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ABSTRACT

A nonintrusive high-angle-of-attack flush alrdata sensing system was installed and flight tested on the F-18 High

Alpha Research Vehicle at the NASA Dryden Flight Research Facility. This system consists of a matrix of 25 pressure

orifices arranged in concentric circles on the nose of the vehicle to determine angles of attack and sideslip, Mach

number, and pressure altitude. During the course of the flight tests, it was determined that satisfactory results could

be achieved using a subset of just nine ports.

The high-angle-of-attack flush alrdata sensing system was calibrated and demonstrated using reference air-

data generated by way of minimum variance estimation techniques which blended alrdata measurements from two

wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and me-

teorological analyses. Calibration results are presented.

Although analyses were not performed onboard in real-time, the High Alpha Research Vehicle high-angle-

of-attack flush alrdata sensing system and resulting alrdata algorithms were validated as being real-time capa-

ble using flight data in ground based simulations. Algorithm implementation, failure detection modes using a

X 2 "goodness-of-fit" test, and fault tolerance techniques using weighted least squares are described.

Flight-test results are presented. Under moderate maneuvering conditions the high-angle-of-attack flush airdata

sensing system was shown to give excellent results. Empirical verification was performed over a large portion of the

High Alpha Research Vehicle flight envelope with a Mach number range from 0.15 to 1.20 and an angle-of-attack

range from -8.0 to 55.0 °. Angle-of-sideslip excursions covered the range from -15.0 to 15.0 °.
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first aerodynamic model coefficient

second aerodynamic model coefficient

linearized observation matrix

pressure coefficient

electronically scanned pressure

aerodynamic model functional

High Alpha Research Vehicle

high-angle-of-attack flush alrdata sensing

inertial navigation system

high-angle-of-attack flush airdata sensing port index

iteration index

freestream Mach number

total number of high-angle-of-attack flush alrdata sensing pressure observations being used

freestream static pressure

pulse code modulation

high-angle-of-attack flush airdata surface pressure

least squares weighting function

freestream compressible dynamic pressure

freestream incompressible dynamic pressure
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surface position vector

root mean square

velocity vector

high-angle-of-attack flush airdata sensing statevector

high-angle-of-attack flush airdata sensing pressure observation vector

generic angle of attack, deg

effective angle of attack, deg

freestream angle of attack, deg

generic angle of sideslip, deg

effective angle of sideslip, deg

freestream angle of sideslip, deg

angle-of-attack residual, deg

angle-of-attack calibration parameter, ( o_e - o_oo), deg

angle-of-sideslip residual, deg

angle-of-sideslip calibration parameter, (fie - too ), deg

Mach number residual

high-angle-of-attack flush airdata sensing pressure residual

statevector iteration error

model prediction iteration error

chi-square variable

high-angle-of-attack flush alrdata sensing model calibration factor

variation of e with Mach number

variation of c with effective angle of attack

flow incidence angle, deg

high-angle-of-attack flush alrdata sensing normal angle coordinate, deg

standard deviation of high-angle-of-attack flush alrdata sensing pressure vector

high-angle-of-attack flush airdata sensing clock angle coordinate, deg

INTRODUCTION

Current requirements in aircraft performance and maneuver capability have dramatically complicated the prob-

lem of flight-control augmentation. This is especially true at high-angles of attack where small changes in angle of

attack can greatly influence the aerodynamic properties of the aircraft. To study aerodynamics at high-angle of attack,

a flight-test program with the F-18 High Alpha Research Vehicle (HARV) is being conducted at the NASA Dryden

Flight Research Facility. Preliminary flights are now concluded. To accomplish the program research objectives,

highly accurate airdata measurements were required throughout the entire subsonic flight envelope. At high-angles

of attack it is difficult to accurately measure airdata using traditional sensing devices such as nosebooms, moreover
a noseboom installation would alter the basic flow characteristics of the aircraft nose. Since flow visualization and

aircraft parameter identification at high-angles of attack were major HARV program objectives, it was critical that
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this flow not be altered with a noseboom (1). 1 As a means of circumventing this difficulty, a nonintrusive high-

angle-of-attack flush alrdata sensing (HI-FADS) system was installed and flight tested on the HARV. A schematic

of the HI-FADS hardware arrangement is presented in figure 1.

45 °

HARV
nosecap

o

Pneumatic
tubing

.45 °

HI-FADS
pressure
ports

_ 90 °

Telemetry antenna

Figure 1. Schematic of HI-FADS system hardware.

]Numbers in parentheses designate references at end of paper.
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Additionally, since the baseline alrdata system for the National Aero-Space Plane (NASP) is currently intended to

be a hybrid system deriving blended airdata from pneumatic flush airdata sensing (FADS) and inertial guidance data,

the HI-FADS system provided the opportunity to research various application techniques for nonintrusive alrdata

systems as vehicle or mission critical flight systems. Although analyses presented in this paper were not performed
onboard in real time, the HARV HI-FADS system and resulting airdata algorithms were validated as being real-time

capable using flight data in ground based batch simultations.

The HI-FADS system design is an evolution of prototype nonintrusive systems demonstrated in previous flight

research studies (2,3,4). References (3) and (4) present individual orifice pressure coefficient data for similar arrays

on other aircraft. This paper emphasizes the airdata algorithm development and composite results expressed as air-

data parameter estimates. This paper briefly describes the HI-FADS system hardware and calibration, the algorithm

development, and proposed redundancy management techniques. Empirical verification was performed over a large

portion of the HARV flight envelope with a Mach number range from 0.15 to 1.20 and an angle-of-attack range

from -8.0 to 55.0 °. Angle-of-sideslip excursions covered the range from - 15.0 to 15.0 °. Test altitudes ranged from

18,000 to 40,000 ft. Selected portions of this database will be presented.

Data illustrating the performance of the system under nominal conditions are presented first. Nominal perfor-

mance statistics are presented. Next, the effects of failure detection and fault tolerance techniques are illustrated

using flight data subjected to large spikes. For this illustration, the algorithm diverged without fault tolerance pro-

tection. With fault protection, the algorithm performed well.

VEHICLE DESCRIPTION

The HARV is a single-place F-18 aircraft featuring dual engines and a mid-wing with leading- and trailing-

edge flaps. The flight-test noseboom has been removed to make way for the HI-FADS installation. The wingtip

sidewinder launch racks have been removed and replaced with special camera pods and wingtip airdata booms. For

flight safety during the initial HARV flight tests, the vehicle was limited to 55*-angle of attack. A broad overview

of the F-18 HARV program is given in reference 5.

RESEARCH MEASUREMENT AQUISITION SYSTEM

For the HARV flight tests, a special research measurement aquisition system was installed. This system pro-

vided flight research measurements in addition to the nominal data provided by the aircraft flight systems sensors.

Research system measurements included linear accelerations from a set of body-axis accelerometers; pitch, roll,

and yaw attitudes from a gimbaled attitude gyro, three-axis angular velocities from a body-axis rate-gyro package,
airdata from two calibrated wingtip airdata booms, and pressure data from the HI-FADS system. In addition to

these measurements, velocity, aircraft attitudes, and altitude from the aircraft inertial navigation system (INS) were

also interfaced with the research measurement aquisition system. All data were digitally encoded onboard using

pulse code modulation (PCM) and telemetered to ground where they were displayed in real time and recorded for

post-flight analysis.

As mentioned earlier, the wingtip airdata booms were installed specifically for the HARV flight tests. The right

wingtip airdata boom consisted of a standard NACA pitot-static head with flow direction vanes (6,7,8). The left

wingtip airdata boom consisted of a specially constructed swivel-head designed to align with the local air-velocity

vector. This swivel design effectively eliminated total pressure loss at high-angles of attack. Flow direction sensing

vanes were also installed on the left wingtip boom. Both wingtip booms were calibrated to a steady-state bias

accuracy of better than 4-0.005 in Math number and -t-0.5 ° in angle of attack and sideslip. Calibration validity range

for the wingtip airdata sensors extended up to 40.0°-angle of attack. Beyond 40.0°-angle of attack, the accuracy
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of the wingtip sensor measurements diminished rapidly. Specific details concerning the wingtip sensor hardware,

installation, and calibration are presented in references 9 and 10.

The HI-FADS configuration has a simple hardware arrangement with the basic fixture being a small fiberglass

reinforced plastic nosecap. A set of 25 0.06-in. diameter pressure orifices, arranged in annular rings, was drilled in

the nosecap. Flight tests were conducted using a 25-port arrangement with ports arranged in 4 rings and a single

nosetip port. The rings were distributed in a symmetric radial pattern about the nosecap axis of symmetry. Analyses

were performed using all 25 orifices and a subset of 9 orifices. The locations of the nosecap ports were determined

using a normal and clock angle coordinate system measured relative to the axis of symmetry. The nosecap itself is

biased downward at an angle of 5.6 ° relative to the longitudinal axis of the aircraft. The normal angle, )_, is defined

as the total angle that the normal to the surface makes with respect to the nosecap axis of symmetry. The clock

angle, ¢, is defined as the angle looking aft around the axis of symmetry, measured in a clockwise sense starting at

the aircraft Z-axis. Figure 2 illustrates the definitions of the normal and clock coordinate angle.

HARV nosecap

I
I

Y

X"(

I
I
' Ith port

Z
911043

Figure 2. Coordinate definitions for i th HI-FADS pressure port.

Port IDs were named according to the clockwise order of occurrence within each annular ring, starting at _b= 0.

According to this naming convention, the third clockwise port in the second ring is designated P203, the fourth port

in the second ring is designated P204, and so on. The coordinate angles of the various pressure ports are listed in

Table 1. Ports IDs followed by an asterisk were used in both the 9-port and 25-port analyses.

The HI-FADS pressures were sensed by a multitransducer electronically scanned pressure (ESP) module re-

motely mounted on a structural bulkhead within the aircraft nose cavity. The backside reference pressure for the ESP

module (which consists of differential pressure sensors) was measured by an absolute pressure sensor also mounted

in the aircraft nose cavity. Fluctuations in the reference pressure were damped out by a reference tank. Outputs

from the HI-FADS transducers were discretized by PCM, and telemetered to ground using the research measure-

ment aquisition system. The HI-FADS pressure data were sampled at 25 samples/see. The estimated accuracy of

the concatonated pressure measurements was better than 2 lb/ft 2 .
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Table I. HARV HI-FADS pressure port locations.

Clock angle, Normal angle,
Port ID deg deg
pOOl* 0.0 0.0

plOl 0.0 20.0

p102 9O.0 2O.0

p103 180.0 20.0

pi04 270.0 20.0

p201 0.0 40.0
p202 90.0 40.0
p203 180.0 40.0

p204 270.0 40.0

p301" 0.0 55.0

p302 45.0 55.0
p303" 90.0 55.0

p304 135.0 55.0

p305" 180.0 55.0
p306 225.0 55.0

p307" 270.0 55.0

p308 315.0 55.0

p401 0.0 60.0
p402" 45.0 60.0
p403 9O.0 60.0
p404" 135.0 6O.0

p405 180.0 6O.0

I)406" 225.0 60.0

I)407 270.0 60.0

p408" 315.0 60.0

FLOW ANALYSIS AND PRESSURE MODELING

This section develops a simple aerodynamic model which is used to relate the HI-FADS pressure measure-

ments to the desired airdata quantifies. Using the developed model all available pressure measurements can be used

simultaneously to estimate the complete airdata state using nonlinear regression. The use of an overdetermined

(more observations than states) analysis makes the resulting algorithm robust to small perturbations in the measured

pressure data.

Pressure Coefficient Model For Incompressible Potential Flow On A Hemisphere

References 11 and 12 demonstrate that for three-dimensional incompressible potential flow around sphere, the

pressure coefficient at the surface is given as

Cp(0) = 1 - sin2(0) = -_- + COS2 (0),

where 0 is the total flow incidence angle at the surface.

To account for a nonsphcrical nose shape, compressibility, and afterbody effects, the coefficients are allowed to

assume arbitrary values while still retaining the basic form of the model, i.e.

Cp(O)= A+ B cos2(O). (1)



The coefficients, A and B are to be empirically determined. In order to satisfy conservation of momentum and

energy, the stagnation pressure constraint must be enforced, i.e., when 0 = 0,

Cd0) = qc--=A+B.
q

This constraint may be built into the model by letting

qc
A - .-:-c_

q

and
n=

q

Substituting these constraints for A and B into equation (1) and regrouping terms gives

Cj,(O) = _[cos2(0) + e sin2(0)],
q

thus the parameter e simply represents an adjustment to modified Newtonian flow theory which is applicable to

hypersonic flows (13). If e is allowed to vary smoothly throughout the Mach number range, and eventually taper to

zero at very high speeds, then a single model which is valid from subsonic to hypersonic conditions can be achieved.

The incidence angle may be written in terms of angle of attack and angle of sideslip by taking the inner product

of the position vector with the velocity vector

V.R
cos(0) =

II v II IIRII

= cos( ) cos(8) cos(x)

+ sin(8) sin(¢) sin(),)

+ sin(oe) cos(8) cos(¢) sin( )0.

Applying the definition of the pressure coefficient

cp( o) =

the model reduces to

PO -- P_

9

Po = qc[ cos2 ( O) + e sin2(O)] + P_-

Thus for a given location on the surface

p(_,),)=F(o6_,q¢,p_, ¢,X, c),

where or, 8, qc, P_ are airdata parameters, ¢, ), are orifice coordinate angles, and c is a calibration parameter

yet to be empirically determined.

Effects Caused By Aircraft Induced Upwash And Sidewash

As presented earlier, the potential flow model assumes a nonlifting hemisphere with no trailing afterbody.

Clearly this is not the case for the nose of an aircraft where vehicle induced upwash and sidewash alter the lo-

cal flow angles (12). Thus the HI-FADS system measures local or effective (_,, fl,) and not freestream (c_, /_,,o)

angles of attack and sideslip. Effective and freestream angles are related by

0¢e = _ + 60¢,

and

where 8o_ and 8B are calibration factors which must also be empirically identified.



CALIBRATION OF HI-FADS SYSTEM

The HI-FADS system was calibrated using reference airdata generated from flight data by way of the min-

imum variance estimation techniques of references 14, 15, 16, and 17. In this procedure, high-accuracy, high-

fidelity reference airdata are generated by merging complementary information from multiple data sources provided

by the research data aquisition system and external measurements such as radar tracking and analyses of weather
balloon information.

All flight maneuvers used to perform the calibration analyses were preceded and followed by approximately

20 see of stabilized low-to-moderate angle-of-attack flight. During this stabilized flight, the wingtip boom airdata

were weighted heavily to give initial and final estimates of the atmospheric winds. During the course of the cali-

bration maneuvers, filter weights were adaptively varied to weight the wingboom airdata inversely proportional to

both pitch rate and angle of attack. At the same time, the equivalent time constant of the wind states was increased

in direct proportion to pitch rate and angle of attack. Weights on the inertial and meteorological data were held

constant throughout the maneuver. Maneuver reference airdata were generated off-line and stored for later use in

the calibration analyses.

A maneuver was judged to be good for calibration purposes when the resulting wind estimates showed little or

no correlation to aircraft-dependent velocity parameters. The basic premise of this technique is that atmospheric

winds, although they may change during the course of a flight maneuver, should change independently of aircraft

motions. Examination of filter covariance estimates indicates that the resulting reference airdata estimates have a

root-mean-square (RMS) noise level of approximately 0.001 in Mach number, 0.1 ° in angle of attack and angle of

sideslip, and 10 ft in altitude. Using these reference airdata, a procedure for identifying the HI-FADS calibration

parameters, &_, 6fl, and _ using nonlinear regression will now be outlined.

Estimation Of Calibration Parameters Using Reference Airdata

The calibration parameters 8o_, 8fl, and ¢ were estimated by substituting the reference airdata into the flow model

and comparing the model pressure predictions to the pressures which were actually measured. Residuals between

the measured and predicted pressures were then used to infer the values of the calibration parameters at each data

frame using nonlinear regression.

Recall that the pressure at the ith HI-FADS orifice is related to the flow indicence angle according to the semi-

empirical expression

119i= qc[COS2(Si) + c sin2(Oi)] + loot, (2)

where 0i is a function of the surface location and the effective angles of attack and sideslip. Equation (2) may be
written in functional form as

fl" _" (3)
p_= F / Pot , _,i "

qc
¢

where

_,

is the coordinate vector for the i th HI-FADS orifice. If equation (3) is linearized by expanding in a power series
about

fie = ,



truncated after first order, and evaluated using the measured pressures and reference airdata, the result may be

grouped as the linear matrix system

where

and

PN- Fly,** af_ ........

F l®= F ,

(4)

t-D- Uli<,>= a-ff ' '

?
and so on. At each data frame, equation (4) is solved for the calibration parameters 6_, 6fl, and • using least-

squares regression (18). At high-angles-of-attack, the nonlinear algorithm requires iteration to convergence at each
data frame. Convergence is usually reached in less than three iterations.

Calibration Results

Calibration data were obtained for Mach numbers up to 1.20 and angles of attack up to 55.0 °. Calibrations

performed for the 9-port and 25-port configurations were found to be nearly identical, thus it is concluded that the

calibration is mostly influenced by the aircraft configuration and (within reason) not the individual port layout. For

this paper, only results from the 9-port calibration will be presented.

Systematic trends were identified by plotting the estimated calibration parameters-the results of the regression on

equation (4) -as a function of various flight variables and visually inspecting the results. Once trends were identified,

a series of tabular break-points were derived using curve-fits, and the tables were hard-coded into the algorithm. The

resulting calibration trends will now be presented. Calibration results will be presented in terms of the effective
flow angles.

Calibration data for the upwash parameter are presented in figure 3, where 6c_ is plotted against effective angle

of attack. The standard deviation in 5or increases with decreasing Mach number, however, 6c_ did not trend with

either Mach number or angle of sideslip in a clearly discernible systematic manner.

Similar calibration data for the sidewash parameter are presented in figure 4, where 5/_ is plotted as a function of

effective angle of sideslip. As above, the standard deviation in 6_ increased with decreasing Mach number, similarly,

8# did not trend with either Mach number or angle of attack in a systematic manner.

Finally, calibration breakpoints for • are presented. It was empirically determined that _ may be accurately

decomposed into two components; •u, which varies as a function of Mach number only, and •,_, which varies as a

function of (effective) angle of attack only, where,

• -- •M + _¢_.
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Figure 3. Calibration results: effective angle-of-attack parameter.
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Figure 4. Calibration results: effective angle-of-sideslip parameter.

These breakpoints are presented in figures 5 and 6. In figure 5, eu is plotted against Moo and in figure 6, ca is

plotted against a. Interestingly, _Jv rises smoothly through Mach 1 and then begins to decline with increasing Mach

number. For the moderate angles of sideslip encountered in the HARV HI-FADS tests, no systematic trend relating

angle of sideslip to e was discernible.
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Figure 5. Calibration results: c_ parameter.
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Figure 6. Calibration results: _,_parameter.

HIGH-ANGLE-OF-ATTACK FLUSH AIRDATA SENSING ALGORITHM

First, this section will derive the HI-FADS system matrix equations and the regression formulae used to solve

the system. Next, failure detection and fault tolerance techniques for individual port failures will be developed.
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Matrix Equations And Least Squares Solution

Using an approach similar to that of the previous section, the algorithm to be used for determining the alrdata

parameters using the HI-FADS pressure data will now be developed. Assuming that an estimate of the jth freestream

airdata state is available, then if the calibrated flow model is expanded and linea.rized about this estimate

where

(5)

Filj = F , 6B , ,

q_j

and so on. The parameters 6a, 6B, and e are computed using the previously determined calibration tables. If the

left-hand side of equation (5) is evaluated using measured pressure data, the N by 4 overdetermined linear system

may be written in matrix form as form as

6Z = C 6X + error

and solved using weighted iterative least squares (18)

with

/cj+ =/cj + t (c Qj÷lc)-'c TJcrc j+ tzj÷ - 2j],

zj+l= rn,., , kj=
• -o .o.

PNj÷ 1 FNIt

IA)( )Olooj. l _ooj

and

and so on. Here, Q is the weighting matrix for this iteration.

Within each frame, the algorithm is linearized about a starting value, the least squares state perturbations are

computed, and the algorithm is iterated until convergence. At the beginning of each new data frame the system is

re-linearized about the result of the previous frame, and the iteration is repeated, thus the algorithm is time-recursive

as well as iterative. This re.cursive, iterative, and overdetermined (more observations than states) structure makes

the algorithm stable and robust to small perturbations in the measured pressure data. For the initial data frame,

the algorithm is initialized about an arbitrary user-input starting value. More sophisticated startup techniques are

currently being investigated.
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Failure Detection And Fault Tolerance Techniques

Difficulty occurs when a large disturbance such as a data spike or a bit-dropout occurs in a measured pressure

value. Recall that equation (5) is nonlinear, thus when the error is minimized by way of the least-squares algorithm,

one true minimum and multiple false minima will exist. If a large disturbance is undetected and not weighted out

of the regression, the resulting state perturbation may dump the algorithm into a false minimum and algorithm

divergence will result. The diverged algorithm will give nonsensical results and will not reliably be able to return to

the true minimum without reinitializing.

Figure 7 presents a one-dimensional illustration of the the problem of false minima. Here, when the marker lies

at 1, the algorithm is nondivergent but still needs additional iterations before convergence is reached. When the

marker lies at 2, the algorithm has converged. Finally, if a large pressure disturbance were to occur, the algorithm

could be dumped into a false minimum (marker at 3) and converge to a nonsensical answer (marker at 4).

!

|_.m¢

•_._ Algorithm will converge
!

4

False minimum

Algorithm will

diverge -_,

Algorithm will diverge

, 2
I

I

I

True minimum
911092

Figure 7. 1-D illustration of HI-FADS algorithm divergence due to false minima.

If a smoothed histogram of the HARV FADS pressure residuals normalized by dynamic pressure 6Pi/qc for

nonfailed, converged airdata is evaluated, the distribution of the residual is approximately zero-mean and Gaussian

with a variance that is proportional to angle of attack. The sample residual variance, computed from nonfailed

HI-FADS flight data, is plotted as a function of angle of attack in figure 8. Since the individual residuals are normally

distributed, for a given data frame, the sum-square of the normalized residuals divided by the expected variance are

distributed as a X 2 variable with N-6 degrees of freedom. The N-6 degrees of freedom result from dependencies

amongst the derived airdata, X 2 , and individual pressure measurements. 2 Thus, prior to performing an algorithm

iteration, evaluating
N

X 2 = E( (6Pi/qc)202 )
i=l

where N is the number of ports available for that data frame, allows the hypothesis for airdata convergence to be

tested. At the beginning of each frame, if the magnitude ofx 2 is compared against percentage points ofx 2 distribution,

z Remember that c_./_, p.., qc, _, and cr have been estimated from the pressure data.

13



thentheprobability that a particular value of X2 can occur without airdata failure may be assessed. In fact, a low

value for X2 is a good indication that the algorithm has converged and another iteration is not necessary. As the

HI-FADS algorithm is currently implemented, the value of g 2 is used as the algorithm convergence criterion.

.03

.02

Normalized
residual

variance,
(SP/Oc)

.01

[]

Q

0
-10 0 10 20 30 40 50 60

Angle of attack, deg _11o_

Figure 8. HI-FADS pressure residual variance.

For example, a X2 value of 2 indicates a high probability that the algorithm has converged and another iteration

need not be performed for this data frame. A larger value (e.g., X2 = 25) indicates that the algorithm has not

converged and another iteration is necessary. A high value (e.g., X2 = 250) indicates a high probability of failure

and individual failure detection routines need to be invoked. An extremely large value (e.g., X2 = 2500) indicates

a certain catastrophic failure if fault tolerance procedures are not implemented. Thus, depending upon the value of

X 2, various iteration or failure detection modes can be initiated.

The value of this method is that it allows a nominal operation of the algorithm with little overhead for fault

detection. Additionally, the X2 value provides a solid convergence criterion. Only when a catastrophic measurement

failure has occurred will individual pressure validity tests need to be performed. The X2 test is completely reliable;

for small sample populations, it is the singularly most reliable "goodness of fit test" available (19).

Figure 9(a) presents the residual histogram, derived from the nonfailed HARV flight data and normalized by the

population standard deviation, compared against a unit variance Gaussian density function. Similarly, figure 909)

presents the X2 histogram compared against the theoretical X2 density. In both cases data and theory are a close

match; thus the g 2 test may be applied with confidence.

Because failure tests on individual ports need to be performed only when a X2 test failure has occurred, individual

failure tests can be simple, such as a 3 -or test (based on the population variance for unfailed alrdata) on the individual

pressure residuals; or complex, such as a parity test in which values of X2 for various port groups are evaluated,

and ports whose inclusion causes the chi-square value to grow inordinately are rejected. When a port has been

identified as failed, then it is weighted out of the algorithm by setting its weight to zero (or some small value).

For the HI-FADS tests only the simple 3 - a test for port failure was implemented. Currently, research on more

sophisticated individual failure detection schemes is being performed. A block diagram of the HI-FADS algorithm

flow structure is presented in figure 10.
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Figure 10. HI-FADS algorithm.

EVALUATION OF HI-FADS SYSTEM PERFORMANCE

The performance of the HI-FADS system was empirically evaluated using flight data, where comparisons be-

tween various HI-FADS derived airdata estimates and the corresponding reference airdata parameters were per-

formed. The reference airdata were generated using the same minimum variance estimation techniques as described

previously. As an illustration of typical flight results, data from a moderate rate dutch-roll maneuver will now be

presented. These HI-FADS data, obtained using the 9-port analysis, were not previously used in establishing the
calibrationtables.

Comparisons of HI-FADS and reference angles of attack are shown in figure 11. Presented in figure ll(a) are

the actual angle-of-attack time histories. Two curves are presented--the reference angle of attack and the HI-FADS

angle of attack. For the scale used, no differences are discernible. Actual differences may be discerned by plotting

the time history of the residual between the HI-FADS and reference angles of attack. This residual time history is

presented in figure 1l(b). Similar comparisons for Mach number and angle of sideslip are presented in figures 12(a),

12(b), 13(a), and 13(b). With the exception of small deviations during the high rate portions of the maneuver, the

differences between the HI-FADS and reference airdata values are insignificant.
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Quantitativeaccuracy levels were obtained by evaluating residual statistics for a compilation of various HI-FADS

maneuvers. These results are presented in Table 2 for the 9-port and the 25-port analyses. The HI-FADS airdata

estimates resulting from 25-port analyses were slightly less noisy than for the 9-port analyses. Since the 25-port

configuration is more overdetermined and thus less sensitive to individual measurement errors, this result is as

expected. The statistical data indicate that even up to high-angles-of-attack, both configurations have a standard

deviation of approximately one-half degree in angle of attack and angle of sideslip, and better than 0.004 in Mach

number. On a steady-state basis, the extremely low mean residual values indicate that the HI-FADS system can be

calibrated as accurately as the reference against which it is being compared.

Table 2. HARV HI-FADS airdata residual statistics for 9-port and 25-port configurations.

Parameter Mean error RMS error Mean error RMS error

9-port 9-port 25-port 25-port

Angle of attack 0.02 ° 0.56 ° 0.02* 0.48*

Angle of sideslip 0.100 0.52 ° 0.100 0.46 °
Math number 0.0008 0.004 0.0007 0.003

Altitude 11.4 ft 19.2 R 9.2 tl 16.3 1l

(3.47 m) (5.85 m) (2.80 m) (4.97 m)

Airspeed 0.84 ft/see 4 ft/sec 0.75 ft/sec 3 fffsee

(0.259 m/see) (1.22 m/see) (0.223 m/see) (0.914 m/sec)

Application of the X2 test to prevent algorithm divergence is now illustrated using actual F- 18 HARV flight data.

Here the incoming pressures experienced a series of sharp data spikes of large magnitude. Time histories of the

pressures are presented in figure 14. When these data are run unprotected through the FADS algorithm, catastrophic

divergence results. The results are presented in figure 15(a) for the computed angle-of-attack time history. For the

diverged data, the computed X 2 time history is presented in figure 15(b). At divergence, X 2 assumes large values.
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Figure 14. ESP pressure data for airdata failure example.
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Next, the X2 criterion is used to test for algorithm divergence. Here when the value of X2 _> 25, a simple

3 - ¢ test (based on the population variance for unfailed airdata) on the individual pressure residuals is performed.

For failed pressures, the weight is set to zero. The resulting computed angle-of-attack time history is presented in

figure 16(a). Only slight irregularities at the points of the spikes are distinguishable. The computed X2 time history

is presented in figure 160)). Only at the points of the spikes does the X 2 value become large. More sophisticated

weighting schemes are currently being developed and will be applied in later tests using the HI-FADS data.
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Figure 16(a) Converged airdata (divergence protected).
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Figure 16(b) Chi-square value for converged airdata (divergence protected).
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PROPOSED FUTURE WORK

To flight demonstrate a real-time flush airdata sensing (RT-FADS) system, a collaborative effort between

NASA Dryden, McDonnell Aircraft (McAir), and Honeywell Inc., is currently underway. This effort seeks to demon-

strate in real time the capabilities of a FADS system onboard NASA Dryden's Systems Research Aircraft (SRA), an

FA-18b. The RT-FADS system is based on the HI-FADS architecture, but will be performed in onboard processors

and the evaluated airdata will be displayed to the pilot and also telemetered to ground in real time. The first flight

of the system is anticipated to occur in April of 1992. Tests for Mach numbers up to 1 A0 are planned.

SUMMARY AND CONCLUDING REMARKS

A prototype nonintrusive airdata system was installed and flight tested on the F-18 High Alpha Research Vehicle

at the NASA Dryden Hight Research Facility. This system consists of a matrix of 25 pressure orifices arranged in

concentric circles on the nose of the vehicle. Pressure was transmitted from the orifices to a multiport electronically

scanned pressure module by way of lines of flexible pneumatic tubing. Outputs were digitized and telemetered to

ground where they were recorded on tape for post-flight processing.

The HI-FADS system was calibrated using flight data. The calibration parameters relate effective angle of attack

and angle of sideslip to freestream values, as well as account for compressibility and total energy loss at the sensor

array. Details of the calibration procedure and calibration results were presented.

The HI-FADS algorithm, failure detection, and fault tolerance techniques were developed and presented. Flight

results were processed and compared against reference airdata. Computations were performed using all 25-ports

and a subset of 9-ports. Statistical analysis of residuals for both the 9-port and the 25-port analysis methods indicate

that the random measurement uncertainty is approximately one-half degree in angle of attack and angle of sideslip,

and better than 0.004 in Math number. The extremely low residual mean values indicate that on a steady-state basis

the HI-FADS system can be calibrated as accurately as the reference values to which the system is calibrated. Use
of the failure detection and fault tolerance schemes was illustrated.
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