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Abstract

An algorithm is presented for unsteady two dimensional incompressible Navier-Stokes

calculations. This algorithm is based on the fourth order Partial Differential Equation for

incompressible fluid flow which uses the streamfunction as the only dependent variable.

The algorithm is second order accurate in both time and space, it uses a multigrid solver at

each time step, it is extremely efficient with respect to use of both CPU time and physical

memory, and it is extremely robust with respect to Reynolds number.



1. SUMMARY

An algorithm is presentedfor unsteadytwo dimensional incompressibleNavier-Stokes
calculations. This algorithm is based on the fourth order Partial Differential Equation for

incompressible fluid flow which uses the streamfunction as the only dependent variable.

The vorticity does not enter into this formulation. The algorithm is second order accurate

in both time and space, it uses a multigrid solver at each time step, and it is extremely

efficient with respect to use of both CPU time and physical memory. The algorithm is

extremely robust with respect to Reynolds number, and has been used to directly compute

incompressible flows with smoothly resolved streamfunction, kinetic energy and vorticity

contours for Reynolds numbers as high as Re = 100,000 without requiring any subscale

modelling. Solutions are shown for cavity flows at various Reynolds numbers.

2. THE ALGORITHM

In a bounded open region t_ __ R 2 , if ¢ is the streamfunction, then the equation for

two dimensional time dependent viscous incompressible flows with no body force can be

written as

for X in [l, and t > 0: Notice that this is a single eqUation for a single scalar unknown,

and that neither vorticity nor pressure enter into the formulation. The velocity solution is

obtained as

,,(x,O = a¢ a¢ (2)
_yy, and v(x,t)- Ox'

and it is always divergence free. One of the advantageous features of this formulation is

that the scalar unknown ¢ is smoother than the velocity and the vorticity, since they are

both obtained from the streamfunction by differentiation. The data for the problem in

this formulation consists of the initial data for ¢, and boundary data such as the standard

set of boundary conditions

a¢
¢(x,t) = tS(x,t), and -_ (x,t) = _l(X,t), (3)

for x in On, and t > 0, where o-_ is differentiation in the exterior normal direction at the

boundary. A steady state form of Equation (1) was previouosly used by Schreiber and

Keller [7] with path continuation methods for calculating high Reynolds number steady

cavity flows.

Let i n be the discrete grid function approximating ¢ at time tn. Using centered

spatial differencing throughout, let La approximate the laplacian, let Bi approximate the

biharmonic operator, and if

Cv(," ),,_ = 6. (6.(i" )La(," )) ,, - 6. (6_(i" )La(i" )). ,,_, _(4)
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then let Cv approximate the convection terms. We discretize equation (I) as

La(_n+ 1)_ 2__e Bi(_..+ _)

-- -) +  cv(i-- ,).
(5)

Notice that equation (5) for i "+ * is elliptic for all Reynolds numbers, and that it is linear

with all of the nonlinearities lagged into the source term calculated from data at times

t. and t._ 1. The diffusion terms are time differenced with a Crank-Nicolson differencing

scheme, which gives an infinite speed of propogation for the data at each time step through

the elliptic biharmonic operator, and which does not impose a stability constraint on the

time step size. The convection terms are time differenced with a lagged second order

Adams-Bashforth differencing scheme, which does impose the CFL constraint _ < 1,
AX m

where we assume that Ax = Ay. We have used a CFL number between 0.6 and 0.8 for

calculations with Reynolds numbers between 100 and 100000, with grid sizes between
32

and 13-ft. The local domain of dependance is the large symmetric 13 point discretization
Un nstencil from the discrete operators Bi and Cv. The velocity components (_,y,v_,s) are

directly recovered using (2) with centered differences, and are both defined at every grid

point along with the streamfunction approximation z_y. The discrete velocity solution is

exactly incompressible, since 6=(u_s) +6_ (v,_.) = 0. This algorithm is related to a primitive

variable method on a MAC staggered grid by the Finite Difference Gahrkin Method (see

Goodrich and Soh [5]).

When (5) is used as the finite difference approximation to (1), the problem that must

be solved at each time step may be written as

/_g • ~n+l _n,n--I

La(i "+I) _ _-R-_eB,(z ) = , (6)

where f","-_ is the discrete source term from the right hand side of equation (5). We

have used a banded LU decomposition solver to directly solve equation (6) by back sub-

stitution at every time step. In order to avoid the large storage overhead required by this

approach, we currently use a multigrid method at each time step to solve equation (6).

The multigrid solver factors Bi as two laplacians, it uses a Gauss Seidel or red black Gauss

Seidel smoothing iteration, a linear restriction and prolongation, and a simple V cycle

multigrid iteration using three smoothing sweeps while coarsening and none while refining.

The factoring of Bi as two laplacians follows Linden [6], and introduces _ = A¢ only for

the purpose of having a convergent iteration scheme, but it incidentely produces both ¢

and _ as simultaneeous solutions of a coupled Poisson and Laplace's equation. Note that

_.,.- 1 is always calculated from the right hand side of equation (5) using just the discrete

streamfunction fields i" and i"-1. Since w = A¢ is only introduced as an intermediate

variable for solving equation (6) at each time step, its tendency toward a greater sensitivity

to spatial disturbances and errors is not propagated to the solution ¢ at subsequent time

steps.
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3. CAVITY CALCULATIONS

The examples for demonstrating the performance of this algorithm will be some typical

two dimensional driven cavity calculations. For all driven cavity calculations, irrespective

of Reynolds number and grid size, between 10 and 15 V cycles are used at each time step

to reduce the residuals for equation (5) to less than 5 × 10-12

The performance of the algorithm will be shown by comparision of the calculation of a

transient square driven cavity flow on an IBM RS/6000 model 530 workstation with three

different uniform grids. The transient flow is the development from no initial flow with

an impulsively started lid, from t = 0 to t = 1, with Re = 9600. The three calculations

are: (a) with a 128 x 128 spatial grid, with 6 grid levels, and with At -- _ requiring
160 '

1.7 MBytes of memory, and 2.5 CPU seconds per time step; (b) with a 192 x 192 spatial

grid, with 7 grid levels, and with At = 1--- requiring 3.8 MBytes of memory, and 5.5 CPU
256 '

seconds per time step; and (c) with a 256 × 256 spatial grid, with 7 grid levels, and with

At = 1--- requiring 6.6 MBytes of memory, and 10.2 CPU seconds per time step. Notice
400 '

first that the CPU time per time step increases linearly with the number of grid points.

Simulation case (a) requires 1.50 × 10- • seconds per time step per grid point, case (b)

requires 1.48 × 10- • seconds per time step per grid point, and case (c) requires 1.54 x 10- •

seconds per time step per grid point. The computional requirement for refined grids is

not increased for each grid point for each time step, but the CFL constraint will require a

time step size that decreases linearly with the spatial grid size for the refined grid, so that

more time steps are required for the same nondimensional time interval. If the additional

time steps that are required for the entire calculation from t -- 0 to t = 1 are considered

as part of the computational cost, then refining the grid from a 128 × 128 to a 192 x 192

grid actually requires 1.6 times more CPU time per grid point for the entire calculation

on the finer grid, and refining again from a 192 x 192 to a 256 x 256 grid also requires

1.6 times more CPU time per grid point for the entire calculation. Notice also that the

memory requirement increases lineaxly with the number of grid points. Simulation case

(a) requires 107.12 Bytes per grid point, case (b) requires 106.97 Bytes per grid point, and

case (c) requires 104.78 Bytes per grid point. The observed linear increase in CPU and

memory requirements with an increase in the number of grid points is typical of multigrid

solvers, since it is well known that the order of computational effort for these solvers is

O(N), where N is the total number of grid points.

The accuracy of the algorithm will be shown by comparing sample results for the

driven cavity with established results in the literature by Ghia et.al. [1]. Figure (1) presents

driven cavity results with a 256 × 256 grid for Re -- 5000. This data was calculated using
_ 1 and is for the state of thethe time dependent algorithm presented above with/kt - 4-_,

flow at t = 748.45 when the time evolution has virtually stopped. The cavity has its upper

lid moving from the left to the right, and all three of its other walls are not moving. The

length scale is such that the cavity walls have length 1, and the velocity and time scales

are established by using 1 as the lid velocity. The streamfunction contours in Figure (la)

show the usual assortment of primary and secondary circulation patterns, but the contours



do not show tertiary circulations that are actually resolved in the lower two corners. The

tertiary recirculating eddy in the lower right hand corner is resolved by 14 x 11 grid points,

while the smaller tertiary eddy hidden below the streamfunction contours in the lower left

hand corner is resolved by only 4 x 3 grid points. Figure (lb) shows the vertical velocity

component in a horizontal crossection across the middle of the cavity. The calculated

data is compared with the data in Ghia, et.al. [1], and shows complete agreement with

the published data. Figure (lc) shows the horizontal velocity component in a vertical

crossection up the middle of the cavity, and Figure (ld) shows the vorticity on the upper

lid. This data also shows complete agreement with the published data. The acurracy of the

computed solution is also shown by quantitative comparisons between the calculated and

published data for the values and locations of the streamfunction minimum and maximum.

The global streamfunction minimum occurs in the center of the primary circulation, and

the global streamfunction maximum occurs in the center of the lower right hand secondary

corner eddy. This data is given in Table 1, along with established data from a calculation

on a 256 x 256 grid published in Ghia, et.al. [1]. There is excellant agreement between

our solution and the published data in Ghia, et.al. [1], where both calculations are on a

256 x 256 grid. Our calculated solution on a 128 x 128 grid also shows very good agreement

with the published data on a 256 × 256 grid.

The degree of agreement between our calculated results and the published data for

the driven cavity at Re = 5000 is also characteristic of our calculations at Re = 7500. For

Re = 10000 (Goodrich [2]), our calculated results differ dramatically from the published

steady state solutions for the driven cavity. Instead of converging to a steady state, our

time dependent calculations show convergence to an unsteady time asymptotic state. In

fact, our calculations (Goodrich [3]) show a steady state for Re = 8900, and periodic time

asymptotic solutions with spectra that have a single fundamental frequency for Re = 9000,

Re = 9500 and Re = 9600. All three of these time asymptotic flows with single fundamental

frequencies have been calculated on 128 × 128 grids with At = _ The periodic flow
160 "

for Re = 9600 has a fundamental frequency of 0.55 + 0.005 on a 128 × 128 grid. A

second calculation at Re = 9600 was done on a 192 x 192 grid with At -- 2-_,1 and this

calculation also produced a periodic time asymptotic flow with one fundamental frequency

of 0.58 =t=0.005. The data for 3600 < t < 3700 from this calculation on the 192 × 192 grid

is presented in Figure (2a) as a phase portrait of _b,,_n on the vertical axis versus the total

kinetic energy on the horizontal axis. This data is for 100 nondimensional time units, or for

25600 discrete time steps, and for approximately 58 complete periodic cycles of the time

asymptotic flow. The period of the asymptotic flow state is 1.72 _ 0.015, so that each cycle

requires approximately 440 discrete time steps. Notice the fact that the oval plot appears

to be a single line. This exact repetition of the phase portrait through 58 cycles shows the

precise periodicity of the asymptotic state. The qualitative and quantitative agreement of

the dynamics from these two calculations on separate grids supports the grid independence

of the periodic time asymptotic solution in the driven cavity at Re = 9600. For higher

Reynolds numbers we find more complex dynamics. At Re = 9700 on a 128 × 128 grid

we find two incomensurate fundamental frequencies, and the unsteady time asymptotic

solution is aperiodic with a discrete spectrum. A phase portrait for this flow is given in
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Figure (2b), which shows a plot of _m_n on the vertical axis versus the total kinetic energy

on the horizontal axis for 3700 _ t __ 4500. The data plotted in Figure (2b) is for 800

nondimensional time units, or for 128600 discrete time steps, and it qualitatively shows

the dramatically more complex yet highly structered aperiodic time asymptotic state at

Re = 9700. At Re -- 10000 on a 128× 128 grid, we also find two incomensurate fundamental

frequencies, and this unsteady time asymptotic solution is also aperiodic with a discrete

spectrum (see Goodrich [2]). These solutions suggest a first Hopf bifurcation in the square

driven cavity for 8900 < Re _ 9000, and a second one for 9600 < Re < 9700.

It could very well be argued that all of these unsteady time asymptotic solutions

in the driven cavity are spurious, since there are established steady solutions for Re --

10000. On the other hand, the most well known of these solutions (Ghia, et.al. [1],

Schreiber and Keller [7]) use steady state methods, and unsteady time dependent methods

for high Reynolds number flows tend to introduce artifical dissipation, which we have

avoided. Furthermore, Shen [8] has used a Chebychev Tau method to detect a Hopf

bifurcation in the regularized driven cavity for 10000 < Re < 10500. The use of a spectral

method with similar results lends plausibility to our claims, since the parabolic velocity

profile for the regularized cavity lid should transmit less momentum to the cavity interior,

and the transition to unsteady time asymptotic states could reasonably be expected to

occur at a higher Reynolds number. There are also periodic solutions in the aspect two

rectangular driven cavity using our algorithm (Goodrich, et.al. [4]) which show the same

generic behavior in a deeper cavity and at a lower Reynolds number. Unsteady time

asymptotic flows are completly consistent with what should be expected in light of the

current understanding of nonlinear dynamical systems (see [9]). It is possible that our

algorithm has dispersion or other error characterisitcs that prematurely trigger a Hopf

bifurcation at too low a Reynolds number, but the cumulative effect of the considerations

introduced above is that the transition to unsteady time asymptotic states such as we have

observed should be expected, and that the critical Reynolds numbers for the transitions

that we have observed are plausible.

The robustness of the algorithm with respect to Reynolds number will be shown by

data from a direct computation of a transient square cavity flow with an impulsively started

lid on a 256 × 256 uniform grid at Re -_ 25000. Figures (3a-b) show streamfunction and

vorticity contours at t = 10.25, early in the transient flow development from the initial

state of rest. The vorticity plot clearly shows a large number of small structures that are

being created in the boundary layer beneath the wall jet, which is descending from the end

of the moving lid, and which is separating from the right hand wall. This series of small

scale structures is ejected from the boundary layer and convected around the large central

recirculation pattern, to appear either as small recirculating eddies or as waves all around

the central structure in the cavity. Notice in the vorticity plot that the series of small

scale structures is wrapped around and folded back into the central structure, resulting in

a twisted or spiral shaped composite structure that has multiple layers like a fine pastry.

Figures (3c-d) show streamfunction and vorticity contours at t -- 83, and Figures (3e-f)

show streamfunction and vorticity contours at t = 84. These plots show the state of the



flow after sufficient time has elapsed for the development of all the usual secondary flow

structures in the cavity. In addition to these secondary structures, we also observe a very

active collection of tertiary flow structures, that originate in the boundaries and corners

of the cavity, that are convected and distorted by the local flow while interacting with

the primary, secondary and tertiary structures, and that ultimately either dissipate or

combine with other structures. As an example, consider the tertiary eddy that is rising

along the middle of the left hand wall at t = 84. This structure can be seen at t = 83 as

the small tertiary structure that is just beginning to pull out of the recirculation complex

in the lower left hand corner. This tertiary eddy actually originated at about t = 78 in

the lower right hand corner, and it then separated from that corner to be rolled along the

lower wall, until it attached to and moved along the upper surface of the lower left hand

corner complex. For t > 84, this tertiary structure will continue up the left hand wall

until it attaches to and rolls along the surface of the secondary structure in the upper left

near the lid, ultimately being absorbed by this secondary eddy. Besides the complexity

of structures on several scales, at t = 83 and t = 84, we also observe that the vorticity

in the center of the cavity is not uniform. We see a continuous elastic deformation of the

primary circulation structure in the center of the cavity, which stretches and moves while it

rotates. The observed flow clearly does not have a central core of uniformly rotating fluid

with constant vorticity at t _ 83. This computation has not yet been carried further than

t = 100, so that we do not yet know how the asymptotic flow state can be characterised

at Re = 25000. The issue of whether or not the 256 × 256 grid is adequate for resolving

the relevant length scales at Re = 25000 is also not answered by this single transient

calculation. Nevertheless, we do observe that the streamfunction and vorticity fields are

smoothly resolved by our algorithm at Re = 25000 with a 256 × 256 grid, and this clearly

shows the robustness of our algorithm with respect to Reynolds number.
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Source

Goodrich

Goodrich

Ghia, et.al.

The Streamfunction Minimum

Grid ¢,.,. x,._.

128 x 128 -1.15 × 10-1 6e
128

256 × 256 -1.18 × 10 -I isa25e

256 × 256 -1.19 × 10-I 13___k_
256

__ _ 13..._!2
256

The Streamfunction Maximum

_m in

e_..2__= 13.....ss
128 256

137

256

13_...!7
256

Source Grid ¢,. _,, x,. _, y,, _,

128 × 128 3,44 × 10 -3 lo.___2= 2o_.!4
128 256

256 x 256 3.13 × 10 -3 206
256

256 x 256 3.08 x 10 -3 2o.._j__
256

Table 1: STREAMFUNCTION MAX AND MIN

The square driven cavity at Re=5000

Goodrich

Goodrich

Ghia, et.al.

128 258

19
256

256
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Figure 1: Re = 5000, 256 × 256 grid, At -- 4o---'_,1t = 748.45,

calculated data compared with Ghia, et.al.
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lc: u at x--0.5

ld: Vorticity at y=l
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Figure 2: Phase Portraits of _,_. versus Total Kinetic Energy

2a: Re -- 9600,

192 x 192 grid,

3600 < t __ 3700
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-0 I t411,

-O.t14,0

2b: Re : 9700,

128 × 128 grid,

3700 < t __ 45O0
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Figure 3: Re 25000, 256 x 256 grid, At - 1= - _, transient calculation.
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t=10.25

3b: Vorticity Contours,

t=10.25
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3c: Streamfunction Contours,

t=83

3d: Vorticity Contours,
t=83
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3e: Streamfunction Contours,

t--84

3f: Vorticity Contours,

t=84
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