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SAR DATA COMPRESSION: APPLICATION, REQUIREMENTS AND DESIGNS
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Abstract. The feasibility of reducing data volume and data rate is evaluated for the Earth Observing
System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink

data stream to electronic delivery of browse data products are explored. This paper analyzes the factors
influencing design of a data compression system including the signal data characteristics, the image
quality requirements and the throughput requirements. The conclusion is that little or no reduction can
be achieved in the raw signal data using traditional data compression techniques (e.g., vector

quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image.
However, after image fom_ation a number of techniques are effective for data compression.

1. Introduction

The Earth Observing System (EOS) is a joint program involving the National Aeronautics and Space
Administration (NASA), the European Space Agency (ESA) and the National Space Development
Agency (NASDA) [1]. Its prime objective is to provide long term monitoring of the earth as a system
and quantitatively analyze the factors affecting global change. Four platforms (EOS-A, EOS-B, POEM
of ESA and the NASDA platform) will be deployed, each carrying ten to twenty instruments selected to
optimize the synergism resuhing from simuhaneous observations. Each platfom_ is designed for a five
year life cycle and will be followed by two identical platforms for a total fifteen year observation period.

In addition to the L and C band synthetic aperture radars (SARs) to be flown on the NASDA and ESA
platforms respectively, a NASA sponsored SAR planned for a 1999 launch will be flown on a dedicated
(Delta launched) spacecraft due to its unique characteristics [1]-[2]. The EOS SAR will operate at three
frequency bands and four polarization channels similar to the SIR-C/X-SAR mission [3]. Table 1 shows

the orbit and sensor characteristics of EOS SAR. The EOS SAR data will be acquired using a variety of
swath and resolution modes for both strip and scanning data acquisition as shown in Table 2. The
planned scenario is for the EOS SAR to collect data at an average data rate of 15 Mbps (with a peak data
rate of 180 Mbps). The processor is required to operate at a throughput rate equal to the average data
acquisition rate (with 50% margin) to generate the data products for delivery to the end users. Table 3
defines the various types of SAR data products. Because of the huge volume of signal data collected by
the radar as well as the image data generated by the processor, efficient coding of these data would
significantly decrease both the transmission and archive costs.

In this paper, we present study results on data compression for the EOS SAR applications. Section 2
discusses the SAR data characteristics with the communication system characteristics and constraints
discussed in Section 3. Section 4 summarizes the performance of the evaluated data compression
algorithms. Potential scientific applications and constraints of these techniques are presented in Section
5.

2. SAR Sensor and Data Characteristics

For any given sensor, the data characteristics establish the basis for the design of the data compression
algorithm. The key parameters include the entropy, the rate distortion function and the stationarity
properties of the data set. The entropy of the data determines the maximum compression ratio that can
be achieved using a lossless data compression algorithm. Similarly, the rate distortion function, for a
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given performance distortion criterion, determines the maximum compression ratio that can be achieved
using a lossy data compression algorithm. Non-stationarity of the data statistics in the spatial and
temporal domains imposes the requirement of adaptivity on the data compression algorithm.

For SAR signal data, the entropy is normally greater than seven bits per data sample for eight bit

quantization based on a Gaussian distribution model. Previous studies have shown that a compression
ratio of 3:1 (6:1) can be achieved at 12 dB (9 dB) signal-to-distortion noise ratio [4]. The degradation in

image quality from this type of compression is quite severe due to distortion of the phase information
required to form the image products. Compression at this stage would preclude all but the most
qualitative science applications. The SAR signal data is processed into imagery using a two-
dimensional matched filtering operation [5]. For a magnitude detected byte image product, the data is

Rayleigh distributed with an entropy of approximately six to seven bits. Since the power of the return
SAR echo is modulated by the two-way antenna pattern, the slant range attenuation and the varying
resolution cell in the cross-track direction, the SAR data exhibits a wide dynamic range. Additionally,

the target backscatter coefficient varies in both along-track and cross-track directions such that the
stationarity is generally not valid for target areas greater than 10 Km 2.

The parameters used to characterize the SAR image quality include the resolution, sidelobe ratios and
cross-channel relative phase error of the point target response functions as well as the image radiometric
and geometric fidelity. A performance evaluation of the data compression algorithm should focus not
only on the signal to distortion noise ratio but also on the resultant effects on these image quality
parameters. Obviously, the effects of data compression on the inversion algorithms used for scientific
analysis of the image products is the deciding factor as to the effectiveness of the compression
operation. However, since these criteria are highly application dependent, we will only apply distortion
measures to the intermediate data to which the data compression is applied.

3. Communication System Characteristics and Constraints

Figure 1 presents a functional block diagram of a digital communication system with source encoder (or
data compressor), channel encoder (or error correction coder), modulator, demodulator, channel decoder
and source decoder. In contrast to the source coding which is applied to remove redundancy from the

source data, the channel coding is employed to improve the reliability of data transmission by inserting
redundant data. In a conventional communication system, these components are designed and

implemented independently. An efficient communication system design should consider the net
compression ratio of the source data rate to the data rate transmitted through the communication channel
since the channel effects can become significant for some data compression schemes. These schemes
make the data more susceptible to bit errors and may not effectively provide any compression due to the
overhead incurred by the required channel coding. From the end-to-end communication system point of
view, the requirement should be set to maximize the number of bits per source data sample per unit
bandwidth used in the analog communication channel.

There are three major segments in the communication system for the EOS SAR. The first one is from

the platform via the TDRSS to the TDRSS ground receiving station at White Sands. Thesecond one is
from the White Sands ground receiving station to the designated data processing center(s). The third
one is from the data processing center(s) to the end users, which is via the NASA science data network

typically at a lower data rate (9600 bits per second) than the downlink.

For the data link from the platform via the TDRSS to the ground receiving station, there are two grades
of services available: Grade II and Grade III services [6]. The Grade III service achieves a bit error rate
of 10-5 for a 4.5 dB signal-to-noise ratio by employing a constraint length 7, rate 1/2 convolutional code
modulated using QPSK. To achieve the required bit error rate, a channel coding has been employed that
doubles the effective science data rate. Furthermore, the bit errors uncorrected by the convolutional

code, will result in burst errors. In the Grade II service, the (255, 223) Reed-Solomon code is employed
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as the outer code to correct thesebursterrorswhich improvesthe bit error rateto 10-8 (at the same
signal-to-noiseratio)with anincreasein thedatarateof 14%.

For theEOSSAR, therequirementis for abit error rateof 10-5for theSAR signaldataand 10-8 for
therelatively low datavolumeauxiliary data. Given thechannellink SNR= 4.5dB, theremay well be
moreefficient channelcodingschemesthancurrentlyoffered for downlink of theSAR datastream.For
example,a high rate convolutionalcodecombinedwith a multi-level, phaseshift keying would be a
good area of researchto determine if the required link capacity could be reduced without data
compression[7].

4. Data Compression Algorithms

In general, there are two classes of data compression algorithms [8]-[10]. One is the lossless coding
algorithms used for applications that require exact reconstruction of the original data set. The other is
the lossy coding algorithms used for applications where some level of compression noise is acceptable.
It is worth noting that under special conditions some algorithms which are normally categorized as lossy
may become lossless. In the selection of data compression algorithm, four factors need to be

considered. They are the compression ratios, the compute facility available at both the transmitting and
receiving stations, the reconstructed image quality and its sensitivity to bit errors. A final determination
of the optimal algorithm will depend on the specific application requirements.

4.1 Lossless Coding Algorithms

The generally used lossless coding algorithms include Huffman coding and universal noiseless coding
[8], [11]. The Huffman coding algorithm requires the knowledge of the probability distribution while
the universal noiseless coding algorithm only requires the probability ordering of the source data. The
probability ordering characteristics can be obtained by preprocessing the data samples. For SAR data,
since the entropy is high (approximately 6 to 7 bits per sample for 8 bit quantization), the maximum
compression ratio is limited to < 1.3. Given the addition of channel coding required to protect this
compressed data from bit errors, the effective reduction using lossless coding does not justify the cost
and complexity of the implementation.

4.2 Lossy Coding Algorithms

The lossy coding algorithms can be categorized into predictive coding, transform coding, vector
quantizer, and a variety of ad hoc techniques [8]-[15].

The predictive coding is a relatively simple coding algorithm that results in a small compression ratio
with reasonably good image quality [12]. Its major limitation is that it cannot compress the data below
one bit per pixel. For most SAR applications, the quality of a reconstructed image using one bit per
sample is unacceptable. To accommodate the non-stationarity property, the input data must be buffered
to update the prediction coefficients on a frame by frame basis. Note that the predictive coding
algorithm becomes lossless if the dynamic range of the prediction errors is retained, in which case the
compression ratio is determined by the entropy of the prediction errors.

The adaptive transform coding is an algorithm capable of compressing the image data to any user
specified compression ratio given that the associated image quality degradation is tolerable. Its major
limitation is that it is computationally intensive and requires large buffers for both encoding and
decoding. For most SAR applications, it generally yields an image quality better than other lossy coding
algorithms. To accommodate the non-stationarity property, the class map which characterizes the block

adaptivity must be updated every image frame. Figure 2 shows a Seasat Los Angeles image compressed
by the adaptive discrete cosine transform coding algorithm with a 100:1 compression ratio.
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The vector quantizer (VQ) is capable of producing good reconstructedimage quality at high
compressionratios. As comparedto theadaptivetransformcodingalgorithm,theprimary advantageof
the VQ algorithmis its simpledecodeprocedure. The major drawbackof the VQ is the complexity
involved in thecodebooktraininganddataencoding.To reducetheencodingcomplexity,tree-searched
schemesareemployedsuch that the complexityonly grows linearly rather thanexponentiallyas the
codebooksizeis increased.For SAR, thecodebookmustbeupdatedevery imageframeor adaptiveto
the local datastatisticsusing automaticgain control. Figure 3 showsa SeasatBeaufort Seaimage
compressedby a two-leveltree-searchedvectorquantizerwith a 16:1compressionratio.

5. Potential EOS SAR Applications for Data Compression

There are a number of data system elements where the EOS SAR may utilize data compression. They
include the downlink data stream, the primary data archive, and the image browse system.

5.1 Downlink of Data Stream

Spatial compression of SAR signal data is generally not feasible due to the phase fidelity required for
the image formation matched filtering process. Implementation of a sophisticated, on-board data
compressor which must include the SAR signal processor is a costly option that is not well accepted by
the science community. There are two alternative techniques to achieve reduction in the downlink data
rate. One approach is to reduce the overhead incurred by the channel coding scheme. This may be
achieved by employing the high rate convolutional code combined with a multi-level, phase modulation
scheme without the Reed-Solomon code as the outer code. The other approach is to employ a simple,

adaptive data compression scheme, such as block floating point quantizer (BFPQ) which uses a fixed
number of bits to quantize the data relative to a reference scale that is represented by additional data to
characterize the global variation of data statistics. The latter approach has been successfully employed

by the Magellan SAR system and will be used by SIR-C and EOS SAR.

For quick-look applications, a relatively simple on-board processor followed by a data compressor could
be employed to fit the data within a low rate broadcast link (< 1 Mbps). For this quick-look application,
a tree-searched vector quantizer is considered as a good candidate because it requires only a small
workstation at the receiving stations for reconstruction of the compressed image data. Furthem_ore, its
encoder can be implemented using relatively low cost, space qualified VLSI chips [16].

5.2 Primary Data Archive

The data set stored in the primary archive will be used by the end users for quantitative analysis which

requires no loss in data information. Because of the speckle inherent in the SAR image data, only small
compression ratio can be realized by lossless compressor. Using the basis that the data compression
technique is only considered feasible if its implementation cost is lower than the savings from the
archive storage capacity, a combination of predictive coding and universal noiseless coding appears to
be a good candidate. The source data will first pass through a linear predictor. The prediction errors,
which normally assume a smaller dynamic range than the source data samples and also exhibit the
probability ordering characteristics, are then passed to the universal noiseless coder for removal of
redundancy in the data. The implementation cost for the coding will be small since the technology for a
custom hardware board is well proven [11] and little buffering capability is required.

5.3 Browse Data Products

The image browse system is designed for end users to quickly examine the image products that are
routinely generated by the processor prior to delivery of high precision data products. The image data
will be electronically transferred via a low data rate network, such as the NASA space physics analysis
network (SPAN), to users with limited compute facilities available for reconstruction of compressed

28



imagedata. Sincethereis morecomputepoweravailablein theprimary dataprocessing.facilities,the
encodingcomplexity is a lesscritical issuethan thedecoding. For browseapplications,maagequality
andtransfertime correspondingto compressionratio between10:1and20:1areadequatefor quick-look
analysis.Thetree-searchedvectorquantizermeetsall theaboverequirements

6. Summary

This paper summarizes a variety of factors influencing the feasibility of using data compression for the
EOS SAR. In consideration of an EOS SAR data compression system, several factors have been
evaluated: the data characteristics, the various system elements and the cost trade-off issue. Not
discussed here but of key importance is the fact that the performance evaluation of any data compression

algorithm must consider the induced distortion noise from the compression operation as well as the
effects on the scientific inversion algorithms. The net compression ratio of the end:to-end

communication system was considered with the conclusion that for an efficient communication system
design, source coding, channel coding and modulation should be integrated into a single system. The
compute facility available on both the transmitting and receiving stations is also a significant factor for

algorithm selection. Assuming the image quality is acceptable, the net cost impact (i.e., cost savings
from reduced channel link capacity and archive storage capacity minus implementation cost) is the final
determining factor that will establish the feasibility of employing data compression for the EOS SAR
system. This may be significant for the SAR due to the large volume of data and high data rates
involved.
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