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ABSTRACT

Under the present effort an experimental rig has been constructed, an instrumentation
package developed and a series of mean and rms velocity and pressure measurements made ina
turbopump which modelled the first stage of the Space Shuttle Main Engine High Pressure Fuel
Turbopump. The rig was designed so as to allow initial experiments with a single configuration
consisting of a bell-mouth inlet, a flight impeller, a vaneless diffuser and a volute. Allowance was
made for components such as inlet guide vanes, exit guide vanes, downstream pumps, etc. to be
added in future experiments. This flexibility will provide a clear baseline set of experiments and
allow evaluation in later experiments of the effect of adding specific components upon the pump
performance properties. The rotational speed of the impeller was varied between 4260 and 7680
rpm which covered the range of scaled SSME rotation speeds when due allowance is made for
the differing stagnation temperature, model to full scale. The corresponding Reynolds numbers
based on the hydraulic diameter and bulk velocity at the exit of the model turbopump varied
between 1.3 x 104 to 2.5 x 104. While these model Reynolds numbers are lower than flight
conditions by several orders of magnitude they are sufficiently high to ensure turbulent flow
throughout the model. The bell-mouth inlet allowed intake from atmosphere and was favored in
initial testing reported here in order to have a base line flow with the minimum complexity inlet
conditions. The flight impeller provided cyclical variability which resembled flight operation. A
vaneless diffuser and volute assembly was chosen for a baseline because of its having best
efficiency over the widest range and because of its ease of optical access. The results were
obtained to aid the design of the inlet and diffuser and to improve the understanding of velocity
and pressure characteristics of centrifugal pumps and of the cyclic load associated with the
pulsation generated by the rotating impeller.

The results at the inlet obtained with rotational speeds of 4260, 6084 and 7680 rpm showed
that the axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk velocity
at the exit of the turbopump near the center of the inlet, but it decreased rapidly with increasing
radius at all three speeds. Reverse flow occurred at a radius greater than 0.9 R for all three
speeds and the maximum negative velocity reduced from 1.3 of the bulk velocity at the exit of the
turbopump at 4260 rpm to 0.35 at 7680 rpm, suggesting that operating at a speed closer to the
design condition of 8700 rpm improved the inlet characteristics. The reverse flow caused positive
prerotation at the impeller inlet which was negligibly small near the center but reached 0.7 of the
impeller speed at the outer annulus.

The results in the diffuser and the volute obtained at 7680 rpm show that the hub and
shroud walls of the diffuser were characterized by regions of transient reverse flow with negative
revolution-averaged velocity of 8% of the maximum forward revolution-averaged velocity at the
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center of the diffuser passage near the shroud wall. The transient recirculation region in the hub
side occupied 17% of the diffuser width and that in the shroud side, 9%. The splitter blades
reduced the preferential entrainment of flow to the pressure surfaces of the impeller blades but
failed to prevent flow separation at conditions investigated. A large sector of negative velocity
was observed behind the suction side of the main blade at the hub and shroud walls. The
fluctuation attributed to the passing of the main blade persisted until the exit of the turn-around
section of the volute. A 128 Hz cyclical fluctuation, which stemmed from blade-to-blade
variation, persisted until the region just before the exit of the turbopump.

It is anticipated that the addition of inlet guide vanes (IGV) would eliminate this inlet flow
separation, with the unfortunate but apparently inescapable addition of a certain amount of inlet
flow distortion from the IGV wakes. Clearly, however, the IGV wakes are to be preferred over
the region of inlet flow separation.

1. INTRODUCTION

The high pressure fuel turbopump (HPFTP) of the Space Shuttle Main Engine (SSME) is a
three-stage radial turbopump powered by an axial turbine at 37,000 rpm. The critical operation
of the fuel pump together with the extreme operating conditions makes its performance and
reliability essential for flight safety and engine downtime. Problems of pump components
cracking have been identified and attributed to excessive unsteady aerodynamic loads. Further to
that, off-design operation performance of the turbopump is not well known and its improvement,
together with that at design conditions, is desirable.

Despite the advances in turbocompressor technology there are still many areas where
knowledge or understanding are incomplete. The review of Ref. 1 identifies some of these areas
as, for example, the effect of inlet flow recirculation on compressor performance Refs. 2, 3 and 4,
the low momentum secondary flows, diffusion characteristics and blade loading within the
impeller Refs. 5, 6 and 7, and the effects of aerodynamic blockage, inlet flow conditions and
incidence performance Refs. 8,9 and 10. The matching of diffuser type with a specific
impeller/volute combination is still an open issue while off-design volute performance in terms of
pressure recovery can only be roughly approximated. The onset of rotating stall and surge is also
an unresolved issue, Refs. 11 and 12.

Improvement of the turbopump loading and performance characteristics requires
understanding of the unsteady aerodynamics of the interaction between impeller and diffuser,
and this can be accomplished by coordinated experimental and numerical flow analysis
investigations in relevant flow configura‘tions. The experimental studies provide the necessary
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insight into the physics of the flow and, at the same time, the validation data for the assessment of
numerical simulation efforts. The results of numerical studies can in turn be used to guide
further experiments with modified diffuser geometries with the further goal of improving the
operational characteristics of the turbopump.

The experimental approach followed here focuses on the flow characterization of the first
stage of the turbopump as a function of inlet and outlet conditions and diffuser geometry. The
main experimental simplification concerns the working fluid which, in this simulation, is air
instead of liquid hydrogen. The first task of this work was to design and build an experimental
facility to accommodate the actual flight impeller of the first stage of the HPFTP in a flexible test
rig in order to allow detailed flow measurements to be obtained nonintrusive by laser Doppler
velocimetry at the inlet to the impeller and inside the diffuser. The second task was to develop
and test a suitable anemometer system to study the flow field at the exit of the impeller.

Under this contract effort the design and fabrication of the rig was performed by Imperial
College, London, under a subcontract. Preliminary measurements were also obtained at Imperial
College which were followed by more detailed measurements at higher speeds at SRA. The
present report discusses the SRA results. The Imperial College report detailing the work
performed under subcontract (Ref. 13) is included as Appendix A of this report. Some of these
results have also been presented by Cannon, Vafidis and Whitelaw (Ref. 14).

The following section describes the turbopump, the flow conditions, the instrumentation
and the possible sources of uncertainties. Results are presented and discussed in Section 3.
Summary conclusions and recommendations are stated in the final section.

2. FLOW CONFIGURATION AND INSTRUMENTATION

A line drawing of the SSME High Pressure Fuel Turbopump assembly is shown in Figure 1.
It consists of a scroll-shaped entry stage equipped with guide vanes at its exit and is followed by
three radial compressor stages, with the last one discharging into a collector volute. The
geometry of the turbopump suggests that each of the three stages has different inlet or exit
conditions. The design objective for the test rig described here was to simulate the inlet and
outlet conditions of the first stage only.

The geometry of the first two stages is identical and consists of a 12" diameter enclosed
(shrouded) impeller with six main (full) and three splitter (partial) blades in each passage, and an
axisymmetric vaned diffuser volute. The use of the flight impeller defined the geometric scale of
the test facility to actual size. The flow similarity between the research turbopump and the flight
hardware requires matching the Mach number, flow coefficient, head coefficient, power

-3-



coefficient and Reynolds number. The turbopump research rig does not match the Reynolds
number since the attempt to match this would result in the power requirement of the rig being
impracticably high. However, the rig was designed to operate a Reynolds number which would
ensure turbulent flow throughout the model.

The HPFTP performance baseline data are summarized in Table 1. Similarity of tip Mach
number between model and flight hardware implies a model rotational speed of 8,690 rpm. The
expected flow coefficient similarity yields for the model an air mass flow rate of 0.286 kg/s,
provided that the inlet and outlet flow conditions of the impeller are similar between flight and
model hardware.

TABLE 1
HPFTP Baseline Operating Conditions

Flight Model

Inlet pressure (abs), bar 15.2 1.013
Discharge pressure (abs), bar 169.5 1.141
Inlet temperature, K 23.56 292.2
Discharge temperature, K 344
Inlet density, kg/m 68.454 1.208
Discharge density, kg/m3 74.544
Inlet flow rate, kg/s 73.75 0.286
Pump speed, rpm 36742 8690
Pump tip speed, m/s 586.4 138.7
%peed of sound, m/s 1456.3 3444

ip Mach number 04 04

Similar analysis for off-design speeds of 4000 and 12000 rpm gives the operating parameter
estimates summarized in Table 2, below:



TABLE 2
Flight and Model Operating Conditions

Flight Model
" Estimated Measured

min matched max operating
Tip Mach number 0.4 0.18 04 0.56 0.35
Mass flow rate, kg/s 73.75 0.13 0.29 0.39 0.10
Speed, rpm 3674 4000 8690 12000 7680
Reannulus du 35x107  3.5x104 8.1x104  11x10° 2.8x10%
Pressute ise, bar 1536  0.028 0.138 0262 0.107
Pump power, kW 47170 1.07 10.9 28.8 7.8

This preliminary analysis demonstrated that the simulation of the HPFTP operation with
air instead of liquid hydrogen as a working fluid is feasible, with relatively high speed and
moderate power requirements from the driving device. The driving device selected was a
thyristor-controlled DC motor to allow continuously variable and regulated speed. Cost
consideration led to the decision to initially use a commercially available DC motor rated at 7.8
kW. Similarity of the power coefficient led to a maximum operational speed of 7680 rpm, 12%
below the design speed. However, the test rig itself is designed for future service speed of 14,600
pm.

Understanding of the impeller/diffuser aerodynamics is expected to benefit from simple
inlet and outlet conditions, even if they are not representative of the flow situation in the actual
flight turbopump. The simplest possible inlet and outlet conditions correspond to inlet from
atmosphere via a vaneless bell-mouth shaped entry section and discharge into a long annular
duct. The presence of the annular duct necessitates the introduction of a collector volute at its
end in order to direct the discharge flow into a pipe and metering device. The annular duct
downstream of the first stage volute was made 10 hydraulic diameters long in order to minimize
the upstream effect of the collector scroll.

The geometry of the diffuser volute was also simplified by eliminating the vanes and slightly
altering the geometry of the walls to enable better access for LDV velocity measurements. These
simplifications are expected to affect the performance of this stage of the turbopump but they



provide a well-defined baseline reference geometry for the study of impeller/diffuser interaction
and for the assessment of numerical simulations. The simplified test rig is shown schematically in
Figure 2a and represents the basic flow configuration. The primary concern for the design of the
basic test rig was the provision of ample optical access for LDV studies at the inlet to the impeller
and inside the diffuser and volute. These sections were manufactured in clear cast acrylic
(Transpalite SS), selected for its good optical properties and low cost. The turbopump volute
was cast, machined, polished and thermally treated in two sections, joined together between two
spider-shaped aluminum flanges. The splitting line of the volute is such that future insertion of
simple geometry vanes in the radial diffuser would be permitted. Similarity of the leakage flow
between model and flight hardware was also considered by arranging for identical clearance gaps
between impeller and volute. The labyrinth seal gap width, however, had to be doubled because
of the relative radial flexibility of the acrylic volute, and a brush seal was added to the first step of
the labyrinth seal to reduce the leakage.

The basic test rig allows further additions of flight hardware to be incorporated in order to
simulate more closely the HPFTP geometry. Figures 2b-d show examples of future modifications
which have been considered in the design of the test rig. They include variations of inlet and
outlet conditions. Incorporation of the upstream scroll and downstream (second) stage volute as
well as the possibility of driving air through the rig with stationary or freely rotating impeller.
The arrangements of Figures 2b-d clearly indicate that the closer to the flight configuration the
rig geometry is, the more restricted the access for LDV flow studies becomes. This complexity
and lack of access provided motivation for the decision of initially simplifying the flow
configuration as much as possible.

The simultaneous determination of the angular position of the impeller with the LDV
measurements called for a high resolution and high frequency response shaft encoder device.
Given the 12" diameter of the impeller any uncertainty in terms of angular position would be
magnified at the impeller tip. For this reason a hollow-shaft Teledyne 8709 encoder with two
tracks of 2048 lines per revolution was used, mounted directly on the impeller shaft and giving
angular resolution of 0.176° . Considering the 500 kHz frequency response of the reading head,
the selected encoder is suitable for speeds up to 14,600 rpm.

Velocity information was obtained by a laser-Doppler velocimeter similar to that described
in Refs. 13 and 14. It made use of rotating diffraction optics together with and Argon ion laser
operated at 2 W and 514.5 nm. The optical characteristics of the velocimeter are given in Table
3, below.



Table 3

Optical Characteristics of the Laser Velocimeter

Half angle of the beam intersection (degrees) 4.85
Fringe spacing (um) , 3.04
Number of fringes without frequency shift ' 17
Diameter of the control volume at 1/e2 intensity (zm) 53
Length of the control volume at 1/e2 intensity (um) 620
Maximum frequency shift (MHz) 8.2
Frequency to velocity conversion (ms'llMHz) 3.04

An elliptical mirror at 45° to the laser axis was used to project the control volume into the
transparent volute. The velocimeter was operated at off-axis back scattering or 90° scattering
modes and the flow was seeded with corn oil of droplets less than 2 um diameter generated by a
TSI atomizer. The signals from the photomultiplier were processed by a TSI 1990C counter.
The angular position of the impeller was determined by a Teledyne 8709 shaft encoder with 2048
lines per revolution. A purpose-built DMA card interfaced the output of the TSI counter and the
pulse train of the encoder to an IBM/PC compatible. The data acquisition and processing
software, specially developed for high speed rotating turbomachinery studies, obtained flow
velocity and impeller angular position for every validated Doppler burst and the results were
ensemble-averaged to provide mean and rms velocities as a function of impeller angle. This
software displayed continuously the number of valid measurements as a function of shaft angle
and allowed the sampling procedure to be terminated after a statistically adequate number of
data has been acquired in all predetermined angle window of 1.05° (6 encoder pulses) to
estimate the mean and rms velocities.

Uncertainties in the laser velocimeter measurements in the present study arose mainly from
finite sampling statistics, spatial velocity gradient broadening and seed biasing. Seed biasing was
evident in the sample size per 1.05° averaging window for four measurement locations presented
in Figure 3. The sample size curves were peaky with minima and maxima occurring over
repeated angles. This indicated that a smaller number of seeding particles was being counted at
some impeller angle than others over the averaging time and conventional averaging led to error
in the revolution averaged result. The angle resolved averaging performed in this investigation



eliminated this effect.
Statistical uncertainty in the mean velocity associated with a finite sample size can be
estimated using the expression:

_ s I’Y
T. = x 12

c = —
N U

where S is equal to 4 for a 99% confidence limit. The excellent blade-to-blade repeatability
presented in Section 3.2 shows that averaging of vélocity over six main blade passages would not
introduce a significant uncertainty. The sample sizes over the six main blade passages were in
general above 9000 and, in most cases the turbulence intensities were below 0.7. These resulted
in a statistical uncertainty of less than 3% in each ensemble-averaged mean velocity. The
corresponding uncertainty in the rms value can be estimated from the expression:

I—E S
Uy = ——
[2N

which indicates, with 99% confidence, an uncertainty of better than 3% for the sample size used

in the measurements.

Since a linear velocity variation across a finite volume does not affect the mean value, the
uncertainty associated with spatial gradient broadening need only be applied to the measured rms
value which contained contributions from both the turbulence and spatial variation of the mean
velocity across the control volume and a finite arc length. The contribution associated with mean
velocity gradient is given by:

2o e,
g 4 a

and the associated uncertainty can be deduced from:

ui = [1 - ug/Gi] 0-5

According to these equations, angle-broadening effect led to overestimation by 1% in the vicinity
of the pressure and suction surfaces of each impeller blade, where the gradient was steepest, with
velocity gradient of 4m/s per degree and local turbulence intensity of 7m/s. The use of a 200pm
pinhole and off-axis and 90° scattering reduced the effect size of the control volume gradient
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broadening across the control volume was reduced to less than 0.5% under the same condition.
The above analysis indicates that the overall uncertainty in the mean and rms values in the
present study are less than 3% and 4%, respectively.

A Kulite miniature transducer was used to analyze the pressure characteristics inside the
volute. It was flush mounted on the shroud wall at & = 180° to measure pressure pulsation
associated with the passing blades. The pressure taps were installed at r = 161 mm to 193 mm at
6 equally spaced positions in the diffuser, at z= 11.4 mm to 30.5 mm in the turn-around section at
4 equally spaced positions and at r = 130 mm to 178 mm at 6 equally spaced positions in the
volute. The measuring position was selected by installing the transducer at the appropriate
pressure tap. The instantaneous pressure was obtained as a function of impeller angle by an
IBM/PC compatible based data acquisition system by means of external triggering. The results
presented in Section 3.1 show that there is no steep pressure gradient and spatial gradient
broadening was unimportant. Statistical uncertainties were maintained unimportant at 2 and
15% of the mean and rms value by ensuring a sufficient number of data in each ensemble

average.

3. RESULTS AND DISCUSSION

The mass and volume flow rates were measured by a venturi meter downstream of the
collector scroll. The results presented in Figure 4 indicate a linear increase of mass flow rate
with rotational speed but a less than linear increase of volume flow rate with speed due to
variable density effects. The mass flow rate was 60% less than that predicted by similarity
analysis for the same impeller operating at design conditions with hydrogen working fluid. The
velocity measurements presented in Subsection 3.2 show the presence of reverse flow at the inlet.
This suggests that the impeller may require specific inlet conditions which cannot be provided by
the existing bell-mouth configuration. Replacing the bell-mouth inlet by a long duct did not alter
the flow and pressure characteristics of the turbopump. Adding splitter cones with small intake
area to restrict the flow to the center removes the reverse flow at the outer annulus but the mass
flow rate and the pressure head remained unchanged. Adding a large round baffle at an axial
distance in the range of 12.7 to 76.2 mm from the edge of the bell-mouth entry to guide the flow
into the turbopump radially has no effect on the performance. Further measurements conducted
with an annular inlet that matched the wall inlet angle in the r-z plane showed no improvement
on the performance of the turbopump. Based upon these studies the mass flow rate and the
pressure head of the turbopump appear to be insensitive to modifications of the inlet flow in the
r-z plane and pressure and velocity measurements in the remainder of this section were obtained
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with the bell-mouth entry. Future work should investigate the result of varying the flow in the r-6
plane and adding a downstream pump. Flow in the r-6 plane is probably best controlled by the
addition of inlet swirl guide vanes.

The performance of the turbopump was evaluated by the head coefficient, ¢, and flow
coefficient, ¢. The head coefficient is calculated using the difference between static head at the
outlet of the diffuser and the inlet of the impeller and a plot of ¥ verses ¢ for the air test
conducted at SRA is shown in Figure S(a). Figure 5(b) and Table 4 show the head and flow
coefficients for the water and the actual SSME turbopump tests conducted at NASA MSFC. As
expected, water tests are better able to match flow coefficients whereas air tests are better able to
match head coefficients.

Table 4

Flow and Head Coefficients of the HPFTP and the Air Model

HPFTP Air Model
Impeller exit, # 347 4.64
Stage exit, ¥ 2.72 1.23
¢ 0.058 0.023

In the air test the head coefficient at the impeller outlet of the model was 33% higher than
that of the SSME turbopump but that at the stage discharge, 60% lower. Frictional losses in the
model turbopump were relatively large, because of relatively large wetted areas associated with
radial-flow machines and relatively low Reynolds number. These frictional losses can be reduced
by increasing the rotational speed of the impeller to bring the operating condition closer to the
design point and by adding a second impeller downstream of the collecting scroll to increase the
flow rate through the turbopump. The streamline patterns in vaneless diffusers of centrifugal
machineries resemble logarithmic spirals. Thus, the existing diffuser incurs high frictional losses
because of the long length of the spiral flow. Diffuser vanes can be added in future works to
remove swirl thus guiding the flow in the radial direction to increase the rate of diffusion and to
decrease loss. Of critical importance, however, is the fact that diffuser vanes are present in the
full scale turbopump, are thought to be a source of unsteady pressure, and thus must eventually
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be represented. Their absence from the present model was simply to establish a representative
base line from which to quantify the effect of the diffuser vanes.

Pressure measurements obtained before and after the exit bend show a large loss of 50% of
the maximum static pressure rise attained at the diffuser. A bend can have a loss coefficient of
up to 2.0 and can induce potentially large losses, due to flow separation at the walls and a
secondary flow arising form centripetal acceleration. Turbulence and separation losses at a bend
are generally proportional to the square of the absolute velocity. Tangential velocity is inversely
proportional to the radius in a vaneless diffuser of a centrifugal pump and this is evident in the
measurements of Subsection 3.2 which show revolution-averages of 65 and 76 m/s in the
tangential components at the turn-around region (r=157.5 mm) and at the volute (r = 188.0
mm), respectively. The absolute velocity at the exit bend of the turbopump is high because the
flow has a swirl component of up to 10 times the magnitude of the bulk velocity of 7.7 m/s. The
losses at the exit bend can be reduced by diffuser guide vanes which reduce the magnitude of the
tangential component at the turn-around section and the volute. The high tangential velocity at
the exit of the turbopump, which indicates that a considerable fraction of the impeller work is
stored in the form of kinetic energy associated with swirl, is dissipated partly at the annular duct
but mainly in the collecting scroll. The 33% higher-than-expected head coefficient at the
impeller outlet of the model stems from back pressure induced by the losses at the exit bend and
the dissipation of swirl by collection scroll.

The flow coefficient of the model is 60% lower than that of the SSME turbopump and this
cannot be explained by the losses in the diffuser. Other experiments at SRA involving centrifugal
pumps show that adding a second pump to a flow system increases the flow rate considerably, up
to approximately 50%. The absence in the model of the second and third stages of the
turbopump may alone account for the lower-than-expected flow coefficient of the model.

The efficiency of the air turbopump, evaluated by Q x AP divided by the input power, is
approximately 12%. The efficiencies of the two turbopumps should be equal for perfect
similarity but the HPFTP has a higher efficiency of 76%. The flow coefficient, head coefficient
and efficiency observed in the present study are consistent with those described in Ref. 15 which
show that reducing the Reynolds number by 3 orders of magnitude led to similar changes in these
quantities. It is unlikely that reasonable Reynolds number similarity could be achieved with
acceptable power levels in a continuously operated air facility.
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3,1 Pressure Measurements

3.1.1 Steady Pressure Measurements

The static pressure distribution in the diffuser/volute assembly, Figure 6, shows that the air
pressure increases from near atmospheric at the impeller inlet to 8.5 kPaG (95% of the dynamic
head of the impeller) at the impeller outlet. The pressure continues to increase in the diffuser
and it reaches a maximum of 10.7 kPaG at the turn-around section. A pressure rise of 2.2 kPa
between the impeller outlet and the turn-around section cannot be accounted for by the
deceleration of the radial flow. It stems mainly from the reduction of tangential velocity from
90 m/s to 65 m/s associated with the conservation of angular momentum and this is evident from
the result presented in the following velocity section. As expected, the static pressure in the
turn-around section remains constant because there is no sharp change in the tangential velocity.
The static pressure decreases from its maximum to 7.4 kPaG just upstream of the exit bend. A
pressure drop of 3.3 kPa would correspond to an increase in the tangential velocity form 65 m/s in
the turn-around section to 98 my/s just upstream of the final bend. Comparison of velocity
deduced from pressure tap 13 and the tangential measurement at the same radial position
confirms the velocity increase with difference due to frictional loss. The result indicates the
importance of minimizing the residual swirl in the turn-around section by diffuser guide vanes.
Otherwise the energy extracted from the impeller will be transferred back to swirl in the volute
rather than to pressure rise and through flow in the stage resulting in a drastic reduction in the
efficiency of the turbopump.

3.1.2 Unsteady Pressure Measurements

The pressure maxima and minima associated with the pulsation of the passing main blade is
clearly evident in the ensemble-averaged distributions in the diffuser over one revolution,
presented in Figure 7 as a function of impeller angle. The maxima in the first pressure tap in the
diffuser, turn-around section and the volute are 9.1 kPaG, 10.9 KPaG and 9.8 kPaG and the
minima, 8.4 kPaG, 10.4 kPaG and 9.4 KPaG. These correspond to peak-to-peak fluctuations of
0.7 kPa, 0.5 kPa and 0.4 kPa (7.8%, 5.6% and 4.5% of the dynamic head of the impeller of
8.9 kPa) in the diffuser, turn-around section and the volute. In the actual turbopump, the
dynamic head of the impeller is as high as 11.7 MPa and the guide vanes in the diffuser,
turn-around section and the volute could potentially be subjected to fluctuating pressure of
920 kPa, 660 kPa and 530 kPa if perfect similarity apply. The influence of the splitter blades is
small and their signatures are not detected by the miniature transducer. A 128 Hz cyclical
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fluctuation stemming from blade-to-blade variation is also evident in the pressure distribution of
Figure 8 obtained by ensemble-averaging over six revolutions. The signature of the main blade
has disappeared after the turn-around section of the volute but the 128 Hz cyclical fluctuation
persisted at the location just upstream of the exit bend because the amplitude of the highest
maxima and the lowest minima within one revolution is higher than the amplitude of any single
blade passage.

2 Velocity M remen

Figure 9 shows the coordinate system for presenting the results. Measurements were
obtained in the bell-mouth inlet, diffuser, turn-around rectify and the volute throughout 360°
rotation but some results are presented as revolution-averaged or as six superimposed traces in a
60° window to illustrate the mean flow quantity or blade-to-blade variation. A marker pulse per
rotation from the encoder identified the same angle on each rotation and it was synchronized
with the first velocity minimum of the radial component at r= 2.5 mm and z= 1.3 mm, which
corresponds to the wake of one of the main blade.

Velocity measurements obtained at a rotational speed of 4260, 6084 and 7680 rpm in the
inlet section at 37.5 mm upstream of the impeller and the revolution-averaged velocities are
shown in Figure 10(a). The axial velocity remains roughly constant at 2.2 times the bulk velocity
near the center but it decreases rapidly with increasing radius at all three speeds. The bulk
velocity, Uy, is defined as the average velocity at the annular duct of the discharge. The results
indicate the presence of flow reversal near the outer annulus of the bell-mouth entry section
similar to that described in Refs. 2, 3 and 4. In all three cases, the change from forward to
backward velocity occurs at 0.9 R and the reverse flow region occupies 27% of the intake area.
The maximum negative velocity reduces from 1.3 Uy, at 4260 rpm to 0.35 Uy, at 7680 rpm,
suggesting that operating closer to the design point improves the velocity characteristics at the
inlet. The reverse flow causes positive prerotation at the impeller inlet, which is negligibly small
near the center but reaching 0.7 Vi, near the outer annulus as indicated in the tangential velocity
profiles of Figure 10(b), where Vy, is the blade velocity. Prerotation is a common occurrence
when pumps are operated at flow rates less than designed. The investigations described in Ref.
16 showed that prerotation occurred at near shut-off in pumps with vaneless diffuser. The
signature of the impeller blades is clearly evident in the velocity profiles of Figure 11 - suggesting
that the prerotation in the present investigation may be caused by viscous drag of the impeller or
by reverse flows in the impeller.

The revolution-averaged radial velocity profiles across the diffuser width at 2.5 mm
downstream of the impeller outlet are presented in Figure 12. The results indicated that the
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shroud wall of the diffuser is characterized by large sectors of transient reverse flow which give
rise to negative revolution-averaged velocity of the maximum revolution-averaged forward
velocity at the center of the diffuser. The recirculation region occupies 10% of the diffuser
width. The revolution averaged velocity near the hub wall remains positive but there are large
sectors of transient reverse flow reaching 50% of the maximum positive value occupying 60% of
the blade passage at z= 14 mm, 1.24 mm (8% of the diffuser width) from the hub wall. The
transient reverse flow is still noticeable at z = 12.7 mm, 17% of the diffuser width from the hub
wall, with magnitude and area diminished to 7% of the maximum positive velocity and roughly
8% of the blade passage. The transient recirculation regions near the hub and shroud are
attributed to the secondary flow arising from the centripetal acceleration associated with turning
the inlet flow from axial to radial direction and Coriolis acceleration associated with rotation.

The ensemble-averaged radial and tangential velocities at various diffuser widths at 2.5 mm
downstream of the impeller outlet are presented in Figures 13 and 14, respectively. An excellent
periodic repeatability over the 360° revolution on the centerline and a good periodic
repeatability across the entire width of the impeller exit are evident in the figures but there are
substantial variations in the velocity profiles in the cross-section direction. The wakes of the
main blades are indicated by minima with steep gradients on both the mean and rms quantities of
the tangential and radial profiles at every 60°. The wakes corresponding to the half and quarter
splitter blades are also marked by secondary minima at every 15, 30 and 45° within the passage of
the main blade. The wake of the quarter blade preceding the suction side of the leading main
blade is less pronounced and the secondary peaks and troughs associated with the splitter blade
have reduced amplitude.

Figure 13 shows that velocity peaks of different magnitude occur on the radial flow exiting
in front of the pressure surface of the main and splitter blade. At the centerline of the diffuser,
these peaks increase from a minimum of 16 m/s behind the suction side of the leading main blade
to a maximum of 22 m/s in front of the pressure side of the trailing main blade. Preferential
entrainment of flow to the pressure side in centrifugal machinery is associated with the influence
of Coriolis forces [Ref. 17]. The Coriolis force stabilizes the boundary layers on the suction side
of the impeller blade and suppresses turbulence. Consequently the momentum exchanges with
the through-flow is retarded and the ability of the boundary layer to overcome the increasing
pressure is reduced so that separation occurs. On the pressure side of the blade, the effect is
reversed and the boundary layer is destabilized by Coriolis forces and this enhances mixing with
the through-flow. Consequently, the pressure side boundary layers are energized and this side of
the passage will always have a higher flow. The splitter blades reduce the preferential
entrainment of flow to the pressure side but fail to prevent flow separation at a condition below
the design point. Large sectors of negative velocity are observed behind the suction side of the
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main blade near the hub and shroud walls, Figures 13(a), 13(g) and 13(h), suggesting that air is
drawn in from the diffuser to fill the velocity defects.

Figure 14 shows that, contrary to the radial component, tangential velocity peaks of
different magnitude occur behind the suction side of each main and splitter blades. At the
centerline of the diffuser, for example, these peaks reduce from a maximum of 0.86 Vy, behind
the suction side of the leading main blade to a minimum of 0.74 V}, in front of the pressure side
of the trailing main blade. Comparison of the tangential and radial velocities show that the
maximum radial velocity occurs when the swirl \}elocity is minimum and vice-versa. The angle of
the velocity vector in the -6 plane varied between 75° to 85°.

The radial and tangential velocities obtained in the diffuser are presented in Figures 15 and
16. The tangential component has magnitude of up to four times higher than that of the radial
component. The measurements in Section 3.1 show that there is an adverse pressure gradient
acting on the radial component. Radial separation is evident in the velocity obtained close to the
hub and shroud wall, Figures 13(a), 13(g) and 13(h). According to Ref. 18, when reverse flow
occurs in the radial boundary layer, it is not possible for the tangential component to diffuse
axisymmetrically because this would lead to a pressure increase in one component but not in the
other. As aresult, asymmetrical flow breakdown occurs producing flow spirals. These flow -
spirals were visible during the experiment when the seeding oil deposited on the shroud wall
streaked and produce a trace of the flow pattern. Contrary to the results of Refs. 13 and 14,
which showed that the radial velocity increase from r =2 mm to r =5 mm, the present results
obtained at 180° apart, Figures 14(a) and 14(b), show that there is a reduction in the revolution
averaged velocity from 21 m/s to 13 m/s at the same radial position. This is due to jets and wakes
associated with the flow spirals. No sharp increase or decrease is observed in the revolution
averaged velocity beyond r = 10 mm because of the jets and wakes of the spiral is considerably
dampened by the longer mixing length at large radii. The wakes of the partial blades on the mean
velocities are evident up to r = 15 mm, one blade tip height. The influence of the partial blades is
stronger on the rms profile and the wakes persist until r =20 mm. Beyond r =20 mm, the
signature of the partial blade disappears from the velocity profiles and the periodical fluctuation
within each main blade passage is smoothed out by turbulence mixing and has no further
influence on the velocity field. In the absence of guide vanes, the tangential velocity is unaffected
by area change and is inversely proportional to the radius, Ref. 18. This is evident in the plot of
W,y verses r provided in Figure 17. The Wy, value remains roughly constant at 4% above
the mean value in the diffuser and the turn-around section and that in the volute, 8% below the
mean due to frictional loss.

Comparison of the present results obtained at 7680 rpm with those obtained by Refs. 13 and
14 at 4260 rpm show that the velocity profiles obtained at the same location are similar. The
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maximum and minimum velocity at the impeller exit and in the turn-around section scale with the
impeller speed. The revolution averaged velocity, however, scales better with the measured flow
rate. The flow characteristics in the radial diffuser are not significantly affected by the impeller
speed.

The measurements in the turn-around section are presented in Figures 18 and 19, which
show that the radial and tangential mean velocities over one revolution are all close to zero and
65 m/s, respectively. The signature of the main impeller blades is still noticeable in the profiles
of both components but is considerably dampeﬂed with maxima and minima of =1 m/s above the
mean value. The flow enters the volute with swirl as the predominant component. This is due to
the lack of guide vanes in the diffuser/volute assembly and is expected to be one of the reasons
for the low flow coefficient. However, the results obtained with the vaneless diffuser geometry
can be used in the design of guide vanes, Ref. 9, which should be incorporated in future work.

The tangential velocities in the volute at r = 157.5 mm are presented in Figure 20. The
signature of the blade has disappeared from both the mean and rms profiles and the velocities are
independent from the impeller position. The revolution-averaged velocity has increased from 65
m/s at the exit of the turn-around section (r = 188.0 mm) to 76 m/s.

CONCLUSION AND RECOMMENDATIONS

A rig has been constructed and velocity and pressure measurements made for geometry and
flow conditions relevant to the first stage SSME turbopump. These initial experiments have
considered a simple geometry with a bell-mouth inlet, an actual SSME impeller and a vaneless
diffuser. The initial results provide a baseline set of data which can be expanded at a later date
through more complex and realistic inlet, exit and diffuser geometries. The following
conclusions can be extracted from these initial results:

1. With the existing baseline hardware the flow coefficient was 60% less and the head
coefficient was 33% higher than the SSME HPFTP first stage. This is likely due to the absence
of the second and third stages of the turbopump and to operating speeds below the design
condition. Another possible reason may be the lack of inlet guide vanes. The tangential velocity
in a vaneless diffuser of a centrifugal pump is inversely proportional to the radius and this led to
high velocity in the turn-around and the volute and consequently resulted in losses at the exit
bend of the model turbopump of up to 50% of the maximum static pressure rise attained in the
diffuser. The vaneless diffuser configurations also led to frictional losses associated with the long
length of the spiral flow. The efficiency of the model turbopump at 7680 rpm was 12% as a result
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of the losses described above. The addition of diffuser guide vanes should result in a significant
reduction in the diffuser based losses.

2. The axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk
velocity at the exit of the turbopump near the center but it decreased rapidly with increasing
radius at all three speeds. With the current configuration reverse flow occurs at a radius greater
than 0.9 R for all three speeds and the maximum negative velocity reduced from 1.3 of the bulk
velocity at the exit of the turbopump at 4260 rpin to 0.35 at 7680 rpm, suggesting that operating
closer to the design condition improved the velocity characteristics at the inlet. The reverse flow
caused positive prerotation at the impeller inlet which was negligibly small near the center but
reaching 0.7 of the impeller speed at the outer annulus at all three speeds.

3. The hub and shroud walls of the diffuser were characterized by regions of transient reverse
flow with negative revolution-averaged velocity of 8% of the maximum revolution-averaged
forward velocity at the center of the diffuser passage near the shroud wall. The transient
recirculation region in the hub side occupied 17% of the diffuser width and that in the shroud
side, 9%. The transient recirculation regions stemmed from the secondary flow arising from the
centripetal acceleration associated with turning the inlet flow from axial to radial direction and
Coriolis acceleration associated with rotation.

4.  The splitter blades reduced the preferential entrainment of flow to the pressure surfaces of
the impeller blades but failed to prevent a flow separation condition at the current operating
conditions. Large sectors of negative velocity were observed behind the suction side of the main
blade close to the hub and shroud walls.

5. The pulsation generated by the passing of the main blade led to peak-to-peak fluctuation
of 7.8%, 5.6% and 4.5% of the dynamic head of the impeller of 8.9 kPa in the diffuser,
turn-around section and the volute. In the actual turbopump, the dynamic head of the impeller is
as high as 11.7 MPa and the guide vanes in the diffuser, turn-around section and the volute could
potentially be subjected to fluctuating pressures of 920 kPa, 660 kPa and 530 kPa if perfect
similarity applies. The signature associated with the splitter blades disappeared from the
pressure and velocity distributions at one impeller width downstream of the impeller. A 128 Hz
cyclical fluctuation stemmed from blade-to-blade variation induced pressure fluctuations which
persisted until the region just upstream of the exit of the turbopump. Fluctuations due to
blade-to-blade variation were marginally higher than those associated with the main blade

-17-



because the amplitude of the highest maxima and the lowest minima within one cycle was higher
than the amplitude of any single blade passage.

6. Future work should consider an addition of a second pump and diffuser vanes, inlet guide
vanes and operating at higher impeller speed. Witha second pump or at high rotational speed
the flow will have a higher momentum to overcome the adverse pressure gradients in the
impeller and diffuser and reduce losses due to friction and separation. Diffuser vanes will reduce
frictional losses by removing swirl to increase the rate of diffusion and losses at the exit bend by
reducing the tangential velocity at the turn-around region and the volute.
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Fig. lla. Ensemble-averaged Velocites at the Bellmouth Inlet.
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ABSTRACT

The principles and details for the design of a test rig simulating the first
stage of the High Pressure Fuel Turbopump of the Space Shuttle Main Engine
are reported, together with preliminary flow field measurements obtained in the
model turbopump volute. The results indicate lower flow capacity of the model
turbopump than that predicted by similarity analysis from the HPFTP data,
which is mainly attributed to simplifications introduced in the volute
configuration. The performance of the laser velocimeter system developed for
this study is found satisfactory and the velocity field measurements indicate
minor only effects of impeller rotational speed on the diffuser flow structure in
the speed range of 4260-7680 rpm.

INTRODUCTION

One of the main components of the Space Shuttle Main Engine (SSME)
hardware is the hydrogen fuel supply pump to the main combustor. This is a
radial three-stage high pressure turbopump, (HPFTP) powered by a 1,600 kW
axial turbine at 37,000rpm. The critical operation of the fuel pump together with
the extreme operating conditions makes its performance and reliability
essential for the flight safety and engine downtime. Problems of pump
components cracking have been identified and attributed to excessive
unsteady aerodynamic loads. Further to that, off-design operation performance
of the turbopump is not well known and its improvement, together with that at
design conditions, is thought to be necessary.

Improvement of the turbopump loading and performance characteristics
requires understanding of the unsteady aerodynamics of the interaction
between impeller and diffuser, and this can be accomplished by coordinated
experimental and numerical flow analysis investigations in relevant flow
configurations. The experimental results will provide the necessary insight into
the physics of the flow and, at the same time, the validation data for the
assessment of the parallel numerical simulation efforts. The results of the
numerical studies can in turn be used to guide further experiments with
modified ditfuser geometries with the further target of improving the operational
characteristics of the turbopump.

The experimental approach followed here focuses on the flow
characteristics of the first stage of the turbopump as a function of inlet and
outlet conditions and difftuser geometry. Since the HPFTP consists of three
geometrically similar stages, this simplification is thought to be acceptable. A
further simplification concerns the working fluid which in this simulation is air
instead of hydrogen. The first task of this work was to design and build an
experimental facility to accommodate the actual flight impeller of the first stage
of the HPFTP in a flexible test rig in order to allow detailed flow measurements
to be obtained by laser Doppler velocimetry at the inlet to the impeller and
inside the diffuser. The second task was to develop and test a suitable
anemometer system to perform the measurements. A feasibility study for this



work has already been carried out In a high speed (30,000 rpm) turbocharger
test rig and reported in Report FS/87/36.

The present report Is divided In two parts. The first deals with the design
considerations and technical details of the turbopump rig. The second part
deals with the performance of the test facility and presents a sample of
preliminary flow measurements.

PART 1: TEST RIG DESIGN CONSIDERATIONS
1- Geometric and Flow Similarity

A line drawing of the SSME High Pressure Fuel Turbopump assembly
is shown in Figure 1. It consists of a scroll-shaped entry stage equipped with
guide vanes at is exit and followed by three radial compressor stages, with the
last one discharging into a collector volute. From the geometry of the
turbopump it is clear that each of the three stages has different inlet or exit
conditions. The design objective for the test rig under consideration here, is the
capability of simulating the inlet and outlet conditions of the first stage only.

The geometry of the first two stages is identical and consists of a 12"
diameter enciosed (shrouded) impeller with six main (full) and two splitter
(partial) blades in each passage, shown in Figure 2, and an axisymmetric
vaned diffuser volute, shown in Figure 3. Once the decision to make use of the
fight impeller was made, the geometric scale of the test facility was
necessarily defined to actual size. It remained to establish the best possible
flow similarity between the research turbopump and the flight hardware, the
main difference being that of working fluid. The flow similarity involves
matching of the flow coefficient, blade tip Mach number and Reynolds number,
but practical considerations limit the matching in the first two parameters,
provided that the test rig Reynolds number ensures fully turbulent flow.

The HPFTP performance baseline data were provided by MSFC and
are summarised in Table 1 under the heading "Flight". Similarity of tip Mach
number between model and flight hardware implies a model rotational speed
of 8690 rpm. The expected flow coefficient similarity yields for the model an air
mass flow rate of 0.63 Ibm/s (1029 kg/hr), provided that the inlet and outlet
conditions to the impeller are similar between flight and model hardware, while,
under the same assumptions, the expected discharge pressure will be 16.5
psia. The scaling of power requirements also suggests that at the Mach
matching speed of 8690 rpm the model pump will consume 4.78 hp.



HPFTP Baseline Operating Conditions

Inlet pressure, psia
Discharge pressure, psia
Inlet temperature, OR
Discharge temperature, OR
Inlet density, Ibmvft3
Discharge density, Ibm/#t3
Inlet flowrate, Ibm/s
Discharge flowrate, Ibm/s
Pump efficiency

Pump horsepower, hp
Pump speed, mm

Pump tip speed, ft/s
Speed of sound, ft/s

Tip Mach number

Pump head coefficient
Pump flow coefficient

Flight
220
2458
42.41
62
4.2784
4.659
162.59
162.59
0.76
22110
36742
1924
4778
0.4
1.71
0.179

Model

145
16.55
(526)
(540)
0.07

0.63
0.63

4.78
8690
455
1130
0.4

Similar analysis for off-design speeds of 4000 and 12000 rpm gives the
operating parameter estimates summarised in Table 2, below:

TABLE 2
Flight and Model Operating Conditions
Flight Model

min match max
Mach number 0.4 0.18 04 0.56
Mass flow rate, Ibm/s 162.59 0.29 0.63 0.87
Speed, rpm 36742 4000 8690 12000
Reynolds number 1.26x107 1.3x104 2.8x104 3.9x104
Pressure rise, psi 2228 04 2.0 3.8
Pump power, hp 22110 0.5 4.8 12.6

This preliminary analysis proved that the simulation of the HPFTP
operation with air instead of hydrogen as a working fluid is feasible, with the
only technical constraint of relatively high speed and moderate power
requirements from the driving device. This should ideally be a DC motor with a
thyristor speed controller in order to allow continuously variable and regulated
speed. However, DC motors above 6000 rpm with power outputs of the order



of 10 hp are not readily available. The altemative solution would be a standard
3000 rpm motor of 15 hp output coupled with an orbital step-up gearbox to
achieve the 12000 rpm target. Careful consideration of the financial
implications indicated that the best cost effective solution would be to design
the test rig for a maximum rotational speed of 12000 rpm but, in the first
stages, to drive it with a DC motor capable of 7.8 kW (10.4 hp) at a speed of
8000 rpm. Provisions, however, have been made for the motor control
equipment to be able to accommodate the power requirements of the
motor/gear box arrangement at 12000 rpm.

2- Inlet and Outlet Conditions

" Understanding of the impeller/diffuser aerodynamics is expected to
benefit from simple inlet and outlet conditions, even if they are not
representative of the flow situation in the actual flight turbopump. it was
decided to, initially, eliminate the scroll entry stage upstream of the first stage
of the turbocompressor as well as the impeller and volute of the second stage.
The simplest possible inlet and outlet conditions correspond to inlet from
atmosphere and discharge into a long annular duct. Inlet from atmosphere
implies the use of a bell-mouth shaped entry section while the presence of the
annular duct necessitates the introduction of a collector volute at its end in
order to direct the discharge flow into a pipe and metering device. The inlet
bell-mouth geometry was made identical to that of the exit of the inlet scroli of
the flight hardware, albeit without the guide vanes. The geometry of the
annular duct downstream of the first stage volute was dictated by the outlet
dimensions of the volute and was made 10 hydraulic diameters long in order to
minimise the upstream effect of the collector scroll.

The geometry of the diffuser volute was simplified even further by
eliminating the vanes and by slightly altering the geometry of its walls to
enable better access for LDV velocity measurements. These simplifications -
are bound to affect the performance of this stage of the turbocompressor but
they provide a well-defined reference geometry for the study of
impeller/diffuser interaction and for the assessment of numerical simulations.
The simplified test rig is shown schematically in Figure 4a and represents the
basic flow configuration. All parts of interest, such as the volute and inlet bell-
mouth, were manufactured in clear cast acrylic in order to enable optical
access for LDV measurements.

The basic test rig has been designed in a way that further additions of
fight hardware can be incorporated in order to simulate more closely the
HPFTP geometry. Figures 4b-d show examples of modifications which have
been considered in the design of the test rig. The inlet to the first stage
impeller can be modified by introducing guide vanes into the currently installed
bell-mouth. Alternatively, the inlet conditions may be altered to represent a
pipe flow with or without vane-induced swirl. There is also provision for
installing a replica of the scroll-shaped entry stage which can be manufactured
in clear cast acrylic to enable laser velocimetry studies to be conducted with
identical inlet conditions to those of the HPFTP and inside the entry stage.
Provision also has been made for the installation of the actual second stage



volute downstream of the first stage to simulate the proper outlet conditions. A
useful alternative operating mode of the test rig is also shown in Figure 4d,
whereby the downstream collector scroll is modified into a suction pump. This
configuration may allow elementary studies of the flow field within the volute of
the first stage in the absence of impeller-induced flow effects. The
arrangements of Figures 4b-d clearly indicate that the closer to the flight
configuration the rig geometry is, the more restricted the access for LDV flow
studies becomes. This provides further justification to the decision of initially
simplifying the flow configuration as much as permissible.

A further consideration in the design of the basic test rig was the gap
and clearance similarity between the impeller exit and volute as well as in the
labyrinth seals. The former were arranged identical to the actual configuration
but the fabyrinth seal gaps had to be doubled. This was necessary because of
the relative radial flexibility of the acrylic volute and is not expected to influence
the leakage flow similarity significantly, particularly when the much lower
pressures in the test rig are taken into account.

3- Structural Design Considerations

The primary concemn for the design of the basic test rig was the
provision of ample optical access at the inlet to the impeller and inside the
diffuser and volute. Given the dimensions of the volute, the use of high quality
glass or similar material was excluded. The next best candidate considered
was high impact polycarbonate (Lexan) but this had also to be excluded
because of poor optical properties and machinability difficulties. It was decided
to make use of thick section Transpalite clear cast acrylic which presents
moderate mechanical but superior optical properties, combined with low cost.
The volute, shown in Figure 4e, was cast, machined, polished and thermally
treated in two pieces, joined together with studs between two spider-shaped
aluminium flanges. The splitting line of the volute is such that enables future
insertion of simple geometry vanes in the radial diffuser.

The length of the annular duct downstream of the volute was dictated
by fluid mechanics considerations in order to minimise the upstream effect of
the collector scroll. This caused the length of the driving shaft to increase
disproportionately and to cause concern for possible shaft whirl. A simple shaft
analysis, however, indicated that the critical speed of the final assembly is well
above 18000 rpm. This was achieved by the sizing of the shaft as well as the
bearings selection. The initially selected ball and roller bearings, shown in
Figure 4, were replaced by one matched pair of pre-loaded high precision
angular contact (spindle) bearings (Fafnir 2MM9108WIDUL) In o"
arrangement near the impeller and a single spring-loaded spindle bearing at
the floating end of the shaft. The final shaft assembly is shown in Figure 5.
This arrangement, apart from increasing the stiffness of the shaft and
improving the axial positioning accuracy of the impeller, also enables the test
rig to run with oil or even grease lubrication, instead of the initially selected oil
mist lubrication, up to speeds higher than 19000 rpm.



The simultaneous determination.of the angular position of the impeller
with the LDV measurements called for a high resolution and high frequency
response shaft encoder device. Given the 12" diameter of the impeller any
uncertainty in terms of angular position would be magnified at the impeller tip.
This led to the decision to mount the shaft encoder on the shaft of the test rig
rather than at the end of the driving device, taking into account the necessary
intervention of a flexible coupling between them. This arrangement called for a
hollow encoder disc with the encoder head mounted on the body of the test rig.
The encoder selected was the Teledyne 8709-2048-MA with two tracks of
2048 lines per revolution giving angular resolution of 0.1750. Considering the
500 kHz frequency response of the reading head, the selected encoder is
suitable for speeds up to 14600 rpm. The drawback of this device is its
sensitivity to alignment between the disc and reading head which can
deteriorate with increased shaft vibrations.

The test rig was connected to the DC motor via a high speed flexible
coupling, Metastream Type TSK-11, balanced to ISO G2.8. The motor
selected was a specially converted Thrige-Titan GK80-12BF9 DC motor
capable of 7.8 kW (10.4 hp) at 8000 rpm, driven by a SSD-546 3-phase 2-
quadrant thyristor convertor capable of maximum power output of 20 kW (26
hp) in order to accommodate future driving devices at the higher speed of
12000 rpm.

The test rig/motor assembly, views of which are shown in the
photographs following Figure 5, has been mounted on a frame and balanced in
situ to ISO G2.8 standards. It must be stressed here that the alignment and
balancing of the assembly is strongly affected by the flexibility and, therefore,
by the mounting method of the supporting frame. It is strongly recommended
that the frame is rigidly mounted on a large mass concrete block and the test
rig re-aligned and balanced to the same standards before operation at speeds
exceeding 4000 rpm.

PART 2: PRELIMINARY MEASUREMENTS

A number of preliminary tests have been carried out to evaluate the
performance of the test rig and the feasibility of obtaining reliable LDV velocity
measurements in the speed range of interest. The maximum speed achieved
proved to be 7740 rpm, limited by the tachogenerator output reference circuit
of the motor controller. This can be increased, if necessary, to 8000 rpm by
changing a resistor value in the control unit but was not thought to be
necessary since the tip Mach number matching speed is in excess of the rated
speed limit of the DC motor. The shaft encoder output pulse trains were also
examined and the necessary adjustments to the reading head made to obtain
symmetric pulses from both channels. It is during these tests that the
sensitivity of the encoder alignment to shaft vibrations was identified and cured
with higher quality balancing of the test rig and optimum alignment of the
encoder head. The stability of the impeller speed was measured by feeding the
shaft encoder pulse train in a 1 ns resolution frequency counter and was found
to be better than 0.05% over the whole speed range and to improve with shaft
speed.



1- Discharge Flowrate Measurements

The turbopump discharge flowrate was measured by passing the outiet
flow from the collector scroll through a 4" pipe equipped with an orifice flow
meter device according to BS 1042. The pressure drop across the orifice and
the upstream static pressure and temperature were measured over the speed
range of the turbopump without throttling its outlet. The results, shown in
Figure 6, indicate a linear increase of mass tiowrate with rotational speed and
a less than linear increase of volume flowrate, calculated with respect to the air
density at the measuring device. The volume flowrate was calculated for
reasons which will become clear in the discussion of the velocity
measurements. These results also suggest that the measured mass flowrate is
60% less than that predicted by the similarity analysis presented in Part 1 of
this report. This discrepancy can be attributed to the fact that the similarity
analysis predicts the performance of an identical turbopump stage for a
ditferent fluid. No account has been taken of the fact that the inlet and outlet
conditions to the compressor are not the same to those of the flight hardware
and, more importantly, that the geometry of the simplified vaneless volute
differs significantly from that of the SSME HPFTP. Further to that, it is not clear
if the values of the baseline performance given in Table 1 were obtained under
load or not. The present measurements have been obtained in a configuration
which presents load (pressure losses) in the collector scroll and flow
measurement device of the order of 0.4 psi at maximum flowrate which, when
compared with the predicted discharge pressure rise of 1.6 psi at 7740 rpm,
are quite significant.

2- Velocity field Measurements
2.1- Measurement System

The laser velocimeter used for these preliminary measurements
consisted of an Argon-lon laser operating at 514 nm with power output of 0.8
W, an optical transmitting unit based on a rotating diffraction grating providing
continuously variable frequency shift up to 16 MHz and a photomuttiplier light
collection unit. The laser beams were directed into the transparent volute by
means of a mirror positioned at 450 with respect to the laser axis and the
velocimeter was operated in the off-axis back-scatter or 900 scatter modes.
Seeding of the flow was performed by silicone oil droplets of 1-3 microns
diameter generated in a micro-fog lubricator. The positioning of the outlet pipe
of the seeding generator was found to be critical for the velocity data rate and
performed optimally when it was streamlined with the inlet flow to the
turbopump. Similar arrangement was found to be beneficial in the turbocharger
study reported in FS/87/36.

The signal from the photomultiplier was processed in a TSI 1990c
counter processor the output of which was interfaced to an IBM/AT compatible
computer via a purpose-built DMA card. The same interface card was fed with
the 2048 pulses per revolution from the shatft encoder and allowed pairs of
velocity measurements with impeller angle information to be stored in the
microcomputer. The data acquisition and processing software (tsi_g), which



was specifically developed for this application, continuously displays the
number of valid velocity measurements as a function of shaft angle and allows
the measurement to be terminated when a statistically adequate number of
data has been acquired in all pre-determined angle windows. The
measurements presented below have been obtained with approximately 1000
data per 1.050 (6 encoder pulses) window. This feature of the data acquisition
software is particularly usetul in rotating turbomachinery investigations since it
allows continuous monitoring of the periodic features of the flow. The data
processing software is able to analyse the velocity measurements in terms of
ensemble averages within variable shaft angle windows and is also capable of
overlaying and comparing the ensemble average mean and rms velocity
estimates from one blade passage to the next, thus enabling blade-to-blade
variations to be studied.

The data processing software supplied with the test rig also features
stationary or time-resolved velocity measurement capabilities (tsi_v) with the
option of continuous monitoring of the dynamic PDF and a plotting and printing
routine (plot_g) for post-processing of stored data files.

The shaft encoder output is also processed by a dedicated counter to
provide display of the impeller speed, while the same circuitry allows for the
adjustment of the index (reference) pulse. This reference pulse can be
positioned by a set of thumbwhee! switches in any position of the 3600 shaft
rotation relative to the encoder marker pulse so that it can be adjusted to
coincide with a specific angular position (t) of the impeller.

The locations in the diffuser and volute where measurements have
been obtained for this preliminary study are shown in Figure 7. They
correspond to the middle plane of the radial diffuser section and extend over
the apex of the volute along a diametral plane of the turbocompressor. The
coordinate and sign conventions are also shown in Figure 7. Radial (V) and
swirl (W) velocity components were measured for an impeller rotational speed
of 4260 rpm (71 Hz) and some measurements are also reported for the same
locations for speeds of 6084 rpm (101.4 Hz) and 7680 rpm (128 Hz). For the
measurements presented below, the position of the index pulse (t=0, zero
angle reference) was arbitrarily set to 20 pulses from the encoder marker
pulse.

2.2 LDV Data Rate

Figure 8 shows the sample size per 1.050 averaging window for four
measurement locations which also corresponds to the data arrival rate for the
specific impeller angular positions. The distinct feature which can be observed
is the periodicity of the data arrival rate which corresponds to the impeller
rotational frequency multtiplied by six, the number of main blades. The deeps of
the sample size curves correspond to lower velocity magnitudes and indicate
that, for a finite averaging time, smaller number of slow rather than fast
seeding particles is observed. This is typical of periodically varying flows and
ilustrates the "velocity bias" effect that conventional population averaging
would introduce in the statistics of such samples. It should be stressed,



however, that the conditional angle-resolved averaging performed here
minimises this bias.

The graphs of Figure 8 also show that the flow periodicity induced by
the impeller blades is evident even at 35 mm away from the impeller, although
with attenuated effect. This will become clearer in the discussion of the
corresponding velocity magnitude measurements.

2.3 Blade-to Blade Vanations

Figure 9 presents swirl and radial mean and turbulent velocity
component measurements obtained at four locations and for the three impeller
speeds investigated, as indicated on the individual graphs. These
measurements, which were obtained throughout the 3600 revolution, are
presented as six superimposed traces in a 600 window and illustrate the
blade-to-blade variability (or periodic repeatability) of the flow. The results
clearly indicate that the flow exhibits a very good periodic repeatability,
particularly as far as the position of the steep temporal velocity gradients is
concerned. This is attributed to the high manufacturing standards of the
impeller and is not a usual feature of common high speed turbocompressor
impellers (see, for example FS/87/36). Some blade-to-blade flow variations are
observed in regions of near constant velocities, mainly in the radial direction.
These variations may be attributed to imperfections in the positioning and
sizing of the splitter blades, but their relative magnitudes are small.

The above results, apart from confirming the manufacturing standards
of the HPFTP impeller, enhance the confidence level of the LDV
measurements and of their angular resolution. They also suggest that
averaging of velocity data over all six main blade passages, although not
recommended, will not introduce a significant error.

2.4 Flow in the Radial Diffuser

Radial and swirl velocity measurements were obtained at all
measurement locations shown in Figure 7 for an impeller rotational speed of
4260 rpm and the results are shown in the graphs of Figure 10. Each graph is
individually labelled as for the measured variable and location.

The radial and swirl velocity measurements obtained in the middle
plane of the radial diffuser (z=6.5 mm) and close to the impeller (r=2 mm)
exhibit the characteristic blade-to-blade periodicity mentioned in section 2.1
but also present evidence of flow oscillations within a blade passage period
which can be attributed to the presence of the two splitter blades in each main
passage. They also indicate that the swirl component varies between 44 and
59 m/s (25%), as compared to the blade tip velocity which is 68 m/s for the
impeller rotational speed of 4260 rpm, and the radial velocities fluctuate by
more than 50% around 9 m/s. Comparison of the swirl and radial velocity
magnitudes suggests that the angle of the velocity vector in the r-t plane also
fluctuates around 800 with respect to the impeller radius. It is also seen that
the maximum radial velocity occurs when the swirl velocity is minimum and



vice versa indicating that, very close to the exit of the impeller, the velocity
vector on the r-t plane abruptly changes direction from 750 to 850 with respect
to the radius as the main blade passes by the measurement location. The
turbulent velocity magnitudes also vary accordingly, being higher in regions of
steep temporal velocity gradients.

At radial location r=5 mm from the impeller tip, the radial velocities
appear higher and the swirl velocities lower than the corresponding ones at
r=2 mm, indicating a reduction of the vector angle to around 700-820 with
respect to the impeller radius. Similar flow features within the impeller blade
passage period are observed as at r=2 mm, with the effects of the splitter
blades still evident. Turbulence levels are similar to those at r=2 mm but
exhibit lower peak values In the regions of steep velocity gradients with
average relative intensity values of 40% and 10% in the radial and swirl
directions, respectively.

Similar trends are observed In measurement locations r=10 and r=15
mm where the radial velocities keep increasing and the swirl velocities
decreasing with radial distance. The characteristic blade-to-blade periodicity Is
clearly evident but the swirl velocity now fluctuates by only 12% around a
mean value of 45 m/s and the radial velocities by 30% around an average
value of 12 m/s. Relative turbulence intensities remain of the same order of
magnitude as in the previous measurement locations. :

By r=20 and 256 mm, the mean swirl velocity fluctuations around the
average value have been reduced to 10% and the corresponding radial
velocity fluctuations to 25%. The flow patterns within a blade passage period
have also been smoothed out, indicating that at these locations the presence
of the splitter blades is not felt by the flow.

At r=35 mm, which corresponds to the outlet of the radial diffuser, the -
average flow angle with respect to the impeller radius is 760, although it still
varies with impeller rotation angle. Relative turbulence intensities remain of the
order of 40% and 10% on the radial and swirl directions, respectively and are
still influenced by the impeller angle. It is not before half-way down in the turn-
around section of the volute (r=40, z=20 mm) that the turbulence magnitudes
appear to be independent of impeller rotation, with magnitudes around 1.65-
1.7 m/s, while the mean velocities still exhibit their characteristic periodicity at
the exit of the turn-around section of the volute, with the exception of the radial
velocities which, anyhow, are near-zero.

At r=35, z=40 mm, which is the last measurement location in the volute
middle plane, the velocity vector angle in the r-t plane is very near 880 with
respect to the impeller radius, suggesting the presence of a net swirl motion
inside the volute, which should be kept responsible for the increased losses
and reduced discharge capacity of the turbopump, discussed in section 1 of
Part 2. These results indicate that, if the discharge flowrate of the turbopump
were to be increased for this rotational speed, the incorporation of guide vanes
in the radial diffuser would be mandatory.
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The presentation of the above preliminary data also indicates that the
amount of data generated by the measurement:system is very large and their
interpretation not straightforward. It is worth mentioning that each graph from
those of Figure 10 contains information from over 400,000 individual
realisations. The interpretation of the resuits will benefit from a presentation
software, probably of the type of animated" vector plots, which would be able
to cope with the large amount of acquired information.

2.5 Effect of Impeller Speed

Figure 11 presents data of mean and turbulent radial and swirl velocity
components, obtained at locations 2=6.5, r=10, 20 and 30 mm for an impeller
rotational speed of 6084 rpm. The velocity scales have been selected to match
those of the corresponding measurements of Figure 10 based on a linear
increase of velocity magnitudes with impeller speed. As can be seen from a
comparison between the corresponding graphs, the flow features are very
similar for the two impeller speeds, particularly as far as the swirl velocity
variation with impeller rotational angle is concemed. The mean velocity
magnitudes in the radial direction do not appear to scale with rotational speed
but the swirl velocities scale fairly well. The scaling of the swirl velocities is
considerably improved if the scaling factor is taken as the volume flowrate at a
given speed rather than the speed itself. The impelier speed ratio is
6084/4260=1.428, while the volume flowrate ratio for the two speeds, as
deduced from Figure 6, is 1.345. The angle of the velocity vector on the r-t
plane is, again, of the order of 800. The turbulent velocities increase in-line
with the mean velocity gradients and follow similar patterns to those at the
lower speed.

The results of the swirl velocity measurements obtained for impeller
speed of 7680 rpm are shown in Figure 12 and exhibit similar behaviour to
those of the lower speeds, both in terms of characteristic flow features and
scaling with volume flowrate.

It can be concluded that, for the impeller speed range investigated, the
flow field structure in the radial diffuser was not substantially affected by
rotational speed. This may allow the study of the flow in this basic simulation of
the SSME HPFTP rig to be conducted in relatively low speeds, particularly
since the turbopump flow coefficient similarity does not appear feasible without
the introduction of guide vanes in the diffuser volute.
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CONCLUSIONS

The principles and details for the design of a test rig simulating the first
stage of the High Pressure Fuel Turbopump of the SSME, together with
preliminary measurements of the performance and flow field inside the model
turbopump volute have been reported. The main conclusions of this study can
be summarised as follows:

1) The test rig design and construction satisfies the required
specifications in terms of operating characteristics and optical accessibility for
laser velocimetry studies.

2) The flow coefficient of the turbopump rig was less than that predicted
by the similarity analysis performed on the basis of the HPFTP flight data,
primarily due to simplifications in the volute geometry.

3) The LDV measurement system performed satisfactorily in terms of
reliability and accuracy in the speed range of interest.

4) The blade-to-blade flow repeatability was very good due to the high
manufacturing standards of the SSME HPFTP impeller.

5) The flow inside the diffuser and volute of the turbopump has been
studied for an impeller rotational speed of 4260 rpm and the results suggest
that the lack of guide vanes in the diffuser/volute arrangement allows the
development of high swirl velocities at the expense of the radial velocities, thus
reducing significantly the flow capacity of the model turbopump.

6) The flow field inside the radial diffuser was studied for rotational
speeds up to 7680 rpm and the results revealed minor only effects of impeller
speed on the overall flow structure.

A-~12



LIST OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig. 10

Fig. 11

Fig. 12

1

o N OO O A~ W DN

The SSME High Pressure Fuel Turbopump
HPFTP first stage impeller

HPFTP first stage diffuser volute

Basic geometry of the test rig

Details of the final shaft assembly

Discharge flowrate of the turbopump
Measurement locations and sign conventions

Variation of sample size per 10 window as a function of
measurement location

Comparison of mean and turbulent velocity magnitudes in six
600 intervals of a revolution, for various velocity components,
measurement locations and impeller rotational speeds.

Variation of mean and turbulent radial and swir velocity
components in the middle plane of the radial diffuser as a
function of impeller rotation. Turbopump rotational speed: 4260

rpm.

Variation of mean and turbulent radial and swirl velocity
components in the middle plane of the radial diffuser as a
function of impeller rotation. Turbopump rotational speed: 6084

rpm.

Variation of mean and turbulent swirl velocity component in the
middle plane of the radial diffuser as a function of impeller
rotation. Turbopump rotational speed: 7680 rpm.

A-13



7

i

CRGhIL L
OF POUR NLALL,

— s c— a———

™NoOI1d

T

7

P

h)

NN

fa/
\
\

g .////, I
AN RUMINKR \ R\
E— I 2 WL A
i - = \ S \ -~ < £ S Z <\ S ) .\o 2 7//
s / /, \' ,V/// /// ////, ///// ///ﬂ /////,%////./ N =< N
. = = &, fel \ ; ,/ﬁu/ > =HNN /wosz Ty ;%7
Lanl_-r\ﬂw dh raa A\ vi m b = N @ Y N
—1 N \\\ AR 4 m \ =N e
y I.a A . NN S / . 7
B P\

Xz




ORIGINAL 10

R

OF POOR QUALET‘;’

Ak ..m,.u,\

©.075 WOL,
LOWUTIO oW

uu.nuu stwoty, OF -0

b | 1A REF

2 scae §
013, ~0t5 - . :
Kv-cl( .-vomm 1ADD
QM0 WLt AL Swowd ASOvE |

4000 UM 4P

SRaL m 3T L)
sters 428l

Ela-e D 00
SR 6§t
CRILL w8 49 LOTH)

LAY BT *:1
=

4

FOR -807 £ -04%

(Il ’b\}‘i\

ﬁ :a“
EE

ELl

wetnt st
prei o7 iaes

SLEND wilH
re

24
oA X
2%

wveew K-K
T LU VU
$EE view 00" row

1onAL STDRMATION

-
& \,

.80 2R

$LUN0 wotw 130 R. FO 8
LUNE TN O8 FaiWine

FIGURE 2a

A-15



e
T
PR
.:‘V... o“lum \s“l-\‘l\l._
o g B 3 |
] qz =WNOId - S @ umires
7S T\ _— gl ...
3 A N\ \'E ° CEeretel
= \ Tt i
¢S \ Ceo zo)
wia gol ey (=)
\ e i
JM” wa 152 0ty (W) —

)

oS
o

& s @ 5
=l ) —
oo ww [ |

e Y neai

.H . \..// AN %%9/// T

it gw&“ﬁdu __ ——— . \Tq!ﬁ
TS __ 7

dw® | | T L,//M/v. NN N . SO

NS B 600
AN [=deeele)
It . 217 4 w3 eir(®)
¢ N v jom ¥
- Ne— e
= = | a [TEER
§3y-- ™~ mi
o N (=mm o 22800000 O — .
10" e
88 pes — —
To«%%md..Sl ” /v-
/ A
e §0-%00-4 4
0.71“&@ Vs ! o 7 / \ !&u.ﬁd&@"
- N ‘ ~—"1 $00- wos
[0 [ov-ove]
o 2% 0011 & -]
- / S10- wau
ﬁ Loz 0
clooon.s‘. @l
"9 s~ | b0
(U‘t@
1\ o 00" 31 2t "1~
I Fwiens aaﬂ
LT s T %IK
393 mve
&3 M
[ ]8-v[T) ooole- V1]

A-16



ITY

GINAL PAGE 1S
OF POOR QUAL

ORI

- e Ny
s D)y -y NOILI3S .

e
n.uo-'.. it - oo
' Ui JavA su¥
5 v 2 270 33 foW 08 :
(5w ) MIA BUN..»N“. A ﬁ.\._....
E3-ems . Vi Lomvuy w2y
£ I pross - & g
‘ LA -t e XD Y S 82 >
. awsFE | MIA .-~. . /.. wi@® . . o -
g% oalst "osEse . ol . weid R <.-~o<~.u.-a.l1 “ww
s w1 _pw [ 4 “r t_tw poval S
SL (..lleIRRMWHw e - o 1 baed
! [T
vui B [ \\\\ “iee e < o
v Okl “+ .
0 W 3Hr® oo
’ = wiin ® Aol :
*‘ w5 o907+ 00 ..I. % so— 4L 1 | - o A diqonv .nsru”\umh
. Y [£
r(GEg Y MIA o Wy Jo5e _mmlJ \“‘.\ D . “
W % \.“ A
“y.F 4 9 g ] .
- i Vads
. L T~
rall o~ vt B~ -
i w5 BEAN b EII0E 0
y 35 &
axom—== o e { N
4 "
Fad d v
i)
etk w “u!_. (]
LA D4l
O |oehge | o | o o] (D) s
adrald ot ey oo V v s . .
"
e o0 1993) ] N S irss
Msre S8, -
N wEE s | S i
[§of L e e ¢ 113
~ asung i X .o¢| —y o sy
G| | L e | I
Freberd |2 \ 'Y ey "
-~ — e TIHEEQ e vorn
WA SNisYE) ™ N
Ty wisd 10 P/
Volad: v . oo
o Hs1my 73
[ L A/
oy 28 o o \ \
iy 4 i
AA—/
\w\ /RI748
e
TrTTal X (/0 v e ~a
b , .
A . b Lt o fion
sus facg L o34 -unl\ _ —) lI"o”o.. B9 d MIA i
T ucs.. ’ o‘lIA -
por T R prett 20 | &
-
SEINENGS DIAIY) Vg B Q' ﬁ\ !;".‘ \
AESy (RIS 50 b |
NTIRe @ SINLIOE Ki0E NRINIS poodit \
@dt -u..o! [ 43u VIO OITé
3300y QUi 20aY gL i : poee V¢ &

A-17



ey TANOId

lil

~
Y AT A A Y R ORI ~

4 I

YA

LAY

L0 7  e

i

ZZ

TR

Ll

.
/ ..
AN

A- 1%

— ‘\\I\\m\\\ ’

\\ 4
A0l

ADNIRON2E

IR




I

o
L Tach

X

OF POOR QUALITY

Ok.Gi

b T AN XN ¥R YO YL N

WAAAIIN LS LI Y5 NNNNNN \jl
7777777277777 K NN TN /
\\\\\\ \\\\\\\\\\ NNANSY /A
XYL RSN
) sty CRSARN
VLX) ////I//
oo DN
/%, RSN
7,707, AR
7,0 SN
277, NN
v, N
77,7 AN
XY NN
7,7 WY BN
(xe NN
7/ \\\ N /l//
s, SN
‘77 N
LIXLLE N R
LA N \
. (AL B
’ 777 Ly
147/
\ /L -
— 727
7 |
\\\\\\\

7 AR

7 777777777777 777 7T T 7 T e :@ 77975
|

— e — — s + p— = . -4 + — —— P — PRSP —_—

A-19

v YOI IS TSI TIIIAITIIII YIS

i |
_ !
n O _

[

|
NN
N

A
\\\\

e T s %// N\NNANNNNNNNNNNNNNY S 7,
|

N N
\\\\\\ X
N

s H N
N 0 EANSY

PRy, RN
v/, AN
Va \\\\\\\\\v“\AW\\\\ EOCRNNN




OF J¥NOIA

s S’ //,//./ h :
Sesmediunmalinssi—— — 77 w\\\\\\\\ AN
- h‘_ | Wk, NN
/7, A /ﬂ///// > >
sl NN - 2
\\\\ 7/ ///// / %
7 SN %
\ \\\\\ ////ﬂ// \\
7 NN ‘ /
(R0P4 SNRN , 7
% N 7 | 7
\“\\\ ™ v — /
x4 \\ <
“\N\\\ “\“\
7, \\ / / 7
v 7/’ 7 7
%% 0 A
"/ vy \\\ 70
4 \\ ', % 7 \ 2
— 2l 4 \\\\\\\“
/ \\“\\“ 7% Il
I /
| 7 Y, 1152000/
LAY / \\\\\\\\\
¢ 7]
7
v
| . — Tr7 P
S bl B 2z
. %
A V2%,
| \ y \\ \\\
72,0057,
oy AT IS,
L
Z YAIXIY
\\\\\\\\“\\ \\\\\\
$ 0T
20,%
v v
"7 N
Ji7 Y24 _ v
= e ) 9
- / LoV 4 Yy
“ v 7
50/ Z 7
\\\ —~r e - o,
. \\\ 7, O o A %
2 \\\ NN s 1 7
% ‘y TN \\\\ /
% 7y NAANY 75 %
\\\\ ARSI 220 177
e 7,7/, SNVNAY VAP /5 7 \\\\
/7y //////, 777 7
/) ////U 7
\\\ A //// h
Y SNAN
L NN
RLI o’ N
,\\\\\\\\\\\M\\\\\mm“\ ./////UU _
\J\\\ﬂ\““h.\_\l‘ul\ PP SRS
\\\\\\\““\“\\ R //ﬂ///
’ IV PAVYSSAAPIY A NN
N\

A-20



]

I,

LA

—

-

T, \\\§

A-21



27—

VISSITIIII IS 77




S JdNOId

a5 - |
Jcﬁ e =
’ 2N
i 5 /! .ﬁ. ¢ MWWH —_
bt ﬁ.‘ _ -.m ;] I, “\

=
Cd
-

—
=

i
-
]
) l
=™
-
—
=
~ 1
-~ -'l"-u

.,.u]—-'
B El
"

]
N
N
N
R
EN
N
+H¥2
=T
1

L

L e
~.
~—

gl

5B
Ll




mass/volume flowrate

400

100

300

200

1

1 i PR | 1

1

1000

2000

3000 4000 5000 6000
impeller speed (rpm)

_TIGURE 6

A-24

7000

8000



P N

4

e e ¢ 8 o0 o9

B,

222200 LLA

) I TIIIIIIIIS

w9=d

A-25



FIGURE 8

A-26



Sawple size per vindow

H conponent
r=5.0 m
265 m
t=0.0 deo
- +1500
11200
]
¢
-
e
f 4 1900
]
[ 9
0
: 1 +600
&
o
3
4
4300
N a " 4 — o
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
Sanple size per window
U component
r=20.0 m
269 mn
t =00 des
X r 1500
} ]
+ 41200
]
. (A
[}
8
R 900
[ ]
-
0
L i
' 600
2
{
b]
£
4300
n re e 4 i o
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-27



Sanple size per vindow

U component
rz=30.0 m
2=6.5 mm
t = 0.0 deg
- Tlsm
] 41200
. o
‘ .
-
g ] 1500
[}
.
0
s 4
p 600
8
t
3
4
4300
4 - & 4 " 0
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
Sanple size per window
H# component
r=35.0 mn
zz26.3 m
t - 0.0 deg
1 +1000
'W’f JWM\ 1o
. W
{ ]
[}
¢
H 1600
' 1
.
0
4
p]
14
4 1200
3 3 A A e 0
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-28




FIGURE 9

A-29



rrmmr e locity CHnos)

‘Mean Uelocity (blades over lapped)

U conponent
2.0
6.5
0.0

r
z
t

33

13.00

17.80

4S.20

+2.60

10.0

20.0 30.0
shafl anale

40.0

A-30

50.0

4260 rpm



Mean Uelocity (blades overlapped)

# conponent
rz=20 m
2269 mn
t=0.0 des
- +60.00
--56.m
A
L]
\
£
v
’ 9 "52-m
&
-l
U
0
[}
¢ | 4
3 48.00
4
[]
[ ]
£
44,00
s i i M . w.w
0.0 10.0 20.0 30.0 40.0 $0.0 60.0
shaft angle
RMS Uelocity (blades overlapped)
W component
r-=2.0 mn
2269 mn
t:-00 des
-8.00
]
1 16.40
(a3
[}
\
4
v
3 L 4,80
&
-l
U
0
-
g‘. 1+3.20
11.60
" 4 2 i 4 O-w
0.0 10.0 20.0 30.0 40.0 50.0 60.0

shaft angle

A-31

4260 rpm



Mean Uelocity (blades overlapped)
U component

r=15.0 m
22635 m
t=0.0 dea
'PIS.N
413.60
"~
4
\
£
L)
3 {12.20
¥
-
]
0 ‘
[}
] L
b] 10.80
£
[
:
1 19.40
+ 4 + + —- 8.00
0.0 10.0 20.0 30.0 40.0 $0.0 60.0
shaft angle
Hean Velocity (blades overlapped)
W conponent
r=15.0 m
2:-6.5 m
t=0.0 deg
+30.00

nean valocituy < =

0.0 10.0 20.0 30.0 40.0 50.0
shaft angle

A-32

4260 rrm



Hean Uelocity (blades overlapped)
U conponent

r=10.0 m
2=6. m
t=0.0 des
Tl?nm
"ls-m
A
[
\
{
v
’ o ‘leaw
&
¢
0
L
¢ 1
5 11.00
t
]
¢
{
-9.00
+- 4 -+ 4 4 ?lw
0.0 10.0 20.0 30.0 40.0 90.0 60.0

shaft angle

fean Velocity (blades overlapped)
N t

73.00

170.20

167.40

164.60

rearn velocituy < =>

161.80

; ‘ —~ . ; 59.00
0.0 10.0 20.0 30.0 40.0 50.0 60.0

shaft angle

A-33

6084 rpm



Hean Uelocilt'g (bladestwerlamed)

conponen
10.0
6.9

0.0

r
2
t

m
m
deg

renry velocity <Cm/and

"’90 17

193.7

488.35

182.94

177.53

4 + + + + 72.12
0.0 10.0 20.0 30.0 40.0 $0.0 60.0
shaft angle
RNS Uelocity (blades overlapped)
H component
r=10.0 m
2263 mn
t = 0.0 deg
+ +14.42
+12.62

vealocity <>

$10.81

19.01

+7.20

shaft angle

A-34

0.0 10.0 20.0 30.0 40.0 50.0 60.

7680 rpm



o velocite <mvm>

Mean Uelocity (blades
# component

’o4om

181.60

"79-20

176.80

174.40

0.0

10.0

20.0

A-35

72.00
€0.0

7680 rpm



FIGURE 10

4260 RPM

A-36



+13.00

10.40
+7.80
5.20

+2.60

0.00

211

Qve
Noo
[T TP

e,

Velocity

180.0 240.0 300.0 360.0
shaft angle

120.0

60.0

0.0

2zE83
g

O
Wm&&&

h
‘"
>l .l

g 2 2 g 3 8
- ~ n ) - a9
— + + o
-3
on
Q
18
-

180.0 240.0
shaft angle

120.0

60.0

(W) AR FPROT BN SHU

0.0

A-37



Nean Uelocity

H conponent
r=20 m
L
- +60.00
- s‘.m
"
[}
\
£
v
’ p '*52nm
L
U
S
g J} r“ow
t
(]
!
44.00
. " " " . ‘O.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Uelocity
H component
rz2.0 m
22635 wn
t =00 dea
8.00
]
- 'P6o40 »
; ! A
\ {
LE LD
v
3 + 14.80
&
-
u M
]
-
'+ 13.20
p)
%
I
g
] 11.60
" 4 4 " A o.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-38



Mean UYelocity
U component
r=S.0 m
2265 m
t=0.0 des
- ﬂ'lSnm
“ "13|m
N
.}
\
4
L4
’ 1 b llow
¥
-l
]
0
-
g * 9ow
t
[}
!
] 17.00
2 4 e i s s.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
s Velocity
U component
r-35.0 m
2635 m
t =0.0 deg
-6.00
14.80
A
'
\
: |
v
' \ 13.60
&
-
y
0
L]
§ $2.40
b
:
+1.20
+ : 4 4 + 0.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-39



H conponan
r=5.0 m
B D
T 160.00
b --55.“]
"N
} \,
v
’ 9 "San
&
[}
¢
]
”
]
) “.m
£
q
:
4 44.00
" " - " 4 40.
0.0 60.0 120.0 180.0 240.0 300.0 3¢0.0
shaft angle
RIS Velocity
H conponent
r=%50 m
2269 m
t=0.0 dey
18.00
{¢6.40
"
]
\ |
£
Y 4.80
] )
L J
-
' {3.20
?
"
I
'S
4 11.60
4 + + + + 00m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft aple

A~40



U componant
rs 1000 [, ]
2635 m
t = 0.0 deg
- 1-16.00
1 413.80
"
a
t
v r
g 3 111.60
H {( :
-t
; A
-
(. i
3 9.40
4
(]
!
A 47.20
4 4 4 4 . .00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Velocity
U component
r=10.0 m
1:6.3 m
t 200 deg
'6|m
‘ 1
$oA \\"t N’\‘\ \ }a.80
: f ‘
: \
, ] 13.60
L .
-t
1]
0
-l
. 4 "21“
?
[
b
[ 4
i 41.20
i A " re a °|m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft mle

A-41



1
£
B
*Z

H conponen
r=10.0 mn
-
T o +55.00
t 432.00
"N
.
\
£
1%
, r "‘,um
&
-l
U
0
]
vl 446,
3 > 46.00
f
[}
!
1 i 443.00
- i 4 4 3 w'm
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
S Velocity
W component
r=10.0 mn
26,9 mm
t=0.0 des
Ta.w
1 7.00
AN
[ ]
\
¢
Y 6.00
3 ] )
M i
1}
2
! 4 5.00
“
4
£
$4.00
— + ' 4 -+ 3.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-42



Hean Uelocity

U conponent
r=15.0 m
2265
1=00 deg
'!'!‘om
‘r -rl3.80
)
¢
\
{
v
’ <-ll.‘0
v
-l
¢
0
-l
¢ L
3 9.40
¢
.
:
1 47.20
——— " " " " 5.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Uelocity
U component
r=15.0 m
=639 m
t =0.06 dey
-6.00
]
&
“\’f\ f V\ / / W\V L0
()
‘ w
\
1
A4
, 1 1 30‘0
&
-
¢
0
-t
'R 2.40
b
¥
I
g
4 +1.20
. —~ + + —~ 0.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-43



150.00

442.00
40.00

+6.00
s.m

1+4.20

3.00

13.60

360.0

I

240.0 300.0 360.0
A-b4

180.0
shaft angle

120.0

60.0

e
18
e
g
| PR 111
M\\\ L | £
: .mﬂ E ¥ v
£  E=onn
MW\\ g
S
D\I\M.\‘\H\o o' e
[~]

CW /W) MJFIROT BN LUEB (W e AJ 01N TG

0.0



r=20.0 m
H
- - +15.00
L "130‘0
A
}
v {
s 1412.20
&
-
] i
5 10.80
t
1
!
4 19.40
. + + + 8.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-45



Hean Uelocity

K conponant
r=200 m
tz ::.5 "~
= 0.0
deg 46,00
"“0'0
A
S
L )
’ e "‘3-60
&
-
U
0
]
f$ 1 442,
3 42.40
4
(]
!
'ru.zo
" . " " " m'm
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
AN Uelocity
H conponent
r=20.0 m
22639
t =0.0 des
- 19.50
1'5010
A
§
\ * '
£
v ‘ .70
’ .
& i ;
- B\ i
§ T ) 8
s 1 L P 14.30
?
"30’0
+ - + + 4 3.50
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-46



V"ow

180.0 240.0 300.0 360.0
shaft angle
A-47

120.0

60.0

8 8 8 8 8 2 = 2 8 g 8
o = S o «2 - w < < - -
o —— m — +

~
Q
- ig
™
e
1
~
- « 2=EE§
of 8%8a,
= 10 o
gr 32f8eg
.m m Wy,
PenNng
Q
{0
o~
g
(=)
o
-
* ————p 0. —
[ -]

(W ) AJFDOL B LEBDW CWw) AJIFIRO0TBA THWE

0.0



# conponent
r=25.0 m
z =:0 "
t=0. deg
+45.00
v“.m
"
}
: |
3 43.00
¥
-
¢
0
-l
g 442.00
4
']
!
441.00
4 " M a " ‘o.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
AMS Uelocity
H component
r-25.0 m
2=65 m
t=0.0 deg
> Ws-m
+4.70
A
"
\
£
v
L ‘0‘0
3 |
[ 4 i
- ! l
§ |
f. 1 | : $4.10
3 ; .
"
£ | '
y +3.80
! !
e 3 i i i 3'50
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-48



U conponent
r=30.0 m
z=6.3 wm
1=00 deg
. J
3
v
, -
&
o
0
0 \ {
L]
) '. )
’ i ! .
4 : ‘
i
*
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
AMS Uelocity
U conponent
r=30.0 m
21635 wm
t =00 des
. 4.00
]
9 3-‘0
"
%
\
4
v | [
s ) l 43.20
e I
- i .‘
o .
2 ,
g b "20'0
“
4
£
+2.40
" 3 s 4 - 2-m
6.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A.—A 9



# component
rs= 30-0 L, )
-
T - ! ’“cm
42.20
A
4
\
£
v ]
’ 91 uc‘o
&
'R
¢
0
-
y - 40.60
!
1 139.80
¢ - 4 s + 39.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Velocity
# conponent
r=300 m
269 m
t=-00 deg
-4.50
* 1
1 14.20
~
]
\
£
v
E - 3.’0
2
»
L ]
“g + "3.‘0
[ 4
9 3-30
4 " 2 i 4 3.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-50



U component
r=35.0 m
265 m
t=0.0 deg
"lo.m
: 9 9.40
A
4 ' !
\ :
4
v I
’ ‘L 80'0
» [}
-
]
0
-
$ i
3 8.20
€
]
¢
4 17.60
+ - 4 + -+ 7.00
0.0 €0.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Uelocity
U component
r=35.0 m
2269 wn
t=0.0 deg
r s'm
1 . ) ‘ A 14.60
LY i i
] !
} ' --
M ’ 4.20
- i 14,
&
- 4
: | "
- f
' - 3..0
p] i
®
b
{ 8
"30“
-+ + 4~ 4 + 3.00
0.0 £0.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-51



i
£
3
~&

# conponen
r=3.0 m
$500 dew
- +42.00
4 +41.20
[,
}
v
’ - "‘0-‘0
&
-t
¢
¢
"
g 4 , $39.60
‘ b
§
g .
R | H 1;33.80
. + + + + 38.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RS Velocity
W conponent
r=3%.0 m
2 =6, -~
t = 0.0 deg
1 +4.50
o4 9 ‘uzo
A
|
\
4
v 3.90
’
M .
o H
0 )
2 i | I ;
4 Y‘ ) 1|
| | ; ‘ ' | !
I ! ! I
2 ‘ r A ,
| i i 1 ! * 3-30
f z
+ 4 . + 4 3.00
0.0 €0.0 120.0 180.0 240.0 300.0 3¢0.0
shaft angle

A-52



¥ conponent
r=40.0 mn
2=412.0 m
t=0.0 deg
V.om
1 +7.60
"
i
v
y ¢ -7.20
3 , | ]
- @
; ‘ x
" ! i ' |
$ V] 16.80
i i ' |
! t
- ‘040
- N e 4 2 ‘.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shafl angle
RS Uelocity
U conponent
r=40.0 m
22120 m»
t - 0.0 des
""cm
43.60
A
{
v ‘
2 , $3.20
&
-
:
' ’2|w
?
"
I
£
$2.40
+ ~+ — 4 + 2.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-53 .
(-3



H component
r=40.0 m
z2=12.0 m
t=0.0 deg
- +39.00
1+ 138.20
A
q
\
£
v
’ - --37-40
¢ w
-«
:
. L
3 36.60
€
§
§
£
1 4+35.80
+ + + + + 35.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft amgle
RS Uelocity
R component
r=40.0 wm
2:=12.0 m
t =00 deg
1 +3.50
r 9 3-20
A {
4
\ { %I ' ¥
: il I “ A
v {1, 5 §
] ‘W / .
’ , 290
Y i ! !
- i
:
' L3 02.‘0
?
“
b o
3
42.30
3 e r " + z'm
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-54



flean Velocity
U component
rz40.0 m
i
\ T +1.50
! 41.20
A
|
\
4
v
s t ' X 10.90
¢
-
H |
e | \ ! '
) 4 g N 1'0.‘0
4
[]
]
4
1 10.30
N 4 " " a ﬂ.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
/S Velocity
U conponent
r- 400 mn
z2 = 20.0 m
t=0.0 deg

“ 20w
1.80
A ‘
] ﬁ*’“
\
£
v
. 11.60
o
-
[
0
(]
; 4 1.40
L
I
£
41.20
< b . P - 1.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-55



H component
r=40.0 m
B
= 0.0 des 737.00
4 436.60
[,
]
\
£
v
g - i 136,20
0 Al !
- .
“ \
0
]
g A . 135.80
4
]
!
v ‘35-‘0
b e A 4 Yy n.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
A Uelocity
M component
r=4.0 m
2:=20,0 m
t = 0.0 deg
+2.50
N ' i} 1 Ly LR iy 1 L
] i ip \ AR (V% 2.20
FS |
%
\
{
M 1.90
’ .
&
o
¢
0
-
g T “1-‘0
[ 4
41.30
+ 4 + + + 1.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-56



Hean Uelocity

U component
r=40.0 m
T - 1.50
]
| +41.20
"
|
\
£
v
3 1 40.90
¥
-t ) 3 [
g 1 X M ('l
- .
[ | g
$ 1 40.60
4
[}
g‘
1 40.30
P A e 4 L 00m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
s Uelocity
U conponent
r-40.0 m
z = 30.0 mn
t =00 deg 2.00
1 .\ .
1 41.80
[
il
) TRV T
H \
v \\ 1] 1.60
’ .
»
-
$
g i 41.40
[]
I
€
T “‘120
4 N 4 i " l.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-57



Mean Uelocity
H component

r=40.0 m
z2=30.0 mn

t=0.0 deg 37,00

136.60

MM \ Jﬂmf 36.20
AVRY Mr‘

ocity < ad>
__':ﬂ;:zz:}—

]
1)
Y
£
{
435.40
4 + + —t . 35.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RNS VUelocity
H component
r=40.0 m
z 2300 mn
t - 0.0 deg
T +2.50
ﬂ : ! |“
f WMx kit "P WW\ ¥ e
[
\
4
v
} 11.90
b
&
L.}
v
S
'R 11.60
b
4]
b1
a
41.30
s " 4 " - l'w
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-58



=1
ZoEE8
Sgco

Mean Veloc
U componen
r:40.0
= 40




Mean Uelocity

K conponent
r=40.0 m
{5046 des
- +37.00
d +36.60
A
]
\
£
v
’ ¢ 136,20
v
4
¢
[}
g i 135.80
£
[}
!
435.40
" " i N 35.m
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RAMS Velocity
H component
r= 40 ne
zz40.0 m
t 0.0 deg
+2.50
k } 12.20
A b .N Aﬁw ‘
£ U YNt |
S L I A I
v 1]
3 ] 11.90
)
ot
l.l
]
-t
s + 41.60
p]
(]
L
[ 4
11.30
. . + + 1.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0

shaft angle

A-60



r=35.0 m
P R
=0 deg
b "1020
A
|
\
£
v
’ T "0-90
&
-t
]
0
-
¢ . 4
s 0.60
4
[}
:
: +0.30
"N " 4 " " O-N
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
RMS Uelocity
U component
rz=35.0 m
z=-40.0 wm
t=-0.0 deg
+1.50
] 1.20
A
L}
\
t
Y 10.90
s | ‘
&
-
¢
0
-
'K 40.60
?
"
I
£
4 40.30
4 4 + + ' 0.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-61



r=35.0 m
$30%° &
. - +37.00
- "3‘0‘0
A
]
\
£
L%
3 1 36.20
v
L]
¢
0
-l
] 1
) 35.80
£
[ ]
!
1 $35.40
+ + -+ + + 35.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle
ANS Uelocity
H comnponent
r=35.0 m
7=-40.0 m
t= 0.0 deg
T +2.50
4 12.20
A
4
\
f
v
< < 1-’0
3
&
« |
]
S
§ - 11.60
b)
[d
I
[ 4
4+1.30
‘ 4 + + 4 1.00
0.0 60.0 120.0 180.0 240.0 300.0 360.0
shaft angle

A-62



FIGURE 11
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FIGURE 12
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