178 54th MET SOC

N92-12925

¹⁴²Nd/¹⁴⁴Nd IN SNCs AND EARLY DIFFERENTIATION OF A HETEROGENEOUS MARTIAN (?) MANTLE; L.E. Nyquist, SN2/NASA Johnson Space Center, Houston, TX, 77058; C.L. Harper, National Research Council, SN2/NASA Johnson Space Center, Houston, TX, 77058; H. Wiesmann, B. Bansal, C.-Y. Shih, Lockheed ESC, C23, 2400 NASA Road 1, Houston, TX, 77258.

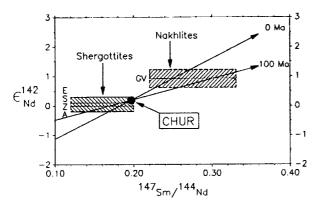


Figure 1. 142 Nd/ 144 Nd in SNC meteorites compared to the correlation with 147 Sm/ 144 Nd observed by (4) for the LEW86010 Angrite (0 Ma isochron) and that 100 Ma later.

Sm/Nd correlated variations in ¹⁴²Nd/¹⁴⁴Nd have been observed for mineral phases of achondrites from decay of live ¹⁴⁶Sm $(T_{1/2} = 103 \text{ Ma})$ in the early solar system (1,2,3,4). Crystallization ages of SNC meteorites are ≤ 1.3 Ga, so variations of $^{142}Nd/^{144}Nd$ among mineral phases of the SNCs are not expected. However, if SNCs were derived from source reservoirs of differing Sm/Nd ratios, established while ¹⁴⁶Sm was still alive, and which remained isolated except for magma extraction, then variations in ¹⁴²Nd/¹⁴⁴Nd would exist among individual SNC meteorites. Rb-Sr (5) and U-Pb (6) isotopic data for the shergottites imply differentiation of their parent planet ~4.6 Ga ago. Although the crystallization ages of the shergottites are uncertain, Shih et al.

(5) considered it probable that all of them came from sources having undergone similar ¹⁴⁵Nd/¹⁴⁴Nd evolution. In this case, the Sm-Nd whole rock age, 1.3 Ga, approximates the crystallization age and the average ¹⁴⁷Sm/¹⁴⁴Nd required in the source between 4.56 Ga and 1.3 Ga is 0.165, corresponding to initial $\epsilon_{Nd} = -13$. Nakamura (7) measured the Sm-Nd age, 1.26 ± 0.07 Ga, and $\epsilon_{Nd} = +16$ for Nakhla. Several authors (8,9,10) assumed shergottites and nakhlites came from a common parent body (SPB=Mars?) and considered the isotopic systematics of the SNCs together. Jones (9) concluded that SNCs were derived from an approximately homogeneous mantle having depleted LREE and ¹⁴⁷Sm/¹⁴⁴Nd ~0.234. These estimates of Sm/Nd in the source(s) of SNCs are sufficiently different from one another to suggest variations in ¹⁴²Nd/¹⁴⁴Nd among the SNC meteorites might be detectable.

¹¹Sm/¹¹Nd ~0.234. These estimates of Sm/Nd in the source(s) of SNCs are sufficiently different from one another to suggest variations in ¹⁴²Nd/¹⁴⁴Nd among the SNC meteorites might be detectable. Figure 1 shows ¹⁴²Nd/¹⁴⁴Nd, expressed as c¹⁴²_{Nd}, for shergottites, Shergotty, Zagami, ALHA77005, and EETA79001, and nakhlite Governador Valadares (T_{Rb-Sr} = 1.3 Ga (11)). No detectable ¹⁴²Nd/¹⁴⁴Nd anomalies were found for the shergottites. Nakhlite Governador Valadares, however, shows an apparent enrichment of +0.9±0.3c in ¹⁴²Nd/¹⁴⁴Nd. When these results are compared to values expected from the correlation of ¹⁴²Nd/¹⁴⁴Nd and ¹⁴⁷Sm/¹⁴⁴Nd observed for the LEW86010 angrite (4), the magnitude of the ¹⁴²Nd/¹⁴⁴Nd excess found for Governador Valadares is seen to correspond to ¹⁴⁷Sm/¹⁴⁴Nd ~0.25 in the nakhlite source if it formed contemporaneously with LEW86010. This Sm/Nd ratio agrees satisfactorily with that inferred by Jones (9) for the SPB mantle. A delay of ~100 Ma in establishing the source reservoir would require a higher value of ¹⁴⁷Sm/¹⁴⁴Nd ~0.3. The ¹⁴²Nd/¹⁴⁴Nd data do not support derivation of shergottites and nakhlites from a homogeneous depleted mantle source. In the Jones (9) and similar models, Nd in Shergotty and Zagami is assumed to be dominated by "crustal" Nd (ϵ_{Nd} <0), whereas Nd in the Antarctic shergottites is indistinguishable from that for Shergotty and Zagami, suggesting similar chondritic or slightly subchondritic Sm/Nd ratios in the primordial sources of the shergottites. The amount of mixing of Nd from different reservoirs inferred from ¹⁴²Nd/¹⁴⁴Nd is independent of the exact age of the shergottites. Thus, the conclusion that the nakhlites and shergottites were derived from different source regions and that, consequently, the SPB mantle was heterogeneous, seems firm.

REFERENCES: (1) Lugmair G.W. et al. (1975) <u>EPSL</u> 27, 79-84. (2) Prinzhofer A. et al. (1989) <u>Ap. J. Lett.</u>, **344**, L81-L84. (3) Lugmair G.W. and Galer S.J.G. (1989) <u>Meteoritics</u> 24, 296. (4) Nyquist L.E. et al. (1991) <u>LPSC XXII</u>, 989-990. (5) Shih et al. (1982) <u>GCA</u> 46, 2323-2344. (6) Chen J.H. and Wasserburg G.J. (1986) <u>GCA</u> 50, 955-968. (7) Nakamura N. et al. <u>GCA</u> 46, 1555-1573. (8) Wood C.A. and Ashwal L.D. (1981) <u>PLPSC 12B</u>, 1359-1375. (9) Jones J.H. (1989) <u>PLPSC</u> 19, 465-474. (10) Jagoutz E. (1989) <u>GCA</u> 53, 2429-2441. (11) Wooden et al. (1979) <u>LPS X</u>, 1379-1381.