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presented. In conditions of near- or over- capacity, where the associative-memory behavior of

the rood- el breaks down, the processing performed by the model can be inter- preted as that of a

statistical predictor. Mathematical results are presented which serve as the framework for a new

statistical view- point of sparse distributed memory and for which the standard for- mulation of

SDM is a special case. This viewpoint suggests possi- ble enhancements to the SDM model,
including a procedure for improving the predictiveness of the system based on Holland's work

with 'Genetic Algorithms', and a method for improving the capacity of SDM even when used as
an associative memory.
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STATISTICAL PREDICTION WITH KANERVA'S

SPARSE DISTRIBUTED MEMORY

David Rogers
Research Institute for Advanced Computer Science

MS 230-5, NASA Ames Research Center
Moffett Field, CA 94035

ABSTRACT

A new viewpoint of the processing: performed by Kanerva's sparse
distributed memory (SDM) is presented. In conditions of near- or
over- capacity, where the associative-memory behavior of the mod-
el breaks down, the processing performed by the model can be inter-
preted as that of a statistical predictor. Mathematical results are
presented which serve as the framework for a new statistical view-
point of sparse distributed memory and for which the standard for-
mulation of SDM is a special case. This viewpoint suggests possi-
ble enhancements to the SDM model, including a procedure for
improving the predictiveness of the system based on Holland's
work with 'Genetic Algorithms', and a method for improving the
capacity of SDM even when used as an associative memory.

OVERVIEW

This work is the result of studies involving two seemingly separate topics that
proved to share a common framework. The first topic, statistical prediction, is the
task of associating exlremely large perceptual state vectors with future events. The
second topic, over-capacity in Kanerva's sparse distributed memory (SDM), is a
study of the computation done in an SDM when presented with many more associa-
tions than its stated capacity.

I propose that in conditions of over-capacity, where the associative-memory behav-
ior of an SDM bre_ks-dowh-,-th-e-p_r0cessihg performed by the SDM can be used for
statistical prediction. A mathematical study of the prediction problem suggests a
variant of the standard SDM architectur e. This variant not only behaves as a statisti-
cal predictor when the SDM is filled beyond capacity but is shown to double the
capacity of an SDM when used as an associative memory.

THE PREDICTION PROBLEM

The earliest living creatures had an ability, albeit limited, to perceive the world
through crude senses. This ability allowed them to react to changing conditions in



theenvironment; for example, to move towards (or away from) light sources. As
riervous systems developed, learning was possible; if food appeared simultaneously
with some other perception, perhaps some odor, a creature could learn to associate
that smell with food.

As the creatures evolved further, a more rewarding type of learning was possible.
Some perceptions, such as the perception of pain or the discovery of food, are very
important to an animal. However, by the time the perception occurs, damage may
already be done, or an opportunity for gain missed. If a creature could learn to asso-
ciate eta-rent perceptions with future ones, it would have a much better chance to
do something about it before damage occurs. This is the prediction problem.

The difficulty of the prediction problem is in the extremely large number of possi-
ble sensory inputs. For example, a simple animal might have the equivalent of 1000
bits of sensory data at a given time; in this case, the number of possible inputs is
greater than the number of atoms in the known universe! In essence, it is an enor-
mous search problem: a living creature must find the subregions of the perceptual
space which correlate with the features of interest. Most of the gigantic perceptual
space will be uncorrelated, and hence uninteresting.

THE OVERCAPACITY PROBLEM

An associative memory is a memory that can recall data when addressed 'close-to' an
address where data were prevlously stored. A number of designs for associative
memories have been proposed, such as Hopfield netwt_rks (Hopfield, 1986) or the
nearest-neighbor associative memory of Baum, Moody, and Wilczek (1987). Memo-

ry-related standards such as capacity are usually selected to judge the relative perfor-
mance of different models. Performance is severely degraded when these memories
are filled beyond capacity.

Kanerva's sparse distributed memory is an associative memory model developed from
the mathematics of high-dimensional spaces (Kanerva, 1988) and is related to the
work of David Mart (1969) and James Albus (1971) on the cerebellum of the brain.

(For a detailed comparison of SDM to random-access memory, to the cerebellum,
and to neural-networks, see (Rogers, 1988b)). Like other associative memory mod-
els, it exhibits non-memory behavior when near- or over- capacity.

Studies of capacity are often over-simplified by the common assumption of uncorre-
lated random addresses and data. The capacity of some of these memories, including
SDM, is degraded if the memory is presented with correlated addresses and data.
Such correlations are likely if the addresses and data are from a real-world source.
Thus, understanding the over-capacity behavior of an SDM may lead to better proce-
dures for storing correlated data in an associative memory.



SPARSE DISTRIBUTED MEMORY

Sparse distributed memory can be best illustrated as a variant of random-access mem-
ory (RAM). The structure of a twelve-location SDM with ten-bit addresses and
ten-bit data is shown in figure 1. (Kanerva, 1988)
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Figure 1. Structure of a Sparse Distributed Memory

A memory location is a row in this figure. The location addresses are set to random
addresses. The data counters are initialized to zero. All operations begin with

addressing the memory; this entails finding the Hamming distance between the refer-
ence address and each of the location addresses. If this distance is less than or equal

to the Hamming radius, the select-vector entry is set to 1, and that location is
termed selected. The ensemble of such selected locations is called the selected set.

Selection is noted in the figure as non-gray rows. A radius is chosen so that only a

small percentage of the memory locations are selected for a given reference address.

(Later, we will refer to the fact that a memory location defines an activation set of
addresses in the address space; the activation set corresponding to a location is the
set of reference addresses which activate that memory location. Note the reciprocity



betweentheselectedsetcorrespondingto a givenreferenceaddress,andtheactiva-
tionsetcorrespondingtoagivenlocation.)

Whenwriting to the memory, all selected counters beneath elements of the input

data equal to 1 are incremented, and all selected counters beneath elements of the
input data equal to 0 are decremented. This completes a write operation. When
reading from the memory, the selected dam counters are summed columnwise into
the register sums. If the value of a sum is greater than or equal to zero, we set the
corresponding bit in the output data to 1; otherwise, we set the bit in the output
data to 0. (When reading, the contents of the input data are ignored.)

This example makes clear that a datum is distributed over the data counters of the
selected locations when writing, and that the datum is reconstructed during reading
by averaging the sums of these counters. However, depending on what additional
data were written into some of the selected locations, and depending on how these
data correlate with the original data, the reconstruction may contain noise.

THE BEHAVIOR OF AN SDM WHEN AT OVER-CAPACITY

Consider an SDM with a 1,000-bit address and a 1-bit datum. In this memory, we

are storing associations that are samples of some binary function f on the space S of
all possible addresses. After storing only a few associations, each data counter will
have no explicit meaning, since the data values stored in the memory are distributed
over many locations. However, once a sufficiently large number of associations are
stored in the memory, the data counter gains meaning: when appropriately normal-
ized to the interval [0, 1], it contains a value which is the conditional probability
that the data bit is 1. given that its location was selected. This is shown in figure 2.

[0 or 1]

• S is the space of all possible addresses

• L is the set of addresses in S which activate

a given memory location

° f is a binary function on S that we want
to estimate using thememory

• The data counter for L contains the average value

of f over L, which equals P(f(X) = 1 [ X _ L )

Figure 2. The Normalized Content of a Data Counter is the Conditional

Probability of the Value of f Be!ng Equal to 1 Given the Reference
Addresses are Restricted to the Sphere L.

In the prediction problem, we want to find aciivation sets of the address space that

correlate with some desired feature bit. When filled far beyond capacity, the indi-



vidualmemorylocationsof anSDMare collecting statistics about individual subre-

gions of the address space. To estimate the value of f at a given address, it should
be possible to combine the conditional probabilities in the data counters of the
selected memory locations to make a "best guess".

In the prediction problem, S is the space of possible sensory inputs. Since most

regions of S have no relationship with the datum we wish to predict, most of the
memory locations will be in non-informative regions of the address space. Associa-
tive memories are not useful for the prediction problem because the key part of the
problem is the search for subregions of the address space that are informative. Due

to capacity limitations and the extreme size of the address space, memories fill to
capacity and fail before enough samples can be written to identify the useful subre-

gions.

PREDICTING THE VALUE OF f

Each data counter in an SDM can be viewed as an independent estimate of the condi-

tional probability of f being equal to 1 over the activation set defined by the

counter's memory location. If a point of S is contained in multiple activation sets,
each with its own probability estimate, how do we combine these estimates? More
directly, when does knowledge of membership in some activation set help us esti-
mate f better?

Assume that we know P(f(X) = 1 ), which is the average value Of f over the entire

space S. If a data counter in memory location L has the same conditional probability

as P(f(X) = 1 ), then knowing an address is contained in the activation set defining
L gives no additional information. (This is what makes the prediction problem
hard: most activation sets in S will be uncorrelated with the desired datum.)

When is a data counter useful? If a data counter contains a conditional probability

far away from the probability for the entire space, then it is highly informative.
The more committed a data counter is one way or the other, the more weight it
should be given. Ambivalent data counters should be given less weight.

Figure 3 illustrates this point. Two activation sets of S are shown; the numbers 0

and 1 are the values of f at points in these sets. (Assume that all the points in the
activation sets are in these diagrams.) Membership in the left activation set is non-
informative, while membership in the right activation set is highly informative.
Most activation sets are neither as bad as the left example nor as good as the right

example; instead, they are intermediate to these two cases. We can calculate the rel-
ative weights of different activation sets if we can estimate the relative signal/noise
ratio of the sets.



• In the left example, the mean of the acti-

vation set is the same as the mean of the

P(r(x)=l IxeL) -- entire space. Membership in this activation P(f(x)=I IXeL) --= 1
P(t(X)=i) set gives no information; the opinion of

• In the right example, the mean of the
activation set is l; membership in this acti-

vation set completely determines the value

of a point; the opinion of such a set should

be given 'infinite' weight.

Figure 3. The Predictive Value of an Activation Set Depends on How Much

New Information it Gives About the Function r.

To obtain a measure of the amount of signal in an activation set L, imagine segregat-

ing the points of L into two sectors, which I call the informative sector and the non-

informative sector. (Note that this partition will not be unique.) Include in the
non-informative sector the largest number of points possible such that the percent-

age of l's and O's equals the corresponding percentages in the overall population of
the entire space. The remaining points, which constitute the informative sector,
will contain all O's or l's. The relative size r of the informative sector compared to

L constitutes a measure of the signal. The relative size of the non-informative sec-

tor to L is (1 - r), and is a measure of the noise. Such a conceptual partition is

shown in figure 4.

Once the signal and the noise of an activation set is estimated, there are known meth-

ods for calculating the weight that should be given to this set when combining with

other sets (Rogers, 1988a). That weight is (r / (1 - r)2). Thus, given the condition-

al probability and the global probability, we can calculate the weight which should

be given to that data counter when combined with other counters.

P(f(x)=! IX_Lin f) = VALUE [0 or 1]

Informativesector_ r

Non-informativesect_ (1 - r)

P(f(X)=! !XmLno n) = V(r(x)=i)

p(fCX)=l IX_L) - V(f(X)=l)
F=

VALUE - P(f(X)=I)

Figure 4. An Activation Set Defined by a Memory Location can be

Partitioned into Informative and Non-informative Sectors.



EXPERIMENTAL

The given weighting scheme was used in the standard SDM to test its effect on capac-
ity. In the case of random addresses and data, the weights doubled the capacity of
the SDM. Even greater savings are likely with correlated dam, These results are

shown in figure 5.
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Figure 5. Number of Bitwise Errors vs. Number of Writes in a 256-bit
Address, 256-bit Data, 1000-Location Sparse Distributed Memory. The Left

is the Standard SDM; the Right is the Statistically-Weighted SDM. Graphs
Shown are Averages of 16 Runs

In deriving the weights, it was assumed that the individual data counters would
become meaningful only when a sufficiently large number of associations were
stored in the memory. This experiment suggests that even a small number of associ-
ations is sufficient to benefit from statistically-based weighting. These results are

important, for they suggest that this scheme can be used in an SDM in the full con-
tinuum, from low-capacity memory-based uses to over-capacity statistical-predic-
tion uses.

a_

1o

CONCLUSIONS

Studies of SDM under conditions of over-capacity, in combination with the new
problem of statistical prediction, suggests a new range of uses for SDM. By weight-
ing the locations differently depending on their contents, we also have discovered a

technique for improving the capacity of the SDM even when used as a memory.

This weighting scheme opens new possibilities for learning; for example, these
weights can be used to estimate the fitness of the locations for learning algorithms
such as Holland's genetic algorithms. Since the statistical prediction problem is pri-
marily a problem of search over extremely large address spaces, such techniques
would allow redistribution of the memory locations to regions of the address space
which are maximally useful, while abandoning the regions which are non-informa-
five. The combination of learning with memory is a potentially rich area for future

study. _

Finally, many studies of associative memories have explicitly assumed random data



in theh" studies; most real-world applications have non-random data. This theory
explicitly assumes, and makes use of, correlations between the associations given to
the memory. Assumptions such as randomness, which are useful in mathematical
studies, must be abandoned if we are to apply these tools to real-world problems.
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