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1. INTRODUCTION

In recognizing the need for improved methods for analyzing gas turbine
engine structures under elevated temperature conditions, a research program
was initiated at M.I.T. in April 1980. The objective is to develop computer
methods for elastic, elastic-plastic and creep analyses that are applica-
ble to gas turbine structures such as blades and rotors, etc. Such struc-
tures include (1) three-dimensicnal solids of general geometrical shapes,
in particular, with cylindrical holes or internal ducts, (2) thin plates
and shells and (3) axisymmetric solids under arbitrary loadings including
applied torques. The present document is fhe final report of this research
project. Earlier successes were obtained in the study of elastic-plastic
and creep analyses for two-dimensional problems using the assumed stress
hybrid finite elements [19]. Thus, it was decided to extend this hybrid

technique to more general structural geometries indicated above.

During the course of this study, it became obvious that certain basic
shortcomings had not been resolved in the assumed stress hybrid method.
These are the control of kinematic deformation modes and the establishment
of a logical procedure for choosing the optimal stress terms in the finite
element formulation. Under the present research program a systematic
method has been developed for choosing the assumed stress terms to suppres:
the kinematic deformation modes. Also through the use of a new version of
mixed variational principles a rational procedure has been established for
choosing stress terms that are in proper balance with the assumed displacement.
In the new version the stress equilibrium conditions are relaxed to the

extent that they are satisfied only in variational sense within each elements.



The result is that stresses can now be expressed in natural coordinates
hence, in comparison to the old method of derivation, the resulting elements
are less sensitive to distortions of the element geometry.

For plate and shell problems the conventional approach is to introduce
both lateral displacement w and two rotations at the corner nodes as
generalized displacements. A limitation for such element is that when
neighboring elements are notvco-planar at a node it is not possible to
write the complete equations of eqﬁi]ibrium. An alternative is the so
called semiloof element [20] for which only the lateral displacements w is
used at the corner node while nqnna1 rgtations w,n are introduced along
the edges to maintain the rotation compatibility along the interelement
boundary. It has been discovered that semiloof elements for plate and
shells can be easily forﬁulated by the assumed stress hybrid method.

The method of e1astic—p1$stic analysis studied under the present
_program is based on the visco-plastic theory [21] . Thus a static elastic-
plastic problem is analyzed as a time-depepdeﬁt»prob1em using a fictitious
time and hence can be solved using the same basic computer algorithm fqr

é creep analysis problem. In the present studies the mechanical subelement
- model [22,23] 1s used to represgnt'the kinematfc hardening behavior. The
model has also been extended for anisoiropic plastic Behavior.

In the following sections the significant findings of the present
research programs are described according to the following five tasks:

...... (1) Constructions of special elements which containing_traction-frée circular’
| bodndér%es. o _
(2) Forﬁu]atﬁon of new version of mixed variational principle and new

version of hybrid stress elements.



(3) Establishment of method for suppression of kinematic deformation modes.

(4) Construction of semiloof plate and §he11 elements by assumed stress
hybrid method.

(5) Elastic-plastic analysis by viscoplasticity theory using the mechanical
subelement model. |

Details of the present research findings have been, in major barts,
documented in technical papers that have been or are to be published and
in several theses that are available for distribution from the Library of
the Massachusetts Institute of Technology.

These technical papers are listed as Refs. 1 to 15 and the theses are
1isted as Refs. 16 to 18 in the refereﬁce 1ist of this report. One particular
research result that has not been written aS a technical paper is the
development of a special 3-D solid element which has a traction-free
cylindrical boundary. - A description of the construction and evaluation of

such element is included as Appendfx A in this report.



2. CONSTRUCTION OF SPECIAL ELEMENTS CONTAINING TRACTION-FREE
CIRCULAR BOUNDARIES

The objective for this task is to develop a special 3-D element that
is to be used for analyzing solids which has cylindrical holes or ducts.
Through an investigation of the corresponding 2-D plane stress problems [16]
it is concluded that the most effective e1ehent is one which contains a
boundary defined by the actual geometry and for which the traction-free
condition can be satisfied exactly. This idea has also be adopted by
Schnack and Wolf [24]. The technique ysed in both references are the
assumed stress hybrid method. For the 2-D problem it is easy to make the
assumed stresses to satisfy both edui]ibrium and compatibility condition.
This is done by using Airy stress functions which satisfy the bi-harmonic
equation in polar coordinates. The traction-free condition at the circular
boundary can then be imposed. It is shown in reference 16 and in Appedix A
of the present report that this satisfaction of both equilibrium and
compatibility condition for the assumed stresses is essential for the
excellent performance of the resulting special elements. |

For 3-D solids, although equilibrating stresses can be constructed
through the use of Maxwell's or Morera's stress functions [25], there is
no readily procedure for maintaining also the compatibility equations.
~ The approach taken in the brésént work 1s to assume that the changes in
all components of stresses are onTy linear along the direction parallel
to the axis of the cylinder which-deffned the traction-free boundary.

In such case, four;stresg functions can be defined in terms of only r and 6
coordinates and, it is easy, to maintain the compatibility condition in the
1imit that thé strésses no longerivary along z. A description of this
elément and an evaluation of its performance is given in Appendix A.
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3. FORMULATION OF NEW VERSIONS OF MIXED VARIATIONAL PRINCIPLE AND
NEW VERSION OF HYBRID STRESS ELEMENTS

The original version of the assumed stress hybrid e1ement was based
on the principle of minimum complementary energy [26]. Hence, the assumed
stress must be made to satisfy the equilibrium equations pointwise. The
derivation of hybrid elements has been extended 1ater to the use of
Hellinger-Reissner principle [27]. However, the apriori satisfaction of
equilibrium equation is still called for. The argument is that without
the constraining of the assumed stress_in the element level the resulting
element will tend to become the conventional assumed displacement element.
Because of such specified equilibrating conditions, the assumed stresses
for the early versions of hybrid stress elements were always expanded
either in Cartesian or cylindrical coordinates. Also because of the _
difficulty in satisfying the equilibrium equations, the hybrid stress method
were never widely used for shell elements.

The restriction of assumed stresses in Cartesian coordinates leads
to a rather serious shortcoming. On the one hand, in order to obtain an
jnvariant e1ement the assumed stresses must be complete in polynomial
expansions. On the other hand, it has also been well recognized that hybrid
Ve1ements formulated by using complete polynomials tend to be overly rigid.
Performances of such e]ements also deteriorate badly when element geometry
is distorted. |

To get around the problem of e1ement invariance properties, methods
of remedy have been suggested such as the use of local Cartesian coordinates
[28] or local skewed coordinates [29] for the assumed stresses. It is
clear that the obvious coordinate system to be used for the assumed stresses
is the eatura1 isoparametric coordinates. However, when such system is
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used, in general, it is not possible to satisfy the equilibrium equations
exactly. A new approach in the formulation of hybrid stress element is
to relax the pointwise equilibrium condition but only to maintain its
satisfaction in the variational sense. This is accomplished through the
following version of the Hellinger-Reissner principle for finite element
applications [2].

T

- 1 T T _ .
TR = JV 508 +0 (ng) - (D'o)u,Jdv = stationary (3.1)

n

Here the element displacements u are divided into two parts

5 = u +tuy (3.2)

-~

where Eq are expressed in terms of nodal displacements q and compatible
with neighboring element. '
u, are expressed in terms of internal parameters 5 which are
eliminated within the element level through the variational method.
Here ng = 0 is the homogenious equilibrium equation.  Thus, equilibrium

condition is not imposed initially, but the process arR/aA = 0, will
enforce its satisfaction in the element level.
In the finite element formulation, one assumes

g = P8 (3.3)

where P are not coupled among different stress components.



= N 3.4
4y = Ng (3.4)
u = M (3.5)
The functional L then takes the form
mg = -z 8'HE- 86q -8R (3.6)
where
H o= j PTsP av (3.7)
vn
(
6 = | PT(DN) dv (3.8)
2 v o~ e
n
and R = I (0'P) ™M av (3.9)
- v o~~~
n
From the varijation of TR with respect to B and A one obtains
B = H'(8a- RA) (3.10)
T .
and R'8 =0 (3.11)
By eliminating A and recognizing the element strain energy is
U= 7 kg ® zBHE (3.12)

one can obtain the following expression for the element stiffness matrix 5,

G (3.13)



In this formulation the equilibrium equations need not be satisfied
in Eq. (3.3), the P-matrix can now be expressed in the natural isopara-
metric coordinates instead of the Cartesian coordinates. The resulting
element stiffness matrix will then always be an inyariantl

Another possible advantage is that since the P-matrix in Eq. (3.3)
is no longer coupled, the flexibility matrix ﬂ can be reduced to a
supermatrix with submatrices only along the diagonal. The inversion of
such ﬁ-matrix can be simplified considerably. Reference 5 gives an
example indicating that an eight-node hexahedral element can be constructed
more economically using this new methqd of formulation.

An alternative procedure is to use Egq. (3.10), to constrain equations
for B to reduced the assumed stress terms to fewer number of independent

B-parameters of the form

c = Pg o (3.14)
Then with
(3.15)

tx
]
S——
<.
'y
il
ot
o
-3

The element stiffness matrix is simply

To-1

(- g . (3.16)
In thisrﬁase, however, the E-matrix will, in general, be coupled among
- the various stress components and the inversion of E matrix cannot be

simplified.



One of the criticisms of the assumed stress hybrid method in the
early days was its lack of guidelines for selecting the assumed stress
terms. It turns out that the new formulation using Eq. (3.1) can lead
to a logical way to choose the assumed stresses that are'consistent with
the assumed displacements. [14,15]

The procedure is as follows: First the element displacement Eq’
in general , are not complete polynomials, the u, terms are to be chosen
so that u=u_ + u, are now complete up to a certain order. The
assumed stresses in Eq. (3.3) are then chosen to be uncoupled and complete
polynomials of the same order as that_of the strains derived by the
displacements u. The resulting constraint equations Eq. (3.11) then
yield the ideal independent stress terms ngor the hybrid stress formu-
lation.

One additional step to be introduced in this formulation is that
the resulting Eq. (3.11) may be redundant in the sense that the number
of independent constraint equations are smaller than the number of A's.
In that case a small perturbation of the element geometry is introduced
in order to obtain additional equations [10,11,18]. This method has been
app]iéd to different elements including 4-node and 8-node quadri1atera1
plane elements, 8-node hexahedral element, 4-node axisymmetric elements
under symmetric 16ading & torsional loading 3-node triangular plate
elementrand 16-DOF semiloof rectangular p]ate_e]émént. [14,15]

Table (3.1) 1ists the resulting number of independent stress terms
obtained by this approach. Indeed, the resulting 5-8 stress terms for
a rectangu]ar plane stress element aré exactly the five terms that have

yielded elements which do not have any shear locking difficulty under

bending actions [10]. It Has been shown that the corresponding 5-8 stress



terms in natural coordinates determined by the present method also Tead
to most desirable element performance [11].

If the desirable stress terms for a problem in Cartesian coordinates
have been determined for a regular rectangular or brick-shaped element,
the corresponding stress terms for distorted elements can also be
constructed by first expressing the tensor stresses Tij in natural
coordinates with the same B-stress terms. The physical components of
stresses can then be obtained by the following transformation

o = gl d A (3.17)
where Jki, sz are the Jacobians between the two coordinates systems.
For tHe resulting elements to pass the patch-test, it is necessary to
take the value of Jacobian at the origin of the element [11,12,18].

Eight-node solid elements have been Constructed'by the same approach.
It is used to analyze the bending of a rectangular bar with two elements
which are distorted. The effect of element distortion on the displacement
and stress has been studied for this element and for those obtained by the
ordinary assumed displacement method and by the original hybrid method
using the beam axis as the reference Cartesian axis. It can be shown
that the present element is much less sensitive to geometric distortions
[12]. It has also been shown that for axisymmetric soTids the 4-node
elements constructed by the present approach are least sensitive to

geometric distortions when compared with all other elements [13].
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4. ESTABLISHMENT OF METHOD FOR SUPPRESSION OF KINEMATIC DEFORMATION MODES [6]

When the formulation of the stiffness matrix of an element of n
d.o.f. is based on the Hellinger-Reissner principle, the displacement
distribution of the element can be represented by n-2 basic deformation

modes with parameters o and £ rigid-body modes with parameters 5 in the

form of
- fa
u = N4~ (4.1)
- ~ IR
The deformation energy is then given by
- 1T
Ud =3 B §a a (4.2)

In order to prevent any kinematic deformation modes, the assumed
stress terms must match the assumed displacements such that the deformation
energy will not vanish for any one deformation modes or any combination of
basic modes. Two basic steps are:

1. Based on the strain distributions for the basic deformation modes
fn an element, a choice assumed stresses can be made on a scheme 1nvo]v1ng_
_one B-stress term for ore o-mode. In this case the stress equilibrium -
tonditions‘are, in general, incorporated.

2. A check should be made that all co1umn§ of the qx matrix in the
deformation energy term are linearly independent. '

Examples in membrane element, axisymmetric element and brick elements
have indicated that there exist a wide choice of assumed stress terms for
‘ higher order elements. In that case, it is advisable to relax the equili-

brating condition for the highef order stress terms.
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5. CONSTRUCTION OF SEMILOOF ELEMENTS AND SHELLS ELEMENTS BY
ASSUMED STRESS HYBRID METHOD

Ordinarily the nodal displacements of a plate or she11’e1emént are the
lateral displacement w and its derivatives in order to maintain the complete
interelement compatibility. For plates with both membrane and bending
actions and for shells, the number of D.0.F. at the node is equal to five.

A drawback for this type of arrangement is in the case when the neighboring
elements are not coplanar at the node. In that case six D.0.F. are needed
in determining the equilibrium conditions at each node. A remedy suggested
by Irons is the semilLoof element [20]. In such element a corner node will
have only the u, v and w degrees of freedom, while normal rotations w,n are
used along the sides of the element. The formulation of semiloof elements
for plates and shells by the assumed displacement method was accomplished
by Irons. The method , however, includes complicated procedures involving
the application of a system of constraining conditions.

The assumed stress hybrid method is, however, a natural approach for
the construction of semiloof elements for plates and shells [1,9,18]. 1In
a 16-DOF quadrilateral plate element presently developed the nodal dis-
placements are the lateral displacement w at the corners and the mid-side
points and the normal rotationr L ai the 1/3 points along each side.

The boundary displacement is approximated by quadratic distribution for

w and linear, for W one The assumed stress couples are chosen by the same
approach outlined in section 3, i.e. the additional internal displacements
terms w, are used to determine the constraint equations for the initially
uncoupled stresses.' The number of stress terms for the resulting element

is 23 while the minimum of terms required to suppress the kinematic deforma-

tion modes is only 13. As shown in Reference 15, the 23-stress terms is

12



apparently the optimum for improving the performance of the element.

Details for the formulation of semilLoof shell elements by the assumed
stress hybrid method are presented in Reference 9 and 18. The formulation
is based on a modified version of the Hu-Washizu princip]e.v Initial
discussion of this method is vaen in Reference 2. Limited examples with
triangular and quadrilateral elements have indicated clearly that the
assumed stress hybrid method can now be extended to the construction of general
shell elements. Also with appropriate choice of assumed stresses and |
internal displacements, it is possible to obtain an element for which rigid
body motion, and the in-plane and out-of—p]ane strains can all be decoupled.
Reference 18 include examples showing that a cylindrical shell element
constructed by the present method can pass very severe tests suggested by

Morley [30].
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6. ELASTIC-PLASTIC ANALYSIS BY VISCOPLASTICITY THECRY USING THE
MECHANICAL SUBELEMENT MODEL

Under the present grant a formulation of time-independent elastic-plastic
analysis by the assumed stress hybrid method is made based on viscoplasticity
theory and the mechanical subelement model. In the mechanical subelement
model the strain hardening behavior is represented by that of individual
subelements all of which are elastic-perfectly-plastic but of different
yield stresses. The model can approximate the Bauschinger effect for
materials under reversal of loading and.is most convenient in conjunction
with viscoplastic analysis. In Reference 7 the formulation of this method
by the Hellinger-Reissner principle is presented in detail and an example
solution for a plane-stress shear log problem is given. For this problem
the plastic behavior is anisotropic. To accomodate this property, the
corresponding mechanical sublayer model is developed and presented in
details in Reference 8.

The basic step in the construction of mechanical multi-element model
is to determine the relative proportions of the individual elements in terms
of the tangent modudii of the individual segments of the piece-wise linear
stress-strain diagram. The ordinary procedure is toruse the same relative
proportions of the individual elements obtained uﬁder uniaxial loading
conditions for that of soiids under multiaxial loading. For example when

the modudii for the various segments are given by Ei (i=1...n), with

E] being the elastic modulus, the area of the ‘ith element is given by
A, E. - E.
i _ i i+1
T (6-1)

14



where A is the téta] area of all elements. For the plane stress problem,
it turns out that when a plate is modelled as a multi-layered one with
elastic-plastic materials of different yield stresses, it will produce

a uniaixial stress-strain diagram with the individual seaments slightly
curved, except the initial elastic segment. For a two-layer model, for

example the thickness ratio is

i]_ = -——-—t-I = E] - Ez (6‘2)
A T S L
175 B2

where v is the Poisson's ratio in elastic range and EZ is the initial tangent
modulus at the yield stress. As a comparison for a general 3-D solid the

relative proportion of a two-element model is given by [31].

v E,-E
1} = 1 2 (6.3)
1-2v
E, - E
1 3 2

For 3-D problem, however, a multi-element model will lead to uniaxial stress-
train diagram with linear segments.
The detailed procedure for the construction of a multi-layer model to

represent a anisotropic plastic behavior is illustrated in Ref. 8.
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7. SUMMARY OF ACCOMPLISHMENTS OF THE PRESENT RESEARCH PROGRAM

The following are the important research findings have been obtained

under the present research program.

(a)

(b)

(c)

(d)

A new version of Hellinger-Reissner principle has been developed for
the construction of assumed stress hybrid elements. The main feature

is that the assumed stresses need not be in equilibrium in varia-

_tional sense within each element. The consequence is that the stresses

may now be expressed in the natural (isoparametric) coordinates hence the
resulting elements are always 1nv$riants and are less sensitive to
distortions of the element geometfies. The new formulation has also
Vpointed out a logical way to match the assumed stresses with the assumed
displacements of the element in order to obtain an idea element
properties.- Examples also indicate that computing effort can be

reduced using the new method of formulation.

A method has been deye1oped for choosing the assumed stress terms

to suppress any kinematic deférmétion modes in an assumed stress hybrid
element.

Special elements have been constructed for plane and solid elements
which contain traction-free circular boundaries.

The hybrid stress method has been extended to‘the construction of
semiloof elements which are most convenient for p1ate_and shell

elements that are not co-planar at the interface have been shown.

16



(e)

(f)

Shallow and deep shell element have been successfully constructed

by using the Hu-Washizu principle. In the resulting elements the
rigid-body motion and the bending and membrane straining modes can

be decoupled in order to avoid the shear locking probiem.

The mechanical sublayer (subelement) model has been used in conjuncfion
with the viscoplasticity theory for elastic-plastic analysis by the
assumed stress hybrid finite element method. A method has been developed

to construct sublayer models for anisotropic plasticity behavior.
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APPENDIX A
EIGHT-NODE SOLID ELEMENT WITH A TRACTION-FREE CIRCULAR SURFACE

A-1. INTRODUCTION

For stress analyses of solids with traction-free cylindrical surfaces
by the finite element method it is more advantageous to use special solid
elements which contain traction free circular surfaces. For this purpose
the assumed stress hybrid element is most suitable. For plane stress and
plane strain problems it is convenient to use stress functions in polar
coordinates to maintain not only stress equilibrium condition, traction-free
condition along the circular boundary and also the compatibility condition
[16]. 1t has been shown that 4-node elements constructued under such stress
assumptions yield much more accurate results than that by using ordinary
assumed finite element elements and ordinary assumed stress hybrid elements.
The present note is to described the formulation for a special 3-D solids

element which contain traction free cy1indrica1 surfaces.

A-2. GEOMETRY OF 8-NODE SOLID ELEMENT

An element with a traction-free cylindrical surface is shown in
"Figure A-1. In this case, it is obvious that a cylindrical coordinates,
r, 8, and z that define the traction-free surface ABCD 1is the most
Togical reference coordinates. The two planes DCGH and ABFE are parallel
to each other and are perpendicular to the z-axis, while the planes CBFG §nd.
DAEH .are on planes 1n radial direction. The plane EFGH is parallel to the
z-axes but may make any angle with the x-axis.

The hybrid stress element in the very original form [26], is derived

by using the principle of minimum complementary energy. The stresses in

18



the element are in exact equilibrium and are expressed in terms of finite

number of parameters

g = P8

(A-1)

For this special element the traction-free condition along ABCD 1is also

maintained.

The displacements u along the element boundary are then interpolated

in terms of the nodal displacements q i.e.

[ -t {

it
LN
(=)

The corresponding surface tractions T 1is determined by

~

?

where v = matrix of direction cosines

and R = v

-~

p
From the principle of minimum complementary eneragy
- =J 1oTsoav - J TT G dS = minimum

n - u

the element stiffness matrix 5 is then given by

T,

k= s

where ﬂ = J

1 0
t\n
{1 O
Q.
<
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(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)



and G=j RTL ds (A-8)
6 "

Here Vn and S, are respectively the volume and the prescribed boundary
n

th element. Because the surface ABCD is

displacement boundary of the n
traction-free it will not appear in the determination of the G-matrix.

The equilibrium equations are

aor s l_aTET . aTzr i 0,.~Og -
or r o5 9z r
°T.. oc 3T 27
re 1 8 26 rg. _ _
v t v st Sz T Ty 0 (A-9)
arn L1 a"rez . 802 . Tor -
or r ob ¥4 r

The construction of equilibrating stresses can be most conveniently
accomplished through the use of stress functions. When the variations of
all the stress components are assumed to include only up to linear terms
along the z direction it is possible to obtain two different sets of
stress function in (r,8) coordinates. Each of these contains four stress
functions. Based on a preliminary investigation of performances of elements
derived by these two versions, only the one indicated in the following

is used in the present development. The equilibrium equations Eq. (A-9)

are satisfied if the stresses are expressed in terms of four stress func-

tions ¢i(r,e). i=1,2,3,4 1in the following manner:

20



) 5%¢ 36, 9%,
op = ]?81']+_1'2' 2]’“2(1?—:?*—5:‘)
r 2e 26
oo 3%,
Og = T2 *27 3
or or
2
_ 1 9% 132“’1 1 %, 199,
Trg ~ ';'2' 36 T Brab Z(:f 36 T 9rad
_ 1%
Trz = ¥ or
2
. = 1°%%
6z r arof
2 3
2% 3%
O'z = ¢4 - %— [ 23 +]F 32 (A-.lo)
or orag

The assumed equilibrating stresses can then be obtained by expanding the stress
functions as trigonometric functions along ® and polynomials along r. The
stress terms are also chosen to satisfy the traction-free condition along
the cylindrical sufface. |

From an evaluation of the resulting displacement and stress distribu-
tions of a thin plate with a circular hole obtained by using different
expansions for stress functions in the finite element formulation the following

set of assumed stresses was chosen.

r r r r

2 4 2 4 2
. a_ 3a_ _ 42 3a_ _ 4a
L (1 - rZ)B] + (1+ r4 r2 )cos 28 B, + (1+ r4 ?)sinze 83
at a’ » a? a®
+ (r-—g)cose By * (r-—3—)sine gg * (r-5 =5+ 4,—-5—)c0536 Bg
r r o r r
at ab
+ (r-5 =+ 4 —5)51n36 37
r r
' 2 , 4 2 . 4 2
+ 2[(1-25)8g + (143 - Bycos20 8o+ (1435 - 287)sinze 8;(]
r
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It is seen that there are 18 independent B-parameters which is the minimum

number required for the suppression of kinematic deformation modes [6].
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Unlike the two-dimensional problems it is not possible to choose the
stresses that also satisfy the compatibility equations. The set of stresses
given by equation A-11, however, does satisfy the compatibility equations
in the T1imiting cases when the stresses do not very along z.

It is seen that although the cylindrical coordinates are used for
the stresses, other coordinate systems must also be included in the formula-
tion. For example, it is more convenient to use u, v and w in Cartesian
coordinates for the nodal displacements and the interpolation functions L
(Eq. A-2) for all the boundary surface, in particular, for the top bottom
surfaces DCGH and ABFE, are bi-1inear shape functions in the natural
coordinates (&,n,z) system similar to thé isoparametric coordinates. In the
integration of the H-matrix (Eq. A-7) over the volume of the element Gaussian
quadrature method is used. This is also based essentially on thé use of

the natural coordinate (£,n,z) system.

A-3. NUMERICAL RESULTS

1. A rectangular plate with a circular hole

A thin plate of a dimension 4R x B8R x 0.1R with a circular hole of
radius R at the center is acted by uniform tensile loading at the two ends
as shown in Figure A-2. The problem has also been analyzed as a plane stress
problem by Kafie [16] using different elements and two different mesh patterns.
It is also ana]yzed here_using only one layer of 3-D solid elements in two
different meshes shown in Figure A-3. The average values of circumferential
stress g along the thickness direction at point A of the rim of the hole
is given in Table A-1. It is expected that if a 4-node plane stress element

with one circular boundary is formulated by take from Eq. A-11 only the plane
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stress terms cr,ceand Tpg that are not varying with z, the result should
be identical to that of the present 3-D analysis. The equivalent 2-D
element, thus, is one derived by using B] to 67 terms in Eq. (A-11). This
is a stress pattern which satisfiés the compatibility condition in addition
to the equilibrium and traction free conditions. In Kafie's study, a similar
plane stress element was derived using only By to Bs terms in Eq. (A-11).
For comparison of eiement performance Kafie also included two hybrid elements
with circular boundaries derived by using stresses which do not satisfy
the compatibility conditions. These results are also given in Table A-1.
It is clear that the satisfaction of compatibility conditions in the stress
terms is essential for achieving a good'e1ement performance. This comparison
also shows that the present element with 7 B-parameters for thé plane stress
terms yields better accuracy than that by the 5 B-parameter element.

In Kafie's study some higher order elements with 8 and 10 nodes were
derived using the assumed stress hybrid method. These co;respond to the
use of 3 and 5 nodes respectively to represent tﬁe curved boundany. The
results obtained by these elements as well as that by using eight node
isoparametric element derived by the conventional assumed displacement approach
are also included in Table A-1. The total numbers of unconstrained D.0.F.
used in the different solution are also listed in the table. It can be
seen that the 8-node assumed displacement element actually performs very well
in comparison to some of the hybrid stress elements. But the present hybrid
element wﬁich is derived by using stresses which satisfy both equilibrium

and compatibility conditions and also prescribed traction-free conditions

clearly yields the Eest performance.
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2. A thin square plate with a circular hole

A square plate of 8R x B8R with a center hole of radius equal to R and
thickness equal to 0.1R is acted by uniform tension along two opposite edges.
The problem is analyzed by only one layer of elements using two different
meshes with 4 and 16 elements respectively for 1/4 of the plate as shown
in Fig. A-4. The distributions of the circumferential stresses o, around
the rim of the hole are obtained by the following two systems of elements
and are shown in Table A-2.

(1) combining the present elements with ordinary 8 node hybrid stress
elements which are derived by expanding in stresses in natural isoparametric
coordinates with 18-g parameters
and (2) using the ordinary 18- hybrid stress elements everywhere.

The analytical solution given by Hengst [32] is included for comparison.
The solutions obtained using mesh-2 are also plotted in Figure A-5. It is

seen that the stress o, obtained by the finer mesh is already very close

e
to the analytical solution. It is to be remarked that an even finer mesh
with 36 elements was tried with the size of the special element Timited to
only 0.25R. But the results are worse than that by obtained only 16 elements.
This means that if the special elements cover too thin a layer from the

rim of the hole the special contribution of the element cannot be fully "

utilized.

3. A square block with a circular hole

A square block of 8R x 8R with a center hole of radius equal to R
and thickness equal to 2R is acted by uniform tension over two opposite faces.
The Poisson's ratio for the material is taken as 0.25. The problem is

analyzed by using 64 elements ovef one-eighth of the block as shown in
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Figure A-6. It is seen that the mesh pattern from the top view is the

same as mesh-2 in Figure A-3.- Solutions are obtained again by two different
element arrangements: (1) one layer of special elements are used around the
rim of hole, (2) all elements are ordinary 8-node hybrid stress elements. The
resulting solutions for Og for o = /2 and o, fore = 0and 6 =n/2

at the face and the middle plane along the rim of the circular hole are
shown in Table A-2.

There is no analytical solution for this problem. The only similar
problem that has been analyzed is the stretching of a thick plate of
infinite dimension with a circular hole. Green [33] and Sternberg and
Sadowsky [34] have treated this prob]em;and obtained the distributions of
Cg and o, around the rim of the hole. In both cases, similar to the present
problem, the thickness of the plate is equal to the diameter of hole.

However Green used v = 0.25, and Sternberg ef al used v = 0.3. According
to Green's solution the circumferential stress og 2t 0 = 90° and at the
face of the plate is lower by 7.2% in comparison to its average value through
the plate thickness while at the middle plane of the plate it is higher by
2.4%. The normal stress c, at the rim of the hole of course should be
zero at the face. The values at the middle plane are given as 0.27% and
-0.27% respectively at 6 = n/2 and 0.
It i1s now hypothesized that for the present problem the average stresses

across the thickness of the plate is equal to that given by the 2-D
problem given in Ref. [32j and that ratios between the values at the face
and the middle plane of the plate to the average value are the same as that
for the problem of circular hole in an infinite plate. The values of

estimated in this way are also given in Table A-3. It is seen that the

use of special elements around the rim of the hole yield much closer to the
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reference solutions in comparison to those by using the ordinary hybrid
stress elements alone. On the other hand, the present method does not

seem to provide any improvement for the solution of o,-
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TABLE A-1

COMPARISON OF COMPUTED STRESS CONCENTRATION FACTORS
(SCF) FOR RECTANGULAR PLATE WITH CIRCULAR HOLE
UNDER TENSION (2-D PROBLEM)

Coarse Mesh Finer Mesh

Type of Elements DOF SCF %error DOF SCF %error

present special elements
degenerated to 2D, (78)
and ordinary hybrid stress
elements 16 4.19 -3.0% 42 | 4.24 -1.8%

2D special elements (58,
compatibility enforced)
and ordinary hybrid ‘
stress elements 16 4.52 4.6% 42 4.13 | -4.4%

2D special elements (98,
compatibility not
enforced) and ordinary
hybrid stress elements 16 3.00 -30% 42 3.79 | -12.2%

2D special elements (128,
compatibility not
enforced) and ordinary
hybrid stress elements 16 2.77 -36% 42 3.96 -8.3%

8-node assumed
displacement elements 36 4.22 -2.4% 106 4.46 3.3%

8-node hybrid stress
element : 36 3.05 -29% 106 4.29 -0.8%

10-node and 8-node
hybrid stress elements 44 3.03 -30% 122 4.21 -2.6%

Reference solution SCF = 4.32
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TABLE A-2

COMPUTED CIRCUMFERENT STRESS ALONG THE RIM OF
CIRCULAR HOLE IN A SQUARE PLATE UNDER TENSION

(thickness

= 0.1R v =

0.5)

Angle 8

OO

22.5°

45°

67.5°

90°

coarse mesh

present
special
elements
and
ordinary
hybrid
element

95/0

-1.8661

0.9822

3.494

error%

26.7

-7.8

-2.4

all
ordinary
hybrid
element

oe/co

-0.4952

0.9162

2.2580

errors

66.4

14.0

-36.9

present
special
elements
and
ordinary
hybrid
elements

g/ %

-1.4141

-0.7124

1.0681

2.770

3.4681

errory

0.3

-2.4

finer mesh

all
ordinary
hybrid
elements

cé/oo

-0.9606

-0.3849

1.0367

2.4287

2.9843

error%

-34.7

-46.9

-12.5

-16.6

Analytical solutions

59/50

-1.4718

-0.7249

1.0651

2.844

3.580
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TABLE A-3

COMPUTED STRESSES Og AND o, ALONG THE RIM OF
CIRCULAR HOLE IN A THICK SQUARE BLOCK UNDER TENSION

. present special all Estimated
® location along z elements and ordinary | Reference
ordinary hybrid | elements | Solution
stress elements
face 3.298 2.756 3.32
/2
middle plane 3.552 3.075 3.67
face 0.110 0.026 0
T/2
middle plane 0.225 0.297 0.27
face -0.109 0.022 0
0 -
middle plane -0.242 -0.230 -0.27
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A

-

- Figure A-1 Geometry of special 8-node element with

traction-free cylindrical boundary

Figuré'A-Z Thin rectangular plate with circular hole
under longitudinal tensionv= 0.25
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Coarse mesh
3 Elements

< .
y\\in x 16 Nodes

48 DOF

Fine mesh
12 Elements
42 Nodes

\ZI/ 126 DOF
. y x

Figure A-3 Two meshes for one-quarter of rectangular plate

with circular hole
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~ coarse mesh

4 Elements
4L
Y -
|
fine mesh
42 16 Elements

W__-:e lp.gel o.75'2| 0.758 I £ —o—
— M —

Figure A-4 Thin square plate with circular hole under tension load
(h = 0.1R, v= 0.25) — two meshes for one quarter of plate
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1
0
-1 Analytical solution
Special elements along
circular boundary and ordinary
-2 8-node hybrid elements ]
—--—.—.— Ordinary 8-node hybrid
-3 L elements -
1 (IR | 1
0 15° 30° 45° 60° 75° 90°eo

Figure A-5

Thin square plate with circular hole under
uniform tension stress % circumferential stress Og
obtained by fine-mesh solution
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C4r0.2

Figure A-6 Thick block with circular hole under uniform tensile load
— mesh pattern for one-eight of block
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