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Thermal Design and Test Results for SUNLITE Ultra-Stable Reference Cavity

Ruth M. Amundsen

NASA Langley R_.,search Center

tlampton, Virginia 23665

lntroduclion

The SUNLITE I instrument is being developed by NASA Langley Research Center to validate the

fhndan_nta[ linewidth and f'requency stability limits of a Nd: YAG laser oscillator, locked to a high

finesse reference cavity, in the microgravity and vibration-free environment of space. The narrowest

la._r linewidth of a di(xle-pumped _)lid-state lair o_illator achieved to date has been 3 Hz; this is 20

times higher than the shot noi_ limit. 2 (Ref I) Efforts to stabilize lasers in earth-based laboratories have

been limited by _nsitivily of the apparatus to vibrational noise and by distortions in the reference cavity

induced by gravity. A free-flying experiment in the microgravity and vibration-free environment of

space would greatly reduce these limitations. The SUN LITE program will provide an automated and

self-contained stabilized lerahertz oscillator and will characterize the operation of this oscillator system in

space. The low vibrational noise in the space environment will enable the linewidth to approach the shot

noise limit of the system. Among the many applications of such an ultra-stable laser in space are deep

space coherent communications, astrometry, laser radar li)r h)cation and docking, and laser-gyro rotation

sen_)rs. Ultra-narrow linewidth lasers will also enable investigations such as the detection of gravity

waves and tests of the the_)ry of relativity. (Ref 2)

The lasers on the SUNLITE instrument are stabilized by a frequency-modulation technique. This

technique uses a cavity with ultra-high reflectance mirrors on each end to tune the laser wavelength by

locking to the resonance frequency of the reference cavity. The resonance frequency is determined by the

cavity length; thus the frequency and linewidth of the laser beam are extremely sensitive to small changes

in the length of the cavity. Perfimning this experiment in space avoids gravitational and vibrational

distortions in the cavity. Once in space, the dominant efl_t on the cavity length will be thermal

changes. The, so thermal changes are due to fluctuations in the spacecraft temperature during an orbit, and

al_ to optical bench heating produced by I_)wer dissipations of SUNLITE components. The cavity is

fabricated from a material with a low coefficient of thermal expansion (CTE) to minimize the thermal

effects, but the limit on the temperature change of the cavity is still a demanding one. A practical limit is

established by requiting that the thermal noise not contribute more to linewidth than the photon shot

noise. For the inherent 150 kHz linewidth of this cavity, this limits the length growth to less than 0.025

nanometers/minute which results in a maximum thermal gradient of 0.025°C/min. 3 This limit is close to

the resolution of the thermal measurement system that will be used to verify that this requirement has

been met. However, the design goal is to produce perfi)rmance much more stable than this requirement,

and the predictions from analysis support this expectation.

IStanford University - NASA Laser In-Space Technology Experiment

2Shot noise limit: a physical limit induced by the discrete nature of the photons within the light

beam; i.e. the photons are detected as distinct events rather than a continuous and steady phenomenon.

3CTE (o 0 = 2 x 10 -8 nl/m°C, L = 50 ram, I, = 3xlO 14 Ilz.
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In the lal'_ratory enviromnent, this level of thermal stability is often achieved by using either a

_rics of thermal shields around the cavity to buffer the reaction to external changes, or thread-like

isolating supports to minimize input from the external environment. For the SUNLITE experiment, mass

and volume limitations make the first melh(xl impractical, and the requirement to survive launch

environment vibrations entails m_lifiealion of the second meth(xl. The final design must provide

sufficient thermal isolation to meet the temperature gradient requirement, with adequate structural

support to maintain the position and alignment of the cavity during testing and launch. The design of

the passive cavity mount has been accomplished using an isolation technique to limit the heat transfer

between the optical bench and the cavity, while maintaining a low mass and stable alignment. A thermal

balance test was perfi)rmed to evaluate the perfi)rmance of the original cavity mount design. This paper

will de`scribe that thernml vacuum test, and outline some of the improvements suggested for similar

thermal tests which require this degree of accuracy and stability.

Cavily Mounl Design

The cavity rm)unt design incoqx)rates several features to improve thermal isolation. As shown in

Figure I, the inner spacer is a Zer(uJur ®cylinder with mirrors at each end. Zerodur is a low expansion

glass manufactured by Scholt Glass Technologies. The "spider" which supports this is fabricated of

KeI-F ®, a thermoplastic by 3M with low thermal conductivity. The cylindrical case into which the spider

slips is made of Super Invar ®, a h)w thermal expansion iron-nickel alloy. The mounting feet, mount and

yoke which attach the case to the optical bench arc also fiLbricated from KeI-F. The mounting feet have a

small area of contact with the optical bench and a small el't_ctive conductance area to the main portion of

the mount. For the prototype used fi)r this test, mirrors were not incorporated since they (a) would not

be u:_a.I in the thernml lest, (b) have negligible the,real efl_tct and (c) are extremely expensive. For the

final cavity design, high-rellectance ,nirrors will be attached at the ends of the spacer and the cavity will

have a fines_ 4 of over 20,000. Also, the inner spacer was manufactured from fused silica rather than

Zerodur in order to gel similar thermal characteristics at lower cost. The low expansion qualities of

Zer(_ur were not necessary fi)r this prototype since there was no optical performance test.

The Zerodur which will be used fi)r the spacer was selected h)r low CTE; a special grade is

available for the flight unit which has a vendor-claimed CTE value of 2 x IO-8 m/m°C over the range

5 to 35°C. The thernml changes in length between the ,mrrors, however, will be determined by the sum

of the material which connects the mirrors. The mirrors themselves are fused silica, which has a higher

CTE than Z_rodur, but the mirrored surlaces are on thc front face of the silica block where it connects to

the spacer; thus the expansion of the silica will not change the distance between the mirrors. The

prelerred method lot connecting the mirrors to the spacer is an optical bond: a bond directly between the

glass surtaces. If this is not feasible, it may be possihle to lay an adhesive layer between the surfaces that

is sufficiently thin st) &s not to substantially increase the overall CTE. Another option is to compensate

fi_r the CTE that the epoxy bonds add to the as_mbly. This can be accomplished by mounting the

mirrors on the back surfaces, .so that the thermal growth of the mirror substrate is in the opposite

direction to the thermal growth of the spacer. By controlling the thickness of the fused silica block of the

mirror, the CTE's can be balanced exactly, leading to a perl_ctly stable length between the mirrors under

thermal changes. The exact materials and method of bending have not been chosen at this time; the

thermal requirements presented here assume that an overall spacer CTE value of 2 x 10 -8 m/m°C is
achievable.

The deveh)pment of the re|erence cavity will be an iterative process and several designs will be

analyzed, built and tested. Thermal testing on initial designs will be perfi)rmed to characterize the

thermal perfi_rmance of the mount and to correlate it with analytical models. Later tests will incorporate

4Finesse: a figure of merit approximately equal to the number of times a light beam will bounce

between the mirrors befi)re being ,scattered or absorbed.
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Figure 1. Preliminary Passive Cavity Design

a functioning cavity and laser to evaluate the effects of the laser beam heating and ensure that the

analytical model is accurate.

Test Objectives

The thermal stability is essential to the successful operation of the instrument and is severe enough

to challenge the limits of analytical predictions. Testing of the prototype design provides confidence in

the design technique, and yields data that can be used to correlate the analytical model. The main

objectives of this primary test are to verify that the isolation technique will limit the thermal input to the

cavity for a sufficient length of time and to gather data that can be used in correlation of the analytical
thermal model.

The gradient requirement of O.025°C/min imposes a requirement on the temperature measurement

technique to read temperatures to 0.025°C, or be able to interpolate the measurements to this accuracy.

The length of time for which the cavity needs to remain stable is roughly one hour after the temperature

of the baseplate begins to change. This is the time period during which science data will be taken when

the experiment is on-orbit. During this test thermal data was taken for much longer time periods than

one hour to allow better correlations of the analytical thermal model.

Test Set-up

The SUNLITE thermal vacuum test consisted of four days of testing, with a different thermal cycle

performed each day. The thermal response of the prototype reference cavity was measured by 15
temperature sensors (Omega AD590). The sensors were placed on the reference cavity as shown in
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Figure2usingRTVasabondingagent.Thesensor#1 reading is referenced most often since it

represents the temperature of the spacer, which is the critical temperature in determining thermal growth

between the mirrors. Two sensors were used to monitor the temperature of the baseplate near the cavity

mount. The cavity was bolted to the baseplate, which simulated changes in temperature of the optical

bench. The test was conducted in a vacuum to eliminate gas conduction and convective effects. The
cavity was blanketed with MLI to minimize radiative thermal effects on the cavity and more closely

simulate a flight environment. The temperature of the baseplate was computer-controlled to match the

desired profile. The temperature of the baseplate was controlled by four infrared heat lamps directed at

the side opposite the cavity and by LN 2 lines with a computer-controlled valve attached to the baseplate.
Thermal profiles of the baseplate for each day were chosen to give a wide range of rates and ranges, in

order to gather as much data as possible for correlation of an analytical thermal model.

The ADS90 temperature sensors are current output devices which deliver a current proportional to

their temperature. These currents were transformed to proportional voltages through a transconductance

amplifier. The voltages were read and corresponding temperatures calculated by a Fluke data-logger.

An automated program saved all test temperatures to three decimal places at two minute intervals.

The temperature sensors have a maximum absolute error rating of 2°C, and a maximum

repeatability error of 0.1 °C/month. The potential absolute errors are not cause for concern since what is

being measured is a change over time of each sensor reading; the error from some absolute temperature is

not crucial. The sensors were also chosen because of their high degree of linearity (0.8°C maximum non-

linearity). The conclusions section contains a discussion of potentially preferable sensor choices for later

tests. To minimize the absolute errors between the sensor readings, each cycle was initiated with a

steady state during which all sensors would be stable and at or near the same temperature. The calculated

reference temperature was an average of all sensor readings at the initial time. This temperature was
subtracted from each sensor's initial reading to give a correction factor used for that sensor on that test

day. Due to the long stabilization time constant inherent in the isolation of the spacer within the cavity,

either active or passive stabilization of the cavity temperatures was a lengthy procedure. Active
stabilization before a run would have occupied over half the working day. Active stabilization of the

cavity temperatures during overnight operation was not possible due to laboratory regulations. Instead,

the test set-up was allowed to equilibrate in a passive mode overnight, so that temperatures would be
stable and uniform over the entire cavity by the start of the test day. The use of an average temperature

as the reference to correct the sensor readings did incorporate slight errors, since the sensors were not at
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precisely the ,same initial temperature, but these were less than the l_tential 2°C absolute error. This

correc'tion d(_e.,_not afle, ct the crucial parameters of stability and resolution fi)r each sensor.

l)ata Evahmlion

The values thai are generated here li)r the cavity thernl:tl drill should be over-estinmtes of the rate of

drift lot several reasons. First, the _nsors useud had an internal heat dissipation of 1.5 roW. It is

difficult to determine what /faction of the 1.5 mW sensor ix_wer is altO:ling the junction temperature.

The sensor data sheet suggests methods of calculating the eltoot, but not fi)r any thermal environment

similar to Ihis (reference discussion in concerns secti()_l). This power is responsible fi)r a small portion of

the _n_r-indicaled ri_ in temperature, especially lot Day 2, when the sensors were _)wered up not

long heft)re the start of the test. In the analytical model this power dissipation is accounted for by heat

sources at each _n,,a)r. Another factor is the thermal impact of the wires that connect the sensors to the

ambient environment. Lamg _tions of 30 gauge wire were used to minimize thermal input and impact

on the thermal rate of change. These wires, being connected to the external environment, add a thermal

path that does not exist in the Ilight configunition; thus Ihey add a conservative factor to the values for

temperature change measured here.

The drift rates tbr Day I & Day 2 were positive before the start of the test, as shown in Table 1.

This value was not subtracted from the total temperature rise, so that some of the observed temperature

rise is due to drift. The Day 4 drift slope is negative belbre the test, and this value was added to the

measured increase .so that the correxted data would not show a misleadingly low temperature rise.

This data analysis method of taking the worst of all cases may _em over-conservative, but in fact

there are mitigating tactors. The sensors are each motmlcd on a small slab of RTV adhesive, so that

there is some thermal isolation between the sensor and the associated structure of the cavity. Thus there

could be a slight time lag between the increase of the cavity temperature and the increase in the _nsor

temperature; in other words, the actual temperature rise could be faster than the recorded temperature

ri_. The variation in the thickness of Ihe.se pads of adhesive could lead to errors between sensor

readings. Measurements of physical gradients ahmg the spacer must be scrutinized to ensure that they

reflect a real gradient and not a pseudo difference induced by the measurement technique. This may

ultimately require extraction of spatial gradient predictions from the analytical thermal model, rather than

using the values from the actual testing.

The reference correction perlormed to eliminate the variability error between sensors can introduce

small relative errors due to initial differences in temperature. This potential error, and that due to the

variation in adhesive bonds, nutke the relative values between the sensors less reliable than the change in

one sen_)r reading with time. For this reason, the analytical model will be correlated using the changes

in each _n_)r with time, and not difterences between sensor readings.

The following table shows the initial stability of sensor #l as well as the averaged reference

temperature on each day of testing.

Table 1. Initial Test Conditions

Test Day Stability

{°C/min)

Average Temp.

(oc)
24.815I 0.00075

2 0.0075 23.842 + 60

3 -0.0028 23. 109 -15

4 -0.006 22.924 + 3.6

Initial Rate

Applied (°C/hr)

+3O
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Test Results

The test profiles Ior each of the fimr days ar_: shown m Figures 3, 4, 5 and 6. The baseplate

temperature and the reading of _n._r #1 on the spacer are plotted. It can be seen from thesegraphs that
the i_flation is reducing the ramp rate ob_rved at the c:wity ,_pacerby a factor of approximately 20, and
the steady-state plateau of the spacer is far rerm)ved from the haseplate plateau. 1"his is indicative of
highly effective thermal isolation of the cavity spacer.

The thermal ramp fi_r Day i (30°C/he) is much inore severe than anything that the cavity will see in
flight and yet the thermal driR within the first ten mi,mtcs is still within the 0.025°C/min requirement.

This is very encouraging. The data can he interpolated to rell¢ct flight-like results using the rough

guideline that the ramp will have a linear eliot on the spacer change in temperature. A reasonable ramp
value for worst-case flight conditions derived from preliminary optical bench modeling is 6°C/hr. This

exact value was not used as a test ramp due to the fact that preliminary modelling was not complete when
the ramps were selected. Thus, the results from each test must he interpolated to match predicted flight

conditions. Within the nominal operation time of one hour, the cavity shows an interpolated average
thermal rate of 0.01 ! °C/min and a maximum rate of 0.017 °C/min at the one-hour mark, both of which

are within the requirement. This approxinmtion factor cannot be used in lieu of detailed modeling, but it

gives a preliminary idea of the temperature ri_ fi_r flight-like conditions. Later optical bench modelling
has indicated that the worst-case flight conditions will not he as severe as 6°C/he; a maximum of 2°C/hr

is anticipated. Thus the interpolateu] results pre_nted here are extremely conservative.

The results from Day 2 show a roughly doubled increase in heating at the cavity over that of Day 1
which is reasonable since the ramp rate is twice that of Day I. The heating at the one hour mark is not
proportional due to the leveling off of the Day 2 temperature ramp at 50°C before 1 hour. The factored
value for the flight-equivalent gradient over one hour is 0.O06°C/min, well helow the 0.025°C/rain
limit.

SUNLITE THERMAL VACUUM TEST: DAY 1
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The results from Day 3 have not been interpolated in the _me manner becau_ the initial

temperature deviation of the cavity is upward, even though the baseplate temperature is decreasing at

15 °C/hr. This may be explained by some of the factors mentioned earlier such as the sensor self heating

(.,_,_ di_ussion below). The thermal ramps of 3.6°C/hr during Day 4 were much closer to what would

be expected from the flight environment. The average change over a one-hour period was 0.008°C/rain.

When this is interp_dated for a 6°C/hr ramp, the resultant average rate would only be 0.013°C/min and

maximum rate 0.014°C/min; I_th are well below the stability requirement.

As shown in Table 2, the interpolated results for each test day show that this initial design would

easily meet the imposed practical limit on the thermal rate even with worst--case conditions on the optical

bench. The values fi)r Day 2 are lower because of the leveling of the heating ramp before one hour.

Table 2. Interpolated Thermal Rates On Spacer for Equivalent 6°Clhr Ramp
(Requirement 0.025 °C/min)

Test Day Maximum Rate at I hr

(°C/rain!
0.017l

2 0.009 0.006

4 0.014 0.013

Average Rate over I hr
(°C/min)

0.011

The pre-te.st stability curves h_r each day of testing are shown in Figures 7, 8, 9 and 10. More

sensor values are shown fi_r Day 3, since it is interesting to see that all the sensors are going through the

.same slight temperature decrease before the downward ramp begins, at which point they all deviate

upward. This provides evidence that .,a,me factor at the beginning of the test caused the upward

deviation. This was the only test to initiate with a downward ramp; when the LN 2 lines begin full flow
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to start the ca)oling and the IR lamps are activated to vaporize the liquid in the lines, there could be some

anomalous radiative heating effect into the cavity. Another possible cause for this effect would be that

the warping of the ba_plate was the worst at the start of this test due to the combined effects of lamps

and LN 2. This could cause the feet of the cavity to h)se contact with the baseplate and reduce conduction

from the cavity _) that the _lf-heating of the sensors dominated.

A selection of sen_rs encompassing the main positions (m the cavity assembly for Day 1 is shown

in Figure 1 I. The main Ix)int to be elicited from these curves is that the major portion of the isolation is

evidently being accomplished between the haseplate and the lbot of the cavity mount, since the sensors

are all showing a similar large temperature delta from the baseplate. The small conductive area of the

KeI-F feet is effective in reducing the heat tiow into the cavity mount. This should be considered when

the design is modified fi)r flight.

Stabilit2_

Problems and Concerns

The thermal stability of the testing building itself is not normally very high, and added to this was

the fact that during the test the thermal ctmtrol in the building was turned off h)r maintenance reasons.

There was open air flow through the building from the outside during much of each day. For this

rea.,am, the stability belbre testing each day was not as gt)od as could be expected. On the first day of

testing the assembly was completed, power appli 'taJ t_) the sensors, and pump-down to vacuum initiated.

A three-hour period was necessary heft)re sufficient stability was achieved to start the test ramp. For the

,second day of testing the vacuum system had been left operating in order to awfid the thermal impact of

evacuation, but the _nsors had been turned off. Powering up the sensors added the impact of

self-heating to the quie,_ent system, and thus even after an hour delay the system was still changing.

Alter Day 2, the sensor power and vacuum system were left on continuously for the duration of the test.
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in general, for any future tests, every cftbrt should be made to maintain active thermal control of

the baseplate continuously throughout the test. One rea._)n (in addition to time constraints) this was not
done was because of the "noi_" inherent in any thernud control system; it was felt that a passively stable

baseplate temperature was more valuable than a continuously-controlled, slightly oscillating baseplate

temperature. For this experiment, because of the isolation of the critical part (i.e. the spacer), the slight
oscillation of an actively controlled baseplate would probably be more acceptable than the long-term
drift.

The liquid nitrogen system u,'_l an "on-off" control, which produced large swings in the baseplate
temperature at the lower temperatures. The effect of this can be seen in the jagged baseplate temperature
profile in Figures 2 through 4. The_se variations at the low temperatures would not have affected the

spacer temperature change, since there is such a long inherent time constant between the baseplate and

spacer.

Sensor selection and attachment

The _nsors chosen fi_r this test were Omega ADS90 monolithic integrated circuit high-sensitivity,
high stability _nsors. The current output aspect of these sen_)rs is advantageous for vacuum test use,

since they can be attached with little regard fi)r the temperatures and materials at each electrical joint.
However, they were not fully calibrated before the test due to technical difficulties. The correction of all

.,_nsor readings ba:,_xlon an initial average temperature afl_ts only the absolute reading of each sensor

and the compari_m of the sensors to each other. The relative reading of each sensor (i.e. the change in
the reading of one _n,,a)r over tin_) is still highly accurale. From the specified stability over one month,
it can be _n that the stability over an 8-hour test day is at the 0.001 °C level. The extrapolations to

flight conditions were made using the changes in single sensor values. Correlation of the analytical
rmglel also used the change in each sensor reading over time.

The main concern with these sensors in terms of using them for this typa of test is that they

dissipate heat. The heat di_ipation of 1.5 mW per sensor may not seem substantial, but it produces a
total of 22.5 mW within the cavity. From the analytical model, heating on the order of tens of micro-

watts can be seen to change the spacer heating rate significantly. Since each sensor was mounted on RTV

to attach it to the cavity, its thermal environment was highly resistive. The sensor self-heating is only
guaranteed not to affect the results when the thermal environment is a highly conductive one such as a
stirred oil bath. For other environments, the rise in the junction temperature above the ambient must be

calculated. Unfortunately, this environment (vacuum with no heat sink) is not one for which the

calculation parameters are given by the vendor, nor will all of the _nsors have exactly the same
environment. Differing amounts of RTV adhesive under each _nsor, as well as the different substrates

(Invar, KeI-F), will produce di_imilar thermal environments at each sensor. The self-heating of the
sensors can be included in the analytical n,a_d¢i, but without a detailed analysis of the thermal

environment of each sensor, the determination of the actual temperature at each sensor location over time

is an almost impossible task. In general, when temperatures are to be measured to this resolution and

accuracy, it would be recommended to use passive sensors that dissipate little or no power. There may
be some loss in the specified sensitivity of the sen_)r, but this will be more than compensated by the

increased confidence in the data with no self-heating eflF.cts.
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Conclusions

Cavit£ mount perfi)rmance

The cavity thermal isolation perfi)rnmnce was better than the requirement of 0.025°C/minute in all

casex,_. This was true even when unrealistically worst-ca_ conditions were assumed. The mount is

damping the effF._t of external temperature change rates by at least a factor of 20. The main isolation is

being accomplished in the KeI-F mounting I_zt and mount; the thernml isolating effect of the spider is

outweighed by the effect of the small thermal conductance through the mounting feet.

Test _ performance

The thermal stability of the test system was not _tisfactory. For future tests, the baseplate will be

kept under active thermal control during the entire testing period, as well as being actively stabilized for

at least 12 hours before the start of the first test. The LN 2 line performance has already been improved

since this test. Rather than using an on--off valve to add LN 2 to the plate and vaporizing it with IR

lamps, the LN 2 flow is now controlled by a digital valve, which can allow units of flow from one-eighth

to full flow depending on need. This will pr{_luce a much smoother temperature decrease ramp, and

more stable scudcs at low temperatures.

Some other options which could assist in correlation of the model and transfer of the information to

a flight configuration are: to use a baseplale ramp which is as close as possible to the nominal flight

ramp, and ramps slightly more and less revere; to run ramps which are symmetrical in increasing and

decreasing temperature to ensure that there is no thermal bias in the test set-up; to ramp only the radiative

environment in order to directly evaluate this effect; and to use MLI around the cavity which is as close

as possible to the flight configuration. One severe ramp would be useful for providing a quick, rough

correlation, and the remaining flight-like ramps could be used to attain the degree of accuracy needed.

Sensor selection

The sensors chosen fi}r future tests should be ultra-low power, calibrated and repeatable to 0.01 *C.

The ultimate low-power sensor is a thermocouple; unl_,rtunately thermocouples with a calibration of

0.01 °C could not be located. The sensor currently proposed is a newly available miniature thermistor

which claims a calibration of 0.01°C traceable to NIST. The_ are miniature thermistors with a room

temperature resistance of alxmt 10 kWand exceptionally steep resistance versus temperature properties.

With suitable measurement techniques, the dissipated power can be kept below 0.1 mW per sensor. As

few as possible of these senm_rs should be within the cavity, since power dissipated within the cavity will

have the most impact on the spacer temperature.

Sensor attachment

As discussed in the results and concerns sections, the RTV adhesive bond between each sensor and

the cavity may have affected the temperature readings. For this reason, if thermal testing or monitoring

is performed in the future it would be desirable to have a more conductive bond between the sensors and

the portion of cavity structure to be monitored. The optimum attachment from a thermal point of view

would be a thermally conductive epoxy, such as one that is metal filled. Metallic tape or a metal mesh

pad within the adhesive are also possibilitie.s. If this is not feasible, more rigorous controls on the size of

the bonding pad below the sensor would be helpful, to equalize the thermal resistance environment of

each sensor. This would provide more uniform readings between sensors, as well as allowing simpler

correlation of the thermal nuulel. The suggested epoxy for future tests is a thin-film conductive adhesive

used for electronic hybrids which has a uniform thickness of 0.13 nun (0.005 inches).
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Appendix: Listing of Acronyms

CTE

IR

LN 2

MLI

Nd:YAG

NIST

RTV

SUNLITE

Coefficient of Thermal Expansion

Infrared

Liquid Nitrogen

Multi-Layer Insulation

Neodymium Yttrium Aluminum Garnet

National Institut_ fi)r Science and Technology

Room Temperatur_ Vulcanization

Stanford University - NASA Laser In-Space T_hnology Experiment

-16-





Report Documentation Page

I R,;porlNo 2. Goverr,men! Accession No

NASA TM-104117

;_-f;i,_ a,a s.,m,._,-.......................

Thermal Design and Test Results for SIINI, ITE Ultra-

Stable Reference Cavity

7. Author(s)

Rt, tll M. Amundsen

9. Performing Organization Name and Address

NASA l,angley Research Center

Hampton, VA 23665-5225

12. Sponsoring AgencyNameandAddress

National Aeronautics and Space Administration

Washington DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

August 1991
6. Performing Organization Code

8. Performing Organization Report No.

10 Work Unit No.

589-01-11-02

11. Contract or Grant No.

13, Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16, Abstract

SUNLITE (Stanford University - NASA l,aser In-Space Technology Experiment) is a

space-based experiment which uses a reference cavity to provide a stable frequency

reference for a terahertz laser oscillator. Thermal stability of the cavity is a

key factor in attaining a stable narrow-linewidth laser beam. The mount which is

used to support and align the cavity will provide thermal isolation from the

environment. The baseline requirement for thermal stability of the cavity is

0.025°C/minute, but the design is directed toward achieving stability well beyond

this requirement to improve the science data gained. A prototype of the cavity

mount has been fabricated and tested to characterize the thermal performance. The

thermal vacuum test involved stable high-resolution temperature measurements and

stable baseplate temperature control over long durations. Based on test data, the

cavity mount design satisfies the severe requirement for the cavity thermal

stability. Improvements to the cavity design will be made and additional proto-

types will undergo thermal tests in the future. Lessons learned in this thermal

test can be applied to future testing to improve the resolution and reliability
of the results.

17. Key Words (Suggested by Author(s))

thermal test, thermal stability,

temperatt,re measurement, reference
cavity, laser, frequen('y modulation

19. Security Clessif.{of this report)

[lnclassif ted

NASA FORM 1626 OCT 86

18. Distribution Statement

th_c ] ass i f ied-Un Iimited

Subject Category 18

Security Cle_if. (of this page)

Unclassified

21. No. of pages _. Price

17 A03

PRECEDING PAGE BLANK NOT FILMED






