = Bji = 0 for i _j.

Note that we have not said anything about Bji for i = j; that will be considered in what
follows.

(3-11)

Since Bji is a second-order tensor, its transformation law is (eq. (2-11), ref. 5)

Bji = ajkailBkr

Multiplying this equation by aim and using equation (2-5) give

aimBji ffi ajkaifaimBk! ffi ajk61mBk! ffi ajkBkm.

Rewriting the first and last members of this equation,

,
aimBji ffi ajkBkm. (3-12)

The unrepeated (assignable) subscripts in equation (3-12) are m and j. We set m = j - 1,

carry out the summations on the repeated subscripts i and k, and, with q and r as general

subscripts, let Bqr = Bqr = 0 for q ¢ r (for shear) (eq. (3-11)). The quantities Bqr and Bqr

are both set equal to zero for q _"r to ensure that for shear, equations (3-10) and (3-10a)

reduce respectively to (3-9) and (3-9a), as they should. Then equation (3-12) becomes

or

all - B11) = o,

BII = Blr

Similarly, by setting m = 2, i -- 1, equation (3-12) becomes

Bll = B22 ,

and by setting m=3, i=l,

BI1 = Bzs.

From the last three equations,

Bll = B22 = B33.

Thus, startingfrom equation (3-11),we have shown that B11 : B2_ = B 3 ifBij = Bij = 0 for
i # j. Itfollowsfrom the definitionof the Kronecker delta(eq.(2-3),ref._ that

Bij : _6ij,

where _ is a scalar. We have placed no restrictions on Bij other than that it be a second-

order tensor with the property that it and B *j are zero, for i _ j. Therefore, B i.j = _6 i.j is the
most general second-order tensor for which Bij ffi B i. = 0 for i _ j. Note that Bi: turns out

• . • :[ . .J .
to be an lsotroplc tensor, although we have not exphcltly made that assumptlon. It is of interest

that Bii = _6ii is the most general second-order isotropic tensor (section 2.4.3, ref. 5), as well

as the rfiost geheral second-order tensor for which Bij ffi B*j = 0 for i _ j.



Thus the most general expression for the stress tensor which satisfies equation (3-9)

or (3-9a) for the shear components is aji-- _(0ui/Ox j 4- 0uj/0xi) + B ji (eq. (3-10)), where

Bji : ¢6ji. So

aJi = P_Oxj + _ + e_ji"

Note that the above equation, besides reducing to (3-9) for i ,t j, reduces to the isotropic form

for ui : 0, as it should for a motionless fluid. By contracting that equation, we get

1 2 _lk

_b = _akk -- P--'
3 3 0Xk

so that

aji = # + _ii - ] - = ¢rji

(3-13)

where aj_ is the part of the stress produced by viscous action (friction), and

a -= - akk/3. (3-14)

The quantity a is, by definition, minus the average of the three normal stresses at a point in
the fluid and is sometimes called the mechanical pressure. Equation (3-13) gives the stress

tensor which results from our fundamental assumption, equation (3-7) (or (3-7a)). The first

term on the right side of equation (3-13) gives the stress produced by viscous or frictional

(irreversible) processes, the second term gives the stress produced by pressure forces (nonviscous

or reversible processes). For i = j, equation (3-13) gives the normal stresses acting on the faces
of a small fluid element; for i _ j it gives the shear stresses. Inspection of the form of equa-

tion (3-13) shows that aij = aji.

3.3.2 The Equations of Motion

To obtain the equations of motion for a viscous fluid, consider the force AF( acting on a

small fluid element which moves with the fluid and whose volume is Ax = AXlAX2Ax 3.

Newton's law, applied to the small element, is

dui (3-15)
AFt' = Am--,

dt

where t is the time. The quantity Am is the mass of the element and does not change,

although the volume Ax can undergo a change of shape in such a way as to continue to enclose
the same fluid.

Next obtain the surface force acting on the volume element Ax. We note that if the

stress is aji at xj, then at xj 4- Axj, aji is replaced by



o_ji
aji *__ AX(j) + ...(no sum on j)

ax0)

where, as was done for m i in the last section, a: i has been expanded in a Taylor series. For
4

small Ax. only the first two terms need be retained Then the change m a.. as one moves
• fl

from x. Io x. + Ax. is (_../o_x,.,)Ax .... The sum of all the forces in the l-direction acting
J P UI U/

on the _aces o_ Ax is Ax Oaji/Ox j (sum on j).

or

In terms of eji and an external force, equation (3-15) becomes

du i
_rJi AX + pAxg i = pax__

axj dt

where p

expression for a.. from equation (3-13)jl
(d/dr = + Uk0/axk),weget

(3-16)

dui (_ji
P-- = -- + Pgi, (3-17)

dt Oxj

is the density of the fluid and gi is an external force per unit mass. Introducing the

and the Eulerian derivatives of u i into equation (3-17)

P-- + PUk-- = --- + -- g + - P + Pgi" (3-18)

Equation (3-18) is the Navier-Stokes equation for a viscous, compressible fluid.

For incompressible flow and constant viscosity, equation (3-18) simplifies to

O_ui C)ui 1 &T 02ui (3-19)
__ = -u k_ -___ + v__ + gi
_t ax k p o=xi ax k ¢7=Xk

where the incompressible continuity relation

Ou k
= 0 (3-20)

O_Xk

was used, and v is the kinematic viscosity /_/p. Most turbulence studies have been carried out

for constant properties for simplicity. The flow is realistic if the turbulence velocities are

reasonably small compared with the velocity of sound, and if temperature gradients are not large

(small external heat transfer). Although equation (3-19) is based on a linear stress-strain

relationship, the equation is essentially nonlinear because of the presence of the nonlinear

convective term --Uk0Ui/0x k. In fact it is that term which causes most of the difficulties in the

turbulence problem; in particular it gives rise to the closure problem, a problem that will be

considered in later chapters.

In order to interpret the terms in equation (3-19), it is convenient to multiply it through

by p and by the stationary volume element dxldx2dx 3. Then the term on the left side of the



equation is the time rate of change of the i th component of momentum #uidxldx2dx3 in the

element. This rate of change is contributed to by the terms on the right side of the equation.
The first term on the right side, the nonlinear convective or inertia term, is the net rate of flow

of the ith component of momentum into the element through its faces. The next term is a

(mechanical) pressure-force term and gives the net force acting on the element by virtue of the

pressure gradient in the xi-direction. The term containing v, a linear viscous-force term, gives

the net force acting on the element in the xi-direction by virtue of viscous or frictional action.

Finally the last term is the external force acting on the element in the xi-direction.

Equations (3-19) and (3-20) constitute a set of four equations in the four unknowns

u i (i = 1,2,3) and a. If we take the divergence of equation (3-19) (differentiate it with respect

to xi) and apply the continuity equation (3-4), we get

1 _o _i _k 0gi
= - + __. (3-21)

p O_x!O_x! O_Xko'xi o_xi

Equation (3-21) is a Poisson equation which describes how the scalar a varies with
position under the influence of the source terms on the right side of the equation. Note that it is

analogous to the steady-state heat-conduction equation with heat sources, where a would be

the temperature, 1/p would be a constant thermal conductivity, and the terms on the right side
would be heat sources.

As mentioned earlier, the quantity a, which is the average of the three normal stresses at

a point, is sometimes called the mechanical pressure and is often replaced by the symbol p.

Here the symbol a will be retained to distinguish the average of the three normal stresses from

the thermodynamic pressure p.

The set of equations (3-19) and (3-21) is often more convenient to use than (3-19)

and (3-20). This set, which follows from equation (3-7) (or (3-7a)) with no further assump-
tions, is complete for incompressible flow with constant viscosity. We will be mainly concerned

with incompressible flow in this series.

A fundamental turbulence problem for a constant-property fluid is this initial-value

problem: Given initial values for the u i as functions of position, a value for t,, and suitable

boundary conditions; to calculate u i and alp as functions of time and position. Equa-

tions (3-19) and (3-21) should be sufficient for doing that. But, because of sensitive depen-

dence on initial conditions, the initial values of ui would have to be given with infinite
precision. However, even if they are not, as in the real world, the equations should, in princi-

ple, be sufficient for calculating the evolution of averaged values.

Equation (3-18), for variable-property flow, also follows from equation (3-7) (or (3-7a))

with no further assumptions. However, in order to form a complete set for variable-property
flow we need, in addition to the compressible continuity relation (eq. (3-3)), relations giving the

variations of properties with temperature and pressure, an expression of the conservation of

energy, and finally an assumption which relates the average normal stress a to the thermo-

dynamic pressure p. The appropriate assumption for a is in general, controversial (see, e.g.,

ref. 6). However, a sufficiently accurate expression for most fluid-dynamics work is Stokes

hypothesis, obtained by equating a to the thermodynamic pressure:

a ---akk/3 = p. (3-22)
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For cases where buoyancy is important, the velocities and temperature differences are

often small, and a good approximation can be obtained by considering properties to be variable

only in the buoyancy term (Boussinesq approximation). For doing that, we first write equa-

tion (3-18) for the equilibrium case (u i = 0):

_e
0 = -_ + Pe gi,

where the subscript e designates equilibrium values. Subtracting this equation from equa-

tion (3-18) and assuming that variable properties are important only in the buoyancy term
result in

°_ui aui 1 0(°" - °e) a2ui (P-Pe)
+ uk_ = - + v__ + __ gi"

at _k P °_xi _Xk 0Xk P

If(p - Pe)/P << 1 and isproduced mainly by temperature differences,with pressure differences

having a negligibleeffect,we can write this equation as

OUi Oui 10(tr - %) 02ui
+ v__ -/_(T - Te)gi, (3-18a)ffi -Uk__ -

at ax k p ax i ax k ax k

where

/_ = - (l/p) (ap/cgT)#

is the thermal expansion coefficient. Note that the equilibrium temperature T e is uniform,

whereas the equilibrium pressure #e is not. Taking the divergence of equation (3-18a) and

using the incompressible continuity equation give the Poisson equation for the (mechanical)

pressure difference as

1 a2( O - ee) _li aUk
= - -/_gi --,OT (3-21a)

p ax! o_x! O_Xk o_xi 0x i

where gi is constant.

3.3.1 Dimensionless Form of Constant-Property Fluid-Flow Equations,

and Dimensionless Correlation of Friction-Factor Data

Equations (3-19) and (3-21) can be rescaled or written in dimensionless form

for gi = 0 as

Oui Oui Oa 1 02ui
_ +Uk_ =-_ +
o_t o_xk o_xi Re O_XkaXk

and

a2¢ cgui c_t k

(3-23)

(3-24)

10



where

--_ Xk,

Va ff

__t -_ t, __ --* a,

L pU 2
&

UaL
__-_Re

and the arrow ---* means Uhas been replaced by. u The quantity U a is a characteristic average
velocity independent of position, L is a characteristic length for the flow, and Re is a

Reynolds number. All of the quantities appearing in equations (3-23) and (3-24) are
dimensionless.

Equations (3-23) and (3-24) can be used to justify the friction-factor correlation for fully

developed turbulent flow through a pipe in figure 3-1. From equation (3-9), we get, in

dimensional form,

IOul} (3-25)(a21)w _ rw = P _ w

where the subscript w designates values at the wall (rw is the shear stress at the wall), u I is

in the direction along the pipe and x 2 is normal to the wall. Equation (3-25) can be written in
dimensionless (rescaled) form, by using the transformations following equation (3-24), as

(i/2)pu: N ' (3-26)

where the characteristic average velocity U a is considered to be the axial velocity averaged
with respect to time and area over a cross section of the pipe, and the characteristic length L

is taken as the pipe diameter D. (Note that the left side of eq. (3-26) is dimensionless, although
the individual quantities there are dimensional, whereas the individual quantities on the right

side are dimensionless.)

Consider a long time interval and an axial position for which the flow is fully developed.

That is, initial transients have died out and time-averaged velocities u 1 do not change with

increasing time or axial distance. Averaging equation (3-26) over the long time interval gives, in
dimensionless form,

r w

(1/2)pU2a

)= f = Ree Oui/OX2w (3-27)

where the overbars indicate time-averaged values, and f is the friction factor. The time-

averaged velocity gradient in equation (3-27) can be obtained by first computing the velocity

field ui(xk, t) from equations (3-23) and (3-24), starting from a fully developed instantaneous

turbulent velocity distribution, and applying appropriate boundary conditions (e.g., u i = 0 at

11



thewall). 5 Then the calculated velocity gradient at the wall is averaged over the time interval

at the axial position for which equation (3-27) was obtained. Thus, for a given value of

Reynolds number Re = uaD/u (in eqs. (3-23) and (3-27)) the friction factor f = 2 rw/pV2a is,

in principle, known from equations (3-23), (3-24), and (3-27), together with appropriate

boundary conditions. That is,

f = f (Re) (3-28)

for a constant-property fully developed turbulent continuum flow, as was assumed in fig-
ure 3-1. 6

3.4 HEAT TRANSFER OR ENERGY EQUATION

(Conservation of Energy)

The heat-transfer rate per unit area by molecular conduction in the Xl-direction is

ql = - k -'_-_,

where k is the thermal conductivity, and T is the temperature. In any direction xi,

qi = -k o'_
ax i

where ql is the molecular heat transfer vector.

(3-29)

To obtain the energy equation for a viscous fluid, consider the energy added in time At

to a small element which moves with the fluid and whose volume is Ax = AxlAx2Ax3. Then
the law of conservation of energy states that the change of energy in the element equals the heat

added plus the work done on the element. Herein we consider the case where the only heat

added to the element is that transferred into it by molecular conduction. Then an energy

balance on the element gives

pAxAt__d (e + 1/zuiui) = - AxAt __oqi + AxAt __O (uiaji) + p AxAt uig i (3-30)
dt 0x i 0xj

where the energy per unit mass is made up of the internal energy e and the kinetic energy

(1/2) uiu i. The term on the left side of equation (3-30) gives the change of energy in the

element in time At; the first term on the right side gives the heat added by molecular

5The difficulties involved in actually doing this need not concern us here; this is a thought

experiment.

6Equation (3-28) can also be obtained by using the method of dimensional analysis, from

which equation (3-28) follows if we assume that rip = f (C a, L, v). That relation may be
obtained intuitively, but in order to be sure that it holds it would seem safer to use the

equations of motion for a fluid and an analysis similar to that given here. But consider the

argument near the end of section 3.5.

12



conduction. The last two terms are respectively the work done on the element by surface forces

and by the external body force.

If we substitute for qi from equation (3-29) and for uidui/dt
tions (3-17) and (3-13) respectively, we get, after some manipulation,

and aji from equa-

de 0(k_j ] ,0ui 0ui (3-31)
m _-- + __ --0"--,

P dt 0xj aJi (7_xj 0x i

where, as in equation (3-13), aj_ is the part of the stress produced by viscous action, and a is

the mechanical pressure (eq. (3-14)).

If the fluid is incompressible, de -- cdT, where c is the specific heat at constant volume,

and 0ui/0x i = 0 (eq. (3-4)). Equation (3-31) then becomes

pc + = + --,

"_ Ui _jj aJi OXj

where the relation between total and Eulerian derivatives (d/dt = O/Ot + u k a/OXk) was used.

Equation (3-32) works well for a liquid.

For a perfect gas the term aOui/o_xi in equation (3-31) cannot be neglected because, even
at velocities small compared with the velocity of sound, and for small temperature differences

(small external heat transfer), that term is not small compared with the term pde/dt. (As

aOui/Ox i becomes small, so also does pde/dt.)

The relation de = cdT applies to a perfect gas as well as to an incompressible fluid. On

using that relation and the perfect-gas relation Cp dT = cdT + d(p/p) where Cp is the specific
heat at constant pressure, and equating the mechanical pressure a to the thermodynamic

pressure p (eq. 3-22)), equation (3-31) becomes

For many flows the velocities are small enough that we can neglect the terms dp/dt and

ai_ 0ui/0x j in equations (3-33) and (3-32) in comparison with the heat- conduction term.

Moreover, the rate of variation of thermal conductivity with temperature is often small enough

that we can consider k to be constant, except for very large temperature differences. Then to a

good approximation, equations (3-32 and (3-33) can be written as

0W + ui 0W = a 02T (3-34)

0t 0x i Oxi Oxi
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where a is the thermal diffusivity and is given by

t k/(pc) for a liquid, (3-35)a = k/(pCp) for a perfect gas.

Equation (3-34) is the form of the energy equation which will be used in this series. It can also

apply to diffusion processes other than for energy. It is only necessary that the accumulation of

some quantity in an element of fluid be balanced by the diffusion of that quantity into the

element by a law of the form of equation (3-29), where qi is a flux vector for that quantity, k
is a constant, and T is a scalar. For instance the scalar T might be a dilute concentration of

a foreign substance in the fluid and qi the flux vector of that substance.

3.4.1 Dimensionless Form of Constant-Property Energy Equation, and

Dimensionless Correlation of Heat-Transfer Data

where

Equation (3-34) can be rescaled or written in dimensionless form as

OT dT 1 d2T
+ui_ =

¢3t OX i Pe OxiOx i

Tw - T u i
--* T,

T w - T a Ua
--* ui,

(3-36)

xk Ua
__ --* Xk, __ t --* t,
L L

UaL
-- ---_ Pe

o_

and, as for equations (3-23) and (3-24), the arrow means "has been replaced by." In this section

we consider the wall temperature T w to be spatially uniform and constant in time. The

quantity T a is a characteristic average fluid temperature independent of position, Ua is a
characteristic average fluid velocity, also independent of position, L is a charactristic length for

the flow, Pe is a Peclet number, and a is the thermal diffusivity given by equation (3-35). All

of the quantities appearing in equation (3-36) are dimensionless. Note that t, xi, and u i have
been nondimensionalized in the same way as in equations (3-23) and (3-24).

From equation (3-29) we get, in dimensional form,

( 2)w-=qw-- (3-37)

where the subscript w designates values at the wall, qw is the heat flux at the wall and x 2 is
normal to the wall. Equation (3-37) can be written in dimensionless (rescaled) form, by using

the transformations following equation (3-36), as

14



(3-38)

where the characteristic average temperature T a is considered to be the temperature averaged

with respect to time and area over a particular cross section of the pipe, and the characteristic

length L is taken as the pipe diameter D. (Note that, as for eq. (3-26), the left side of

eq. (3-38) is dimensionless, although the individual quantities there are dimensional, whereas the
individual quantities on the right side are dimensionless.)

Consider a long time interval and an axial position for which the flow and heat transfer

are fully developed. That is, initial transients have died out and the shapes of the time-averaged

velocity and temperature distributions remain similar with increasing time and axial distance.

Averaging equation (3-38) over the long time interval gives, in dimensionless form,

_w D

T w - Ta)k

hD = Nu (/_1¢']_2) (3-39)
k w

where the overbars indicate time-averaged values, h -- qw/(Tw - Ta)is the heat-transfer

coefficient, and Nu is the Nusselt number. The time-averaged temperature gradient in equa-

tion (3-39) can be obtained by first computing the velocity field ui(xk,t ) for a given Reynolds
number Re from equations (3-23) and (3-24). As in section 3.3.1, one starts from a fully deve-

loped instantaneous turbulent velocity distribution and applies appropriate boundary conditions

(e.g., u i = 0 at the wall). With the velocity field known for a given Reynolds number Re, the
temperature field T(Xk, t) for a given Peclet number Pe can be calculated from equation (3-36),
starting from a fully developed instantaneous turbulent temperature distribution, and apply-

ing appropriate boundary conditions (e.g., T = 0 at the wall (see transformation following
eq. (3-36))). 5 Then the calculated temperature gradient at the wall is averaged over the time

interval at the axial position for which equation (3-39) was obtained. Thus, for a given value

of Reynolds number Re = UaD/v (in eq. (3-23)) and of Peclet number Pe = UaD/a (in

eq. (3-36)), the Nusselt number Nu = hD/k is, in principle, known from equations (3-23),
(3-24), (3-36) and (3-39), together with appropriate boundary conditions. That is,

Nu = Nu(Re, Pe) (3-40)

for a constant property fully-developed turbulent continuum flow and heat transfer. In terms of

the Prandtl number Pr = v/a and Reynolds number Re, equation (3-40) can be written in the
perhaps more familiar form (since Pe = RePr), as

Nu = Nu(Re, RePr) = Nu(Re, Pr). (3-40a)

3.5 A RULE FOR OBTAINING ADDITIONAL DIMENSIONLESS PARAMETERS AS A

SYSTEM BECOMES MORE COMPLEX

The method which was used in sections 3.3.1 and 3.4.1 to obtain correlating dimensionless

parameters from the basic turbulence equations can be extended to more complex systems.
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However, once a functionalrelationsuch as equation (3-28)or (3-40a)has been obtained fora

given system, the functionalrelationfora system which depends on an additionalphysical

quantitycan be writtendown by the followingsimple rule: Ifa system becomes dependent on

one additionalphysicalquantity,one additionaldimensionlessparameter (containingthe

additionalphysicalquantity)isadded to the functionalrelation.

For example, if the flow or heat transfer in a pipe becomes dependent on the distance

from the entrance xl, as it will if the pipe becomes short, then one dimensionless parameter

containing xl, say Xl/D , where D is the pipe diameter (already included), will be added to
the functional relation. Thus equations (3-28) and (3-40a) become respectively

f =
and

(3-41)

Nu = Nu(Re, Pr, xl/D ). (3-42)

If, in addition, the system becomes dependent on the velocity of sound c, as it will for high fluid

velocities, then an additional dimensionless parameter, say Ua/c , where U 8 is a characteristic

velocity (already included in the functional relation), becomes operative, and equations (3-41)
and (3-42) become, respectively,

f =f(Re, Xl/D , Va/c ) (3-43)

and

Nu = Nu(Re, Pr, Xl/D, Ua/c ). (3-44)

If the system is also dependent on an external force gi, then a dimensionless parameter such as
giD/Ua 2 will be added in the functional relationship. Finally, although we will not deal with

that effect in this series, if intermolecular distances dm become important, as in a highly
rarefied gas, then the functional relationship will contain a dimensionless parameter such as

dm/D. If the system is dependent on all the physical quantities mentioned above, then equa-
tions (3-28) and (3-40a) become, respectively,

f ffi f(Re, Xl/D , Us/c, giD/U2,, dm/D ) (3-45)

and

Nu = Nu(Re, Pr, Xl/D , Ua/c , giD/U2a, dm/D ). (3-46)

Next we ask whether our rule can be applied when we have only one dimensionless

parameter to start with. In the dimensional analysis of a system it is often convenient to group

the physical variables in such a way as to eliminate as many dimensions as possible. For our

case of flow and heat transfer in a pipe we can easily eliminate all dimensions but length and

time. Then, assuming that the dimensionless friction factor f is not a function of any variables,
that is, starting with only one dimensionless parameter, we have

f = = f(const), (3-47)
U 2

&
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wherethedimensions of (rw/p) are (length)Z/(time) z, and of U a are length/time. In order to

obtain a more realistic relation for f, one might expect that the kinematic viscosity v and/or

the pipe diameter D should be included in the functional relationship. But neither of those

quantities will combine by itself with quantities already present ((rw/p) or Ua) to form a new

dimensionless parameter; the relationship resulting by adding v or D separately would not be

dimensionally correct. However the quantity (v/D) will combine with U a to form

Ua/(v/D ) = Re, so that (3-47) becomes

f = f(Re),

which agrees with equation (3-28). Thus adding one physical quantity (u/D) to the functional

relationship in equation (3-47) adds one dimensionless parameter Re to the relationship, in
accordance with our rule.

Similarly, considering the heat transfer and assuming that the dimensionless Nusselt
number Nu is not a funciton of any variables, that is, starting with one dimensionless

parameter, we have

hD [h/(pc)]D Nu (const) (3-48)Nu -- __ = =
k a

where c is the specific heat and a is the thermal diffusivity. As in equation (3-47), we have

grouped the physical variables in such a way as to eliminate all the dimensions but length and
time; the dimensions of [h/(pc)] are length/time, and of a are (length)Z/time. In order to

obtain a more realistic relation for Nu, one might expect that the kinematic viscosity v and/or

the mean velocity U a should be included in the functional relationship. It turns out that each
of those can be combined with quantities already present in the functional relationship to form a

new dimensionless parameter. Thus v can be combined with a to form the Prandtl number

Pr = v/a, after which U a can be combined with v and D to form the Reynolds number

Re = UaD/v. Equation (3-48) for the Nusselt number then becomes

Nu = Nu (Pr, Re),

in agreement with equation (3-40a). Thus, once again a dimensionless parameter is added to the

functional relationship each time a physical variable is added.

3.6 REMARKS

The analyses given in sections 3.3.1, 3.4.1, and 3.5, which are based on dimensional

considerations, whether they proceed in conjunction with the basic fluids equations as in sections

3.3.1 and 3.4.1, or in conjunction with experience with flow situations, as in section 3.5, deal

mainly with functional relations between dimensionless variables, and are primarily an aid to the

correlation of experimental data. Thus they do not by themselves of course, constitute solutions

of the fundamental equations.

Theoretically it should be possible to apply the continuum equations obtained in this

chapter directly to turbulent flow. In that case the velocities, temperatures, etc. in the

equations are local instantaneous values in the turbulent field. When appropriate initial and
boundary conditions are given, the temporal evolution of the turbulent field can, in principle, be

calculated from the equations. However, the implementation of such calculations, which will be

discussed in succeeding chapters, is not easy.
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Before considering solutions of the unaveraged equations of this chapter, we will consider
averaged equations, as well as some equations that contain both averaged and unaveraged

quantities.
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Figure 3-1 ,--Experimental fully developed turbulent friction factors vs. Reynolds number for water and for air. Agreement
between the results for the two fluids shows that the differences in molecular structure do not affect the turbulent flow.
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