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The purpose of the research project "Multi-Disciplinary Optimization of

Aeroservoelastic Systems" in its second year (from October 1990 to September

1991) was to continue the development of new methods for efficient aeroservo-

elastic analysis and optimization. The main target was to develop a method for

investigating large structural variations using a single set of modal
J

coordinates. This task has been accomplished by basing the structural modal

coordinates on normal modes calculated with a set of fictitious masses loading

the locations of anticipated structural changes.

The first part of this work, "Modal Coordinates for Aeroelastic Analysis

with Large Local Structural Variations", has been presented at the European

Forum on Aeroelasticity and Structural Dynamics, Aachen, Germany, June 1991. The

paper was co-authored by Carol D. Wieseman of NASA Langley. The abstract is

given in Appendix A. The paper has also been submitted for publication in the

AIAA Journal of Aircraft. The second part of this work, "Time Simulation of

Flutter with Large Stiffness Changes", has been proposed, together with Carol

Wieseman, for presentation at the 33rd Structures, Structural Dynamics and

Materials Conference, April 1992. The submitted extended abstract is given in

Appendix B.

Another work on sensitivity derivatives for residualized aeroservoelastic

optimum-design models has been performed together with Israel Herszberg of RMIT

Victoria University of Technology, Australia, while he was on sabbatical at the

Technion. The abstract of the paper on this work that has also been presented in

the Aachen Conference mentioned above is given in Appendix C.

Two other subjects that I worked on together with graduate students are

aeroservoelastic optimization with continuous gust response constraints (with

Arie Zole) and dynamic response to impulsive excitation (with Eyal Presante).

2



The target in both cases is to develop efficient numerical procedures for

inclusion in the multi-disciplinary Optimization scheme. It is anticipated that

the first subject will be incorporated in the FASER optimization program by

June, 1992, and the second subject before the end of 1992.

A preliminary investigation has been started, in cooperation with Shlomo

Taason of ICASE on the inclusion of static aeroelastic effect in CFD shape

optimization. Initial guidelines for 2-D optimization are given in Appendix D.

The basic principles will be applied to 3-D optimization at a later stage.



MODAL" COORDINATES FOR AEROELASTIC ANALYSIS WITH LARGE LOCAL

STRUCTURAL VARIATIONS

M. Karpel C.D. Wieseman
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NASA Langley Research Center

Hampton, Virginia

The investigation of the effects of local structural property variations on flutter and aeroelastic

response is an important pha_e of the design of flight vehicles. Corr,'non aeroelastic analyses start

with the calculation of a limited set of normal vibration modes" which serve as generalized

coordinates. Repeated calculations of the normal modes and the associated generalized aerodynamic

force coefficients every time a structural property changes may be impractical. An additional

problem is how to deal with the changing coordinates during time-domain response simulations. These

problems can be resolved by performing the entire analysis with a constant set of modal coordinates.

Various applications used the vibration modes of a nominal structure as generalized coordinates and

account for structural changes by introducing stiffness, mass and damping coupling terms. However,

the application of this approach to cases of large structural variations may either yield inaccurate

results or require a very large number of modes.

The approach taken in this work is to calculate the constant set of modal coordinates with the free-

free structure loaded with fictitious masses at the vicinity of the varying stiffness. The

application of relatively large fictitious masses causes significant local deformations in the low

frequency modes. This facilitates high accuracy usage of a small number of modal coordinates over a

wide range of local stiffness variations. The fictitious masses are removed in the analysis by

appr0pfate mass cc,upling terms. D_mping coupling terms are introduced to yield the desired modal

damping values at air off conditions.

The numerical examples deal with a realistic aeroelastic system of an alrcraf_ wi_ a tip store.

The wing-store pitch stiffness properties are subject to change by a factor of 30, which has a

drastic effect on the flutter characteristics. It is first shown that without fictitious masses the

transition-by-coupling from one configuration to the other causes significant errors of critical

natural frequencies even with 60 modes taken into account. The introduction of a single fictitious

mass yields very accurate frequencies with as few as I0 modes taken into account. A parametric study

shows that the results are insensitive to the value of the fictitious mass provided that it is above

a certain value but not large enough to cause ill-conditioning. The state-space aeroelastic

equations of motion are formulated using minimum-state rational approximations of the unsteady

aerodynamic forces. The differences between flutter velocities and frequencies obtained by coupling,

and those obtained by direct solutions are less than 3%.



TIME SIMULATION OF FLUTTER WITH LARGE STIFFNESS CHANGES

Mordechay Karpel
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INTRODUCTION

The common approach for formulating the equations of motion of aeroelastic systems

starts with normal modes analysis of the structural model. Unsteady aerodynamic force

coeffcient matrices are then calculated at various reduced frequency values to account for
T

the aerodynamic coupling between these modes while undergoing oscillatory motion. Classic

frequency-domain aeroelastic analysis methods use the modal structural properties and the

tabulated aerodynamic matrices for calculating the flutter conditions at which the aeroelastic

system matrix is neutrally stable. The basic assumption of the modal approach is that the

structural deflections of the aeroelastic system are linear combinations of a limited set of low

_'.._.quency vibration modes.
• ., _. -, . " " .... ¢. . . ,- . :: ._. _. _...,_, .. : ,. ....

Time-domain aeroelastic modeling techniques, which cast the equations of motion in a

state-space, time-invariant form, call for the approximation of the aerodynamic matrices by

rational functions in the Laplace domain. The order of the resulting state-space model is a

function of the number of selected modes, the number of aerodynamic approximation roots,

and the approximation formula. The main considerations in constructing the model are its

size (which affects the efficiency of the subsequent analyses), its accuracy, and the model

construction efforts.

Various computational schemes such as structural optimization, parametric studies, the

investigation of damage effects, and structural changes during dynamic response, require



repeatedconstruction of the model for numerousstructural variations. Repeated calcula-

tion of the normal modesand the associatedaerodynamicmatricesevery time the structure

changesis often impractical in thesecases.A morepractical approachis to introduce struc-

tural changeswithout changingthe modal coordinates.The validity of this approachdepends

on the structural information contained in the modal coordinates and the magnitude of the

structural changes. The number of required modes increases with the magnitude of the

allowable structural move limits. Keeping the modal coordinates unchanged is even more

important in time simulation of aeroelastic response during which structural changes occur.

The occurrences of structural changes define the time segments between which the model

changes. The end conditions of one segment are the initial conditions of the following one.

One can argue that these transition-point conditions can be transformed to a set of new co-

ordinates. But this transformation is adequate only if the new coordinates can be expressed

as a linear combination of the old ones. However, if this is the case, there is also no need to

change the modal coordinates in the first place.

Various structural optimization procedures, like that of Ref. 1, demonstrated that mod-

erate structural changes can be accommodated withgut; changing the modal coordinates. In

order to accommodate large structural changes, the modes that serve as generalized coordi-

nates must contain significant distortions in the vicinity of the changes. Taking into account

more modes supports this purpose but may result in an excessively large aeroelastic model.

A method for accommodating large structural changes at a small number of structural lo-

cations, without significantly increasing the model size has been presented in Ref. 2. The

procedure starts with calculating a set of low frequency vibration modes with the structure

loaded with large fictitious masses at the location of anticipated struct..ural changes. The

fictitious masses cause the vibration modes to contain the local deformations required for an

adequate accommodation of large structural changes.
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The purpose of the proposed paper is to outline the process of using fictitious-mass modes

to generate efficient fixed-coordinate time-domain aeroelastic models for dynamic response

and loads analyses, and to demonstrate the usage of these models for time simulation of

flutter during which large local stiffness changes occur.

SELECTED RESULTS

The numerical example consists of a mathematical model of the AFW wind-tunnel model

tested at the NASA Langley Research Center. An external store is connected to the tip of

the wing through a decoupling mechanism designed to decouple the pitch motion of the store

from that of the wing when flutter occurs. With "stiff" or "coupled" pitch connection, the

Mach 0.9 antisymmetric flutter dynamic pressure is about 1.9 psi and the flutter frequency

is about 12 Hz. When the decoupling mechanism is activated, the pitch connection stiffness

is reduced by 96.5% ("soft" or "decoupled") arid the flutter conditions change to 2.9 psi, 31

Hz, namely a drastic change in both flutter dynamic pressure and the flutter mechanism.

The fictitious-mass finite-element (NASTRAN) model is with the soft pitch connection

and with a _ictitious pitch inertia of 3 lb-in-sec 2, ,_wice that of the tip store, loading the wing

end of the pitch spring. A set of 14 low frequency vibration fictitious-mass (FM) modes

is used to generate the basic stiff model. A comparison between the first seven natural

frequencies obtained directly from NASTRAN and those calculated from the 14 FM modes

and from 14 soft modes without fictitious masses is given in Table 1. tt is clear that the FM

model produces accurate frequencies while the flutter critical store pitch frequency obtaibed

from the soft model without fictitious mass is 18% higher that _he correct one.

The 14 FM modes were used to generate a time domain aeroelastic.model for the stiff

case using Minimum-State rational approximation of the unsteady aerodynamics 3 with 8

aerodynamic augn'ienting states. The transition to the soft condition is performed by simply

introducing the appropriate stiffness coupling terms and damping coupling terms (to yield an
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effective diagonal modal damping matrix). The modal coordinates, as well as the associated

aerodynamic terms, remain unchanged. A comparison between flutter conditions calculated

by the frequency domain p-k method and those obtained from the root-locus analysis of the

state-space models is given in Table 2. While the direct sitiff and soft cases required full

analyses starting from separate finite-element models, the FM results were obtained from

models that are based on the same modal coordinates and aerodynamic coefficients.

The adequacy of the FM model for time simulation is checked by comparing responses to

initial conditions with those'obtained by the direct models. The dynamic pressure at which

responses are calculated is 2.5% higher than the stiff flutter dynamic pressure. The vertical

acceleration responses of the foreward and rear tip-store points are given in figure 1 for the

stiff case and in figure 2 for the soft case. The development of flutter at this dynamic pressure

and the decay due to activation of the decoupling mechanism are simulated in figure 3. The

sransition fl'om stiff to soft is performed by introducing the appropriate coupling terms

between the the structural states of the FM model. The only output equations that need to

be changed in the transition are those involve acceleration response. It can be observed that

the system stabilizes very fast but there may be significant overshoots in the transition.

CONCLUDING REMARKS

Normal modes calculated with fictitious masses at selected structural locations form a

set of generalized coordinates with which aeroetastic systems can be analyzed over a wide

range of stiffness changes in the vicinity of these location. The values of the fictitious

masses can be arbitrarily chosen from a wide range of masses that cause significant local

deformations in the low frequency modes, without causing numerical ill conditioning. The

physically weighted minimum-state rational approximation of the uns[eady aerodynamic

force coefficient matrices is performed once for all the stiffness variations. The size of the

resulting time-domain model is similar to those required for the analyses of each stiffness
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case separately. The model facilitates an efficient simulation of aeroelastic time response

during which large stiffness changes occur. A numerical application demonstrated a flutter

divergence followed by rapid convergence due to the activation of a decoupling mechanism

which reduces the stiffness of a critical element by 96.5%. The example demonstrates that

the activation of the decoupler may cause a transient overshoot before the s:ystem stabilizes.
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FIGURES

1. Time response to initial condition, stiff store connection.

2. Time response to initial conditi:on, soft store connection.

3. Time simulation of flutter with stiff-to-soft transition.

Table 1. Natural frequencies of the stiff model

Number direct from soft from soft Description

from NASTRAN with FM without FM

1

2

3

4

5

6

7

0

7.023

7.856

13.069

16.i61

27.408

38.271

0 0

7.024 7.032

7.864 7.980

t3.179 15.41

16.134 16.43

27.410 27.47

138.300 38.76

rigid-body roll

1st fuselage bending

1st wing bending

store pitch

2nd fuselage bending

3rd wing bending

1st wing torsion
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Table 2. Flutter results with different models.

store

connection

stiff

soft

Frequency domain State Space

p-k direct

13 modes 13 modes

ql w.r ql t°l

(psi) (Hz) (psi) (Hz)

1..889 11.88 1..884 11.89

2.958 30.88 2.948 30.78

from FM model

14 modes

qI wI

(psi) (Hz)

1.918"' 11.94

3.077 30.94

)
t

J

• 7:
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Title

Author(s)
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Company/
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Text

1½-spaced

• Centre for Aerospace Design Technology Faculty of Aerospace Engineering
RM1T Victoria University ca' Technology ' Technion-Israel Institute of Technology

• Analytical cxpress!ons for the sensitivity derivatives of flutter dynamic pressure and control

design cri_ia,, with respect to structm-al and control design variables are extended to deal with

r_idualized aeros_t'voehstlc mzdels.

The model considered is a first-order time-domain feedback system subject to model size reduction by

means of residualizafion. The structure is represented by a number of Structural vibration modes,

the aerodynamics by rational approximation functions and the control system couples control surface

motion to the response of motion sensors located on the structure.

_The dynamic residualization technique and the minimum-stat_ approximation method for aerodynamic.

modelling have been demonstrated to yield a reIative low order, high accuracy model which may be

used for on-line design studies where f_¢t response time is important. The extended formulation and

new techniques of this work make the calculations more efficient and further enhance on-line design_

_studies.

To date the optimal design process makes use of the reduced order system to' calculate flutter

dynamic pressures and gain margins, but reverts to the full model for the calculation of stability

derivatives. The calculation of xensitivity derivatives depends on the special topography of the

system matrices which is not pleserved by the residualization process. A I_ge proportion of the

computation time is spent in caiculating these derivatives, particularly ff there is a large number

:of design Variables. The technicues presented "_ rids work allow the calculation of sensitivity

derivatives for the reduced order system. The consequent reduction in computation time for the
i
I

:stability derivativ_ is of the order of the square of the ratio of the numbers of states.

IA realistic numerical ex.ample of dae optimal design of an aeroservoelastic system"comprising a':

carbon-composite wing. with four control surfaces is used. to demonswate the. method _d to compare

" " _ I"" " _ . " _":_:,-: 7' "...... ":: " ''_lTh _

-- : /_:-_i_.i:_lop_on -::_es_:i_'_e_-"sWuc_::c w_ght with: '_'_t to 'St_:'_ ' "conU'_oii Vadabl_j

!subject to aeroelastic, control, anddesign_:constraints.. !
I

iThe use of sensitivity derivatives calculated for the reduced system decreases significandy th_

... time taken for, the optimization and consequendy enhances the optimization method as an on-line_
I - !
.design tool. " i
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M. Karpel, August 19, 1991

Aeroelastic Effects in 2-D Shape Optimization

A given airfoil is subjected to 2-D flow as shown in Figure 1. The "nominal" (or "rigid")

angle of attack and trailing-edge control surface deflection are ao and 60. The x axis is parallel

to the nominal chord line which connects the leading and trailing edges when a = a0 and

5 = 50 = 0. The actual angle of attack (a) is related to the nominal one by

= a0 + ae (1)

where o_e is the elastic deformation of a pitch spring of stiffness k_ located at tile elastic axis

at z = cz,, z = cz, and connecting the airfoil to the a setup mechnism (which commands

a0). The pitch elastic equillibrium equation is

M : _o_o (2)

where M is the aerodynamic pitching moment about the elastic axis.

surface deflection (5) is related to the nominal one by

The actual control

= 60+ _ (3)

where 6_ is the elastic deformation of the actuator spring h6 representin the actuator stiffness

and located at x = cxh, z = czh. The associated equillibrium equation is

H = k_o (4)

where H is the aerodynamic hinge moment about the hinge line located at x = CXh.

The aerodynamic moments are

/0° /0°M = q Cn.,[x -- cx_ + z,,,t(z,, - cze)ldx -- q Cp,[x - cxe - zd(zt -- cz,)]dx (5)
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and

H = q C,o[x - cxh + z_,(z_,- czh)]d_- q C.,[x - _._ - z,,(z,- cz,.)]d_ (6)
h h

where q = ½PV _ is the dynamic pressure, Cv is the surface pressure coefficient, and subscripts

u and I relate to the upper and lower surfaces respectively, z,, and zt are the upper and lower

surface coordinates.

It is assumed that the optimization shape functions include a0, a_, 50 and 5, as design

variables, ao is usually utilized by rotating the x-z axes relative to the velocity direction, a_

defines the shape function

f_=x_-x/c (7)

The elastic axis and hinge line z locations are defined after geometry changes by the average

of the local z,, and zl values. The shape function associated with both 50 and 5_-is

/ 0 if x < cxhf6
xh- x/c otherwise (8)

The shape functions of Eqs. (7) and (8) are used to define both upper and lower surfaces.

The elastic parameters a, and 5, should be treated as dependent variables tuned to satisfy

the equality constraints of Eqs. (2) and (4). The CFD calculations in each iteration result

in M and H, and their sensitivity derivatives w.r.t, all design variables including a and 5.

To estimate the changes in a, and 5, required to satisfy these constraints, we can use

H + qc2 CHo CH_ AS_ = O. k6 5_ + AS_ (9)

where CM = M/qc 2 and CH = H/qc 2. which yields

Aa_ k,_ 0 a_

At the end of the iteration, all objective functions and their sensitivity derivatives are

modified to reflect the effects of the constrain equations, as done for other equality con-

straints.
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It should be noted that if the optimization is performed for one set of flow conditions

and required lift, it can be performed without aeroelastic effects. After the optimal a0 and

60 are found, M and H are calculated by Eqs. (5) and (6), a, and 6, are then calculated

by Eqs. (2) and (4), which yields the actual a and 6 of Eqs. (1) and (3). A muttipoint

optimization, however, and off-optimum calculations, require the inclusion of aeroelastic

effects. It is suggested to perform an optimization case with a rigid airfoil first (with a and 8

serving as design variables among others). The elastic deformations can then be calculated

as described above. Another" optimization can now be performed for the elastic airfoil when

the optimal result is known a-priori. This will help studying potential problems associated

with introducing aeroelastic effects. The formulation given above can be extended to 3D

o'_timization by replacing the _ and 5, parameters by elastic modal .deflections that will

also serve as wing shape functions.
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