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The automation of the process of learning from examples has been of intense interest 10 Al
researchers for a long time. This interest, together with recent breakthroughs in understanding the
learning capabilities of "neural networks", or massively parallel distributed processing systems,
have rekindled interest in neural nctwork research. Additional interest stems from the possibility
of constructing systems that learn in problem domains for which we have little understanding.
Such systems therefore offer the additional attraction of enriching our understanding of a
particular problem domain.

Reading aloud is among the problems that do not seem amenable to solution by use of standard
algorithmic procedures. NETtalk (Sejnowski and Rosenberg, 1986) demonstrated that it is
possible for a parallel network of computing units to be trained to form internal representations of
the regularities in the training set. The NETtalk experiment opens the door to a host of questions
such as what kind of network architecture is really suited to solving problems of this nature or
what learning strategies could be used. In particular, we may ask whether it is possible to devise a
system based on distributed representations that will be able to not only form abstractions of
regularities in the training set but also translate these to other test data to show equally good
generalization.

We attempt to solve the same text-to-phoneme mapping problem using Sparse Distributed
Memory (Kanerva, 1984). We discuss an iterative supervised leaming scheme that involves
modification of thresholds of output units and changes in the data counters. (This is a
modification of the gencralized delta rule for the SDM case). A method is discussed to solve
problems arising out of highly correlated real world data sets. The scheme is compared with
related models. The network is trained using this scheme with examples drawn from informal
speech. Performance of the trained network compares favorably with NETtalk. The trained
network shows good generalization.

This research was supported in part by NASA co-operative agreement, NCC 2-408, with the
Universities Space Research Association and was carried out at the Research Institute for
Advanced Computer Science, NASA Ames Rescarch, Moffett Field, CA 94035
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Introduction

The cutomation of the process of leaming from examples has been of
intense interest o Al researchers for a long time (see for example, Winston
(1975). Michalski and Chilausky (1980), Mitchell (1982)). This interest, together with
recent breakthroughs In understanding the learning capabilities of 'neural
networks', or massively parallel distributed processing systems, have rekindled
interest in neural network research. Additional interest stems from the possibility
of constructing systems that leam in problem domains for which we have little
understanding (see for example, Sejnowski and Rosenberg (1986). Tesauro
and Sejnowski (1988b), Eiman and Zipser (1988), Plaut and Hinton (1987)). Such
systems therefore offer the additional attraction of enriching our understanding
of a particular problem domain.

In the following report we describe an attempt to solve a problem of
text-to-phoneme mapping. which does not appear amenable to solution by
use of standard algorithmic procedures. We describe experiments based on a
relatively novel model of distributed processing. We show that this model
(Sparse Distributed Memory or SDM ) can be used In an lterative supervised
learning mode to solve our problem. We suggest additional improvements
aimed at obtaining better performance. The title ‘Leaming to Read Aloud’ has
been used in a restricted sense to refer to pronouncing written text, ie..

mapping text to phonemes. No attempt at any ‘graphemic recognition’ is



included in this. Some other studies address this aspect of the problem (See,
Reggia and Berndt, 1985).

This report Is structured as follows: In the first section, we describe some
of the problems associated with converting text to speech. Second section
contains Q brief description of parallel distributed processing with a description
of NETtalk, while the third section describes the particular model of distributed
processing that is used for solving the text-to-phoneme problem. Following this.
in section four, we describe the main results obtained in the experiments using
SDM. The leaming scheme Is described in detail. In section five, we describe the
design decisions and contrast them with those of NETtalk. Then, In section six,
we review some of the important related issues which should be raised,
understood and addressed in further work. In Appendix A, we show how SDM
can be viewed as a three-layered network and show how the leaming rule is @
modification of the generaiized delta rule, as applied to the case of SDM. In
Appendix B, we give a list of symbols used in the transcriptions. Finally, in
Appendix C, we describe the performance of the leaming scheme on the

"parity problem *.
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Text-to-speech

1.1 Introduction

Reading aloud is among the problems that cannot be easily solved by
conventional computing methods. An automated procedure to convert
unrestricted text to speech can lead to g host of exciting new applications.
Possible applications include:

1. Reading machines for the blind. These are already commercially
available (Telesensory Systems Inc.)

2 Transmitting information from data-bases via telephone lines for
consumer applications (e.g.. banks, aidine reservations, ond
weather).

3 Talking” books to teach reading.

4, Talking" computer terminals and instrument panels.

5. Personal speech prostheses for use by nonvocal persons.

The task of developing an automated text-to-speech procedure is
compilex for various reasons. From the point of view of producing natural
sounding speech, the simplest and the most effective way Is to employ @
dictionary of commonly used words. Dictionary lookup is successful for small
vocabularies, but for any natural language. there is no such thing as a complete

vocabulary, since words are continuously being added to the lexicon while



others are dropped. In g language such as English, using lefter-to-sound rules to
convert text to speech Is unsatisfactory because the underlying linguistic
structure is ignored. An approach using letter-to-sound rules also faces the
problem that the most frequently occurring words in the language violate these
rules. In order to attain high performance many systems have to rely upon
compilex linguistic analysis (Allen,. 1985) and a large variety of ad hoc rules.
However, syntactic analysis is difficult since ngtural languages have context
sensitive grammars. In speech, stress rhythm and inflexion help in providing @
listener with valuable information. It is almost impossible to convey this
information in speech that Is automatically generated from unrestricted text.

Some of the difficulties in speech synthesis as well as speech recognition
arise from the difficulties in processing the underlying natural languages. Natural
languages contain a large number of contextual rules, as well as exceptions to
these rules. Schemes using distributed representations and distributed
processing are well suited to solving such problems since they are sensitive to
context and exception. Many of the problems in language processing deal with
the syntax. Distributed representations and distributed processing offer @
promising approach to solving these. For Interesting work in this areg, see,
Hanson and Kegl (1987), ond Fanty (1985).

In later parts of this report, distributed representations and distributed
processing are discussed in greater detail. Distributed representations are being
increasingly used to solve speech related problems. notably speech

recognition problems. For some of the work in this areq, see Bourland aond



Wellekens (1987), Cohen et al. (1987)., Eiman and Zipser (1988). Tank and
Hopfield (1987), and Waibel et al. (1987).

Although the work discussed in this report  addresses few of the
problems that have been discussed so far, it offers a new approach to solving
the text-to-speech problem. Cleary much work remains to be done. Much
further research is needed in this difficult area in order to amive at a method that

can overcome the difficulties mentioned.
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Paraliel Distributed Processing

Computers are better than humans at certain kinds of tasks, for example,
performing complex numerical computations or manipulating long strings of
symbols. Living organisms. however, are far superior to computers In certain
areas of perception and cognition. Humans can recognize a familiar person in
different clothes or in a crowd or with a different hair style. Conventional
computers cannot match human beings in such tasks. Distributed
representations and distributed processing offer a way to mimic some of these
human abilities to a certain extent.

Hubert Dreyfus and Stuart Dreyfus (1986) discuss a hierarchy of human
skills with the novice at the bottom ond expert at the top. In their model,
problem-solving at the lowest skill level Is characterized by application of basic
rules to attain a desired goal. At the highest skill level gqol attainment Is sought
through recall of abstractions of similar past situations and the memories of
related past actions.

There seems to be a growing consensus among researchers that
networks of distibuted processing units, l.e., artificial neural nets, can be used for
storage and retrieval of patterns to mimic the human abilities of formulating
abstractions and recalling them when needed. NETtalk (Sejnowski and
Rosenberé, 1986) demonstrates that an artificial neural network can indeed be

used to form such abstroctions, also called intemal representations. and that
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they can be retrieved when needed. In NETtalk these internal representations are
formed structurally in the network.

Many models of distributed processing use a large number of very
simple processing units. Like neurons in the brain these processing units take a
number of inputs from different units and compute a function of these inputs.
Since these are viewed as very simple computational models of a neuron's
Input output behavior they are sometimes referred to as 'neurons’ and a network

of such processing units is sometimes referred to as a 'neural network'.

2.1 Neural Networks

A computing unit receives a number of inputs. It computes some
function of these inputs called the ‘transfer function’. The transfer function maybe
a threshold logic unit or a sigmoidal transfer function.

Ditferent networks can be formed based on different connectivity
patterns (l.e.. interconnections among the computing elements) and different
fiing rules (.e.. the particular function computed by the computing element).

A network of such computing elements can be férmed in different layers
such that computing elements in each layer send their output to each unit in the
next layer. This is a feed-forward network. There are no interconnections within a
given layer. Units in the first layer receive Input from outside the network. This input
is a vector that is 1o be associated with an output vector of the last layer of the
network. In particular, an input to the first layer is clamped. Based on the input the

units in the first layer produce some output which is the input to the next layer. This



input in tum produces some output at the second layer which Is fed forword in the

same manner until an output is produced at the final layer.

2.2 Description of NETialk

NETtalk employed a three-layered feed-forward network to associate @
moving window of seven characters with the correct phoneme. The second
and third layer In this network has modiﬁobie welights on the connections
between the layers. Every computing element in the first layer (nput layer ) sends
its output to every computing element in the second layer. Every computing
element In second layer sends its output to every computing element in third
layer (Qutput layer ). Since the second layer Is not accessible from outside, it is
cclled the hidden layer .

input to the Input layer is from @ character window where center
character is mapped to the comrresponding phonemic output in the output layer.
Initially an input is applied to the first layer and after the network settles to a
particular output it is compared with a comesponding cormect training instance of
the output. If there Is any error it Is back-propagated to adjust the weights of
neurons using the back propagation of efror rule (or the generalized delta rule )
developed by Rumethart, Hinton, and Williams (1986).

NETtalk demonstrates that it is possible for a network to be trained to form
internal representations of the interrelationships in @ training set. There have
been some other studies which report good generalizations ( e.g. PARSNIP,

Hanson and Kegl, 1987).



NETtalk leads to a host of questions concerning the network architecture
most suited to problems of this nature, the most appropriate strategies 1o be
used for training such networks, and whether the performance of these
distributed processing models compares favorably with sophisticated systems
like MITalk (Allen, . 1985). A question of particular interest concems whether it is
possible to devise a system based on distributed representations that will be
able both to fomm abstractions and to transiate this learned relationship to other

test data (l.e.. to give good generalization ).
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THREE

Sparse Distributed Memory

Sparse Distributed Memory (SDM) Is a distributed model of memory
proposed by Kanerva (1984). it is capable of handling enormously large address
spaces and is capable of associative recall in the presence of noise.

The reaqlization of the memory Is attcined through an actualization of a
small subset of the address space. This subset is a random sample of the
address space. The strategy for storing a pattern consists of storing it in a
distributed manner. In the simplest case, the input pattern is stored at all the
locations whose addresses are sufficiently similar to the input pattern. Hamming
distance is used as a metric of similarity.

Reading from the memory consists of pooling the information contents
from addresses most similar to @ specified read address and taking a majority
decision for each of the features of the pooled informcﬁqn to amive at the output

pattem.

3.1 How SDM Works

SDM can be viewed as a black box, with two inputs and an output. One
of the inputs is an address pattem and the other input is the pattem to be stored.
That is, the memory operates by storing a paftem at an address. In the read

mode. given an address pattern the memory retrieves a related data pattem.
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The Intermnail structure of this black box is just that of a random access
memory (RAM). It possesses a set of addresses and associated storage bins at
these addresses. It is different from RAM In that not all possible addresses of a
contiguous address space are present. Only a small subset of the address
space is present. Storage in a conventional RAM consists of bit registers. In SDM
it Is instead a set of counters (one counter corresponds with each bit in a data
register of a RAM). There Is also a similarity Indlcator. The memory works by
storing a pattern at similar addresses. Homming distance is used as @ meagsure
of similarity.

Figure 1 shows the addresses for storage locations on the left and the
actual associated storage bins on the right.

SDM operations can be stated in terms of three primitives.

1. Selecting locations similar to pattern X.
2 Storing pattem Y at Pattern X.
3. Retrieving @ pattemn given a probe X.

3.1.1 Selecting locations similar to pattern X

We start with some similarity criterion. Let us first consider the concept of
Hamming distance. We say that patterns x 1 ond y 1 are @ distance d apart if
they differin d positions. Thus, the smaller the number of positions in which two
patterns differ, the more similar they are. In this example given in Figure 2 the
Address X is 011101. All addresses which do not differ in more than r positions
from address X are considered to be similar to address X. These are shown

shaded. Each of these are at distances indicated in the distance column from
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address X. For example, the first address 010011 differs from address X in the
third fourth and fifth positions. So the total number of positions in which it differs
from address X is 3. If the distance between the location's address and the
address X is less than or equal to the radius then the address is selected. This Is
shown by a 1 in the select column for the selected addresses and a O for those
which have not been selected. All the selected addresses are shown In gray.
The parameter r Is called the select radius. (It indicates, in fact, the maximum
allowable dissirnilarity In selecting the addresses). In the example shown, the
select radius r has a value of 2. Thus the first address has not been selected.

Display 1 gives a formal statement of the select operation.

3.1.2 Storing a pattemn

When storing a pattem Y at an address X we first select locations given
X. Tostore Y ot these selected locations we proceed as follows. If a bit in Y Is
one, we increment the counters for all the selected addresses. If a bit is 0, we
decrement the counters at those addresses. This Is done for all bits in Y.

In the example shown In Figure 3, pattem 001110 is to be stored at 011101,
First wé select locations that have addresses similar to 0171 100 (that differ from
011100 in no more than 2 positions, as the radius r has a value 2). These are the
the locations marked h;- gray.

In this example. the first bit in the pattern to be stored, L.e. 0011101s 0. So, for
all the selected locgations the cbun‘ter in the first position is decremented. The
second bit also happens to be 0. so counters in the second position for qll the

selected locations are decremented. The third bit is 1 so counters in the third
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position for the selected locations are Incremented. Following this method all
counters of the selected locations are updated. Figure 3 shows the situation after
updating all the counters in the selected locations. Display 2 shows a formal

statement of the write operation.

3.1.3 Retrieving a pattern

Given a probe paftem X we wish to retrieve an associated pottem. We
first select the addresses that are similar to X. Figure 4 shows selected locations
in gray. For each position In the selected locations, we pool the contents. This is
the pooled sum shown in Figure 4 at the bottom right.

For each of these positions we now threshold the sum. If the sum is above
the threshold, we output a 1 in the corresponding position otherwise we output a

zero. Display 3, shows a formal statement of the retrieve operation.

3.2 SDM Modes of Operation

In its simplest mode of operation, SDM works as a pattemn recognizer. In
each write operation SODM modifies the abstraction of the stored pattern. With
SDM the problem of leaming tasks Is trcr_wsformed to storing and retrieving

encoded tasks.

3.2.1 Auto-associative Mode
In an auto-associative mode a pattern X Is stored at address X. This
gives SDM an ability to use lterative reads to enhance fault-tolerance. That is,

given X1 we retrieve Y1. Then reading at address Y 1 we retrieve Y 2. Continuing
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in this fashion we find that under certain conditions we will converge at the
correct stored pattern. That is X 1 is stored at X 1, then under conditions of low
noise and with relatively few patterms in memory, we will be able to retrieve X 1
by reading at X2, which may be slightly different from X 1. If the probe s
sufficiently near the stored pattemn, the reading procedure is guaranteed to
converge If the number and nature of stored patterns is such that the signal-to-
noise ratio remains within acceptable limits. If the probe pattem is farther out, the
reading procedure is not guaranteed to converge. This property of SDM can be
used for tasks of pattern completion or simple fault-tolerant applications.

SDM works well in this fashion when the number of stored patterns is less
than about 10% of the number of locations (Kanerva, Cohn, and Keeler, 1986). It
Is necessary to have the addresses distributed randomly throughout the address

space in order to get good predictable performance.

3.2.2 Sequential Mode

SDM can be used in another mode to store sequences. To store a
sequence ‘X1, X2, X3, X4 ..., Xn', store X2 at address X1, store X3 at address
X 2, store X4 ot address X 3, and so on. The sequence can be retrieved by
using a probe pattem X .

Retrieving sequences with this scheme may run into problems when two
sequences have an identical beginning. To counter problems of this nature,
Kanerva proposes a modification of SDM incorporating the use of “folds” (see
Kanerva, 1984). Sequential mode and operation of folds are not relevant to the

study described in this report.
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Figure 2 - Selecting Locations. Locations which do not differ in more than

two places from the address pattern are selected. They are shown in gray tone.



Display 1- Selecting Locations.
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Let
M be the set of actual memory locations,
T be the reference address,
n be the number of bits in the address,
r be the select radius,
d(x, y) be the distance between x and y:

n
dixy)=), Ix-vyl.
i=1

Then

S(T), the set of selected locations, is given by

SM={L|LeM Ad(LT)sr}.
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Figure 3 - Storing a Pattern. Locations similar to the address pattern are
selected. These are shown in gray. The counters at the selected locations are

componentwise incremented or decremented if the respective components of

the pattem to be stored are 1 or 0.



Display 2 - Writing to SDM .

Autoassociative mode

Let

Tj be the | bit of the target pattern T,
Cij be the j"‘ counter of memory location L;.

Then writing the pattern T implies that

Vie sm
Cij = Cj+1if Tj =1
Cj=GCj-11i#Tj=20

(j=1,.., M.
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Retrieved pattern

Figure 4 - Retrieving a Pattem . First, select locations similar to the target

address. These are shown in gray tone. Then poot the counters at the selected

locations and threshold these pooled sums to retrieve the pattern.

example above as well as in display 3. the value of the threshold is zero.

In the
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Display 3 - Reading from SDM.

Let

T be the probe pattern,

S(T) be the set of locations selected with probe T,
N(T) be the number of locations selected with probe T.

Then reading with probe T implies that
VL] € S(T)

N(T)
Sum; = 2 Cij
i=1

Outputj = 1 if Sum; > 0,
Output; = 0 otherwise.
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Learning to Read Aloud

4.1 Introduction

in this chapter, we describe the simulations performed in an aftempt to

solve the text-to-phoneme mapping problem using SDM as the network model.

In what follows SDM is treated as a mutti-layer network. A modification of the
generalized detta rule is used to train SDM to perform the desired mapping.

Work described In this report is empirical in nature. The main results

obtained in these experiments include:

1. A demonstration that an eror-comecting iterative training scheme
can teach SDM the desired mapping. This demonstration is
based upon simulation results. The learning algorithm is
described in detall In the later parts of this section. While the
results are empirical in nature the learning algorithm is based on
the delta rule. The detta rule is modified to account for the
ditferences between SDM and the multi-layer model used in
NETtalk. |

2 A scheme to handle correlated data sets. Simulation results
show that the scheme gives good results. We believe that this
scheme can provide distributed representation of the mapping

rules as a function of similarity.

b em—— W1



3. A demonstration that the performance can be further improved
by using a two-stage model. This is shown through simulation

results.

4.2 Details of the learning mechanism
4.2.1 Thresholds

SDM s simik':r to many matrix models. in simple matrix modeis of
associative memory , one can recall the stored vectors accurately if they are
orthogonal . Under some other conditions the vectors can still be retrieved if they
are not orthogonal as long as they are linearly independent. For correlated
vectors, retrieval is still possible by adjusting the thresholds (Stone, 1986).

As more and more pattermns are stored in SDM, the effective radius from
which a pattern can be retrieved decreases. This occurs as the system starts
moving from @ low noise state to0 a state with high level of noise. (Here, noise
refers to the interference in a a stored signal from one pattem due to storage of
other vectors). One approach to solving this problem is to estimate the noise
and adjust the thresholds accordingly. If the input and tc;get output patterns are
rondomly chosen, the noise is distributed with mean zero. When the input and
output pattemns are not random, the associations can be remeveq better by
adjusting the bias to that of the mean of the counters (see display 4). This simple
scheme is equivalent to having a dummy location which is always selected
during storing and retrieval and its weight is adjusted by the number of other
counters that are selecfed in the select opercﬂon. This Is analogous to the

dummy unit that is always on as used in NETHalk .

23



24

This still does not comect for the fact that input addresses are not
randomly chosen. A scheme to take account of correiated address patterns is
discussed later.

Another way to estimate the correct threshoids Is to pose it as @ multi-
dimensional search problem with retrieval as the objective function to be
maximized. [t can then be solved by methods such as simulated annealing or
stochastic iterative genetic hilicimbing (Ackley, 1987). For a discussion of
various search methods in a mutltidimensional space and thelr relative merits,

see Ackley (1987).

4.2.2 Learning Mechanism

The leaming mechanism consists of exposing the pattern associator with
a pattermn to be associated and minimizing the error between the actual output
pattem and the desired output pattem. This is accomplished by feeding back a
small portion of the error, in an error-correcting manner, to the counters that have
taken part in producing the error. This coresponds to a g-rodlen’r-descen'r search
on the error surface such that traversal on the emror surface s in the direction of
lower error. Many training procedures in artificial neural systems take this

approach ( Rumelhart and McClelland . 1986).

4.2.3 Nonlinear Activation Function

At first, a scheme similar to a simple "perceptron leaming procedure *

(Rosenblatt, 1961), was used to adjust the counters. This leaming was found to



be unstable because of the discontinuity at the threshold. One way to overcome
this problem Is to use a sigmoidal transfer function that makes It possible to
obtain a desired change in output by choosing the proper input. The important
characteristic of a sigmoid function Is that it is a differentiable. nondecreasing
function of its input and it approximates the threshold logic unit (a threshold logic

unit Is an infinite-gain sigmoid).

The use of a sigmoid can be further supported by the fact that it can
model the input output characteristics of biological neurons to a certain extent.
Some characteristics of a sigmoid function that appear to be similar to the

biological neurons are:

1. Noise suppression.
2. Limited dynomic range.
3 Nonlinear, nondecreasing response.

With the sigmoidal transfer function the activation is computed as shown
in Display 5. The output is then computed as shown in Display 6. The actual
feedback amount is computed by the leaming rule as shown In dispiay 7. This is
just the detta rule as applied to Sparse Distributed Memory. In keeping with the
basic characteristic of SDM, learning is restricted to changes in the counters.
The scheme of selecting similar addresses to store similar entities Is preserved.
The feedback amount as shown in display 7 Is the quantity & for the output units
multiplied by the leaming rate A . In the generalized delta rule this would be
multiplied by the activation of units from the preceding layer. In our case the

activation of these units is 1 and hence the feedback amount does not show this
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multiplicand. Appendix A shows how Sparse Distributed Memory is a special

case of three-layer networks.

4.3 Details of the Experiment

Carterette and Jones (1974) prepared a database of transcriptions of
informal speech for four age groups. The youngest of these were first grade
children. Informal speech drawn from first grade transcriptions was chosen as
the data set. The training set consisted of 1028 words. The test set consisted of
915 words. The symbols in the alphabet of the text set were the 26 letters of
English. These were augmented with two symbols: full stop and word boundary.
The symbols in the alphabet of the phoneme set were the 45 phonemes (only
those which occur in the training and test sets) acugmented with a symbol for the
sentence boundary, a symbol for the word boundary and a symbol for
unpronounced letters. Thus, the alphabet of the orthographic language had 28
symbols and the alphabet of the phonemic language had 48 symbols. The
problem to be solved Is to map a string of symbols from one language
(orthographic language) to a symbol in another I'cngucge (phonemic
language). The grammars of the two languages are closely related. For an
interesting example where the two languages differ, see R. B. Allen (1987). He
describes an experiment in which a mapping from English to Spanish is taught to
a network using a supervised leaming procedure (l.e.. the network learns to
translate English text to comesponding Spanish text).

The orthographic stream was properly aligned with the phonemic

stream. Figure 5 shows examples of segments of aligned orthographic and

26



phonemic streams. Appendix B describes the symbols used in the phonemic
stream.

In the simulations being discussed here the window consisted of 7
characters as in the NETtalk study. The 7-character window was coded by giving
different weights to different character positions The weights for the characters
in the window were - 1,2.4, 8, 4,2, (Figure 6). These weights, which were
subjectively chosen, represent the relative importance of input characters in
determining the output. After weighting. the characters were coded with a
compact binary code (l.e. five bits were used to code each charactern).
Similarly, the phonemes were coded with a 10-bit Hamming representation of a
six-bit compact binary representation. (One-bit error detection and one-bit

correction code).

4.4 Training the Network

Let Tr=(<t1.pl>, <t2.p2>......<in, pn>} be the set of pairs In the training
set, where <tl, pi> represents the ith pair of text window ti and the comresponding
phoneme pi. The network was tralined using set Tr as follows:

Step 1: Store the training set by storing p1 at t1, p2 at t2,....pnat tn.

Step 2. Compute thresholds using the equation shown in display 4.

Step 3: For each pair <ti,pi> inTr,

Read at ti. Let the output be ol.
(Use Equations in display 5. and display 6 to compute the output).
Compute the error for all positions in the retrieved vector oi as

compared 1o the desired vector pl.
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(this is the componentwise difference between each vecton.
Compute the feedback amount,
(Use the ieaming rule in display 7).
Accumulate the feedback for each of the selected counter
separately.

Step 4: Feedback the accumulated error to all the counters.
Repeat steps 2 to 4 until number of correctly retieved vectors

does not increase with further training.

In the actual training that was camied out a vector pi was considered to
have been cormrectly retrieved if it motched In ot least ¢ of the 10 positions with
the output vector oi. Use of Hamming code in coding pi allows an emor in any

one position. This can be deterministically detected and comected.

Step 1, in the procedure described above Is not essential in training the
network. One could as well proceed without it. However by inciuding the first
step in the fraining procedure the percent comectly retrieved start at a higher

initial value.

Figure 7 shows the schematic of the network in training. Initially the
training set was stored in one pass. Then In each successive pass, response to
the vectors in the training set was noted. The leaming rule was then used to feed

back a small portion of any noted ermor.

28



4.5 Simulation Results

We now describe the simulation results in the following sections. The next
section describes the results obtained with a network which was constructed with
randomly chosen hard locations (Le.. addresses). Later sections describe

improvements aimed at obtaining better performance.

4.5.1 Results with Randomly Chosen Locations

Figure 8 shows the performance of the training scheme used, when the
addresses of the locations gre randomly chosen. The peak performance was
about 74% comrect on the training set after 65 passes through the training set. The
training was still increasing the percent comrectly retrieved at the end of the
experiment, although the marginal gain was not enough to justify further training.

The memory contained 800 addresses In this simuiation,

4.5.2 Countering the Problems of Correlated Data

Usually, real worid data are highly correlated. If one uses SDM with
randomly generated addresses, its performance deterio'rctes as the distribution
of data points is not random. One way to solve this problem is to select
addresses from the distribution of the problem domain. Keeler (1987) suggests
such an approach. He considers SDM from Kanerva's original formulation to
consider the case of correlated Input pattems. He shows that if the Input set of
correlated patterns (.e. the addresses) and the distribution of Homming
distances between any two randomly chosen pattems from this set is known

g priod , then choosing the addresses from the distribution of input pafterns, and
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using the proper radius of similarity, SDM will show the same ability to retrieve a
given associated vector as output. as in the original formulation. He suggests
that if this distribution is not known, the above procedure can still be followed, if
the distribution could be learned by some means. Rather than finding
techniques to leam this distribution In some way, we feel that it would be better
to draw the addresses from the data points themseives. Keeler's scheme was
introduced in the original Kanerva formulgation which did not use any iterative
supervised leaming. We believe, however, that it can be extended to include
the case where the memory Is trained using the supervised leaming. We now
assume that the training set Is sufficiently representative of the population of
input vectors in the problem domain (See the discussion in chapter 6 of
learnable tasks and relgted training set size). Thus, we propose that the
addresses be drawn from the training set.

Figure @ shows the performance as a function of training when the hard
addresses are drawn from the training set. In this example, 800 training vectors
were randomly chosen without replacement from the training set as addresses
of locations. in these simulations., the peak perform&nce was about 81%
correct after 300 passes through the training set.

Continuing our discussion further, let us now consider some interesting
improvement. Assume that we have M data points (l.e., training vectors). If we
chose @ memory of M cells by drawing these addresses from the M data
points without repetition, we will have a memory with addresses identical to the
data points, If they are all distinct, then with a zero radius-of-select, this

corresponds to the model of Baum, Moody, and Wilczek (1986), where each
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address is a grandmother-cell representation of itself (Baum et al. call this a
unary representation). Thus, we will get 100% yield on the training set retrieval.
This case is of little interest, since it Is equivalent to memorizing the training set.
and the model will not have any ability to generalize. Also, there will be no
damage resistance.

Interesting behavior can be observed as we start increasing the radius-
of-write. As the radius-of-write starts Increasing, the signal-to-noise ratio will begin
to decrease. For a small radius the retrieval on the training set would still be fairly
high, and the system's damage resistance will start increasing. The system’s
ability to generalze will aiso start increasing.

A more intriguing possibllity involves finding a functional relationship
between the addresses and the data. This may be better than the connectionist
approach of analyzing the weights on the hidden units in a 3-layer feed-forward
model. Since a given address from the training set will correspond to a hard
address in the memory, statistical analysis of counters In the immediate
neighborhood may reveal a functional relationship between the addresses and
the data. More specifically, since address A In the tralning set corresponds to
address A of a hard location, one can just take addresses in the training set that
are similar to this and perform statistical analysis on their respective data
counters, thereby obtaining a more concise representation of letter-to-sound
rules. This method can provide these distributed letter-to-sound rules as a
function of similarity. This, we believe, is the main advantage of the scheme
Generalization can be improved further by choosing a majority of addresses

from the training set and augmenting them with many addresses from possible
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test sets (i.e., randomly chosen character windows selected from different text
passages). This would show higher generalzation as long as the radius is non
zero.

Figure 10 shows the performance of the networks when hard locations are
chosen corresponding to each training vector and these are further augmented
as previously suggested with vectors from possible test sets.

The performance on the test set Is much higherin figure 10 (i.e. the case
where the addresses of hard locations correspond to the training set and these
are further augmented with addresses from raondomly drawn character
windows). Peak performance in figure 9 on the test set Is about 65% whereas the

pecak performance on the test set in figure 10 is about 71%.

4.5.3 Improving the Performance Using a Two-stage Model
It is possible to iImprove the performance further by using the following
scheme. Let Tr = (<t1, pl>, <t2, p2>, ..., <in, pn>} be the set of pairs in the
training set, where < i, pl> represents the ith pair of text window t1 and the
corresponding phoneme pl. First, train SDM to its best possible mapping
capability As described in the section - Training the Network'. Let the best
output of the memory be {f1. f2, ...., fn} Now create a new memory and train it
with the training set, Tr2 = {<f1. p1>, <f2, p2>,...., <fn, pn>}.
Thus, the output of the first stage Is used @s input to the second stage,
such that the desired output (target) Is stored at the output of the first stage. This
“second stage Is then trained with respect to target output in the same way as the

first stage. This leads to a dramatic improvement in performance.
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Figure 11 shows results of simulations when first stage SDM was trained as
previously shown In figure 9 (l.e., The addresses of locations were drawn from
the tfraining set). The peak performance now reached about 87% as opposed
to 81% obtained using only one stage.

Figure 12 shows the Improvement in performance when the first stage
hard locations correspond to the training set (Not just a small sample of the
training set). The peak performance improved from about 89% to 93% in 120
further passes through the training set. The gain may seem insignificant but this is
because the first stage performance was quite high. The retrieval starts at @
lower value than the maximum for the first stage: but this very rapidly rises to
above the highest in the first stage.

At present, we cannot offer a clear explanation of why this scheme
shows an improvement in performance over a single-stage model. We can
only speculate about 1.

The basic leaming scheme that Is chosen in a single-stage model is
based on SDM's similarity based storage and retrieval mechanism. Hamming
distance is used as the metrc of similarity. For some problems this criterion is
cleary inadequate. Consider the 'parity problem ' or the 'clumps problem '. The
learning mechanism as described in the single-stage model Is incapable of
solving problems of this kind . In the first problem above, we are interested in
learning to find the 'parity’ of binary vectors. In the second problem we are
Interested in detecting the number of clumps of “1%s in a binary vector.

We tested our single-stage learning mechanism on the clumps problem

and the parity problem (which is just the generalized XOR problem). As
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expected, learning mechanism was unable to solve the clumps problem.
Training improved performance over the training set however the performance
on test set was hopeless (about same as random guessing). Thus. training could
only help SDM memorize the fraining set but it was unable to generalize. The
performance on the parity problem was very good but that is because of the
behaves as though it is hard wired to solve this problem. Appendix C explains
this behavior.

The improved performance in g two-stage model may be explained as
follows. The performance in the first stage can be thought of as the maximum
obtainable performance from the first order statistics. After the first stage has
separated the outputs in various categories. the second stage can be thought
of as utilizing this knowledge In further separating the outputs. Multi-layer
networks with more layers of hidden units are able to leam higher order
predicates . NETtalk experiment showed that with zero hidden units the
performance was poorest as it corresponded to leaming from first order
statistics. SDM is a special case of multi-layer feed-forward networks (see
Appendix A). With stacking of SDM stages this becomes a network with two
layers of hidden units. It must, however, be pointed out that the training in two
stages does not proceed simultaneously. The first stage has been trained
completely before the creation of the second stage.

ina senie,”fher se'cbﬁ"arﬁdge can bre:fh'ou‘grhfr of as an interprefer of what
the first stage has found. However, it is not limited to being an interpreter

otherwise a simple table lookup would suffice as an interpreter. It is an adaptive
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interpreter where the learning is stored in a distributed fashion. Consequently, it

shows the robustness of a distributed representation .
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my cousins_I_get_to_play soft_ball
mA-k*-zInz-A-gE--t*-ple--scf--bc--

have_to_wake_up_put_him_back_in_my
h@f--t*-wek--*p-p*-—---M-b@k--Im-mA

Two segments from the training set.

lived_where_I used_to_live_I_had t
1*v-d-w-Er--A-¥s---t*-1Iv--A-h@d-d

you_go_swimming_there_and_everythi
y*--go-swim-In--D-Er---Nn-Ev-rIT-I

Two segments from the test set.

Figure 5 - Aligned Orthographic and Phonemic Streams.
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Figure 6 - Coding Orthographic Stream . Central character in the window

Is the character being mapped in the context of other six characters. It is given

the highest weight with the weights reducing as you go away from the center.

Each character is then coded using a five-bit code.



el -| -lsteclf]-| -§{b|l ¢ -

honemic stream

ay_sé{f _ball

Orthographic stream

—
—1

Figure 7 - A Snapshot of Training. Phoneme /c/ is the Tcrgetrphoneme for
the character window: ‘y_soft_". Character 0" in the context of "y_s” and

" ft_"is mapped to target phoneme /c/.



Display 4 - Computation of Thresholds .
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Let,
m = The number of locations in the memory.

Ny = The number of bits in the address.

Nq = The number of bits in the data.

@; = Bias for computing i" bit of activation.

i=1,.., N4

Counter;;
o: 2 ounter;
' m
j=1




Display 5 - Computation of Activation.
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Let,
T be the reference address, .
S(T), be the set of selected locations,
N(T), be the number of locations selected,

Ci , be the mean counter value,

over the selected locations.

Then the it" component of the activation vector, a.,

is given by

1+ e-(C]—ei)




Display 6 - Computation of Output.
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Let

aj = jth component of the activation vector.

Then

0utputj = 1if aj > 0.5, 0 otherwise.
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Display 7 - Leaming Rule. The leaming rule is same as the generalized
defta rule for the output units. As the output of the selected locations is 1, it is not
shown explicitly. Output of units not selected is zero so they do not take part in

learning. Thus, only the counters of selected units are adaptively changed.

Let
t be the target vector,
a be the activation vector,
e be the error in the output
Then the componentwise error in the activation vector
is given by

e =t -a,
J J J

The learning rule reduces this error by feeding back
a small fraction of this error to the counters that

contribute to producing this error.

Let A be the cosfficient of learning (0 <A < 1)
Then the error reducing signal for the j"‘ bit, bj'

is given by

b=-ra(1-a)e.
J J J i
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Performance as a function of training

when the hard addresses are chosen randomly.
80
707 training set

o s test set

g

E

[+ V]

e

e 50
407
3% 20 40 60 80

Number of training cycles
Figure 8 - Network Performance With Randomly Chosen

Addresses. The memory contained 800 hard locations. Addresses of these

hard locations were chosen randomly.



Performance as a function of training
when the hard addresses are from the distribution
of the training set.
90
801
training set
= 707
8
8
(]
g 60 test set
a
50"
407
30 — T T T
0 100 200 300 400
number of training cycles

Figure 9 - Network Performance When Addresses Are Chosen
From the Training Set. In these simulations the addresses of hard locations
were chosen from the training set without repetition. The memory contained 800

hard locations.
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Performance as a function of training

when the hard addresses correspond to the training set.

training set

80 1

8 707 T
- test set
(]
€
S ]
5 60
%

50 1

40 -

o] 100 200

number of training cycles

Figure 10 - Network Performance When Addresses Correspond to
the Training Set. in these simulations the memory contained a hard location
corresponding to each unique vector in the training set. These were further
augmented with randomly generated character windows as expiained in the

text.
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Two-stage Tralning for Performance Enhancement.

Performance as a function of training (second stage)
when first stage hard locations are drawn from
the training set.

90

training set

z 801
2
s
(4]
-~ p
c
@
e
[+ 3
a
70 -
test set
60 | L) ¥ Ll L] : 1]
0 100 200 300 400 500 600

number of cycles

Figure 11 - Two- stage Training. Figure shows the performance of the
second stage as a function of training. Peak output of the network (shown in

figure 9) was used to form a new training set as explained in section 4.5.3.



47

Performance as a function of training (second stage).

100

807 training set

801

parcent correct

v -

/e —
test set

600 50 100 150

number of training cycles

Figure 12 - Two-stage Training With Full Training Set. Figure shows the
second-stage performance of the network. In these simuiations. the training set

was formed by taking the peak output of the network from figure 10.
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FIVE

Design Decisions

5.1 Introduction

In this section we describe various design decisions and contrast these

with the ones made In NETtalk in particular and some other systems in general.

Ditferences in NETtalk and the simulations performed using SDM  include:

1.

2
3
4
5

Network architecture.

Learning mechanism,

Coding.

Preprocessing and post processing.

Measuring the performance

5.1.1 Nreiwork Architecture

The architecture of SDM is iIn many respects different from the multi-layer

network used in the NETtalk study. (For @ complete mapping from SDM to the the

network used in NETtalk study see Appendix A). Mgjor differences include:

1.

In SDM connections between the first and the second layer are
fixed but are modifiable between the second and the third layer.
NETtalk used a network where all the connections between the

units were modifiable.



2.

In the modified SDM used in the present study only the output units
have real valued activations. All the computing units in NETtalk

had reqal volued activation.

5.1. 2 Learning Mechanism

The leaming mechanism that was used in the present study differs from

the one used in NETtalk in many respects.

1.

In the present study, the leaming takes place only between the
second and the third layer, while in NETtalk oll the connections are
plastic. There are some other studies (see for example, Huang
and Lippmann, 1987) which report experiments in multi-layer
networks with a few fixed sets of connections and remaining
modifiable connections.

An a-priori cholce Is made in choosing the connections in the first
layer. When these correspond to the distribution of the training set
the performance of the network improves. When these
comrrespond to the examples In the training set the performance
improves further. it can then, qlso provide a distributed
representation of mapping rules. NETtalk has no mechanism to
arbitrarily fix some connections. In NETtalk the network learns
these connections over many training cycles.

NETtalk was restricted to using extremely small learning rates and
using momentum terms in the learning rule in order to have a

stable leaming curve. It follows from the scheme of exposing
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one pattem at a time and then making a change in the strengths
of the connections. The present study does this training in parallel.
(l.e.. changes in the connection strengths are made only after
complete pass through the training set). Hinton calls this ‘batch’
mode of training. This requires a global memory to store the
changes required until a pass is completed through the training
set. Thus, this fails as a neural model of leaming.

4, In the present study, a two-stage model is shown to improve the
performance of the network. NETtalk scheme did not have a

similar setup.

5.1.3 Coding

in the present study, In coding the input a weighted input scheme was
chosen (see Figure 6). The weights were arbitrarily chosen. They were meant to
reflect the fact that the importance of each character in conveying the
information required, for finding the correct mapping. decreases as the distance
of the character increases, from the center of the window of characters. This is
reflected in the work of Lucassen and Mercer (1984). NETtalk did not use such @
weighted input scheme. All positions In the input stream were considered to
have the same influence in determining the output.

In the present study, the characters were first coded with a compact
binary code using 5-bits to code each symbol in the orthographic stream.

Similarly, in coding the output, @ compact binary code was used. Each symbol
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in the phonemic stream was initially coded with a 6-bit code. These were later
processed through an error-correcting scheme.

On the other hand, NETtalk used articulatory features to code the output
units. In this scheme. units are elther on or off, indicating presence or absence of
a particular feature, One unit s used for compiete information about a
particular feature. For coding the input NETtalk used local representation. In this
scheme one out of 29 units (26 letters and 3 punctuation marks) is switched on to
indicate the particular input character. In the distributed representation the
information Is coded using many units. If each unit participates in the
representation of many entities, It is sald to be coarsely tuned (Rosenfeld and
Touretzky, 1987) and the pattem Is called coarse-coded pattern. Thus, any
particular unit cannot give complete information about the presence or
absence of any feature.

In the particular scheme that has been adopted in the present work (viz..
using a compact binary representation). units that may be on do not bear any
particular resemblance to the meaning of the pattems they encode. Thus, they
are pattems for the symbols they encode and the scheme is similar to what
Rosenfeld and Touretzky refer to Qs cooarse-coded symbol memories. For a
study of the coarse-coded symbol memories, their strengths and weaknesses.
see Rosenfeld and Touretzky (1987).

The coding method employed makes the coding more general and
hence brings it closer to a stuation in which an expertise In the domain is not
necessary. This is not to say that there is no role for the expert. The role of the

expert is limited to making sure that the set of examples is internally consistent



and that the errors in the examples are minimized. By trying to reduce the role of
expert as much gs possible, the system has been taken more and more in the
general direction such that it should be possible to transfer the whole learning
apparatus 1o a problem In a different domain with little, if any, change. For an
exampie of compietely random coding , where randomly chosen vectors acts
os symbols for the entities they encode, see Eiman (1988). In the present study,
the coding Is as good as random with the size determined by the number of

symboils in the phonemic language.

5.1.4 Preprocessing and Postprocessing

In the present study the output was preprocessed and postprocessed
using Hamming emror-correction coding - NETtalk did not use any such scheme.
The phonemes were initially coded using six-bit code. These were further
recoded to ten-bit Hamming representation of these six-bit codes. Hamming
codes are one of many different codes that have evolved out of a need for
reliable information transmission. Different coding techniques use built-in
redundancies 1o detect and in some cases, as in the present case,
deterministically correct an allowable error In tfransmission. Redundancies in the
code-words have been used extensively in distributed representations,
however, coding theory uses redundancles in a systematic way.

With a compact six bit code it is impossible to detect (et glone correct)
an error in the output as the legal code-words are separated by a Hamming
distance of 1. If the code-words are n-bit long, Hamming transformation

separates the code-words by adding k "parity” bits such that the code-words
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are separated by o Hamming distance of 3. This allows for the detection and
correction of any one-bit error in retrieval. For an excellent introduction to ideas
behind error-correcting codes, Information theory and cybemetics. see  Jagjit
'Singh (1966).

At lower stages of vield, separating the legal code-words as described
above, improves the performance. The gain drops as training reduces error in
retrieval. Even at the peak retrieval this scheme improves the retrieval. '

This result is really not surprising os separating the code-words will always

result In a higher yleld.

5.1.5 Measuring the Performance

in the present study the performance was measured in the following way.
if the output of at least nine bits matched the desired output then the vector was
scored as having been correctly retrieved. For any particular bit the output was
considered to be 1 If it was greater than 0.5 and 0 if leas than 0.5 as shown In the
output rule. A stricter criterion would be to consider output as 1 if it was greater
than 0.9 as done In the NETtalk study and O if less than 0.1. This stricter criterion
was used in some experiments and the results followed those with the not so
strict criterion but required many more training cycles.

NETtalk scheme judged performance according to a perfect-match
and a best-guess criterion. The output is 1 if the activation value is greater than
orequal to 0.9 and O if it is less than or equal to 0.1. If the activation value was
between 0.1 and 0.9 then for the purpose of finding perfect match the output was

considered to be undefined (i.e., it required further training to find if it would
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stabilize to the proper extreme vaiues). If all the bits of an output vector
matched the desired output, it was scored as a perfect match. Best-guess
criterion classified the output vector by mapping it to the nearest legal code
making the smallest angle with the output vector.

This procedure is somewhat similar to the idea of error-correcting codes.
However, it can give misleading results. (Hamming error correction scheme
separates the legal code so that any one-bit error can be deterministically
detected and comected by pushing the output vector to the nearest correct
legal code). Dahl (1987) shows that the idea of using the nearest-match criterion
In measuring the networks performance can give misleading results. While the
approach may intultively appear to be similar to minimal error, @ class of
examples has been found for which It is not the case. In particular, the nearest-

match criterion Is satisfied but the error is not minimized.
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SIX

Discussion

6.1 Introduction
In this section we discuss the simulations performed with SDM as the
network model and in the later part we discuss some issues which are common

to different connectionist models.

6.2 General Discussion

What follows is a general discussion of the simulations performed. This
discussion Is limited to the present study without @ particular reference to NETtalk
in every instance, since in many cases the discussion is not applicable to
NETtalk and in other cases there is no Information avallable regarding some of

these points from NETtalk study.

6.2.1 Some Comments About the Learming Mechanism

The following points need to be noted about the leaming mechanism.

1. The input and output vectors are in a discrete space.
2. The leaming error comrection scheme is In @ continuous space.
3. The output plots show number of vectors correctly (with error

correcting codes) retrieved.



4, The criterion could have been number of bits correctly retrieved
but the error-correcting code corrects errors in vectors whereas

the leamning error correction scheme cormects errors in bits.

6.2.2 Character-Window Sizes

From the studies performed by Lucassen and Mercer (1984) it appears
that a seven-character window may be appropriate though a smaller five-
character window may be @ good approximation. An et al. (1988) take a
different approach and experment with windows of different sizes to arrive at the

proper text-to-phoneme mapping.

6.2.3 Damage to Counters and Its Effect on Retrieval

Distributed representations manifest a remarkable tolerance to failure of
individual elements. Performance is not affected to the same degree as the
damage if the damage is not extensive. To test this, some damage to the
counters was introduced artificially. A certqin percentage of counters were
randomly chosen and set to zero. Figure 13 shows the performance of memory
as a function of the percentage of damage. Figure 14 shows behavior of
second stage in the presence of damage to the counters. In these simulations

the peak trained setups were taken from figures 8 and 10 respectively.

6.2.4 Relearning After Damage to Counters
A network was taught using the learning scheme discussed earlier. t was

exposed to some damage and again trained. This was expected to show
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performance similar to simulated annealing (Kirkpatrick et al., 1983). The network
regained fts peak performance after training. NETtalk study reported a similor

finding.

6.2.5 Inconsistencies in the data sefs

The data used in the present study contained a few Inconsistencies. This
affected the peak performance and the number of training cycles required to
attain the peak performance. Details of inconsistencies in the data in the case

of NETtalk study were unavailable.

6.3 Limitations of the present study

The present study is limited by many of the assumptions and
simplifications. t is an oversimplification to assume that a given size of window
of the orthographic stream has enough information to find the appropriate
phonemic output. The present study also Ignores the effect of co-articulation.
No attempt has been made to account for syntax or semantics. For this

problem, Hamming distance may be an incppropricte metric of similarity.

6.4 Related Issues
In what follows, we extend the discussion of issues that are common to
different connectionist models. These include:
1 Scaling of the learning algorithms with respect to different
parameters.

2 Generglization.
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3 Behavioral and neural plausibility.

6.4.1 Scaling

Most of the present day leaming algorithms used in the connectionist
models do not scale well with size of the problem. Thus, while they may show
some dramatic results on toy problems, they are far from a stage when they can
be used in useful practical applications.

Fogelman et al. (1987) investigate the back-propagation aigorithm to
study memorization and generglization on two tasks to study the scaling
behavior of the network with the ratio of training-set size to the total set size.

Tesauro (1987) describes the scaling behavior of a back-propagation
scheme In g three layer network, He investigates scaling behavior with respect
to the size of the training set, In the context of learning the "parity problem * with
32-bit vectors. In considering problems where generalization is possible, the
required number of presentations of each example should decrease as the size
of the training set increases. Thus, the total training time required should increase
at a less than linear rate. Sejnowski and Rosenberg (1987) showed that NETtalk
fearning scheme followed a power law and observed such sublinear scaling. In
the present study, the scaling behavior has not been tested yet.

If the task Is leamable, the leaming time would remain constant after a
given size of representative training set. For a learnable task, a way to reduce
the required training time, in terms of number of cycles of training, is to use higher

order cormrelations (Psaltis et al., 1988).
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Tesauro, and Janssens (1988a) describe the scaling relationship with

predicate order @s the criterion.

6.4.2 Generalization

In a task of learning from examples. generalization may be loosely
defined as the ability to respond to a novel stimulus with a correct response., with
the help of the knowledge gained from a set of examples. This is inductive
leaming. Clearly, from a given set of exampies, it may not be possible to give a
unique correct response to a particular stimulus. Thus, it may be necessary to
specify some additional criterion of correctness. Pavel et al (1988) view this
additional criterion as posing some additional constraints. These constraints
may be by way of restricting the connectivity of the network, by a choice of
coding of inputs and outputs, or by constraining the leaming algorithm in some
way.

Let us consider some of the ways in which generalzation can be aided.
Consider the ‘clumps problem®. Given a binary string the problem is to
detemine the number of clumps of *1° s that exist in the string. Fully connected
neural networks are not suited to solving this problem without a change in the
architecture. How does one, then, teach a network to solve this problem? A
possible solution involves interconnections limited to adjacent units (to reflect
the geometry of the problem).

Due to the particular connectivity pattern, each one of the units in the
second layer can detect if its two inputs are the same or different, which is

essentially the solution to detecting the clumps of "1"s.
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Another approach would be to represent it properly. Many studies of
expertise In psychological literature show that experts perceive their domain
differently. They develop better representation of particular environments
(Smolensky, 1986). Thus, a clearer understanding of the domain can be reflected
in the proper coding of inputs and outputs to solve this problem.

Another way of course is to have @ learning/storage calgorithm that
cccoun:ts for higher order comelations. For schemes that incorporate higher
order correlations see Smolensky (1986), Baldi and Venkatesh (1987), and Psaitis
et al. (1988). it must however be pointed out here that leaming from higher order

comelations quickly runs into a problem of combinatorial explosion.

6.4.3 Biological and Behavioral Plausibility

If the parallel distributed processing models qre to serve as
computational models of neural systems they have to take into account
observed biological and behavioral phenomenon.

The Rterative leaming scheme involving gradient descent in error space
does not have any known blological counterpart. A major weakness of this
work, however, Is the fact that it involves a supervised leaming scheme (in so far
as it concerms tterative error-correction leaming). Living organisms do not have
a “teacher’ In every walk of life, teaching every single association, by providing
an error vector after retrieval of every association.

A step closer to reality wouid be to provide a scalar measure o; the error
as a feaching signal. A better way wouid be to have a leaming scheme that is

behaviorally more justified by leaming through the success or failure of a learned
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association. This would be like the reinforcement leaming scheme of Williams
(1986) or the ARP (Associative Reward Penalty ) leaming scheme of Barto and
Jordan (1987).

However giving a scalar error signal increases the search space and thus
increases the search time. For some simulation results describing these

problems associated with @ scalar measure of error see Alspector et al. (1987).

6.5 Future directions

if connectionist models are to serve as cognitive models they have to
step out of simplistic worlds of toy problems. This is one of the problems the field
of Artificial Intelligence has faced for a long time.

One of the highly unreallstic simplification which Is often made In
connectionist models Is assuming that real world inputs are quantized. This Is
manifested in the use of fixed width vectors as inputs and outputs. Real word is
not so nicely quantized. Inputs in real world vary both in time and space.

Another problem is that many of these models do not account for time
dependent phenomenon. Some new schemes solve this problem through the
use of innovative architectures (see Jordan, _1986) For some interesting studies

using Jordan's model of network, see (Eiman, 1988), (AllenR .B., 1988).
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Performance as a function of damage to counters
(First stage)
o0
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B
o
S
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&
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50 v T T
0 10 20
percent damage

Figure 13 - Damage Resistance (First Stage). Performance as o
function of damage in the first stage. The network that was trained as shown in
figure 8. was used as a starting network. 5%, 10%, and 15% counters were

randomly erased for these simulations.
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Performance as a function of damage to counters
(second stage)
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Figure 14 - Damage Resistance (Second Stage). Performance as @
function of damage in the second stage. The network that was trained as shown
in figure 10, was used as a starting network. Random damage was introduced in
stages of §% increment. The number of locations in the second stoge were a
significant fraction of the total address space. This may partly explain the better
damage resistance in the second stage. In the first stage the number of

locations were an extremely small fraction of the total address space.
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APPENDIX A

SDM as a three-layer feed-forward network

SDM can be viewed as a three-layer feed-forward network., First we
describe a three-layer feed-forward network. Figure 15 shows a three-layer feed-

forward network, similar to the one used in the NETtalk study.

input

direction
of flow of
information.

output

Figure 15 - A three-layer feed-forward network.
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There are three layers of computing units. Units in the first layer take one
input and compute the identity function. Units in the second and third layer take
input from all the units of the previous layer. They all have real valued outputs.
Also the welghts on the connections between the units are real valued. These

weights are all modifiable.

Fixed weights direction
of flow of

OHONGO romten

Modifiable weights.

v Yy

output

Figure 16 - SDM as a three-layer network .

Figure 16 shows SDM as a 3-layer feed-forward network. In many

respects it is different from the network illustrated in figure 15. A major difference
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is that the connections between the first and the second layer are fixed and the
connections between the second and the third layer are modifiable.

Consider the connections from the first to the second layer. Figure 17
shows these connections in greater detail. L1 is the first layer or the input layer.
There are n unifs in this layer which take input from outside plus one dummy unit
which does not take any input. Units in this layer have a fan-in of 1 input. If X is the
input and Y is the output of these unitsthen ¥ =+1if X =Tand Y=-1if X =0.The

dummy unit represents a unit which takes no input and clways produces an

output = 1,

dummy unit
(threshold)

L1

L2

Figure 17 - Fixed weights from the first fo the second layer.



The dummy unit and the units in L1 are connected to all the units In L2, i.e.,
the second layer. There are m units in the second layer. The connections from
L1 to L2 are binary, either +1 or -1. These connections are randomly chosen.
These correspond to the addresses of the hard locations in figure 1. The
connection from the dummy untit is an integer which represents the threshold. By
keeping this value fixed outputs of different units in L2 can be set to 1, in response
to different inputs to layer 1. This will occur if the connections to a unit in L2, from
all the units in L1, are sufficiently similar to the inputs to units in L1. By choosing the
strength of the connection from the dummy unit to be n-2r, we can select any
unit inl2 (l.e., force its output to be 1) if the weights on its connections to the units

in L1, do not differ in more than *r " piaces from the output of units in the first layer.
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Figure 18 - Modifiable weights.



Units in the second layer are threshold logic units. Their output is *1* if the
connections are sufficiently similar to output of the first layer, otherwise the
output is 0.

Units in the second layer send their output to all the units in the third layer.
The third layer units are also threshold logic units. The connections from the units
in the second layer to those in the third layer are integers.

Figure 18 shows the modifiable connections between the second and the
third layer. These correspond to the contents of the hard locations in figure 1.
Connections ¢lj, ¢2]. .., cmj represent the j"m position of each of the counters.
Assume that there are n unlts in the third layer. I the k ' hard location G.e.. the k 11
unit in the second layer) is selected then all the connections from it viz. ck1, ck2.
... ckn will take part in producing the outputs o1, 02, .., on respectively. On the
other hand if the k™ hard location is not selected then the output of the kN unit in
the second layer will be zero. hence the connections cki, ck2, .., ckn will not take
part in producing the outputs 01, 02, .., on respectively.

In the simuiations reported, ¢ few changes to fhe above architecture
have been proposed to focllitate an iterative supervised learning scheme.
These include:

1. making the transfer function of the third layer units , a sigmoid.

2. making the connections from the second to third layer real

‘valued. This allows smail changes Iin the vaiues of connections so

" that the network con be iteratively trained.
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Modifying the generalized delta rule for the SDM case, error is
propagated back from the third layer to the second layer only. (In the case of
NETtalk emor is back-propagated all the way to the first layer). The learning rule
covers only the selected locations as only they have a nonzero output. Since
the output of the selected units Is *1%, it is not explicitly shown as a multiplicand in
the leaming rule. bj. the amount to be fed back is thus the same as the § inthe
generalized delta rule multiplied by the coefficient of leamning A.

The computation of thresholds can again be explained as a dummy unit
in the second layer which is always selected and thus pardicipates in producing
the outputs o1, .., on.

In addition to showing this similarity between SDM and three-layer feed-
forward networks, and thus proposing a leaming mechanism for SDM, the
present study shows that further improvement in the performance is possible by
at least two mechanisms:

1. Choosing connections from the first to the second layers from the
training set (l.e. from the set of examples). If they correspond to
the examples then they can provide disfribu’fed mapping rules.

2 Another improvement suggested is to stack up two stages of SDM

by first fixing connections through training In the first stage and

then training the second stage.
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APPENDIX B

List of symbols used in the phonemic stream.

Following table describes the transcription symbols used in the phonemic
stream. First column lists the symbol, second column shows the symbol as it
appears In a word in the phonemic stream and the third column contains the

same word as it appears in the orthographic stream.

Consonants

pu-i pool
b blu- blue
f fu-d food
v vEr very
m mi-n mean
w wi we
T T-IGk think
D D-En then
t tu- two
d de- day
s sIK sick
z nO-z- noise
n nA--t night

I IAk- like



x <

~ @ «Q

o 5

Vowels

> ® M o

>

rAn
mAC-
JAst

S-i
da-Zint

run
much
Just
she

doesnt

(As In rouge and belge)

yEt
kold
QEts
T-1G-
M

hom-

S-i
wiT
ple-
went
D-@t

mA

nat
tu-

ful-

yet
colid
gets
thing
um

home

she .

play
went
that
my
uh

not

full
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3

D-o---
bO-
wc-K

hw-

Combinations

z

xX <<

iv-N

lig-L-

sIX

In_

though
boy
walk

how

um
even
little
you
six

ohe
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SDM's performance on parity problem.

Parity Problem

This is the generalized XOR problem. The problem is to determine the
parity of the input vectors. The training set contained randomly drawn 16-bit
vectors as input and their correct parity as the output. Simulations were
conducted with different sizes of memory, different leaming rates and different
training sets. This is a problem that cannot be leamed from examples. The
performance was, however, unexpectedly very high. With little or no training.
the performance on both the training set and the test set was very high. This can
be explained by the select mechanism.

As explained earlier, SDM Is based on a similarity bosgd storage and
retrieval scheme. The locations are selected according to their similarity (or
rather, maximum dissimilarity) from a target address. Consider the total address
space of n bit vectors. This is given by 2". Let, N (r) be the number of

locations selected with select radius .

fr

nl
N =2 rs

i=0

Thus, it is clearthatfor 0< r < n/2, amajorty of locations selected are
exactly at a distance r from the target address. These locations are

responsible for influencing the output. Dr. Louls Jaeckel pointed out that @



majority of the selected locations are exactly at a distance of select radius from
the torget address.

Expanding on Dr. Jaeckel's explanation, we give additional arguments
in support of his reasoning.

Two vectors which are separated by a Hamming distance of 1" will have
opposite parity. Those separated by a Hamming distance of 2" units will have
the same parity. In general two vectors separated by a hamming distance of
odd units will have opposite parity and those separated by a Hamming distance
of even number of units will have the same parity. Assume that the select radius
is even. As pointed out by Dr. Jaeckel, a mgjority of the selected addresses will
be exactly at a distance of ‘" from the target address. They will all have the
same party as the target address. In addition, there will be addresses at @
distance of exactly *r-2" units, "r-4" units, *r-6" units, ...... , down to 0" distance if r
is even. Thus. an overwhelming majority of addresses will have the corect parity
stored In their data counters. The memory will organize itself with a mgjority of
locations containing cormect signal for each new vector that is stored. Similar
argument can be given for the case, when the radius of $elecf is odd. Thus, as
long as the radius of select is fixed (l.e. write and read operations are performed
with the same radius), the memory will always compute correct parity of the
target address. In the actualization of the memory, a random sample of the
address space is taken to serve as actual addresses. For small values of n and r
it may be possible to get @ wrong output for a very small number of vectors. But

the training procedure quickly eliminates even this error. As the value of nand r

74



75

increases the memory starts giving correct output even without training in almost

all cases.

Thus, it Is clear that the selection mechanism of SDM makes it behave

os if it is hard-wired to solve the parity problem.
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