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ABSTRACT

Four hours of three-axis microgravity accelerometer data were successfully measured at

the MA9F locker location in the Orbiter middeck of Columbia as part of the Microgravity

Disturbances Experiment (MDE) on STS-32. The data were measured using the Honeywell

In-Space Accelerometer (HISA), a small three-axis accelerometer that was hard-mounted

onto the Fluids Experiment Apparatus (FEA), to record the microgravity environment at the

exact location of the MDE. Data were recorded during specific mission events such as

Orbiter quiescent periods, crew exercise on the treadmill, and numerous Orbiter engine

burns. Orbiter background levels were measured to be in the 3 x 10-5 to 2 x 10-4g range,

treadmill operations in the 6 x 10-4 to 5 x 10-3g range, and Orbiter engine burns from

4 x 10-3 to in excess of 1.0 x 10-2g. These data represent some of the first microgravity
accelerometer data ever recorded in the middeck area of the Orbiter.

INTRODUCTION

It is well known among microgravity scientists that the magnitude of residual acceleration

aboard an orbiting spacecraft is a critical parameter in conducting materials processing

experiments in the reduced gravity environment of space.l,2,3,4 The terms weightlessness

and zero-gravity are frequently used to describe the space environment but are

misnomers and are technically incorrect. Although many orders of magnitude lower than

the gravity level experienced on Earth (l-g), the gravity level aboard a spacecraft in low

Earth orbit is more accurately described as microgravity or micro-g, which is technically
one millionth the gravity level of Earth (10-6g) and more widely used to describe the

extremely low residual gravity levels experienced aboard an orbiting spacecraft.

In spite of its recognition as a critical parameter in processing materials in space, very

little information on gravity level has been made available to microgravity scientists

conducting experiments aboard the Space Shuttle. While previous shuttle missions have

collected accelerometer data elsewhere in the Orbiter5,6 (mainly near the Orbiter center of

gravity in the aft payload bay), three-axis microgravity accelerometer data have not been

available for the Orbiter middeck area where many microgravity experiments are
performed during typical shuttle missions.

This report provides the first data characterizing the microgravity level of the Orbiter

middeck as measured during the STS-32 mission of Space Shuttle Columbia in January

1990. While these data were taken at a single location within the middeck and may not be

representative of microgravity levels elsewhere in the middeck area, it nonetheless

represents the first such data collected in this part of the Orbiter. (The HISA was first

flown as part of the 3M Polymer Morphology Experiment in the middeck of Discovery on
STS-34 in October, 1989; but hardware anomalies limited the amount of useful three-axis

accelerometer data collected.)

The data presented were collected as part of the Microgravity Disturbances Experiment

(MDE), a middeck experiment designed to investigate the effects of crew and Orbiter



induced disturbances in the microgravity environmenton the growthof singlecrystals of
metallic indium using the Rockwell Fluids ExperimentApparatus(FEA). FigureI shows
one of the authors performing the experiment during the STS-32 mission. To quantify the

microgravity environment of the growing crystals, a small three-axis accelerometer called

the Honeywell In-Space Accelerometer (HISA) was hard-mounted onto the FEA to record

data directly at the site of the experiment.

This was an ideal mission on which to have a middeck accelerometer. Besides being the

longest shuttle mission yet flown, it also provided detailed and frequent exercise protocols

on the treadmill to support long duration life science experiments and numerous engine
burns that resulted from the SYNCOM satellite deploy and Long Duration Exposure Facility

(LDEF) retrieval. These mission events provided a unique opportunity for valuable data to
be collected that would characterize one location of the Orbiter middeck during these

known disturbances.

Additional accelerometer data were collected at a second location within the Orbiter

(below the aft payload bay) using the High Resolution Accelerometer Package (HIRAP)

and the Aerodynamic Coefficient Identification Package (ACIP). These two accelerometer
data sets, recorded simultaneously but at widely different locations within the Orbiter (see

figure 2), will permit studies to be performed on how disturbances are transmitted through
the Orbiter structure and will be a starting point for mapping out the microgravity

environment throughout the Orbiter. The results of these studies will be reported as data

analyses progress.

This report summarizes the 4 hours of middeck accelerometer data recorded with the

HISA. A second report will be issued providing more detailed analyses of this data such

as shock spectrum and power spectral density analyses.

HARDWARE DESCRIPTION

The middeck accelerometer used in this experiment was the HISA shown in figure 3. This

small three-axis microgravity accelerometer was developed by Honeywell Incorporated to

monitor oscillatory and transient accelerations onboard spacecraft and was designed to

be located with materials processing equipment flown on the Orbiter. Its small size

(8" x4"x 2"), low weight (4 pounds), and low power requirements (5.6 watts of Orbiter

power @ 28 volts) make it a versatile unit ideal for many applications in the Orbiter

middeck. Other specifications for the HISA are listed in table 1.

The HISA data were recorded on 3-1/2" floppy disks using an MDE dedicated Payload

General Support Computer (PGSC). (The PGSC used to record the HISA accelerometer
data has a hard disk capable of recording 20 megabytes of data. Current National Space

Transportation System policy prohibits the use of the hard disk for experiment data

recording. All data must be recorded on 1.4 megabyte floppy disks or separate data
recorders, which take up additional space and payload weight, both critical resources on

the Space Shuttle.) A total of eight disks were flown to support MDE, with each 1.2



Table 1. Honeywell In-Space Accelerometer Specifications

PARAMETER

ORIENTATION

RANGE

ACCURACY

RESOLUTION

FREQUENCY RESPONSE (+5%)

DC BIAS

SAMPLE DATA RATE

COMMUNICATIONS

PERFORMANCE

Three-axis orthogonal

10-6 to 10-2g at 1 Hz
10-5 to 10-2g at 50 Hz

+(1%lreading I + 0.00002)g

1.0xl0-6gat 1 Hz
8.7x 10-6g at 50 Hz

0.025 to 19.500 Hz

None (ac output)

50 Hz, 1 Hz

RS-422/ASCI II format

megabyte disk capable of recording 40 minutes of 1 Hz and 50 Hz accelerometer data.

As data recording capability was limited due to the number of floppies available, only

specific mission events were targeted for data recording. The recorded data generally

involved 2-minute segments centered around Orbiter engine burns, or 30- to 40-minute

segments focusing on crew exercise periods on the treadmill, or Orbiter background
accelerations.

The HISA was stowed in a middeck locker for ascent and descent and was attached to

the FEA by the crew during orbital operations as shown in figure 4. The FEA was
mounted in locker location MA9F in the aft middeck as shown in figure 5, at Orbiter

coordinates x0 = 514", Yo = 70", z0 = 384".

DETAILS OF HtSA OPERATION

The sensing of acceleration is accomplished using a set of three Sunstrand Qflex

QA-2000 pendulous mass, force-balanced accelerometers oriented in coordinates X, Y,

and Z. The operating principle of each sensor is based on the movement of a proof mass
due to external disturbance forces. The position of the proof mass is sensed by a servo

amplifier as a change in capacitance and output as current proportional to the
acceleration. The current output is also used in a closed-loop manner to rebalance the

proof mass to its neutral position.



The electrical design of the HISA consists of three individualmicrogravitydata acquisition
system (DAS)circuits interfacedwith each of the accelerometers,a measurementand
control computer, and an RS-422computer interface.The microgravityDAScircuit was
created to detect large transient and oscillatoryacceleration events.The key featuresof
the DAScircuit design include (1) the eliminationof the accelerometer bias to maximize
accelerometer dynamic response, (2)a highamplifier gain of 695 volts/g to achieve
resolution less than 1 micro-g, and (3) conversion of accelerometer data from raw
acceleration to delta velocity impulses to enhance interpretationof the accelerometer
data. The eliminationof DC bias allowedthe HISAto operate at a high gain without
overloadingto achieve the 1 micro-g resolution.

The accelerometer interface electronics block receives an accelerometer input signalA(t)
from the accelerometer sensor whose outputvoltage is proportionalto sensed accelera-
tion in one axisof motion (X,Y, or Z). This signal is fed to the DC bias attenuatorand anti-
alias filter block. This block containsa single-pole(-3db corner frequencyof 19.5Hz) low-
pass filter amplifierwith gain KA which is served by a loop integratorAI. The outputof the
loop integrator is subtracted from the accelerometer input signalA(t) to cancel any
accelerometer DC biased voltage. The integratorA1 is set upwith a long time constant of
40 seconds to integratethe accelerometer DC bias voltage passed by the low-passfilter,
not any transientacceleration voltage information.The DB bias attenuatorblock is
cascaded witha second-order shunt filter block to create a three-pole characteristic with
a rolloff attenuationfactor of 18 db/octaveto removeany potentialalias frequencies that
may exist in the accelerometer data.The high gain of 695 volts/g is achieved by selecting
an appropriatescaling resistor which converts the accelerometer output current to an
equivalentvoltage.

Further technicaldetails on the operation of the HISA can be found in reference 7.

The accelerometer data as recorded by the HISAdoes not represent instantaneous
measurementsof acceleration at a given point in time. Instead,the recorded dataare
averagesof acceleration impulses betweentwo 50 Hz sample periods. Furthermore,the
HISA records data in pairs (positiveaxis value and negativeaxis value) because thereare
two A/D converters for each axis of acceleration. One converter averages positiveaxis
data and the other negativeaxis data. As a result, there are two data plots on the same
timeline withone curve representing positiveaxis data and the othernegativeaxis data
(see appendixA, plot 8, for example).

REVIEW OF ACCELEROMETER DATA

All accelerometer data presented in this report are reported in terms of the Orbiter body

axis coordinate system shown on page 5.
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Orbiter Coordinate System

HISA middeck accelerometer data were recorded during the following STS-32 mission
events.

• Orbiter quiescent periods

Crew exercise activity on treadmill
Commander

Pilot

Mission Specialist #3

Orbiter engine burns
Vernier Reaction Control System (VRCS)

Primary Reaction Control System (PRCS)

Orbiter Maneuvering System (OMS)

Summary data plots characterizing the three-axis accelerometer levels for each of the
above listed events are given in appendix A (plots 1 through 29). The accelerometer data

is further summarized in table 2, which provides a quick reference of the typical accelera-

tion levels recorded for each of the above mission events. As there is large scatter in the
peak accelerations (see the time-history plots in appendix A), only typical or average peak

acceleration levels are reported here. A more detailed analysis of the data focusing on

peak accelerations and averages at various frequencies is in progress.

ORBITER BACKGROUND LEVELS

Plots 1 through 4 of appendix A illustrate the background microgravity levels recorded in

the Orbiter middeck during normal shuttle operations on STS-32. The background levels



Table 2. Summary of Middeck Accelerations

(all data reported in units of lg, normal Earth gravity)

Orbiter Backqround

Quiescent Period

Normal Operations

X-axis Y-axis Z-axis

3.0 x 10-5 2.5 x 10-5 4.5 x 10-5

2.1 xl0 -4 2.0x 10 -4 2.4x 10 -4

Treadmill Operations

Walking
Commander
Pilot (5,5 mph)
Pilot (2.5 mph)
Pilot (1.5 mph)
Mission Specialist #3

Running
Commander
Pilot
Mission Specialist #3

5.0x 10-4 7.0x 10-4 1.2x 10-3

9.0x 10-4 8.5x 10-4 1.8x 10-3

7.0x 10-4 5.0x 10-4 8.8x 10-4

1.8x 10-4 1.4x 10-4 1.5x 10-4
6.0x 10-4 5.0 x 10-4 1.2x 10-3

6.5x 10-4 8.5x 10-4 3.0x 10-3
1.3x 10-3 1.3x 10-3 4.0x 10-3
2.5 x 10-3 1.8 x 10-3 5.0 x 10-3

Orbiter Engine Burns

VRCS

PRCS
NCC
TI
MC3
MC4

OMS
NH1
NSR

(3.0 x 10-4 to 7.5 x 10-4 along axis of
engine fired; near background levels
along other axes)

5.0x 10-3 4.0 x 10-3 7.5x 10-3
1.0x 10-2" 6.0x 10-3 1.0x10 -2.
9.0 x 10-3 8.0 x 10-3 9.0 x 10-3
8.0 x 10-3 1.0 x 10-2 1.0 x 10-2*

1.0x 10 -2. 1.0 x 10-2. 1.0 x 10-2.
1.0 x 10-2" 1.0 x 10-2. 1.0 x 10-2.

Miscellaneous Events (up to 6 x 10-3 depending on event)
ii ii

1.0 x 10-2g represents the upper limit detection capability of the HISA. Many of the
Orbiter engine burns produced accelerations greater than this level, but the HISA was
not able to determine the upper limit accelerations for these events.
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were typically in the 2.0 x 10-4 to 2.5 x 10-4g range along each axis as shown in plots 1 and

2. During two special time periods of relative quiescence, lasting roughly 1 and 5

minutes each, the background level dropped suddenly by a factor of 4-5 to the 2.5 x 10-5 to

4.5x 10-5g range as shown in plots 3 and 4. This sudden drop in acceleration appeared

to be related to the turning off of some Orbiter equipment or system that is unidentified at

this time and still under investigation. A clue to identifying the source of these additional

background accelerations may be that they are found to modulate the basic background

signal at a frequency of approximately 1.1 Hz.

Further examination of the frequency content indicates that 17 Hz is the dominant

frequency of the Orbiter background acceleration levels (see plots 2 and 4). Previous
studies8 have identified the source of this 17 Hz vibration of the Orbiter to be dither in the
Ku band antenna.

In general, the Orbiter Z-axis had the highest background acceleration levels--roughly 40

percent greater than levels along the X and Y axes. The Y-axis had slightly (10 to 20

percent) lower background acceleration levels than the X-axis.

CREW TREADMILL ACTIVITY

Plots 5 through 13 of appendix A illustrate in varying degrees of detail the microgravity

levels induced at the FEA during crew activity on the exercise treadmill. As shown in
figure 6, the treadmill was mounted to the floor of the Orbiter middeck in front of the

airlock, a position roughly 7 feet from the HISA. Accelerometer data were collected on all

three crewmembers (commander, pilot, and mission specialist #3) who performed
treadmill exercise on STS-32.

Crewmembers are held in place on the treadmill with the harness and elastic cord

arrangement shown in figure 6 that provides the necessary restraint to permit running
under reduced gravity conditions.

While similar in appearance, each crewmember had a different and distinct induced

acceleration pattern for both walking and running which can be seen by comparing plots 5

through 7. Plot 8 compares the characteristic Z-axis pattern of each crewmember running

and is expanded in greater detail. By far the greatest induced accelerations for all crew-

members in all cases are along the Orbiter Z-axis, which is perpendicular to the plane of

the treadmill. Induced accelerations along the X and Y axes are roughly 2 to 4 times
lower in magnitude than along the Z-axis.

From the frequency content of this data, it is also possible to determine the pace of

activity on the treadmill. All three crewmembers had similar natural paces of approxi-

mately 1 step/second when walking and 2.5 steps/second when running.

Because of the unique exercise protocol of the pilot, it was possible to compare the

induced disturbances at walking speeds of 5.5, 2.5, and 1.5 mph which are shown in

7



plot9. (Walkingspeeds are estimated based on heart rate and preflight training.) The
HISA easily distinguishedthe differentacceleration levels induced at these three walking
speeds, which were found to have typical Z-axis componentsof 1.8x 10-3,8.8x 10-4,and
1.5x 10-4g,respectively.

(NOTE: Because of the wide range in the acceleration levels measuredduring treadmill
operations,only estimatedaverage acceleration levels representativeof most of the data
collected are reportedhere. Maximum and minimumacceleration levels recorded during
these eventscan be obtained by further examinationof the data plots presented in
appendixA. Detailedstochastic analyses, including frequency spectrumanalysis, will
follow in future studies.)

Plot 10 was recorded during initial preparationand startupof treadmill activity as the
commanderwas preparingfor his exercise protocol. Short durationpeaks of 6 x 10-3to
8x 10-3gwere recorded during this period. This initialwarmup period of walking,which
starts the commander's exercise protocol, begins at approximatelythe 46 seconds mark
on the X, Y, and Z axes plots.

Plots 11 and 12 illustratethe induced accelerations whentransitioningfrom walking-to-
runningand from running-to-walking,respectively. Plot 13 shows these transition events
along the Z-axis in expandeddetail. The transitionsare fairly rapid and occur over a time
scale generally less than 1 second.

ORBITER ENGINE BURNS

During the STS-32mission, the acceleration levels induced in the middeck from at least
12 Orbiter engine burns were successfully recorded with the HISA. The six VRCSengine
burns, four PRCSburns,and two OMSburns are listed in table 3 alongwith their resulting
changes in Orbiter velocity Vx, Vy,and vz. Furtherdetails of the OMSand RCSengine
systems along witha description of the burns listed in table 3 are provided in appendix B.

Vernier RCS

Plots 14 and 15 illustrate the induced accelerations resulting from single-axis vernier jet

firings which produce approximately 25 pounds of thrust. Both of these burns occurred
during the LDEF rendezvous sequence when the Orbiter was in its lightest configuration

(post-SYNCOM deploy, pre-LDEF retrieval). The resulting induced accelerations are

principally along the single axis of the burn, with the other axes relatively unaffected. Both

of these burns represent about a 2-second engine firing which produced approximately a

7.5 x 10-4g acceleration for the duration of the burn. Very few transients appear to be
associated with these burns. The induced accelerations dropped rapidly at the

conclusion of each burn.

8



Table 3. STS-32 Orbiter Engine Burn Parameters

Burn type Change in velocity
(feet per second)

VRCS

PRCS

z&Vx Z_Vy AV z

(typically less than 0.01)

NCC 0.6 -0.3 0.8
TI -0.2 0.1 -3.4
MC3 -0.2 0.0 1.2
MC4 -0.1 0.1 0.3

OMS
NH1 -7.2 0.1 0.0
NSR 9.4 -0.1 0.0

Plots 16 and 17 illustrate the induced accelerations resulting from multi-axis vernier burns.

Plot 16 represents a 5- to 6-second burn and plot 17 a 1-second burn which yielded

middeck accelerations in the 3 x 10-4g range along two Orbiter axes (Y and Z). As with

the single-axis burns discussed previously, very few transients appear to be associated
with these burns.

One effect that is observed, but is as yet unexplainable, is a slight change in the frequency
content in the background level at the conclusion of each burn. This is most clearly

demonstrated in plot 17. The reason for this change is still under investigation.

Primary RCS

Plots 18 through 22 are of the induced accelerations in the Orbiter middeck resulting from

the firing of PRCS engines, which produce approximately 870 pounds of thrust. All four of

the burns were associated with the LDEF rendezvous sequence and occurred on mission

day 4. Plot 18 represents a relatively simple single-pulse PRCS firing during the NCC

burn and illustrates the short duration of these burns and the resulting "ringing" and

transient exponential decay in acceleration experienced in the Orbiter structure. Following

the burn, there is about a 15-second decay time until the accelerations approach
background levels once again. Plot 19 shows this same NCC burn in expanded detail.

The 3.5 Hz frequency observed in these plots is one of the primary modes of vibration for

the Orbiter structure (first torsional mode) which is evidently excited during the PRCS

firings. The resulting maximum induced accelerations along the X, Y, and Z axes were

5 x 10-3, 4 x 10-3, and 8 x 10-3g, respectively, for the NCC burn.

9



Plot 20 illustratesthe complexities associatedwith multipleengine firings during the TI
burn. This was the largest magnitude PRCSburn for which accelerometer data were
recorded (AVz= -3.4 fps) and clearly demonstratesthe long duration (almost2 minutes)
and complexity of this Orbiter engine burn maneuver. Individualengine pulse firings can
be seen in the data, and many of the induced accelerations are greater than the 10-2g
upper limit detection capability of the HISA (see the X and Z axes).

Plots 21 and 22 are of the MC3and MC4 PRCSburns which were the final PRCSburns of
the LDEFrendezvous sequence. Once again, the complexities of multiplefirings are
evidentalong with the transient exponentialdecay at the conclusion of each firing. On
numerousoccasions during these two burns, the induced accelerations exceeded the
10-2gupper limit of the HISA.

OMS

Some rathercomplex acceleration patterns were recorded during the NH1 and NSR OMS

engine burns shown in plots 23 and 24 which were part of the LDEF rendezvous

sequence. OMS burns are typically a few seconds in duration and are constant thrust

(each OMS engine produces approximately 6,000 pounds of thrust). From these

characteristics, a "square wave" type acceleration pattern might be expected as the

engine is ignited, burns at constant thrust for a fixed duration (up to a few seconds

producing a DC acceleration condition), then abruptly cuts off. This is indeed the

acceleration pattern that has been recorded by the HIRAP and ACIP accelerometers
located near the Orbiter center of gravity9 (and relatively close to the OMS engines).

The initial acceleration response recorded by the HISA in the middeck is also a "square
wave" function, which is modulated into an exponential decay by the electronics of the

HISA as it attempts to eliminate the DC component of acceleration. (Remember, the

HISA is designed to measure oscillatory and transient accelerations only, not DC

conditions.) This is best illustrated between 5 and 15 seconds on the Y-axis data

presented in plot 24.

By the time the OMS engines are shut down, the induced acceleration levels measured
during these DC conditions have been reduced substantially as the accelerometer

readjusts its zero-point to eliminate the DC component. As a result of this new zero-point

at the conclusion of the OMS firing, the sudden change in acceleration (going from the

engine burn acceleration level to zero as the burn is concluded) registers as an accelera-
tion of opposite polarity from the original signal. As before, this signal exponentially

decays to zero as the accelerometer signal processing eliminates the DC component.

The magnitude of the OMS burns along the X and Z axes was generally greater than the

10-2g upper limit capability of the HISA.

10



MISCELLANEOUS AND UNIDENTIFIED EVENTS

Plots 25 through27 are acceleration patterns that were recorded during eventsor
activities not yet identified. These eventsare probably related to either crew activity
(push-off,closing of locker door, etc.) or the operation of Orbiter equipmentor systems
(fans or pump operations).The sharp peaks of some of these eventsare in the 6x 10o3g
range.

Plot 28 is another example of a "modulationfrequency" phenomenonthat results from a
low frequency pattern modulatingthe higher frequency background levels. The low
frequencycomponent observed here is approximately1.1 Hz and may be related to the
pace of walking on the treadmill. The higher frequency component is approximately
17Hz, which is probably relatedto the Orbiter Ku band antennadither mentioned
previously.

Plot 29 is an example of a "beat frequency" phenomenon. This results when two
individualfrequencies interfere constructivelyand destructivelyand produce the observed
modulated patternof maximums and minimums in the induced accelerations.

CONCLUSIONS

Four hours of three-axis microgravity accelerometer data were successfully measured at
the MA9F locker location in the Orbiter middeck as part of the MDE on STS-32. Orbiter

background levels were measured to be in the 3 x 10-5 to 2 x 10-4g range, treadmill

operations typically in the 6.5 x 10 .4 to 5 x 10-3g range, and Orbiter engine burns from

4x 10-3g to in excess of 1.0x 10-2g (the upper limit capability of the HISA). Further

analysis of the data is in progress and will be reported at a future date.

FUTURE DIRECTIONS

As mentioned previously, three-axis accelerometer data were measured simultaneously

with the HISA using the HIRAP and the ACIP which are located on the Orbiter keel in the

aft payload bay (near the Orbiter center of gravity). An additional report9 is being

prepared that summarizes the microgravity at this location in the Orbiter payload bay.
Further reports will be issued that will compare the accelerometer measurements made

from these widely separated Orbiter locations to investigate how disturbances are

transmitted through the Orbiter structure; this is a necessary starting point in mapping out

the microgravity environment throughout the Orbiter.
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APPENDIX B

OMS and RCS Engines Description

Reaction Control System (RCS)

The reaction control system (RCS) consists of 44 individual thrusters located in 3 separate

modules in the Orbiter (forward, aft-left, aft-right). There are 38 primary jets and 6 vernier

jets. Each primary jet is rated at 870 lb. of thrust, and each vernier jet is rated at 24 Jb. of

thrust. The primary jets are used to coptrol the motion of the Space Shuttle vehicle

through a combination of translation and/or rotational movement. The vernier jets are only

used on orbit for fine attitude control. The location of the RCS thrusters in relationship to

the Orbiter is shown in figure B-l, and details of the jet locations and plume directions are

shown in figure B-2. While most thrusters are aligned with the Orbiter body axes, it should

be noted that many of the thrusters in the forward module are off-axis. This is further

illustrated in figure B-3. The six vernier thrusters are shown on figure B-2 as F5R, F5L,
LSL, L5D, R5R, and R5D.

Orbital Maneuvering System (OMS)

The OMS engines provide propulsion for the Space Shuttle vehicle during the orbit phase

of flight. They are used for orbital insertion maneuvers after the main propulsion system

has shut down. They are also the primary propulsion system for orbital transfer
maneuvers and the deorbit maneuver.

There are two OMS engines per Orbiter. Each OMS engine produces 6000 lb. of thrust.

The location of the OMS engines in relationship to the Orbiter is shown in figure B-1. As
shown in figure 13-4, the OMS engines are canted 15.8 ° upward and 6.5 ° outboard with

respect to the Orbiter body axes. The OMS engines can be pivoted up and down ( + 6°)

and from side to side ( + 7 °) from their null position.

Orbiter Engine Burn Designations

The four PRCS burn designations (NCC, TI, MC3, and MC4) and two OMS burn

designations (NH1 and NSR) listed in table 3 are specific types of engine burns performed
during nominal Orbiter rendezvous operations and were executed on STS-32 during the

LDEF rendezvous sequence. A brief description of each is provided.

NCC - The NCC burn is used to correct the Orbiter trajectory to achieve a desired

offset position from the target. It is usually a combination of three maneuvers

and is the first onboard targeted burn using sensor data.

B-1



TI The TI burn is one of the final burns in the rendezvous sequence and is also
knownas the target intercept burn.

MC The MC burns (MC1,MC2, MC3, MC4) are a series of burns used as mid-
course corrections to intercept the final target. These burns wouldgenerally
followthe TI burn.

NH - The NH burn is used for heightadjustment and is generallya posigrade or
retrogradeburn.

NSR - The NSRburn is used to enter a co-eliptical orbit with the target. There is
generally one NSRburn per rendezvous.
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Figure B-I. Orbital Maneuvering System (OMS) and Reaction Control System (RCS)
Engine Locations
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Figure B-2. RCS Jet Locations and Plume Directions
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APPENDIX C

Contributors

The following individuals made valuable contributions to this project.

The crew maximized the scientific return from the experiment by their support and
commitment to the STS-32 mission.
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Donald De Laquil, Rockwell International, led the team that developed the software for
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developed the software and plotting routines for the many plots presented in this report.
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assisted in the interpretation.
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