
Research Institute for Advanced Computer Science
NASA Ames Research Center

About Time

14 May 90

RIACS Technical Report TR-90.34

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188870) ASOUT TI_E

Inst. for Advanced Computer

(Pesearch

Science) 17 p
CSCL 20C

N92-11753

Unclds

G3/70 0043070
L

https://ntrs.nasa.gov/search.jsp?R=19920002535 2020-03-17T15:15:46+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42815531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lr-L-_

About Time

Peter J. Denning

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report TR-90.34

14 May 90

Time has historically been a measure of progress of recurrent physical processes. Coordination of
future actions, prediction of future events, and assigning order to events are three practical reasons
for implementing clocks and signalling mechanisms. In large networks of computers, these needs
lead to the problem of synchronizing the clocks throughout the network. Recent methods allow this
do be done in large networks with precisions around 1 millisecond despite mean message exchange
times near 5 milliseconds.

This is a preprint of the column The Science of Computing for
American Scientist 78, No. 4 (July-August 1990).

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association COSRA).

About Time

Peter J. Denning

Research Institute for Advanced Computer Science

14 May 90

When someone asks, "What time is it?" I call out the reading from my watch

without thinking. I take for granted that everyone shares my understanding of time and

clocks. But there are circumstances that arise in large networks where our shared

understanding does not apply and this seemingly innocent question is surprisingly

difficult to answer.

In general, we regard time as a measure of the progress of recurrent physical

processes. Until the pendulum clock was invented in the 17th century, natural cycles of

the seasons, the moon, and the sun were the only means of measuring long intervals;

shorter periods were measured by pouring sand or water through a small opening or by

burning a candle. In the 20th century instruments that count oscillations of

electromagnetic waves have led to clocks of great precision. An international standard

adopted in 1964 defines a second as 9,192,631,770 cycles of the radiation making up the

principal spectral line of cesium 133. Certain circuits in modern digital computers are

capable of distinguishing between events spaced even more closely, on the order of 10 -12

Z/About Time TR-90.34 (14 May 90)

second apart -- 1/100 of a tick of a cesium clock.

We have developed two major abstractions for time: sometimes it is a "quantity,"

measurable by clocks, sometimes an "arrow" giving direction to changes in the state of

the universe. These abstractions quickly lead to philosophical questions: As we stretch

our imaginations backward and forward, we ask when time started and when it will end.

What was before the Big Bang? What will come after the Big Crunch? Meanwhile, we

push our instruments to finer scales of resolution, observing quantum effects on a scale

where uncertainty principles make it hard to distinguish between space and time; some

physicists speculate that the two must have been one in the immense gravitational field of

the Big Bang (1).

Coordination, prediction and ordering are three practical reasons for taking an

interest in time and for building clocks and signalling mechanisms. Coordination is

fundamental to preparing for action in an uncertain future. Agreements on schedules

allow us to coordinate actions at chosen times: keeping a doctor's appointment, catching

a train, buying stock, landing an airplane, reaching milestones on a project. To

coordinate national and international enterprises we need to keep the clocks in our

computers synchronized. In an air- traffic-control system, for example, the clocks must

agree when a controller in one city notifies a controller in another city that a particular

flight will arrive at a given time. Banks depend on synchronized clocks to prevent abuses

in "floats" during electronic fund transfers.

Prediction is a special case of coordination. Using models of various recurrent

physical processes, we can calculate with great accuracy when events in these systems

will recur. For example, we can calculate the time of a solar eclipse, the orbit of the

TR-90.34 (14 May 90) About Time/3

Voyager spacecraft, the position of a shock wave on a transonic wing, the rate of a

chemical reaction, or the speed of an object detected by radar. The ability to make such

predictions allows us to build machines and processes that give us control over parts of

nature. We may one day perform like feats in other domains, such as weather forecasting

and earthquake prediction.

The third consideration--the ordering of events--is important in scientific,

technological and even legal investigations. It is also important in computer-based

transaction systems. An airline reservations system might receive several nearly

simultaneous requests for the last ticket on a flight; the system must be able to determine

which request came in first. In a bank's network of automated-teller machines two

people must not be allowed access to the same account simultaneously, even if they are

both authorized users of that account. In a software-development system it is vital to

record accurately which of two files holds the latest version of a module.

Coordination and ordering require different technologies. Coordination supposes

that all agents have access to a universal standard time, and thus it calls for synchronized

clocks. Ordering supposes that agents agree to transmit signals indicating when selected

events have taken place, and thus it calls for a message- exchange system. Reliable

message-passing is often easier to ensure than reliable synchronization.

In either scheme, when two events are closer than the resolution of the local clock,

it is impossible to say which came first. If we must nonetheless act as if the events came

in some definite order, it is impossible to design a device that can guarantee a decision

about the order within any predetermined amount of time. A system that relies on such a

guarantee will eventually malfunction (2).

4/About Time TR-90.34 04 May 90)

Among the challenges to time management in computing systems, synchronizing

multiple clocks is probably the most difficult. In what follows I shall review some results

from the computing literature on this problem.

For this discussion, a computing system is defined as a set of computers at various

fixed locations that carries out some function affecting people and computers over a wide

area. The machines might all be in a single building, or they might be spread across a

campus, a country, or the world. Networks of this kind are used for banking, air-traffic

control, ticket reservations, and many other purposes. The system will not function

correctly unless the clock in each machine is closely synchronized with standard time.

Let us examine more closely what it means to say that the clocks are synchronized

to standard time. Suppose two observers at different positions record the times at which

they detect two events, which are also spatially separated. Because of differences in

signal-transmission time, the observers will almost certainly record different times, and

they may even disagree about the order of the events. The usual way of resolving such

conflicts is to define a standard observer equally distant from the sites of the two events;

the order in which the standard observer registers the signals of the events is taken as the

actual order of the events (3).

In synchronizing the machines of a computer network, however, placing an

observer at the midpoint is seldom practical, because of variations in communications

pathways. For signals passing through the network, transmission time varies according

to the load or traffic level; furthermore, a signal can take a variety of routes from one

node to another, and the choice of route is not always under direct control. Special

communications pathways could be set up outside the network, exclusively for

TR-90.34 (14 May 90) About Time]5

synchronization signals. But even with such dedicated channels, there remain physical

limits on the precision of time measurements; for example, with satellite links to the

observer, variations in atmospheric conditions affect transmission time.

And even if we could somehow start two clocks running at exactly the same instant,

we could not keep them synchronized. Although every effort is made to design clocks

that progress at the same speed, there are nonetheless small differences in clock rate.

The maximum rate at which the clock readings diverge is called the drift rate, denoted r;

over an interval of length t, a clock may deviate from standard time by as much as rt.

Typical drift rates are on the order of 10-6 clock ticks per tick.

These two effects--variability of signalling time and clock drift-- mean that in a

practical system we cannot achieve synchrony of all the clocks. What can we achieve?

We can specify a maximum discrepancy among the clocks, and we can design the system

to periodically resynchronize the clocks to an accuracy within that maximum. The

period we can allow to lapse between resynchronizations will depend on how closely the

clocks can be made to agree at each synchronization and on the rate of drift. When this

protocol is enforced, we can can be sure that two events whose times are measured by

different clocks occurred in the order given by the clock readings, provided that the

readings differ by more than the maximum allowable discrepancy.

Message-transfer time in the communications network varies from a minimum of m

to a maximum of M. The minimum depends on the path length in the network and on

the message-exchange protocols, and the maximum depends on the traffic of messages in

the network. It is not uncommon for the ratio of M to m to be as high as 100 or 1,000.

In a local-area network covering distances of no more than a mile or so, m is typically

6/AboutTime TR-90.34 (14 May 90)

about 5 milliseconds; across a satellite link, it is roughly 250 milliseconds.

Leslie Lamport of the Digital Equipment Corporation was among the first authors to

publish a serious treatment of synchronization in computer networks (4). He supposed

that all messages are "time-stamped" with the value of the sender's clock at the moment

of transmission. He stipulated that when a node receives a message with time stamp t, it

sets its local clock to the larger of t+m and the current time according to that clock. This

policy guarantees that clock readings are consistent with the known order of the events.

Note that if a message actually takes the maximum time M, the sender's clock will read

t+M at a moment when the receiver's clock reads at least t+m ; thus the discrepancy

between clocks at the moment of clock adjustment can be as large as M-re.

Lamport asked how far apart the clocks can get under this scheme. He measured

the distance k between a pair of nodes P and Q be by the number of links connecting

them. He assumed that every node sends a message to its neighbors-- adjusting their

clocks, if necessary--at least once every T seconds. Over the interval T, P's clock can

gain as much as rT seconds, and Q's clock can lose as much as rT seconds, for a total

additional discrepancy as large as 2rT. Hence in the worst case the discrepancy between

clocks can be as large as k (2rT+M-m). For typical values of T drift is not significant

and the discrepancy is approximately k (M-m). Lamport's method of synchronization,

therefore, would not be useful where there is a large difference between the minimum

and the maximum message-exchange times or a large path length between the most

distant clocks.

Lamport's scheme illustrates a class of techniques that advance clocks to maintain

consistency with the known order of events. The clock moves forward at least one tick

TR-90.34(14May90) AboutTime/"/

for each event inside a node, and it may move forward many ticks to be consistent with

the time-stamp of an incoming message. Although these schemes limit the maximum

discrepancy that can develop among the clocks within the system, they do not guarantee

agreement with an external standard clock. Moreover, actions outside the system can

circumvent the synchronization rules. For example, when someone updates a file on a

distant machine by giving the new information to a friend over the telephone, the file will

be stamped with the local time when the receiver completed the update but will not be

adjusted to take account of the time of the updater's request. If the file is then passed

over the network to some other node, it could bear an inaccurate time-stamp and might

therefore be mistaken for an earlier rather than a later version.

In spite of these limitations, clocking schemes such as Lamport's are useful in

synchronizing multiple processes that share a resource that can be used by only one

process at a time. The seat-assignment list for an airplane is an example of such a

resource. Associated with the shared resource is a process that controls access. Other

processes request access by sending a message to the controller, which maintains an

internal queue of requests in time-stamp order;, the controller signals each requester when

its turn comes.

Flaviu Cristian of the IBM Almaden Research Center has proposed a method of

synchronization that maintains close tolerances even in networks with highly variable

message-exchange times (5). Cristian considers the following situation. Suppose P

sends Q a message, "What is your time?" to which Q immediately responds "Time=t."

P must now decide how or whether to adjust its own clock based on the reply. The

decision can be guided by how long it took for the exchange of messages. P establishes

8/AboutTime TR-90.34 (14 May 90)

a cutoff parameter, U, which must be greater than m; if the response is received within

2U seconds, P uses the time-stamp t to set its clock to the value t+U, which is the

estimate that causes the maximum possible discrepancy to be minimum at U-m. If the

response arrives too late, P waits a few seconds and tries again.

Cristian's method has several parameters that allow it to be adjusted with high

precision. One of these parameters is U: as the cutoff time is reduced toward m, the

accuracy of each successful synchronization improves, but the number of abortive

attempts increases. Another parameter is the interval between synchronization attempts,

which should be chosen so that resynchronization can be expected to succeed before drift

exceeds the maximum allowable discrepancy. Cristian cites an example of a system in

which m -- 4.2 milliseconds and U = 4.5 milliseconds, yielding a probability of 1/2 that

any given synchronization attempt will succeed. With a clock drift rate of 6xl0 -6, the

average time between synchronizations in this system is 67 seconds; the average number

of messages needed to achieve synchronization is four, and the probability that

synchronization will not be achieved in any cycle is 10 -9 . The maximum clock

discrepancy is one millisecond.

Clock synchronization and event ordering are essential to the correct operation of

large systems of computers. They are important concepts in other fields as well. I invite

readers familiar with the literature on this subject outside of computer science to send me

citations and reprints, and I will report on them in a future installment of this column.

References

TR-90.34 (14 May 90) About Time_

1. Stephen W. Hawking. 1988. A Brief History of Time. Bantam Books.

2. Peter J. Denning. 1985. The arbitration problem. American Scientist 73:516-518.

3. Albert Einstein. 1961. Relativity. Crown Publishers.

4. Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM 21: 558-565.

5. Flaviu Cristian. 1989. A probabilistic approach to distributed clock synchronization.

Proceedings of Ninth International Conference on Distributed Computing Systems,

pp. 288-296. IEEE Computer Society Press.

10/About Time T_-90.34 (14 May 90)

FIGURE CAPTIONS

FIGURE 1. Banking transactions supply an example of a realm where the proper

ordering of events is crucial. Suppose Alice and Bob have a joint account. When Alice

deposits $500 at an automated-teller machine, the computer posting the transaction reads

the starting balance of $4,000, adds the deposit amount,and writes the sum of $4,500 to

the file where the account balance is stored. Meanwhile, Bob has initiated a withdrawal

at another automated-teller machine. That computer reads a starting balance of $4,000,

subtracts $1,000, and writes a new balance of $3,000. Because of the way the events are

interleaved, Alice's deposit is lost. In a real banking system this error would be avoided

by refusing to start Bob's transaction until Alice's had been completed.

FIGURE 2. Protocols for syncrhonizing clocks in a computer network are complicated

by variations in the transmission time for messages. In these diagrams vertical distance

represents spatial separation, and time progresses from left to right. At time t', computer

P sends a time-query message to computer Q, which immediately responds with the

reading t of its local clock. When the reply is received, however, P cannot simply set its

clock to t because Q's clock has continued running while the reply was in transit. P can

estimate the current value of Q's clock by relying on three items of information: the

reported clock value (t), the elapsed time for the round-trip exhcange of messages (2D),

and the minimum one-way transit time (m). If the response message arrived in minimum

time, then Q's clock must now read t+m (top diagram). If the response took the

maximum time, Q's clock must read t+2D-m because the request part of the exchange

could not have been transmitted in less than m seconds (middle diagram). The

difference between the minimum and maximum feadings is 2D -2m. Splitting this

TR-90.34(14May90) About Time/11

difference by setting P's clock to t+D yields a maximum discrepancy between the

clocks ofD-m.

FIGURE 3. Improved protocol aborts an attempt to synchronize clocks if network delays

would impair accuracy. The protocol defines a cutoff time, designated 2U; if the round-

trip exchange time 2D is greater than 2U, the requesting computer abandons the attmept

to synchronize and tries again a few seconds later. The reply to a time-query message is

accepted only if the it comes in the interval between 2m and 2U (gray region). After a

successful synchronization, the maximum discrepancy between clocks is U-re. The

average number of attempts needed to achieve synchronization is 1/p, where p is the

probability of success at each try.

O9
a
Z
0

LU
O0

10

_

ALICE'S
TRANSACTIONS

AT ATM 1

$4,000
+500

$4,500

ACCOUNT
BALANCE

$4,000

$4,000

=_ $4 500

BOB°S
TRANSACTIONS

AT ATM 2

$4,000
-1,000
$3,ooo

15 $3,000 _=_ •

Q

Minimum response time

t' r_

"%,
t

L !
2D-m m

[
2D

#

S B

#1

##

#//

#,t

Maximum response time

P

Q

r

l

Ji

#
s

#

s

S 0

s

o"

s

!
m 2D-m

1
2D

Best estimate .of response time
t'

Q

vw

• t

t

S,t

i #

##

#

#l

D
J

2D

m=...._
v

h,.._
v

liD"

h...._
y

b.._

B=..._
v

P

Q

First attempt
e

• :.':_:::_>.:."_:_:::.:,_,::.::::._::" "*..:

• ::

! ::
• ::

l t 1
2m

I I
2U

Synchronization
aborted

p,
Bun,,._
v

P

Q

Second attempt Synchronization
t' aborted

• :::::::::::::::::::::::::::::::::::::::

I t I
2m

I I
2U

v

P

Q

Third attempt
t' t"=t+U

", i._i_:_._._i!_i__::.:.-_;:_i_::i;:._i_ii_;:_'!:;:i::_i_:::;_":
• -_i!_::_-_i_._-_i-i_i._!_
• ::_:i:':_:._:.,.'_i:.:_._i:_.____

•-i:::_:i-:_:_:_:.::_:_-_-".'_:.::-:_ •

• _-_iiiiiii:_:_i_-::iiii.:iiiii.:iiii_iiii_.::_iiii_:_

t
[J

2m
I I

2U

v

v

