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Abstract

A new method for solving Maxwelrs equations in the time domain for arbitrary values of

permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a

Fourier transform method and time integration is performed using a second-order, semi-

implicit procedure. Electric and magnetic fields are collocated on the same grid points,

rather than on interleaved points, as in the finite difference time domain (FDTD) method.

Numerical results for the propagation of a 2-D TEM mode out of a parallel plate wave guide

and into a dielectric and conducting medium is presented.
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Introduction

Solving Maxwell's equations by finite difference procedures in the time domain has been

steadily gaining popularity since the pioneering work of Yee [1] and Taflove [2]; a good

example (with more references) of this f'mite difference time domain (FDTD) method is

given in the recent work of Britt [3]. Here, we present the beginnings of a new method, a

Fourier collocation time domain (FCTD) approach. We will concentrate here on two-

dimensional (2-D) simulations, as these provide a good compomise between reality and

resolution; 1-D and 3-D simulations are straightforward extensions of the results presented

here.

First, we will define our coordinate system and model problem, and second, set up the 2-D

system of Maxwelrs equations which we wish to solve. Third, we will explicitly discuss

the FCTD method of solution. Fourth, we will present numerical results, and lastly, give a

summary and conclusion.
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Problem Definition

The physical problem we are attempting to solve by numerical simulation consists of a

macrowave horn emitting a single frequency, continuous wave signal through a dielectric

slab and into a plasma. The motivation for this problem is the planned use of a microwave

reflectometer to determine critical electron number densities in the stagnation region of

hypersonic reentry vehicle.

The 2-D model problem space is shown in Figure 1; the horizontal coordinate is z, the

vertical coordinate is x, and the (third dimensional) y axis is perpendicular (and outward) to

the plane of the figure. The initial conditions will consist of a sinusoidal TEM mode

(truncated to one wavelength) in the parallel plate part of the horn. The plasma to the right

of the dielectric slab has a gaussian profile in both the z and x directions. The physical
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dimensions of the (square) 2-D space are 10 cm on a side and the TEM mode has a

wavelength of 2.5 cm.

,w t

2-D Maxwell's Equations

For now, the magnetic permeability will be assumed to have only its free space value;

this case, the 2-D Maxwelrs equations are (SI format):

in

TM eqs.:

E _tEx = - _ _zBy - jx

3tBy = 3xEz- 0zEx

8 DtEz = g_ 0x By- jz

TE eqs.:

0tBx = 0zEy

 0tF_,= l(0zBx- xBz)-jy
_tBz = -_xEy (1)

where the current j (and conductivity o) are:

j (t) = f',. o (t-x) E ('0 dx ; M

O(t) = _ _(_) e-i_t do3

(2)

Some initial conditions which can be used for the parallel plate wave guide of Figure 1 are:

TM modes: TE modes:

TEM: Ex = By, Ez = 0

TMI: k_='/gk, k= m
2 C

Ex = COs(kl z) cos(_ x)

By= Ex
_c

Ez = _3 sin(k, z) sin(_ x)

TE_: k_=_-k, k=m
2 C

Bx = _ sin(k1 z) sin(_k x)

_2_.¢.
F-,y= /g. Bx

Bz = _ cos(k,z)cos(_kx)

(3)



In the frequency domain, the complex 'permittivity' is defined in terms of the dielectric

permittivity ¢ and conductivity o as:

i o(c0)

(4)

4

where ofco) is the Fourier transform of o(t) (and vice versa):
t

_ (t) = 2-_nI_ _ (co) eic° t dco

(5)

but e _ the Fourier transform ofe(co) (i.e., e is always positive while Re(efco_) need

not be). For a plane wave of angular frequency co propagating in a plasma, a useful

expression for o(c0) is [4]:

_(o_) = i
co (6)

In the time domain, assuming a single frequency, we use for e whatever the coresponding

value is for that frequency; for o(t) in (2), we will use a constant value equal to I ¢c0)lat

the frequency of interest, co = me:

o(t) = Oo (t), Go="-v
020 (7)

Thus, in (1), j= ooE. In our numerical example, we will choose

COp= 2n x 25 GHz (maximum) coo = 2n x 12 GHz

so that at maximum electron density, Cro= 3 mho/m.



The FCTD Method

The FCTD Method consists of a semi-implicit time integration scheme and a Fourier

transform technique ("spectral method") for determining spatial derivatives. Here, spatial

grids are NxN, where N is a power of 2; in the numerical example we will use N=128.

Since j= (_oE, the first TM equation in (1) can be written as, for example:
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e 0rEx = - _ 0zBy - ffoEx (8)

When numerically integrating this, we can treat the last term on the right-hand-side

implicitly, i.e.,

8E_x l:EE_x_At[l.tj(OzB_)+t_oE_x q _ E_x l=E_x-At _J(_zB_)

e+At _o (9)

This first-order time integration is absolutely stable with respect to the conductivity; in fact,

any non-negative value of _ is allowed on the model grid.

Following this example, a second-order time integration mehtod for the TM equations in

(1) is:

Predictor

8_+ Atao
2 e°

2 l_o

Corrector

e_x- At c2(0zB_ -la)
1-

8_+ At °°
Eo

B_ 1 = B_ + At (_)xEz_+la- _)zE_xm)

+Atc:(OxBWWI=
Er + At_

(10)



The 1/2timestepvaluesof thefieldsareonly usedasintermediatevaluesandarenotsaved

from onetime stepto thenext.
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The spatial derivatives in (10) are evaluated by a Fourier transform method; first, we

transform to k-space, f'md the Fourier coefficients of the derivatives of the fields, and then

transform back to x-space:

E(k) = !r_ E(x)e -ik'x ==¢, VE(x) =lN_ ikE(k)e ik'x
x k (11)

In (11) (and (12) below) we form a dyadic which can be specialized to a dot or cross

product; also, x=2rt(j,k)/N (O<j,k <N-I), and k=(m,n), (N/2- l<m,n<N/2); j, k, m,

and n are integers.

The Fourier transform method is equivalent to an N th order f'mite difference method, if we

view a generalized difference method as a convolution:

VE(x) = _ D(x-x') E(x') D(x-x') -- _ -k sin [k-(x-x')]
x' N k (12)

However, instead of taking O(N 2) operations for x-derivatives per point on an NxN grid,

as the corresponding (N th order) f'mite difference operation would, the number of

operations (per point) is proportional to NlogN. The ratio of accuarcy to time spent

differentiating is thus much higher than the corresponding f'mite difference method. (The

generic accuracy of spectral methods is well known [5], and will not be explicitly

considered here.)

An FDTD method [1,2,3], has only second order spatial differencing, which makes it

faster, but less accurate than the FCTD method described here. Another difference is that



in theFCTD method,bothE andB aredefinedatthesamephysicalgrid point,while in the

FDTD method,E andB arenotdef'medatthesamephysicalgrid point,but rather

'leapfrog'overoneanotherandlie on interleavedgrid points.
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Thus,in theFCTD method,E andB arecollocated at all grid points. Collocation,

however, also has another meaning in FCTD. In numerical analysis, a collocation method

is a member of the methods of weighted residuals, and is also referred to as a

pseudospectraI method [6]. A collocation method assumes a solution in terms of known

expansion functions and requires that the solution be exact (with respect to the function

expansion) at the grid points; here, this means that we determine our spatial derivatives

exactly (in terms of trigonometric functions). Since we are solving time-dependent

equations, we have a Fourier-collocation time-domain, or FCTD, method. (If the

equations were linear, which they are not because of the spatial variation of the material

constants c, It , and _, we would have a Fourier-Galerkin time-domain method [6].)

There are two kinds of boundaries in the model space. First, there are interior boundaries,

i.e., boundaries between various media within the model space. Second, there is the

exterior boundary of the model space itself. In the numerical example to be presented here,

the interior boundaries are linear, and at either O, 45, or 90 degrees to the horizontal axis.

Material properties (such as _) are allowed to change discontinuously across the interior 0

or 90 degree boundaries, while on the 45 degree boundaries, material properties are set to

a value halfway between those on either side of the interface (although this is not an

essential part of the method). The exterior boundary, because of the use of a Fourier

transform in evaluating derivatives, is periodic; this poses few problems, however, as long

as the bulk of the model electromagnetic energy is contained naturally within the exterior

boundary (as occurs in the numerical example to be presented). A problem with an open

exterior boundary will require an algorithm for absorbing energy, or expansion functions

other than trigonometric (or both), and is not addressed here.



Numerical Results

As a preliminary test case, the 2-D geometry shown in Figure 1 was set up. There are three

essentially separate regions: a parallel plate microwave "horn" on the left of the figure, a

dielectric slab of a relative permittivity of four in the middle of the figure, and a "plasma" to

the fight of the dielectric slab. The size of the numerical grid corresponding to Figure 1 is

128x128; the physical size of the grid is 10 cm on a side. The dielectric slab begins on

horizontal grid point 52 and and ends on grid point 84; this corresponds to about 2-1/2 cm.

The lower comers of the horn are at (32,48) and (48,32), while the upper corners are at

(32,80) and (48,96). The material of the horn is assumed to be solid and have a

conductivity of 10,000 mhos/m at the transmission frequency of 12 GHz (although any

value can be chosen). The plasma has a conductivity of

[ 2 2o(z,x) = o o exp -(Z-Zo) ¢2Sz- (X-Xo)Z/2s

-1

Oo=3 (_m) , Zo=8.44 cm, Xo=5.0Ocm, Sz=7.81 cm, Sx = 1.56 cm(13)
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and is conf'med to the fight-hand-side of the dielectric slab.

The results are shown in Figures 2 through 7. The simulation time step size was At - 10 14

sec, the total number of time steps was 48,000, and the cpu time/time step was 0.164

seconds/At (on a Cray-2). The total energy at the beginning of the simulation has a relative

value of unity, and decreases as time wears on. The electromagnetic energy density, which

is displayed in the Figures, is defined as

TZ-M = 2(eE2 + I.tH 2) (14)

TE-Mcan also be integrated over a selected region in physical space. This is done for the

three disjoint regions of the model space: to the left of the dielectric slab, within the



dielectricslab,andto therightof thedielectricslab;

of theFigures.

thisregional energy is given on each

g

It should be noted that there is a reflected wave in Figures 3 and 4 which barely shows up

since its energy, which is small relative to the transmitted wave's energy, falls mostly

below the lowest contour value in those Figures. The various reflections show up much

better in Figures 5-7, as the primary wave has been greatly attenuated in the plasma to the

right of the dielectric slab, and the relative energy of these reflections increases.

Conclusion

The results, as shown in the Figures, appear to be an accurate representation of the

propagation of an electromagnetic wave through dielectric and conducting media (a 1-D test

case with a linear grid of 2048 points, in which a plane wave was normally incident on a

wide dielectric slab of relative permittivity 4, reproduced analytic predictions for reflection

and transmission amplitudes to one part in 104). Material constants may be arbitrarily

specified on a computational grid, so that practically any physical situation can be

simulated. The FCTD method is of intrinsically higher accuracy than the FDTD method, as

the FCTD method has (essentially) N th order spatial differencing, while the FDTD method

has only 2 nd order spatial differencing. While a 2-D example was presented here, it is a

straightforward procedure to use the FCTD method for either 1-D or 3-D problems. (We

should also note, at this point, thatfinite element techniques utilizing unstructured grids

offer an alternative which may prove to be more efficacious, in general, than either FDTD

or spectral methods.)

Although a Fourier transform method was used to evaluate derivatives, other function

expansions (which may be more suitable for modelling certain boundary conditions) can be

utilized (e.g., Chebyshev polynomials); the FCTD method is thus only one example of a

spectral method [7]. In the future, we plan to investigate the use of alternative function



expansions,aswell asto investigatetechniquesfor approximatingabsorbingboundary

conditionsandtechniquesfor modellingthepropagationof signalswith broadfrequency

content.Applicationswhichcanbeaddressedincludethesimulationof microwave

reflectometersinteractingwith theplasmageneratedin thebowshockof ahypersonic

reentryvehicle.
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o = 10 4 (f2 m) 1

X

Z

£r=4

Regional energy = 1.000 = 0.000
Total energy = 1.000 at 0.00 nsec

= 0.000

Figure 1. 2-D model space with initial energy distribution, along with pcrmittivity and conductivity.
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Regional energy = 0.696 = 0.301 0.000
Total energy = 0.997 at 0.08 nsec

Figure 2. Electromagnetic energy distribution at 0.08 nsec.
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Regional energy = 0.128 = 0.858
Total energy = 0.987 at 0.16 nsec

= 0.001

Figure 3. Eleclromagnetie energy distribution at 0.16 nsec.
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Regional energy = 0.094 = 0.785
Total energy = 0.953 at 0.24 nsec

= 0.074

Figure 4. Electromagnetic energy distribution at 0.24 nsec.
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Regional energy = 0.082 = 0.171
Total energy = 0.306 at 0.32 nsec

= 0.053

Figure 5. Elecu'omagnetic energy distribution at 0.32 nsec.
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Regional energy= 0.031 = 0.167
Total energy = 0.206 at 0.40 nsec

= 0.008

Figure 6. Electromagnetic energy distribution at 0.40 nsee.
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c::::::z::>

Regional energy = 0.086 = 0.093
Total energy = 0.183 at 0.48 nsec

- 0.004

Figure 7. Elecuomagnetic energy distribution at 0.48 nsec.
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