0

Carbon Deposition Model For Oxygen-Hydrocarbon Combustion

https://ntrs.nasa.gov/search.jsp?R=19920004076 2020-03-17T13:40:57+00:00Z

R.

13410

Contract NAS 8-34715 Bimonthly Progress Report 2427-BM-6 October 1988

Prepared for: National Aeronautics And Space Administration George C. Marshall Space Flight Center

By: J.A. Bossard

(NAGA-CR-184195) CARBEN DEFUSITION MODEL N92-13294 FOR DXYGEN-HYDROLAROON CEMEDITION Simonthly Progress Peport, 1 Sep. - 31 Dct. 1958 (Aerojet TechSystems Co.) 95 p CSCL 218 Unclas (Aerojet TechSystems Co.) 95 p CSCL 218 G3/25 0040102

Aerojet TechSystems Company Report No. 2427-BM-6

October 1988

Reporting Period 9/1/88 - 10/31/88

Carbon Deposition Model For Oxygen-Hydrocarbon Combustion

Contract NAS 8-34715

Bimonthly Progress Report

Prepared For

NASA/George C. Marshall Space Flight Center Huntsville, Alabama 35812

Prepared By:

I. A. Boss

Project Engineer

Approved By:

Dr. M. F. Young Program Manager

Aerojet TechSystems Company P.O. Box 13222 Sacramento, California 95813

RPT/AA0570.3

TABLE OF CONTENTS

Int	roduction	1
		2
А.	Objectives	3
В.	Approach	_
C.	Program Schedule	3
D.	Detailed Task Descriptions	3
	1. Task 1 - Requirements	3
	2. Task 2 - Design and Fabrication of Experimental Hardware	5
	3. Task 3 - Testing	8
	4. Task 4 - Data Analysis	8
	5. Task 5 - Reporting	8
_	• -	9
Ε.	Current Status	17
F.	Problems	
Aŗ	pendices	A-1
	A Critical Experiment Review B Liquid-Liquid Coax Injector Concept Review	B-1

LIST OF TABLES

m 11. N-		<u>Page</u>
<u>Table No.</u> I	Carbon Deposition Study Added Scope Hardware List	7
	LIST OF FIGURES	
Elevera No.		Page
<u>Figure No.</u>		4
1	Program Schedule	10
2	Proof Test Schematic	10
3A	Ox Circuit	12
3B	Fuel Circuit	13
3C	Both Ox and Fuel Circuits	15
4	Assembly Schematic	16
5	Gas Sampling System	18
6	Coax Injector Schedule	

INTRODUCTION

This report describes Aerojet TechSystems Company's (ATC) progress and current status for the follow-on program for Contract NAS 8-34715, "Carbon Deposition Model for Oxygen-Hydrocarbon Combustion."

The status report is comprised of six subsections: A, Objectives; B, Approach; C, Schedule; D, Task Descriptions; E, Current Status. Appendix A contains the CER Package. The Liquid-Liquid Coax Injector Concept Review is found in Appendix B. For the purposes of the present Status Report, the original study refers to Report No. 2427-PP, 28 May 1982, the added scope program refers to Report No. 2427PP, September 1985, and the follow-on program to the present discussion.

Understanding how and why soot is formed with certain hydrocarbon rocket propellants is pertinent to the selection of the best hydrocarbon fuel for future engines as well as the selection of the engine cycle and operating conditions. Prior to the original Carbon Deposition program a consistent set of data had not been generated over a wide range of operating conditions. The original program generated this consistent set of data with $LO_2/RP-1$ propellants over a wide range of operating conditions over a wide range of operating conditions over a wide range of operating conditions over a wide range of operating conditions.

In the original program, deposition on the combustion chamber wall was investigated under main chamber operating conditions at mixture ratios of 2.0 to 4.0 and chamber pressures of 1000 to 1500 psia. The results from this effort indicated a lack of significant carbon deposition on the chamber wall with LO₂/RP-1 propellants. These results showed that chamber designs cannot depend on carbon deposition to reduce the "clean wall" heat flux for chamber pressures over 1000 psia and for combustion efficiencies greater than 95%.

An added scope program focused on carbon deposition in gas generators and preburners. This program included propane and methane testing and comparisons to the RP-1 database. The preburner test data from the added scope program revealed that methane gives a C* performance within 10% of the value predicted by the One Dimensional Equilibrium (ODE) program, while propane and RP-1 test data

1

Introduction (cont.)

are within 14% and 40%, respectively, of their ODE predicted C* performances. Both propane and methane exhibited C* performances between 3000 to 4000 fps, while RP-1 showed C* performances between 1600 to 3000 fps. Gas temperatures were highest for propane (1100 to 1900°F) (866 to 1311 K) while with both methane and RP-1 between 800 to 1300°F (700 to 977 K). Methane produced no carbon, while both RP-1 and propane deposited carbon above a certain threshold mixture ratio.

The results indicated that LO2/RP-1 cannot be operated in the desirable temperature range (1400 - 1600°F) for gas generators without incurring substantial carbon buildup. On the other hand, LO₂/propane can be operated in the desired temperature range up to a maximum of 1500°F (1088 K), without carbon buildup. Operation with LO₂/methane is unrestricted over the desired gas generator operating temperature range. At the conclusion of the added scope test program, there were questions over the carbon deposition characteristics of high propellant injection density systems. The original and added scope programs used low propellant injection density gas generators. The desire to support full scale gas generator studies resulted in the recommendation to test high injection density gas generators on the follow-on program. In addition, at the conclusion of the added scope program it was recommended that additional testing be conducted using liquefied natural gas (LNG) to determine carbon buildup characteristics of low purity methane fuel, and that fuel-rich tests be conducted using propane to further define the sharp transition from no carbon buildup to excessive buildup. Also, it was recommended that the fuel chemistry for both propane and methane be incorporated into the Fuel Rich Combustion Model.

A. OBJECTIVES

The objectives of this follow-on contract are to use the existing hardware to verify and extend the database generated on the original test programs. The data to be obtained is the carbon deposition characteristics when methane is used at injection densities comparable to full scale values. The data base will be extended to include LNG testing at low injection densities for gas generator/preburner conditions. The testing shall be performed at mixture ratios between 0.25 and 0.60, and at chamber pressures between 750 and 1500 psia.

2

Introduction (cont.)

B. APPROACH

Aerojet TechSystems Company (ATC) will conduct a five task follow-on program to extend the carbon deposition database to include the use of LNG at low injection densities and methane at injection densities that replicate full scale gas generator operation with as much fidelity as is possible within the current hardware constraints. The LNG testing will be performed using the existing hardware. The high injection density methane testing will be performed by high injection flow rate constructing a new injector to meet the requirements. This injector will be used in conjunction with the existing carbon deposition hardware to evaluate carbon deposition of LO_2 /methane as a function of mixture ratio and chamber pressure.

C. PROGRAM SCHEDULE

The program schedule includes 23 additional tests in Task III. Fifteen of the tests are scheduled for the high injection density testing and the remaining eight tests will occur during the LNG test series. The test activity and its accompanying support activities are shown in Figure 1. The scheduled technical period of performance is 20 months including one and one half months to obtain NASA/MSFC final report approval prior to publication. Timephasing and the task interrelation-ships are described in the next section.

D. DETAILED TASK DESCRIPTIONS

In support of the test activity, Task III, several activities must be completed: 1) gas generator requirements review; 2) hardware design and fabrication; 3) facility preparation and testing; 4) data analysis, and 5) reporting. This section describes in detail the scope of effort that will be performed on each task and its associated timephasing.

1. Task 1 - Requirements

The requirements review will be performed in two parts. At the program inception the existing Carbon Deposition hardware will be evaluated to determine the feasibility of using the existing turbine simulator, turbulence ring,

3

TASK O. W. D T. M. A. M. O. W. D T. M. A. M. 1. Roullizment Rater (D) C. Reylement Rater D. W. D T. M. A. M. G. G. Reylement Rater D. S. D. D T. M. A. M. T. M. A. M. J. Madurati Pression Determined Rater M. A. M. Determined Rater M. A. M. M. A. M. Determined Rater M. M. M. M. Determined Rater M. M. M. M. Determined Rater M. M. M. M. Determined Rater M. M. Determined Rat	P					
Bit Retirer (b) Control Cite Retirer (b) Control	•	W A C A N		N O S	7	
Rill Richer (D) Registrement Returner Registrement Returner Registrement Returner Protestation Registrement Returner Rip Notronali Registrement Returner Rip Notronali Returner	÷					
ett Retter (b) Programment Renter Programment Renter Programmen				•		
Regultiment Retrie from Penilstein Dr. Protection the Penilstein Stretterion the Penilstein Stretterion	Desuitemente Deview (h)			•		
Kaultmann Kriter Main Ir Apprest Ir Apprest				-		
Umere Evolution Evolution Evolution Evolution In Modula or T.S. Nords Evolution Evolution In Modula or T.S. Nords Evolution Evolution In Modula or T.S. Nords Evolution Evolution In Sector Evo	GG Requirement Keview		•			
Image: Name Image: Name Image: Name </td <td>Hardware Evaluation</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Hardware Evaluation					
Transmitta transmitta ter Notation ter Notation <td>Design Approach</td> <td>•</td> <td></td> <td> </td> <td></td> <td></td>	Design Approach	•		 		
up Modi on T.S. North Image: Particulus term Fahrentin Image: Particulus term Fahrentin Image: Particulus term Staticulus Image: Pariture t) Wardware Prenaration			-		
Amount of the form Amount of the form Amount of the form Amount of the form <td></td> <td>•</td> <td></td> <td></td> <td>*</td> <td></td>		•			*	
States Factorizio States Fac						
Mild Mild Mild Mild Mild Riverselo Mild Mild Mild Stettion Mild Mild Mild Mild Mild <	Hardware Fabrication					
Initial Tajetter Deta Initial Tajetter Deta Initial Exercised Initial Tajetter Initial Tajetter Deta Initial Tajetter Initial Tajetter Initial	Triplet			•		
alial Drevingi la Refect() de Selection de Selection d	Detailed Injector Design		•	in the second	 	
In Retrict() Image: Stellon Extra Phylicition Image: Stellon Image: Stellon Image: S			•		·····	
No. No. No. No. No. Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Liel Releated Releated Liel Releated Liel Releated Liel Releated Liel Releated Releated Releateded <td></td> <td></td> <td></td> <td>•</td> <td>•••</td> <td></td>				•	•••	
der Selection eter Pahrestion als Treversion als Treversion	Design Review(s)			•		
etci Pabrication alload Injector Design tallad Injec					*	
All Liled Injector Design Liled Injector Design Liled Dravings Liled Dravings Liled Dravings Liled Draving Liled Dravings Liled Dravings Liled Dravings Liled Draving Liled Dravings <td></td> <td>4</td> <td></td> <td>8</td> <td>····</td> <td></td>		4		8	····	
alled lajector Design Luited Drewings afin Reviner(s) afin Rev				-		
utiled Tojector Darigo dis Review(d) dis Review(d					•••••	
atin Breview(s) atin Review(s) biotor Selection biotor Selection biotor Selection biotor Selection biotor Patha cities Phan A CER biotor Deadry Tetha cities Phan A CER biotor Deadry Tetha cities Phan A CER biotor Deadry Tetha cities Phan A CER cities Phan A CER ci	Detailed Injector Design		and a subsection of the second			
ation Review(s) addr. Salection addr. Salection addr. Salection addr. Salection addr. Salection addr. Preparation addr.	Detailed Drawings					
ador Selection lector Fabrication cility Preparation cility Preparatio	Design Review(s)					
etior Fabrication etilty Preparation etilty				9		
Cilly Preparation A-A A-A of Pan & CER A CER A-A of total action A CER A-A of total action A-A A-A a Analysi A-A </td <td></td> <td></td> <td></td> <td>· •</td> <td>H H</td> <td></td>				· •	H H	
elly Preparation et Plan & CER sectour Testina Jetter Density Testina Jetter Density Testina Jetter Density Testina Jetter Density Testina Jetter Density Testina Jetter Density Testina Jetter Density at Analysis at				•		
elliy Preseration at Plan & CER sectoral Tetila peter Density T	3. Test		•		• * •	
ar Far & CER sector Tracina lector Deady Testia lector Deady Testia lector Deady Testia lector Deady Testia lector Deady lector Deady lector Deady at Analysis at An	Facility Preparation					
rectious Tracting Jector Density Testing VG Testing A A A A A A A A A A A A A	Test Plan & CER					
Jector Density Tetilis VG Tetilis a Analysis a Ana	Checkout Testine					
NG Teeling Analysis A Analysis A Analysis A Analysis A Analysis A Analysis B Analysis				£.7		
NG Testing A A A A A A A A A A A A A A A A A A A A A A A B A				•		
at Analysi at Ana	LNG Testing			••		•••
ata Analysta m. Management & Reporting eports epor						
ata Analysis m. Manasement & Reporting sports sectors tertomer tertome			2	◇ 	A	
m Management & Reporting eports eports tertomer Reviews ENDAR ENDA	Data Analysis					
m. Management & Keporting eporta tatiomer Reviews ENDAR ENDAR A missioner Contract theor add New Boops-Cost; ENDAR A missioner Contract theor add New Boops-Cost; A missioner Contract theorem in Analysis B missioner			man and a second se			
eporta Lationner Reviews ENDAR - Auternove conserter ENDAR - Auternove conserter Doleted Boops In Analysis ENDAR - Auternove conserter Doleted Boops In Analysis ENDAR - Auternove conserter Doleted Boops In Analysis ENDAR - Auternove conserter ENDAR - Auternove conser	5. Program Management & Keporting	and the second sec	and a construction frances	·····		4
Lutomer Reviews Note: Not: Note: Note: Note:<	Reports				¢	1
ENDAR - Muzerrovercanter Auterrovercanter Ber - Sub-Contract Mod 620 Nove Boolo-Coast: Lated Date: 03/31/85 Rov 8 3 Rav Date: Contract Mod 620 Nove Boolo-Coast: Ber - 12 Stant Date: 10/31/85 Par Date: 10/31/85 Rov 8 3 Rav Date: 10/31/85 Deleted Boolo in Analysis Ber - 12 Stant Date: 10/31/85 Stanting Date: 03/31/85 Rov 8 3 Rav 20 Rav 2 2 Rav Date: 10/31/85 Stanting Date: 03/31/85 Rov 8 3 Rav 2 R						
Image: Second	ENDAR			1	Γ	Rev Date: 09/23/88
		et Mad 224	Coax;	•	٦	
		d Scope In			- 1	
		•		and the second	5	12/01/31
	•					Dens / 2
	•				THUY -	iclai .

D, Detailed Task Descriptions (cont.)

and exit nozzles with the increased flow rates. Life analysis predictions and verification of the existing hardware will be performed and will be based on the testing performed to date. The open literature will be reviewed to determine the applicable injection density to be used with the Carbon Deposition hardware to simulate full scale gas generators. The task will conclude with a conceptual Design Review where an overview of the gas generator requirements and hardware evaluation will be presented. The task outputs will be a conceptual design approach for the injector, recommended test conditions, and determination of the adequacy of using the existing hardware for the higher flowrates.

2. Task 2 - Design and Fabrication of Experimental Hardware

Hardware design is scheduled to begin at program inception. This is possible because: (1) existing hardware is used as much as possible, (2) additional hardware pieces conform to existing hardware interfaces, (3) new hardware requirements were defined prior to program initiation, and (4) additional hardware requirements are less stringent than the original water-cooled designs. Wherever possible the hardware designs are direct derivatives of designs successfully demonstrated in one of the current or recently completed Aerojet LO₂/Hydrocarbon contracts. This has been done intentionally to provide justification of a design concept prior to its use.

The objective of this task is to produce detailed drawings for fabrication of the additional test hardware. The task involves analyses and mechanical design activity. This section describes the factors considered during the design stage, the supporting analyses, and the design details and features of the original hardware and, the new, uncooled hardware.

Three basic test assemblies are planned, one to simulate gas generator or preburner at low injection density conditions consistent with the current database and two at high injector densities. The two high injection density injectors are of the triplet and coax designs. To obtain the maximum experimental test data at minimum cost, the proposed test hardware is of modular design. The bolted module concept provides the greatest test hardware flexibility. Many of the components of the preburner assembly are interchangeable.

D, Detailed Task Descriptions (cont.)

a. Hardware Preparation

The hardware preparation will be performed in two parts. Beginning in the middle of program month two, the design modifications to existing hardware (turbine simulator, turbulence ring, and exit nozzle) will be performed. During this period the access port will be designed. Its function is to provide access to the upstream side of the turbine simulator to permit photographic documentation of carbon buildup after each test.

The detailed injector design will begin in month four. The design modifications to the existing injector manifold and faceplate will be performed. The injector faceplate design will incorporate elements as similar as possible to those identified for use in full scale, state-of-the-art LO₂/hydrocarbon booster engines. Detail drawings of the injector shall be prepared and existing drawings modified as required. Completion of the drawing package will be supported by the Project Office, Design, Thermodynamic and Stress analysis, and producibility. A Final Design Review of the injector will be conducted with the participation of the Project Office, Design, Analysis, Producibility, the Development Labs, Drafting, "A" Test Area, and Data Services.

b. Hardware Fabrication

A list of test hardware to be fabricated or modified for the follow-on contract is shown in Table I. Hardware fabrication will be initiated in the middle of the third program month. Fabrication of the high injection density injector was begun at the start of program month eight and will be completed by the end of program month eleven. Fab of the liq/liq coax is planned to begin in program month fourteen and be completed after month seventeen.

Test hardware will be fabricated at Aerojet TechSystems' approved vendor shops. Vendors will be selected on the basis of schedule requirements, quality requirements, and cost. The project engineer will coordinate the fabrication effort utilizing the Task 2 engineering drawings produced by the mechanical design department.

<u>TABLE I</u>

CARBON DEPOSITION STUDY ADDED SCOPE HARDWARE LIST

<u>Quantity</u>

Preburner/Gas Generator	2
Turbine Simulator	2
Exit Nozzle	1
Turbulence Ring	1
Access Port	1

D, Detailed Task Descriptions (cont.)

3. Task 3 - Testing

Testing will be divided into five activities: (1) facility preparation, (2) test planning and critical experiment reviews, (3) checkout tests, (4) high injection density carbon deposition tests, and (5) LNG carbon deposition testing. Hardware facility preparation for the high injection density testing will begin in the middle of the tenth program month. The facility preparation and test planning will be conducted with a critical experiment review in the middle of the eleventh program month. Checkout for the high injection density testing is scheduled for the twelfth month. The high injection density carbon deposition testing is scheduled to begin at the start of the thirteenth month. Two months are allocated to the test series. Facility preparation for the LNG testing began on the third program month. The test planning was concluded at the end of the fifth month with a critical experiment review.

4. Task 4 - Data Analysis

Task 4 is scheduled to begin in the thirteenth program month and be completed at the end of the sixteenth month.

The objective of this task is to perform detailed data analysis. The data analysis effort will include: (1) comparison of measured and predicted combustion (C*) efficiency and combustion gas temperature, (2) flow data analysis to infer turbine simulator C_DA and carbon deposition rate, and (3) comparison of the results with the existing database.

5. Task 5 - Reporting

Eight bimonthly technical status reports will be published; eleven monthly fiscal reports will be distributed. Two program status reviews will be conducted as shown in Figure 1. The program final report draft will be submitted 30

D, Detailed Task Descriptions (cont.)

days after completion of the program technical effort. Another 45 days will be scheduled for NASA review and subsequent ATC publication.

E. CURRENT STATUS

High Injection Density Injector

Originally scheduled for completion at the beginning of August, the high injection density injector was finally completed on 9/14/88. The schedule slip of 6 weeks was due largely due to a failure of the braze process by which the injector faceplate is attached to the body. This problem was solved after a delay of about 3 weeks. The remainder of the schedule slippage resulted from schedule slippages on the part of the fabrication vendors. Once the injector was completed, the final step was the proof test. This test was performed by attaching the backflush fixture and the injector and pressurizing with water. A schematic of this arrangement is shown in Figure 2. The proof test was completed on 9/14/88 with the injector being proof to 3300 psi. A leak check using GN₂ was also performed. The injector was pressurized with 100 psi nitrogen and held for 2 minutes. Because of the inability to separately seal-off the ox and fuel circuits at the faceplate, both circuits were checked simultaneously at the same pressure. With the completion of the proof and leak checks, the carbon deposition program high injection density injector was finished.

High Injection Density Testing

Although some work could be done, the majority of the preparation work required for the high injection density testing had to wait until the injector was completed. The first tasks were to perform a pattern check and measure the Kw values for both the ox and fuel circuits on the injector. The pattern check showed a good pattern on both ox and fuel circuits. Photographs of the pattern check are shown in Figure 3. The Kw measured for the fuel circuit was within 4% of the predicted value of .578 vs. .615, while the ox circuit Kw was within 2% of predicted, .155 vs. .157.

After the Kw measurements, the injector was cleaned to Level 400 and was then ready for installation. The injector was attached to the front end of the test

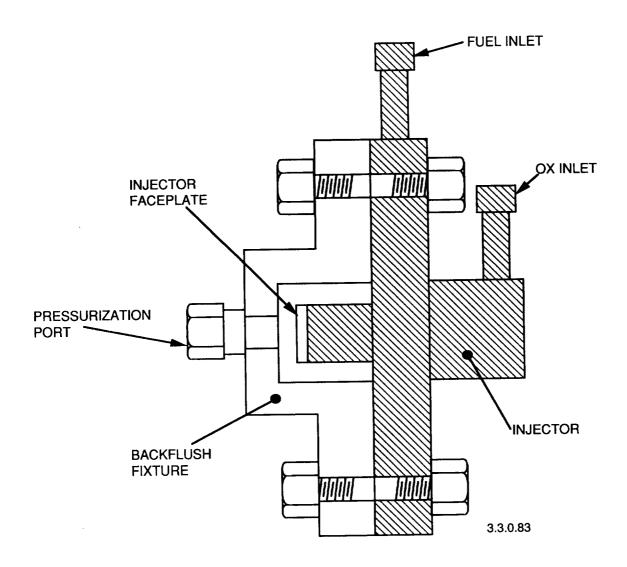


Figure 2. Proof Test Schematic

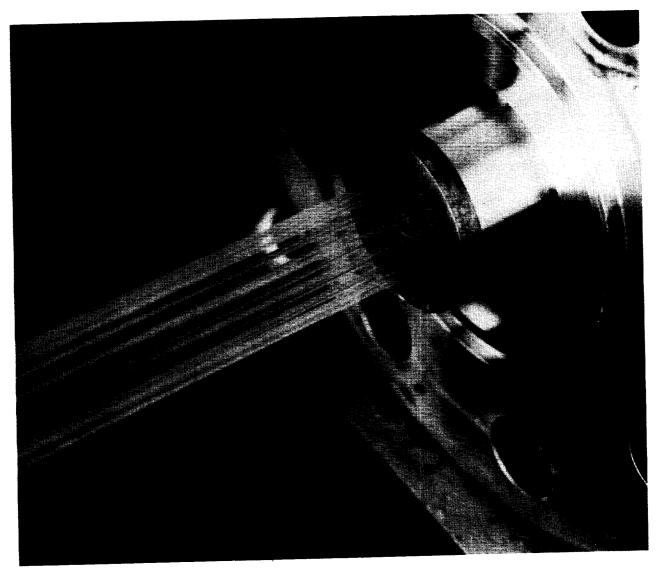


Figure 3A. Ox Circuit

ORIGINAL MAGE BLACK AND WHITE PHOTOGRAPH

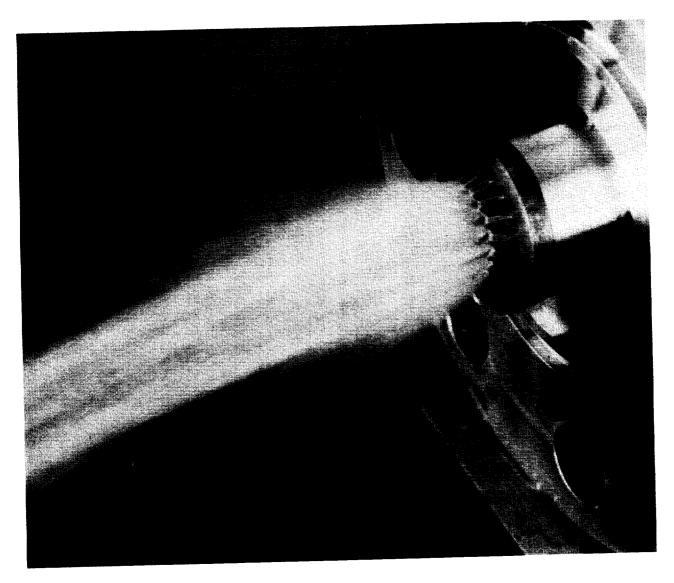
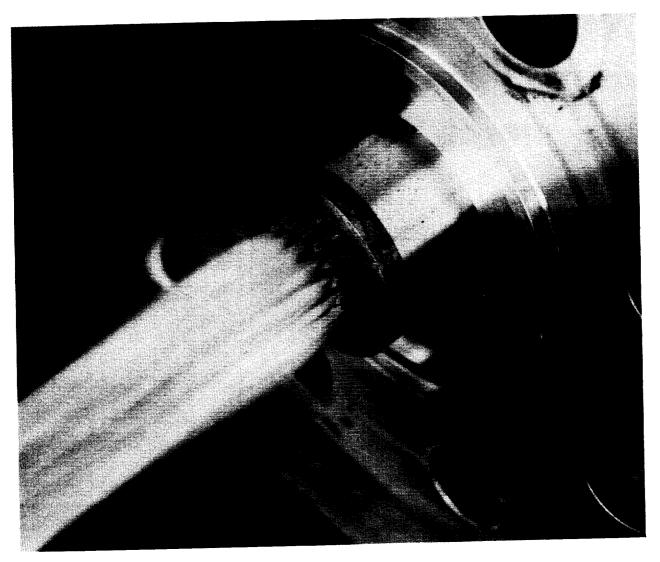
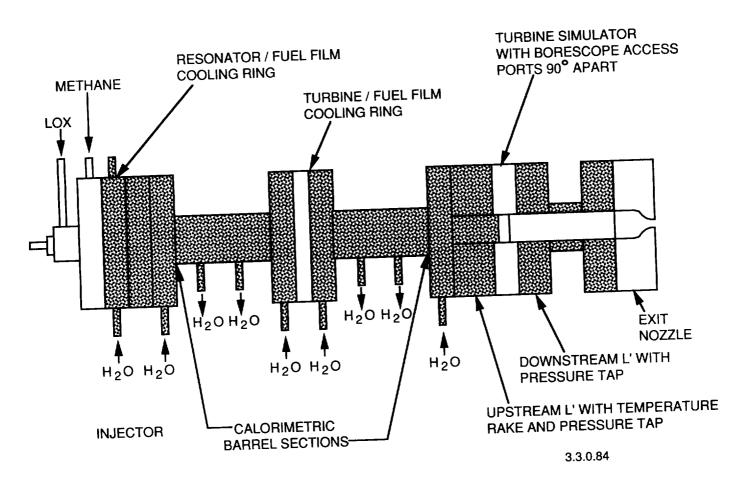


Figure 3B. Fuel Circuit

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH




Figure 3C. Both Ox and Fuel Circuits

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

E, Current Status (cont.)

apparatus; subsequent pieces of the modular hardware were bolted into place, as shown in Figure 4. A total of 5 new pieces of hardware were installed to accommodate the high flowrate testing, relative to the previous methane and LNG testing. These were the injector, turbulence ring insert, upstream L' section, turbine simulator, and the exit nozzle. The pieces underwent, with the exception of the L' section, an enlargement of their respective flow areas. Boroscope ports into the upstream L' section were enlarged from 1/4" to 1/2", allowing the passage of a larger boroscope. Some of the thermocouples in the L' section were damaged during this machining process. These were removed and replaced, and more durable fittings were welded into place. Additionally, pitting on the O-ring surfaces of the L' section had not allowed proper sealing of the test apparatus, a problem compounded by the use of metal O-rings. The O-ring surfaces were machined to remove the pitting, which eliminated the problem. For the test apparatus itself, the only major refitting, other than the modular components mentioned, was that of the fuel and ox supply lines. Since the flow rates are 10 times higher than the previous testing, it was necessary to install larger lines. These lines transport propellant from the fuel and ox run tanks to the injector. The ox line went from a 1/2" line to a 3/4" line, which also required a larger flowmeter. The fuel line went from 1" to 1-1/2" line, and a filter and larger flowmeter were also installed. To accommodate the gas sampling to be done during the testing, a gas sampling system was installed. This consisted of a liter bottle made from 2" schedule 40 pipe, fitted with end caps and a pressure gauge. Hand valves on both ends allowed the bottle to be removed and taken to the Gas Chromatograph Lab. Solenoid valves in series with the hand valves allowed the bottle to be filled from the control room while the test was in progress. Figure 5 shows this arrangement. The boroscope apparatus for taking internal photographs remains largely as it was in the previous LNG testing, with the exception that the enlarged ports of the upstream L' section allows the use of a larger boroscope. The apparatus will accept both the video camera and a 35 mm camera.

Since the flowrates of this test series are considerably larger than that of the previous tests, the test durations have become limited by the fuel run tank capacity. The fuel run tank can hold 150 gallons of propellant, or about 440 lbm of liquid methane. This means that at the maximum fuel flowrate of 13.7 lbm/sec, the duration of the test is slightly over 32 seconds. The maximum test duration however is

NOTE: SKETCH NOT TO SCALE Unshaded parts are new hardware

Figure 4. Assembly Schematic

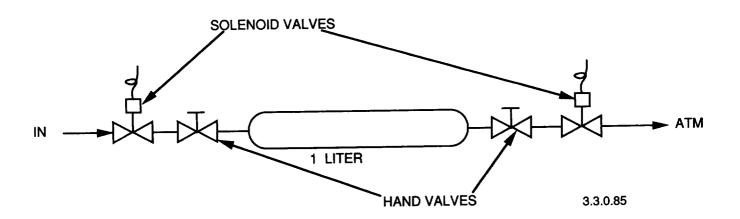


Figure 5. Gas Sampling System

E, Current Status (cont.)

about 100 seconds. All other tests fall in between these durations. These test durations, because of the very high flow rates, will provide sufficient time to determine whether carbon deposition is occurring. At this writing, the test control sequence will be programmed with the calculated fuel depletion time. This will allow the most reliable test run.

The entire test series was reviewed and examined at a Critical Experiment Review (CER) held on 5 October 1988. The review package is found in Appendix A. Currently, it is anticipated that the testing will be completed by mid November, two weeks ahead of schedule and in spite of the six week delay of the high injection density injector.

Liquid-Liquid Coax Injector

Concurrent with the testing being done, work on the liquid-liquid coaxial injector is nearing completion. A concept review for the injector design was held on 30 September 1988. Appendix B contains the Concept Review Handout and the action item list. In general, the review was successful and the design was well received. Nevertheless, a number of action items came out of the review. All proved to be resolvable and the closeout of the items is imminent. The final design review is currently scheduled for 18 November 1988. At this review, the final design will be approved and, pending the closeout of any resulting action items, the liquid-liquid coax injector will be ready for fabrication. Figure 6 shows the current coax injector schedule. The drawings for the injector will be completed after the final design review and prior to the fabrication phase.

F. PROBLEMS

There were no problems during this reporting period.

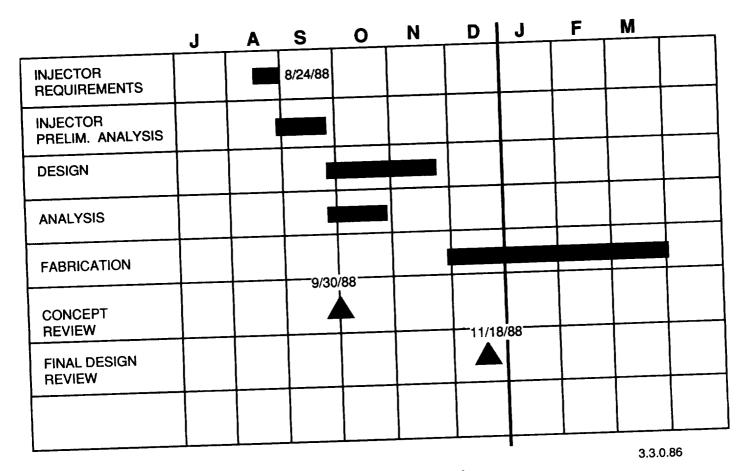


Figure 6. Coax Injector Schedule

<u>APPENDIX A</u>

CRITICAL EXPERIMENT REVIEW

•

CRITICAL EXPERIMENT REVIEW

CARBON DEPOSITION OF LOX/METHANE

NUMBER 10006

.

05 0CT0BER 1988

.

•

AGENDA

.

INTRODUCTION/TEST OBJECTIVEWERLING
TFST HARDWAREBOSSARD
· · · · · · · · · · · · · · · · · · ·
FACILITY OVERVIEWKELLER
INJECTOR FLOW REQUIREMENTSKELLER
IGNITER OPERATING CONDITIONSKELLER
OPERATING SEQUENCETHOMPSON
• • • • • • • • • • • • • • • • • • •
DATA REQUIREMENTSBOSSARD
PHOTOGRAPHYBOSSARD
E NV I RONMENT AL
OPERATING PROCEDURES
SCHEDULE
ACTION ITEM REVIEWWERLING

VWG: AA0798

•

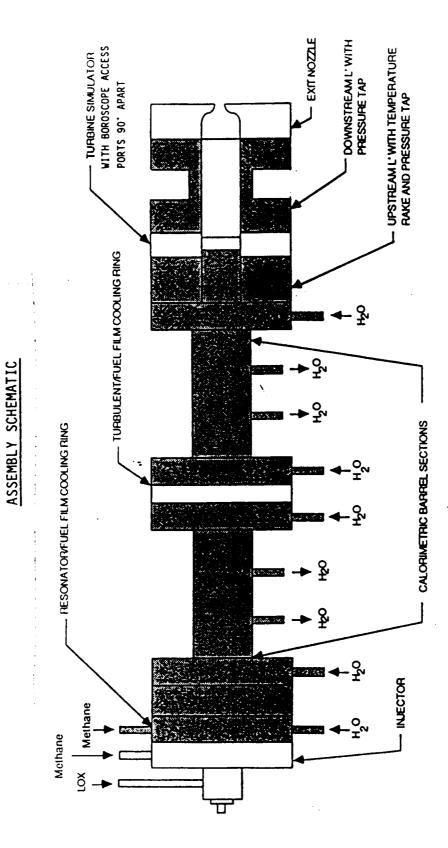
INTRODUCTION

- O CARBON DEPOSITION MODEL FOR OXYGEN HYDROCARBON COMBUSTION
- o LIQUID OXYGEN METHANE
- o SECOND FOLLOW-ON CONTRACT FOR PROGRAM
- 0 1982 BOTH MAIN ENGINE AND PREBURNER MODEL TESTING
- o LIQUID OXYGEN RP-1
- 0 1985 FIRST FOLLOW-ON CONTRACT, PREBURNER MODEL TESTING
- o LIQUID OXYGEN LIQUID METHANE/LIQUID PROPANE
- O EXISTING TEST STAND AND TEST HARDWARE WILL BE USED
- o HIGH INJECTION DENSITY INJECTOR WILL BE USED
- o PROPELLANT FEED SYSTEMS UPGRADED

÷

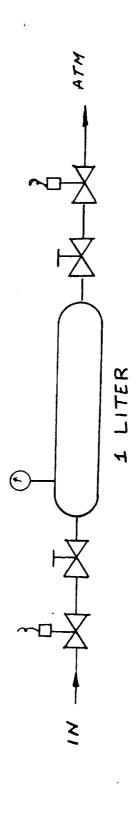
i

PROGRAM OBJECTIVE


- QUANTIFY CARBON DEPOSITION AT FLOW RATES REPRESENTATIVE OF FULL-SCALE HARDWARE 0
- 0

•

- 15 TESTS , z → 0.25 <u><</u> MR <u><</u> 0.6 0
- 1000 PSIA < PC < 2000 PSIA 0
- GAS SAMPLING 0


:

NOTE: SKETCH NOT TO SCALE SHADE PARTS ARE EXISTING HARDWARE

GAS SAMPLING SYSTEM

÷

÷

TechSystems COMPANY

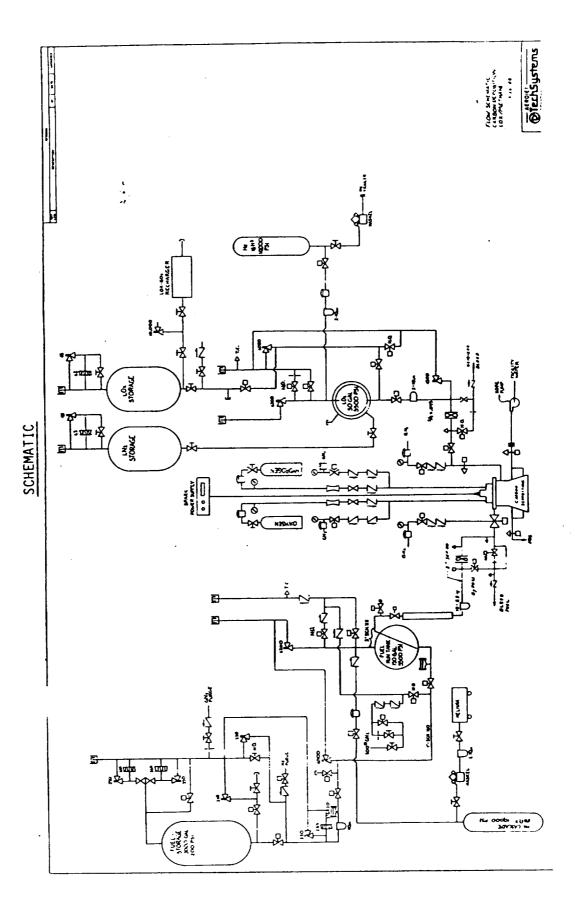
.

() the over lier atten your CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

		HANE METHANE EC GALLON						96	86	6.86 140	5.04	3.85	10.28	7.54	6.63	6.06	5.76	5.24			
		LOX Ŵ METHANE GALLON LB/SEC						6.86	6.86	6.1	5.	°.	10.	7.	6.	6.	5.	ъ.			
		Ŵ 0XID L LB/SEC GAI						1.37	1.37	1.37	1.87	2.31	2.05	2.79	3.12	3.33	3.45	3.67			
ш		DURAT I ON SECONDS						1	10	60											
K/ME THAN	TEST PLAN	NOMI NAL MR						0.20	0.20	0.20	0.37	0•60	0.20	0.37	0.47	0.55	0.60	0.70			
IN OF LO		NOMINAL (PSTA)						1000	1000	1000	1000	1000	1500	1500	1500	1500	1500	1500			
CARBON DEPOSITION OF LOX/METHANE		TEST	TEST	TEST	PT FUEL ESTIMATE (PSIA)			1250 GH ₂	·		1346	1346	1346	1187	1109	2276	1918	1823	1770	1744	1502
CARBON		PT 0XID ESTIMATE (PSIA)			1200 GOX			1066	1066	1066	1123	1688	1648	1775	1843	1891	1920	1975			
		TEST OBJECTIVES	IGNITER COLD FLOW AND VALVE SEQUENCING	IGNITER COLD FLOW AND VALVE SEQUENCING	IGNITER CHECKOUT HOT FIRING	INJECTOR COLD FLOM AND VALVE SEQUENCING - OXID	INJECTOR COLD FLOW AND VALVE SEQUENCING - FUEL	INJECTOR CHECKOUT FIRING	INJECTOR CHECKOUT FIRING	1000 P _C TESTS	1000 P _C TESTS	1000 P _C TESTS	1500 Р _С тезтз	1500 P _C TESTS	1500 P _C TESTS						
		TEST NUMBER	100	002	101	003	004	102	103	104	105	106	107	108	109	110	111	112	VWG: AA0798		
		TEST	CHECKOUT			CHECKOUT	CHECKOUT												1>		

TechSuster Company

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE


i

ł

TEST PLAN (CONT)

ME THANE GALLON						
й метнаме LB/SEC	13.69	10.04	8.82	8.05	7.65	6.97
LOX GALLON						
ù 0XID LB/SEC	2.74	3.71	4.15	4.43	4.59	4.88
DURATION SECONDS						
NOMINAL	0.2	0.37	0.47	0.55	0.60	0.70
NOMINAL P (PSTA)	2000	2000	2000	2000	2000	2000
PT FUEL ESTIMATE (PSIA)	3376	2740	2571	2476	2430	2357
PT 0XID ESTIMATE (PSIA)	2265	2486	2608	2692	2743	2840
TEST OBJECTIVES	2000 P _C TESTS					
TEST NUMBER	113	114	115	116	117	118
TEST TYPE						

TEST STAND DETAIL

- o LIQUID OXYGEN SYSTEM DESIGN REQUIREMENTS
- o SUPPLY LOX TO GAS GENERATOR INLET
- o 2800 PSIA, 200°R, 5.0 POUNDS/SECOND MAXIMUM
- o SAFETY PROCEDURE 13 "PRESSURIZED EQUIPMENT" APPLIES
- o ALL COMPONENTS LOX COMPATIBLE
- 0 LINE VELOCITY 50 FT/SECOND MAXIMUM
- o PRECLUDE CRYOGENIC LOCKUP

ł

ł

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW
- o LIQUID OXYGEN STORAGE TANK
- O HERRICK JOHNSTON 1800 GALLON, VACUUM JACKETED TANK
- o 50 PSI WORKJNG PRESSURE, RUPTURE DISK RELIEVED
- o EXISTING FACILITY INSTALLED IN 1985
- O LOX LINE FILL VALVE ISOLATES STORAGE TANK
- 0 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- O STAINLESS STEEL BODY SEAT AND PINTEL, TEFLON SOFT GOODS
- O CCI RSOVS USED WITHOUT INCIDENT FOR YEARS

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- o LIQUID OXYGEN RUN TANK
- o SOUTHWEST WELDING, 50 GALLON, VACUUM JACKETED
- O 5500 PSI WORKING PRESSURE, PRESSURE RELIEF VALVE
- o VACUUM JACKET, RUPTURE DISK RELIEVED
- O LOX TANK SAFETY VALVE
- 0 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- o STAINLESS STEEL BODY SEAT AND PINTEL, TEFLON SOFT GOODS
- O CCI RSOVS USED WITHOUT INCIDENT FOR YEARS
- o STAINLESS STEEL WELDS PICKLED AND BRUSHED
- o LINE PROOF PRESSURE TESTED TO 5500 PSI
- o LOX SUPPLY LINE FILTER 10 MICRON
- 0 1 INCH MICROPORUS, 6000 PSI WORKING PRESSURE
- o STAINLESS STEEL BODY AND FILTER

•

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- O LOX LINE BLEED CHILL DOWN AND RUN SYSTEM
- o 1/2 INCH CCI RSOV, 6000 PSI WORKING PRESSURE BLEED VALVE
- 0 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE OTCV
- O STAINLESS STEEL BODY PINTEL AND SEAT, TEFLON SOFT GOODS
- O CCI RSOVS USED WITHOUT INCIDENT FOR YEARS
- o FLOW MEASURING
- o 3/4 INCH TURBINE FLOWMETER
- OXIDIZER THRUST CHAMBER VALVE
- 0 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- O STAINLESS STEEL BODY PINTEL AND SEAT, TEFLON SOFT GOODS

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- O RUN LINE TANK SAFETY
- 3/4 INCH STAINLESS STEEL TUBING, 0.065 WALL, 3500 PSI WORKING PRESSURE 0
- o AN 37° FLARED FITTINGS
- LOX FLOWMETER BYPASS PREVENTS FLOWMETER OVERSPEED DURING CHILL IN 0
- o 1/2 INCH CCI RSOV, 6000 PSI VALVE
- o VALVE PREVIOUSLY USED IN LOX SERVICE
- RUN LINE RELIEF VALVE PREVENTS OVERPRESSURE DUE TO CRYOGENIC LOCKUP 0
- o SET TO RETURN AT 4500 PSI

1

TEST STAND DETAIL (CONT)

•

o. LIQUID OXYGEN SYSTEM FAILURE ANALYSIS

FAILURE MODE	INDICATOR	·
LOX TANK SAFETY DOES NOT OPEN OR CLOSE PREMATURELY	LOW POJ, P _C ,	LOW
LOX TANK REGULATOR FAILS OPEN	HIGH POJ, P _C	H1GH P0SS
LOX TANK REGULATOR FAILS CLOSED	LOW POJ, P _C	rom
LOX FLOWMETER BYPASS DOES NOT OPEN	NO TEMPERATURE DROP	CHIL
LOX FLOWMETER BYPASS DOES NOT CLOSE	LOW OXIDIZER FLOW	INAC ALL

P_C KILL

EFFECT

HIGH PC KILL, HIGH TCR-1, 5 KILL POSSIBLE HARDWARE DAMAGE

LOW P_C KILL

CHILL IN DOES NOT BEGIN

INACCURATE FUEL FLOW MEASUREMENT. ALL OTHER PARAMETERS LOOK GOOD, SLIGHTLY HIGH OXIDIZER FLOW POSSIBLE

TEST STAND DETAIL (CONT)

O LIQUID OXYGEN SYSTEM FAILURE ANALYSIS (CONT)

FAILURE MODE INDICATOR LOX LINE BLEED DOES NOT CLOSE VISUAL VENTING PRIOR TO FS1 LOX LINE BLEED DOES NOT CLOSE VISUAL VENTING PRIOR TO FS1

EFFECT

NO EFFECT ON TEST HARDWARE. RESULTS IN FUEL RICH MR LOW P_C KILL

TEST TERMINATED

NO IGNITION, LOW P_C KILL

OLVDT, LOW P_C

0TCV FAILS TO OPEN OR CLOSES

PREMATURELY

TEMPERATURE

ţ

TEST STAND DETAIL (CONT)

D LIQUID DXYGEN SYSTEM FAILURE ANALYSIS (CONT)

FAILURE MODE INDICATOR OTCV FAILS TO CLOSE AT FS2 OLVDT, PC CONTINUES,

EFFECT

OX RICH SHUTDOWN, POSSIBLE HARDWARE DAMAGE. HAZARDOUS CONDITION MINIMIZED BY RAPID GN2 PURGE OF ENGINE, BOTH OXIDIZER AND FUEL CIRCUITS SEQUENCED ON BY COMPUTER. SINGLE POINT SAFETY BACKUP BY SEQUENCED OF POT SAFETY CLOSED AT FS2. LOX FLOW CAN BE TERMINATED BY CLOSURE OF OXIDIZER TANK SAFETY.

TEST STAND DETAIL (CONT)

- O LIQUID METHANE SYSTEM DESIGN REQUIREMENTS
- O SUPPLY LIQUID METHANE TO GAS GENERATOR INLET
- o SAFETY PROCEDURE 13 "PRESSURIZED EQUIPMENT" APPLIES
- O EXISTING RUN TANK, STORAGE TANK AND FILL SYSTEM USED AS IS

TEST STAND DETAIL (CONT)

- o LIQUID METHANE SYSTEM COMPONENT REVIEW
- O FUEL RUN TANK SAFETY ISOLATES RUN TANK FROM RUN LINE
- o 2 INCH CALMEC RSOV, 7000 PSI VALVE
- O VALVE PREVIOUSLY USED IN LNG SERVICE
- FUEL FLOWMETER BYPASS PREVENTS FLOWMETER OVERSPEED DURING CHILL IN 0
- o 1 INCH CCI RSOV, 6000 PSI VALVE
- o VALVE PREVIOUSLY USED IN LNG SERVICE
- o FLOW MEASUREMENT SECTION
- 2 INCH SCH 80 PIPE, 3500 PSI WORKING PRESSURE, 5500 PROOF PRESSURE 0
- O TURBINE TYPE FLOWMETER 2 INCH A.N.
- RUN LINE RELIEF VALVE PREVENTS OVERPRESSURE DUE TO CRYOGENIC LOCKUP 0
- o SET TO RELIEVE AT 4500
- o VACUUM JACKETED RUN LINE
- O STAINLESS STEEL 5500 PSI WORKING PRESSURE
- O BURST DISK PREVENTS JACKET RUPTURE

TEST STAND DETAIL (CONT)

- o LIQUID METHANE SYSTEM COMPONENT REVIEW (CONT)
- o INLINE FILTER 25 MICRON
- o STAINLESS STEEL, 3600 PSI WORKING PRESSURE
- FUEL LINE BLEED VALVE, NORMALLY OPEN LINE CHILL IN AND VENT 0
- o 1/2 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- OUTLET PLUMBED TO BLEED EXTENSION LINE
- o FUEL THRUST CHABMER VALVE
- O DUAL 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- o LINEAR POSITION INDICATOR INSTALLED
- INSULATION FROM TANK TO FTCV 0
- VACUUM JACKETED RUN LINE TO FLOWMETER SECTION
- MECHANICAL INSULATION FLOW SECTION TO FTCV

TEST STAND DETAILS (CONT)

LIQUID METHANE SYSTEM FAILURE ANALYSIS

AUDIBLE VENTING, LOW PFT PFT/CASCADE PRESSURE NO TEMPERATURE DROP I ND I CATOR LOW FMF TANK PRESSURE REGULATOR FAILS FUEL FLOWMETER BYPASS DOES FUEL FLOWMETER BYPASS DOES TANK VENT FAILS OPEN FAILURE MODE NOT CLOSE NOT OPEN OPEN

EFFECT

TANK PRESSURE APPROACHES CASCADE PRESSURE OF 6600 PSI MAXIMUM. LINE PRESSURE RELIEF VALVE WILL OPEN.. HIGH P_C KILL EXCESSIVE GH₂ USE. CAN'T ACHIEVE RUN PRESSURE CHILL IN DOES NOT BEGIN INACCURATE FUEL FLOW MEASUREMENT. ALL OTHER PARAMETERS LOOK GOOD, SLIGHTLY HIGH FUEL FLOW POSSIBLE

TEST STAND DETAIL (CONT)

D LIQUID METHANE SYSTEM FAILURE ANALYSIS (CONT)

FAILURE MODE	INDICATOR	
FUEL RUN TANK SAFETY DOES NOT OPEN OR CLOSES PREMATURELY	PFFM	NO POS CH1
FUEL RUN TANK SAFETY DOES NOT CLOSE	PRESSURE IN RUN LINE	ME1 BLI VEI
FUEL BLEED VALVE DOES NOT OPEN	NO VISABLE INDICATION OF FUEL BLEED. T BLEED READING ABOVE DESIRED TEMPERATURE	SEI
FUEL BLEED VALVE DOES NOT CLOSE	EXCESSIVE FMF READING, LOW PFJ, HIGH TCR-1	PR PO

EFFECT

40 IGNITION - TEST TERMINATION OX RICH SHUTDOWN AS FUEL FLOW DECAYS POSSIBLE HARDWARE DAMAGE, LINE CHILL IN DOES NOT BEGIN

SLEED TO ATMOSPHERE AFTER TANK VENTS TO AMBIENT SEQUENCE TERMINATION

THANE FLOWS OUT OF FUEL LINE

PROBABLE HIGH MR CONDITION, POSSIBLE TCR-1 > 1900°R KILL

į

1

TEST STAND DETAIL (CONT)

•

O LIQUID METHANE SYSTEM FAILURE ANALYSIS (CONT)

INDICATOR	FLVDT, FMF, HIGH TCR-1, LOW PC	FMF, PFJ, LOW TCR-1
FAILURE MODE	FUEL TCV DOES NOT OPEN OR CLOSES PREMATURELY	FUEL TCV DOES NOT CLOSE

LOW P_C KILL - NO IGNITION OX RICH SHUTDOWN, POSSIBLE HARDWARE

EFFECT

DAMAGE, OX RICH CONDITION IN ENGINE SYSTEM AUTOMATIC GN₂ PURGE OF OXIDIZER AND FUEL CIRCUITS

RAPIDLY COOL GAS GENERATOR CHAMBER, OVERSPEED FMF, FUEL RICH SHUTDOWN, NO HARDWARE DAMAGE, CLOSE RUN TANK SAFETY, AUTOMATIC GN2 PURGE OF ENGINE SYSTEM, BOTH OXIDIZER AND FUEL CIRCUITS

TEST STAND DETAIL (CONT)

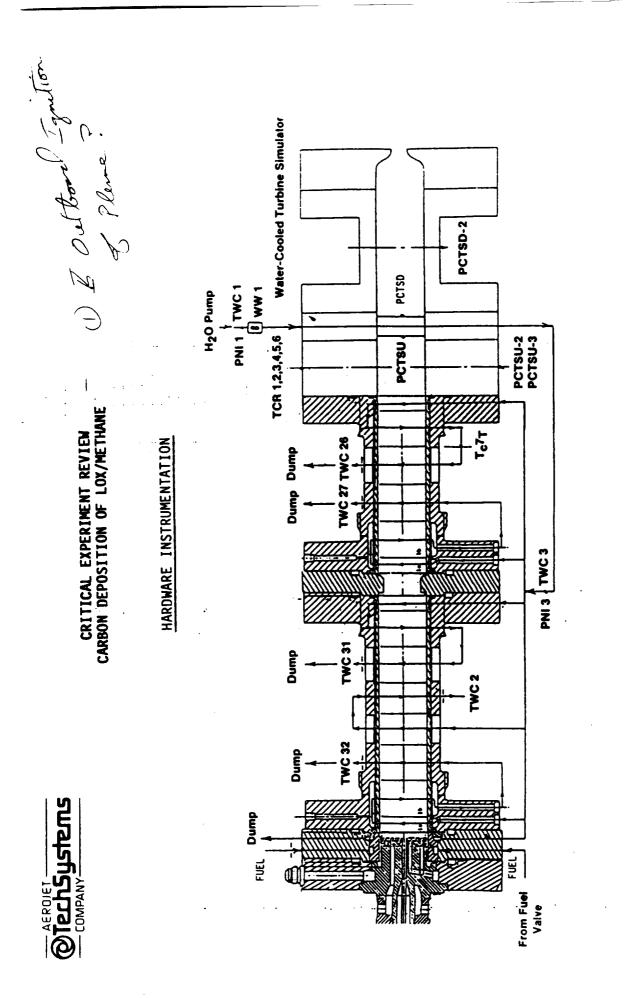
- o LIQUID METHANE SYSTEM CLEANLINESS
- o ALL WELDED AREAS PICKLED
- o SYSTEM COMPONENTS UPSTREAM OF FILTER FIELD CLEANED
- FILTER AND DOWNSTREAM COMPONENTS CLEANED TO LVL 400 PER ATC-STD-4940 0
- O PROPELLANT BLEED LINE EXITS SEPARATED BY 50 FEET
- PROPELLANT LINE BETWEEN TANK SAFETIES AND ENGINE TCV'S ARE PROTECTED BY PRESSURE RELIEF VALVES 0
- o FLOWMETERS HAVE BYPASS BLEED VALVES TO PROTECT FROM OVERSPEED
- O SAFETY OF THE HARWARE IS PROTECTED BY KILL PARAMETERS

TEST STAND DETAIL (CONT)

602/6H2 IGNITER FAILURE ANALYSIS 0

.

INDICATOR OXIDIZER OR FUEL VALVES FAIL FAILURE MODE **TO OPEN** .


•

A-26

NO POJ/PFJ OR PC IGNITER INCL INATION

EFFECT

TERMINATION BY SEQUENCE, NO NO IGNITION IGNITERS, TEST HARDWARE DAMAGE

VWG: AA0798

۰_..

•

TechSuster Company

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

. i

. . • • • • • • • • • • • • • • • **INSTRUMENTATION**

•

Recording Device	× × × ×	×××××××× ×	< × × ×	× × × ×
Accuracy + X Reading	0.45 0.45 0.45	00000000000000000000000000000000000000	F Cless Cless C C C C C C C C C C C C C C S S S C C C S	5.0 5.0 1.0
Range	0-3000 pst 0-3000 pst 0-500 pst		U-3000 psi 0-500 psi 0-20 lb/sec -300 to -200 50 to 100 F 50 to 300 F 0 to 2000 F 0 to 2000 F	c 0 to 3000 c 0 to 3000 0 to 100%
Transducer Type	Strain Gauge Strain Gauge Gauge	Gauge Gauge Gauge Strain Gauge Strain Gauge Strain Gauge Strain Gauge Strain Gauge	Strain Gauge Strain Gauge Turbine Thermocouple Thermocouple Thermocouple Thermocouple Thermocouple	Piezioelectric Piezioelectric Potentiometer
Symbol	PCJI PFJI POPI	N [*] N	PW 1-13 PDCDP WM-12 TOFM TFFM TMC-1 TMC-2, -3, TC-7 TC-7	K0J - KFJ LTOCV
Parameter	Igniter Ox Injection Pressure Igniter fuel Injection Pressure Igniter Ox Purge Pressure	Igniter Fuel Purge Pressure Injector Fuel Purge Pressure Injector Fuel Purge Pressure Ox Tank Pressure Fuel Tank Pressure Ox Injection Pressure Fuel Injection Pressure Chamber Pressure (Injector) Tur Sim Upstream Pressure (water-cooled) Tur Sim Downstream Pressure (uncooled) Tur Sim Downstream Pressure (uncooled)	Water Inlet Pressure Tur Sim Pressure Drop (uncooled) Water Flow 2 each Ox Flowmeter Temperature Fue! Flowmeter Temperature Water Inlet Temperature Water Outlet Temperature Chamber Wall Temperature Chamber Wall Rake Temperature	<pre>*High Frequency Ox Injection ************************************</pre>

VWG: AA0798

TechSubstrates COMPANY

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

۰.

•

INSTRUMENTATION (CONT)

. [.] .

Device Digita	, ×	××
Recording Device 0-Graph Digital	*****	××
E.		
Accuracy + X Reading	1.0 	0.5 0.5
		ບູບ
	1000X 1000X 1000X 1000X 1000X	lb/se lb/se
Range	5555555 5000000	0-10 lb/sec 0-20 lb/sec
Transducer Type Range		Turbine 0-10 1b/se Turbine 0-20 1b/se

VWG: AA0798

2

Ox Control Valve Signal Fuel Control Valve Signal fuel Control Valve Signal Ox Igniter Valve Current Ox Igniter Valve Signal Fuel Igniter Valve Signal Instrumentation for High Injection Uensity Testing Ox Flow Rate Fuel Flow Rate

Fuel Control Valve Trace

Parameter

,

CRITICAL EXPERIMENT REVIEW _____CARBON DEPOSITION OF LOX/METHANE _____

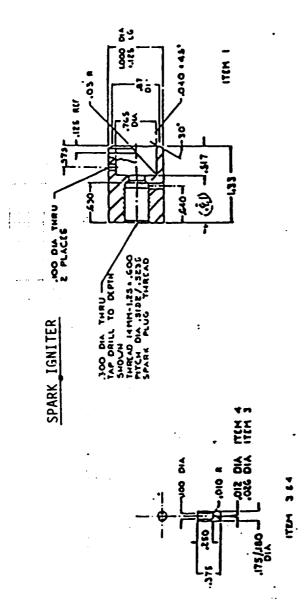
.

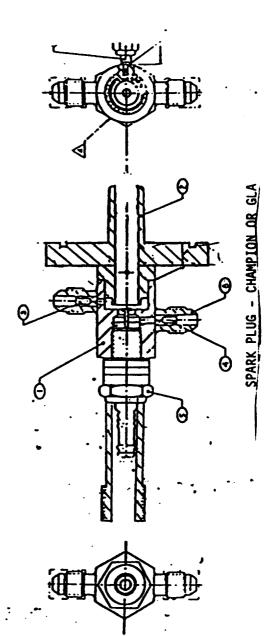
•

•••

INJECTOR FLOW REQUIREMENTS

PFT (PSIA)	1346	1187	1109	2276	1918	1823	1770	1744	1702	3376	2740	2571	2476	2430	2357
POT (PSIA)	1066	1123	1188	1648	1775	1843	1891	1920	1975	2265	2486	2608	2692	2743	2840
DPF (PSID)	346	187	109	776	418	323	270	244	202	1376	740	571	476	430	357
DPO (PSID)	66.2	123.4	188	148	275	343	391	420	475	265	486	608	692	743	840
WF (LBM/S)	6.86 CU	5.04 0	3.85 115	10.28 ⁴³	7.54 ⁷¹	6.63 ⁶⁷	در 90•9	5.75 77	5.24 35	13.69 ^{3,7}	10.04 44	8.82 50	8 • 05 ^{5'5}	7.65 52	6 -97 G
WOX (LBM/S)	1.37	1.87	2.31	2.05	2.79	3.12	3.33	3.45	3.67	2.74	3.71	4.15	4.43	4.59	4.88
WT (LBM/S)	8.23	6.91	6.16	12.33	10.33	9.75	.62*6	9.21	8.91	16.43	13.75	12.97	12.48	12.24	11.85
THROAT AREA SQ. INCH	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785
CSTAR (FPS)	3068	3654	4097	3072	3666	3889	4035	4114	4250	3075	3675	3899	4046	4125	4263
MR	0.20	0.37	0.60	0.20	0.37	0.47	0.55	0.60	0.70	0.20	0.37	0.47	0.55	0.60	0.70
PC (PSIA)	1000	1000	1000	1500	1500	1500	1500	1500	1500	2000	2000	2000	2000	2000	2000


TechSuper Company



.

ł

•

ł

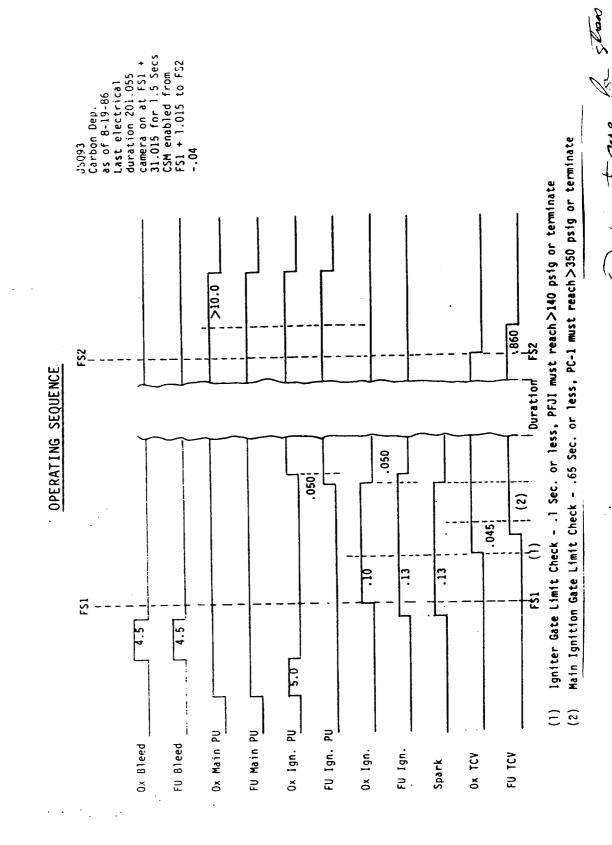
GO2/H2 IGNITER OPERATING CONDITIONS

- o FUEL ORIFICE INLET PRESSURE 1250 PSIA
- O OXIDIZER ORIFICE INLET PRESSURE 1200 PSIA
- o SPARK ENERGY = 30 MILLIJOULES
- o SPARK RATE = 500 SPARKS/SECOND
- o SPARK VOLTAGE = 6,000 VOLTS, BLACK BOX
- MAXIMUM FIRING DURATION = 0.400 SECONDS MAXIMUM TIME FOR IGNITER 0

:

CRITICAL EXPERIMENT REVIEM ----CARBON DEPOSITION OF LOX/METHANE

GO2/H2 IGNITER OPERATING CONDITIONS CONT


• ·

500	45:1	3,300	0.0040	0.181	0.185	0.0225 (.0250)	0.0750 (.085)
						(AT 1700 PSIA)	(AT 1700 PSIA)
				•		(INCHES	(INCHES
Pc (PSIA)	MR C	C* (FT/SEC)	ů _f (lbm/sec)	Ŵ _{OX} (LBM/SEC)	Ŵ _{TOTAL} (LBM/SEC)	ORIFICE DIAMETER _F (INCHES) (AT 1700 PSIA)	ORIFICE DIAMTER _{OX} (INCHES) (AT 1700 PSIA)

OTECHSUSTER - COMPANY

CARBON DEPOSITION OF LOX/METHANE CRITICAL EXPERIMENT REVIEW

1 i

VWG: AA0798

and DP prevene

J.

pero M

_

3

JSQ93 LIMITS FOR HOT FIRE TESTING

- 0 1ST 10 SECONDS
- o FMW-1 4 T0 12 POUNDS/SECOND COOLANT H20 FLOW RATE
- O PWI 500 TO 1500 PSIG COOLANT H20 PRESSURE
- o P_C-1 300 TO 2000 ⁶51G
- o AFTER 10 SECONDS UNTIL FS2
- o FMW-1 4 T0 12 POUNDS/SECOND COOLANT H20 FLOWRATE
- O PWI 500 TO 1500 PSIG COOLANT H₂O PRESSURE
- o TCR-2 < 2000°F
- o TCR-5 < 2000°F

LOX/METHANE TEST SERIES KILL PARAMETERS

[

POTENTIAL FAILURE MODE	MODE	MEASUREMENT	KILL VALUE
INSTABILITY	•	KOJ	> 200 PSI PK - PK
LOW PC		P _C TSU-1	< 80% NOMINAL
HIGH P _C		P _C TSU-1	> 120% NOMINAL
LACK OF IGNITION	·	PFJI	<pre>< 140 PSI</pre>
HOT GAS TEMPERATURE (PROTECT UNCOOLED HARDWARD)	WARD)	TCR-1 TCR-5	> 1900°F
LOW WATER FLOW (PLUGGED LINE)		IMM	< 4 LBM/SECOND
HIGH WATER FLOW (BURST LINE, CHAMBER HOLE, TURBINE SIMULATOR HOLE, LOOSE FITTING)	IOLE, TURBINE FITTING)	IWM	> 12 LBM/SECOND
LOW WATER PRESSURE		I IMd	< 500 PSI
HIGH WATER PRESSURE		I IMd	> 2500 PSI
HOT WALL TEMPERATURE		TC 12	< 1600°F
FUEL EXPENDED		WF-1	LIMIT TEST DURATION

VWG: AA0798

A-36 `

. . .

CRITICAL PARAMETERS

THE CARBON DEPOSITION PROGRAM. THE PARAMETERS ARE LISTED IN DESCENDING ORDER OF IMPORTANCE THIS TABLE IDENTIFIES THE CRITICAL PARAMETERS REQUIRED FOR THE LOX/PROPANE TEST SERIES ON 0

FUEL FLOW RATE	OXIDIZER FLOW RATE	OXIDIZER TEMPERATURE	FUEL TEMPERATURE	CHAMBER PRESSURE DOWNSTREAM OF THE TURBINE SIMULATOR. PREFER PCTSD BUT WILL ACCEPT PCTSD-2	CHAMBER PRESSURE UPSTREAM OF THE TURBINE SIMULATOR. PREFER PCTSU BUT WILL ACCEPT PCTSU-2 FOLLOWED BY PCTSU-3	GAS TEMPERATURE; MUST HAVE AT LEAST TWO. PREFER TWO FROM TCR-2, TCR-3 OR TCR-4, BUT WILL ACCEPT ONE FROM TCR-1 OR TCR-5.	USE PCTSU. CHECK START UP SEQUENCE FOR TIME KILL PARAMETER.
						ı	
			•	PCT SD	PCTSU		P _C -1

MACHINE DATA PLOT PARAMETERS

- O INJECTOR PRESSURE VERSUS TIME
- 0 P_C-1, POJI, PFJI, POJ, PFJ, POT, PFT
- O INJECTOR FLOW VERSUS TIME
- O WF, WO, WTOT, MR
- o INJECTOR CALCULATIONS VERSUS TIME
- o DPOJ, DPFJ, KWOJ, KWFJ, CSTRPB
- o GAS-SIDE WALL TEMPERATURES VERSUS TIME
- o TC-10, TC-12
- O COOLANT OUTLET TEMEPRATURES VERSUS TIME
- o TWC-2, TWC-26, TWC-27, TWC-31, TWC-32, TWC-33

MACHINE DATA PLOT PARAMETERS CONT

- o TURBINE BUILDUP DATA VERSUS TIME
- o PLOT NUMBER
- O CHAMBER PRESSURE RATIOS AND DIFFERENCES
- O PRIR, PRIS, PRIS CORR, DPIR, DPIS-C, DPIS
- o NOZZLE AREA CHANGE
- o NAI, NA2, CDA, DTD
- O TURBINE SIMULATOR PRESSURE MEASUREMENTS
- o PCTSU, PCTSU-2, PCTSU-3, PCTSD, PCTSD-2
- o GAS TEMPERATURES VERSUS FIME
- TCR-1, TCR-2, TCR-3, TCR-4, TCR-5, TCR-6 (AVAILABLE THERMOCOUPLES) 0

i

TEST SERIES

CARILINE BUTTO - UP AND THAT CTOR CALCULATION REQUEREMENTS

Carbon Build-up

- Turbine Stmulator Pressure Rates **.**
- PR_{TS} = PC150/PC15U
- DPTS-C = DPTS measured or (PCTSU-PCTSO) if DPTS measure invalid.
- OP CORR = [(DPTS-C) (PCTSU PCTSD)] /2
- PR_{TS} CORR =(PCTS0 OP CORR)/(PCTSU + OP CORR)
 - Turbine Simulator Pressure Drop 2.
- op_{ts} = pctsu pctso
- Turbulence Ring Pressure Ratio ň
- PR_{TR} = (PCTSU/PC-1)
- Turbulence Ring Pressure Drop ÷
- 0P_{TR} = (PC-1) PCTSU
- Nozzle Area . ت
- NA1 = WTOT * C/(PC-1)/9c
- NAZ WTOT * C/PCTS0/gc
- Turbine Simulator Area <u>ن</u>
- 2/1 C $\left[2 \left(\frac{\frac{r+1}{r-1}}{2}\right)^{r+1} \left[\left(PR_{TSC}\right)^{2/r} - \left(PR_{BC}\right)^{r}\right]\right]$ 11-1 - J∿ - V²-
- At will be provided by the Project Engineer Calculate C_DA for Y = 1.1 Y = 1.2 Y = 1.3

TEST SERIES (CONT)

PRTS2 CORR = {(PCTS0-2) - (DP-2 CORR)] / [(PCTSU-2) + (DP-2 CORR)] New Turbine Simulator Pressure Ratio DP-2 CORR = [(DPTS-2) - (DPT2-C)] /2 OPTS2-C = (PCTSU-2) - (PCTS0-2) PRTS-2 = (PCTS0-2)/(PCTSU-2) **DPTS-2 is measured** ۲.

INJECTOR

- C P.B. = PCTSD x At x gc/WT0T 1.
- WTOT = WOX + WF 2.
- MR = WOX/WF ň
- 0P0J = P0J (PC-1) 4.
- 0PFJ = PFJ (PC-1) ۍ ،
- WFC = KWFC * JOPFJ * S.G.F KWFC = 0.0655 (P.B.) 6.
- MRC = WOX/WFC 7.
- (Momentum outer/inner) MPB = 1/MRC * /DPFJ/DP0J * /S.G. 0X/S.G.F œ.
 - MMC = MR * /DP03/DPFJ * /5.6.F/5.6.ox **.**
- S.G._{ox} = f (TOTCV, POJ) S.G.f = f (TFFM) 10. KH0J = MOX/ JDPOJ * 5.6. ox
 - KWFJ = WF/ /DPFJ * 5.G.F 11.

PHOTOGRAPHIC COVERAGE REQUIREMENTS

- O FACILITY AND TEST STAND SETUP
- O ALL HARDWARE PRIOR TO THE HIGH FLOW RATE TEST SERIES
- PHOTOGRAPHIC STILLS OF THE EXHAUST PLUME AT P = 1000 PSI FOR MR = .20, .37, AND .60, P = 0
- 1500 PSI FOR MR = .20, .37, .47, .55, .60 AND .70, P = 2000 PSI FOR MR = .20, .37, .47, .55,
- .60 AND .70 AS A MINIMUM.
- PHOTOGRAPH OF THE THERMOCOUPLE RAKE AFTER COMPLETION OF THE GAS TEMPERATURE CHARACTERIZATION . TESTING IF THE TEST SCHEDULE IS NOT DELAYED 0
- PHOTOGRAPH OF THE THERMOCOUPLE RAKE DURING THE NOZZLE CHANGE IF JIME PERMITS 0
 - PHOTOGRAPH OF ALL HARDWARE AT THE COMPLETION OF THE LOX/LNG TEST SERIES 0
- VIDE0TAPE OF TURBINE SIMULATOR THROUGH BOROSCOPE ACCESS PORT AT P = 1000, 1500 AND 2000 PSI FOR ALL MR 0

.

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

i

1

ENVIRONMENTAL

- O EMMISSIONS ARE WITHIN PERMIT LIMITS
- O FLUSH OF LOX CIRCUIT. ALL EFFLUENT WILL BE CONTAINED.
- o FLUSH FLUID AND DEGREASE PROCEDURE

CARBON DEPOSITION OF LOX/METHANE CRITICAL EXPERIMENT REVIEW

,

1

AND REPORT AND A DESCRIPTION OF A DESCRI Judice of the Property of the 18 February 1988 9519:3493:ARK:Jom

T. C. Trafzer ë

FROM:

Carbon Deposition Propellants A. R. Keller SUBJECT:

E.M. VanderWall DISTRIBUTION: Here is the information you requested for the upcoming testing in A Area. The propellants are liquid natural gas, and liquid oxygen. The testing is scheduled for mid March to April.

If there is a problem with the exhaust product release permit, please let us know.

• Q R Keen

A. R. Keller Test Engineer A Zone Test Operations

H. Vander A Zone

Test Operations

1 - should 3 2 تطا-مه

2-25-88

forbro 5 a review of the lot sub w within in upper of the A. Jon Padletin Permet and The pervix linitadien 2 Bak Sid

VWG: AA0798

÷.

٠

۰.

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

ł

EMMI SSIONS

TOTAL PROJECTED EMISSIONS AND SPECIES FOR THE LOX/CH_4 HIGH DENSITY INJECTOR TEST SERIES

= 11996 POUNDS	= 28320 POUNDS	= 3008 SECONDS
TOTAL 02 PROJECTED	TOTAL CH4 PROJECTED	TOTAL TEST TIME

		Jolan					
% MASS	0.49	0.10	0.08	0.03	0.21	0.09	1.00
TOTAL POUNDS	19702	4137	3354	1150	8206	3767	40316
SPECIES	CH4	CO	co ₂	H2	H20	C (GRAPHITE)	

52 the/Day

OPERATIONAL PROCEDURES

- o VISITOR INFORMATION
- O SIGN IN AND OUT OF TEST ZONE
- o LOG LOCATED IN BUILDING 30003
- o BUILDING 30003 IS EMERGENCY CONTROL CENTER
- o REPORT TO LOBBY IMMEDIATELY DURING GAS EMERGENCY
- O ALL AREA WARBLER SIREN AND PAGE WILL ALERT PERSONNEL
- O HARD HATS REQUIRED IN TEST BAYS
- 0 OBSERVE WARNINGLIGHTS
- o GREEN NO RESTRICTIONS
- YELLOW RESTRICTED TO ALL BUT THOSE AUTHORIZED BY TEST CONDUCTOR 0
- o RED RESTRICTED TO ALL PERSONNEL
- O CONTROL ROOM ACTIVITES
- FOLLOWING 10 MINUTE WARNING LIMIT CONVERSATIONS TO THAT REQUIRED TO PERFORM THE **TESTING** 0
- POST TEST HARDWARE INSPECTION AFTER TEST BAY IS CLEARED TO ALL PERSONNEL 0

.

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

-

		SCHEDULE					1
OlechSystems	ISSUE DATE	TE 10/03/88 A-RTL	MONT	MONTHLY SCHEDULE	HEDULE		
	0	1 2 3 4 6 6 7	•	10 11 12 13 14 16 16 17 18 19 20 21 22	19 20 21 22	23 24 25 26 27	28 28 30 31
HEDI COOLING SYSTEM EXPULSION	A-4	X manual		R			
SSME HEX-STE GG/HEX	A-5						-
	A-6			$\overline{\mathbf{A}}$			
SSME HEAL	A-6						
LAKBUN UPPULLIZUTAN	A-6						at A
OTV OTPA	A-7						$\frac{1}{2}$
XIR-134 FIIFI TPA	A-7						at
			X				+
VITE 1 CONTING PROOF & LEAK	A-INERT						
1			Z				
CARBON DEPOSITION			X				
ENGINE ASSEMBLY			4				X
DDDDELLANT FFFD I INES							
INSTRIMENTATION INSTALLATION			X				
			X		4		
INSTRUMENTATION CHECKOUT			$\overline{\langle}$				X
FACILITY TURNOVER							X
TESTING			Z	X I			- - -
		-		S			T REQUIRES Q.C.
SYMBOLS CONSTRUCTION LET-UP MED MODELACTIVATION	CONTINUOUR	THENT	ß	TEST NUMBERS		EXCEPTION REVIEW	INSPECTION
		ł		ZONE MANAC		and white the ATE / 6	29/210

VWG:AA0798

.

•

ACTION ITEMS

		Person(s) <u>Assigned</u>
1.	Duration limits; fuel exhaustion	Keller Werling Bossard
2.	Max allowable ΔP	Bossard
3.	Boroscope checkout	Keller Bossard
4.	Caron monoxide emissions less than 550 lbm/day	Werling
5.	Methane lead time	Werling

<u>APPENDIX B</u>

 t

LIQUID-LIQUID COAX INJECTOR CONCEPT REVIEW

CARBON DEPOSITION PROGRAM LIQUID-LIQUID COAX INJECTOR DESIGN CONCEPT REVIEW

30 SEPTEMBER 1988

CARBON DEPOSITION LIQUID-LIQUID COAX INJECTOR **CONCEPT REVIEW AGENDA**

INTRODUCTION

- ANALYSIS
- DESIGN
- SUMMARY
- ACTION ITEMS

J. BOSSARD

K. NIIYA

B. CAROTHERS

CHAIRMAN	J. L. PIEPER
PERFORMANCE ANALYSIS	R. E. WALKER
THERMAL ANALYSIS	F. F. CHEN
STRESS ANALYSIS	J. E. JELLISON
MATERIALS	R. M. HORN
PRODUCIBILITY	J. A. PHIPPS
DESIGN	L. C. FEMLING

CARBON DEPOSITION LIQUID-LIQUID COAX INJECTOR DESIGN REVIEW BOARD MEMBERS

INTRODUCTION

JOHN BOSSARD

PROGRAM OBJECTIVES

- PERFORM LNG TESTS AND COMPARE WITH PREVIOUS **METHANE RESULTS**
- VERIFY LACK OF CARBON BUILD-UP FOR LOX/METHANE **PROPELLANTS ON TURBINE SIMULATOR AT FULL SCALE** INJECTION RATES WITH STBE GG TYPE INJECTOR
- UPDATE FUEL RICH COMBUSTION MODEL (FRCM) TO INCLUDE METHANE-
- INJECTOR TO OPERATE AT FULL SCALE INJECTION RATES DESIGN, FABRICATE, AND BUILD A LIQUID-LIQUID COAX

COAX INJECTOR OBJECTIVES

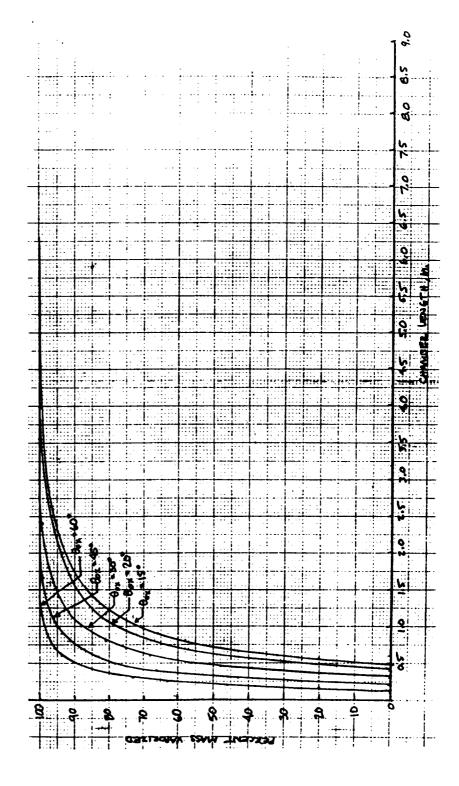
- RUN LOX/METHANE IN A LIQ-LIQ COAX INJECTOR
- Pc 'S AS IN THE PREVIOUS LOX/METHANE TESTING **OPERATE AT SIMILIAR FLOW RATES AND**
- COAX INJECTOR TO THE IMPINGING TRIPLET INJECTOR COMPARE CARBON DEPOSTION EFFECTS OF THE
- COMPATIBILITY WITH ALS TECHNOLOGY WHERE POSSIBLE

INJECTOR REQUIREMENTS

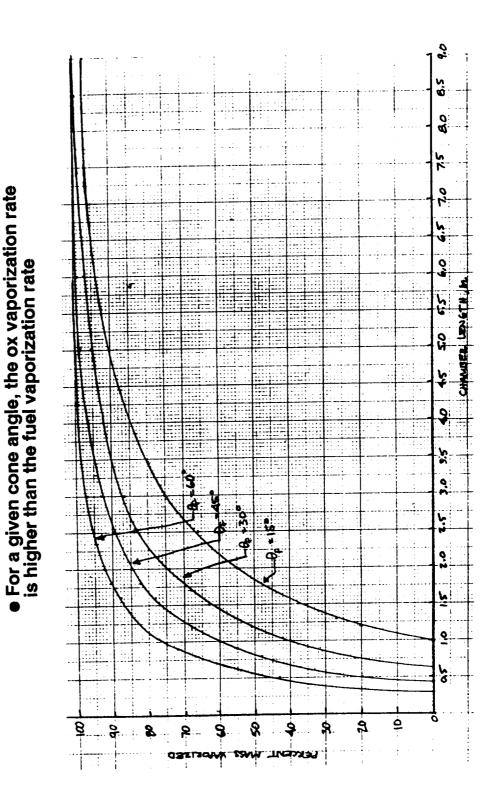
PARAMETER	REQUIREMENT	SOURCE
PROPELLANT	LOX/METHANE	CONTRACT MOD.
INJECTOR ELEMENT	LIQ/LIQ COAX	CONTRACT MOD.
М _{тотаl}	13 - 16 lbm/sec	PREVIOUS TESTING
Рс	2000 psi	PREVIOUS TESTING
MR	.2060	PREVIOUS TESTING
FUEL AND OX SUPPLY LINE PRESSURE	< 3000 psi	TEST EQUIPMENT LIMITATION
INJECTOR DIAMETER	2.38 in	HARDWARE INTERFACE
IGNITER	GOX/GH 2	PREVIOUS TESTING
CHAMBER LENGTH	20 in max.	HARDWARE
THRUST LEVEL	2 - 3 k lbf.	PREVIOUS TESTING

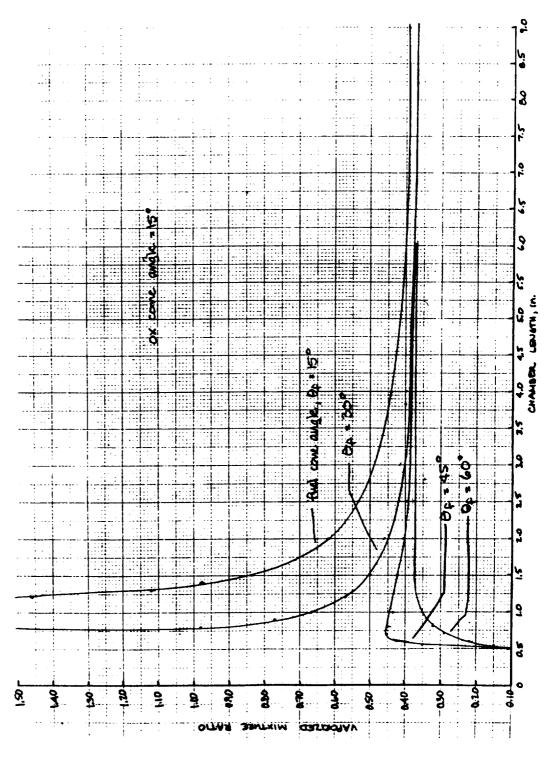
ANALYSIS

KAREN NIIYA

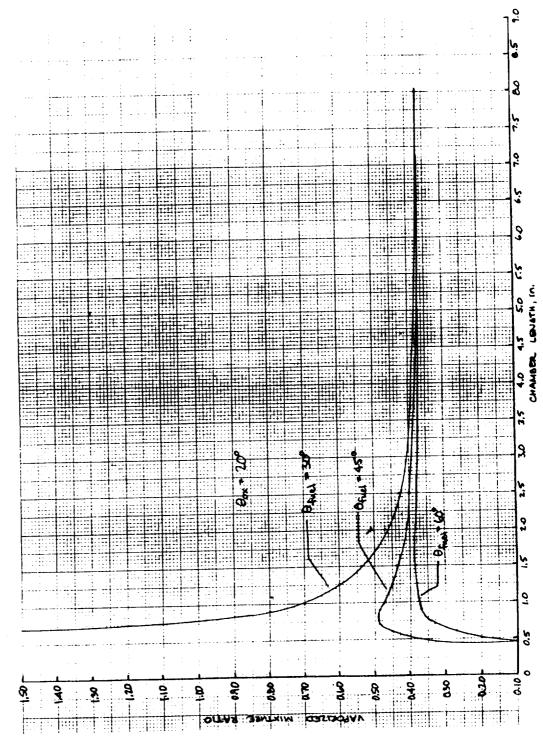

SWIRL COAX INJECTOR ELEMENT DESIGN CRITERIA

OXIDIZER HALF CONE ANGLE RANGE = 15° TO 60° FUEL HALF CONE ANGLE RANGE = 15° TO 60° **ELEMENT TYPE: DOUBLE SWIRL COAX** INJECTOR FACE DIAMETER = 2.175" OXIDIZER FLOWRATE = 3.85 lbm/s FUEL FLOWRATE = 10.39 lbm/s NUMBER OF ELEMENTS = 18 **CONE ANGLE PARAMETRIC STUDY:** MIXTURE RATIO = 0.37 $\triangle P_{ox} = 300 \text{ psid}$ $\Delta P_f = 600 \text{ psid}$ $P_{c} = 2000 \text{ psia}$ **OXIDIZER: LO2** FUEL: LCH4


LO2 VAPORIZATION PROFILE IS A FUNCTION OF CONE ANGLE

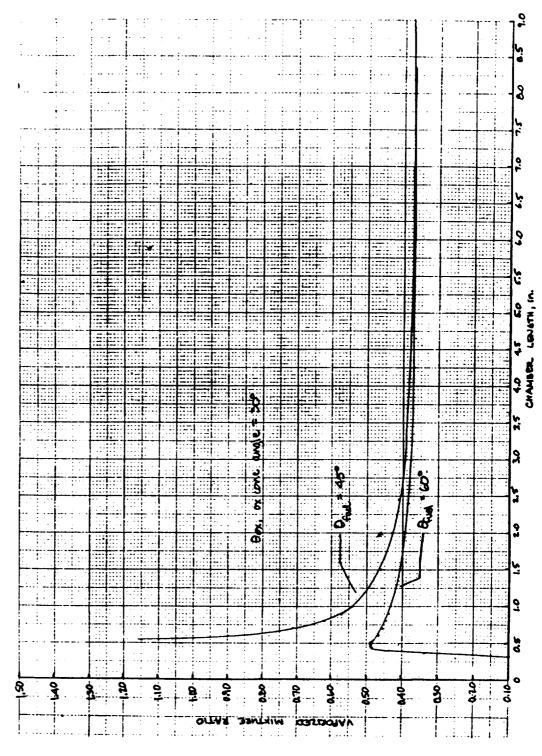


METHANE VAPORIZATION PROFILE IS A FUNCTION **OF CONE ANGLE**



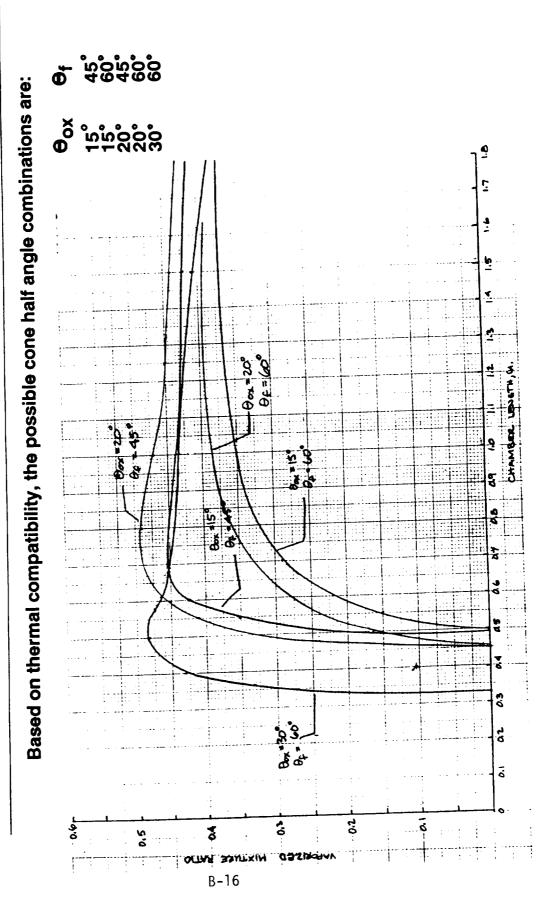
FOR $\Theta_{OX} = 15^{\circ}$, PREFERRED FUEL CONE ANGLE RANGE FOR INJECTOR FACE THERMAL COMPATIBILITY IS 45° TO 60°

FOR $\Theta_{OX} = 200$, PREFERRED FUEL CONE ANGLE RANGE FOR INJECTOR FACE THERMAL COMPATIBILITY IS 450 TO 600

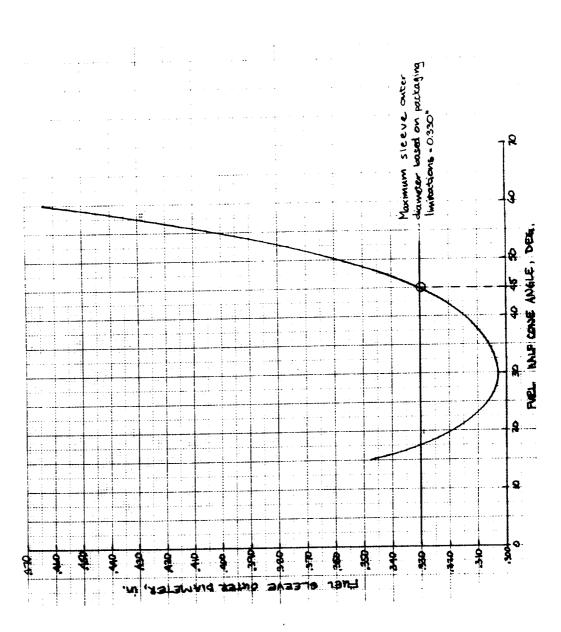


1

FOR $\Theta_{OX} = 30^{\circ}$, PREFERRED FUEL CONE ANGLE RANGE FOR INJECTOR FACE THERMAL COMPATIBILITY IS 60^

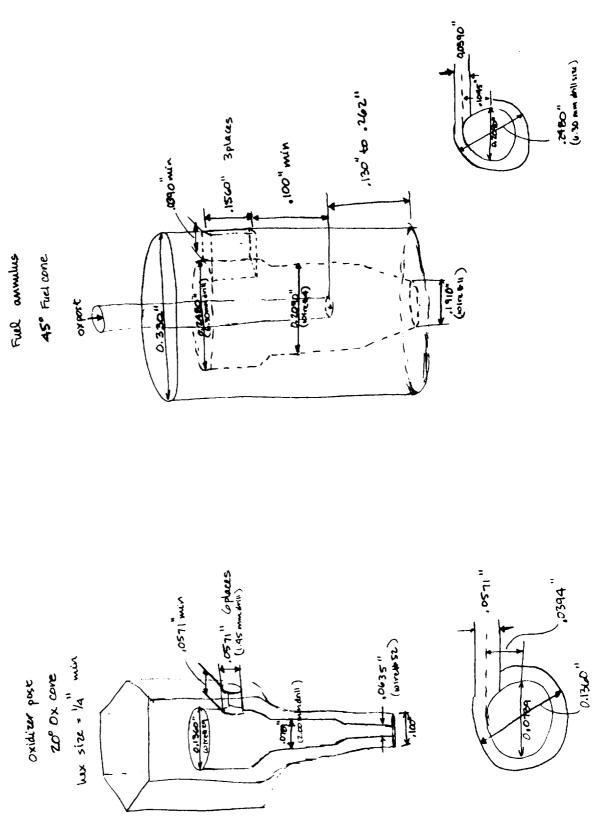

I

ł


TechSuperversion Company

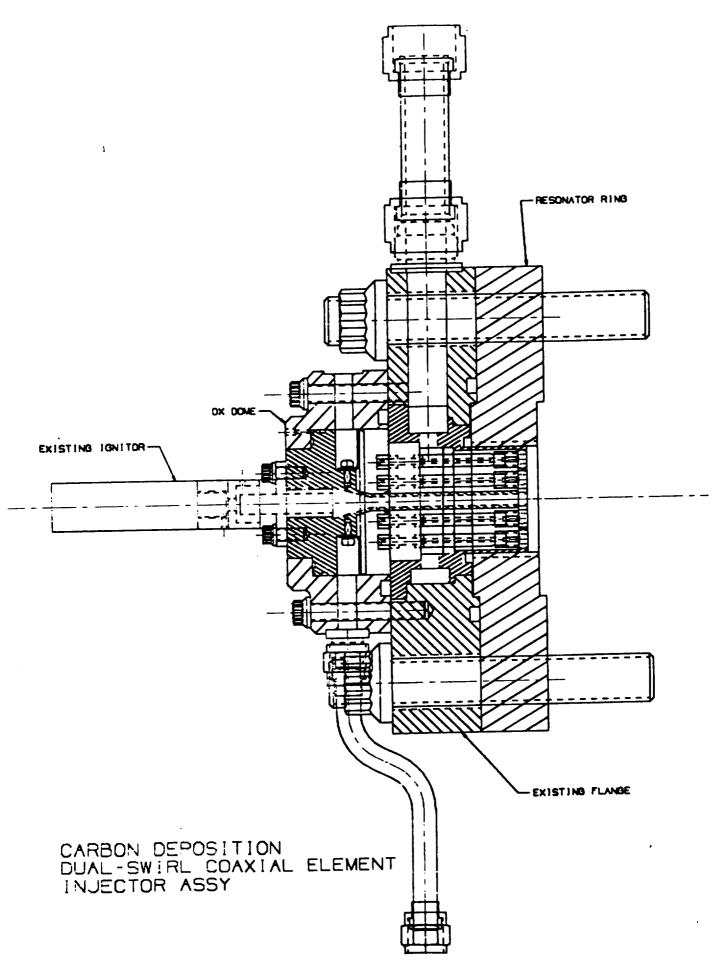
PARAMETRIC STUDY CONCLUSIONS

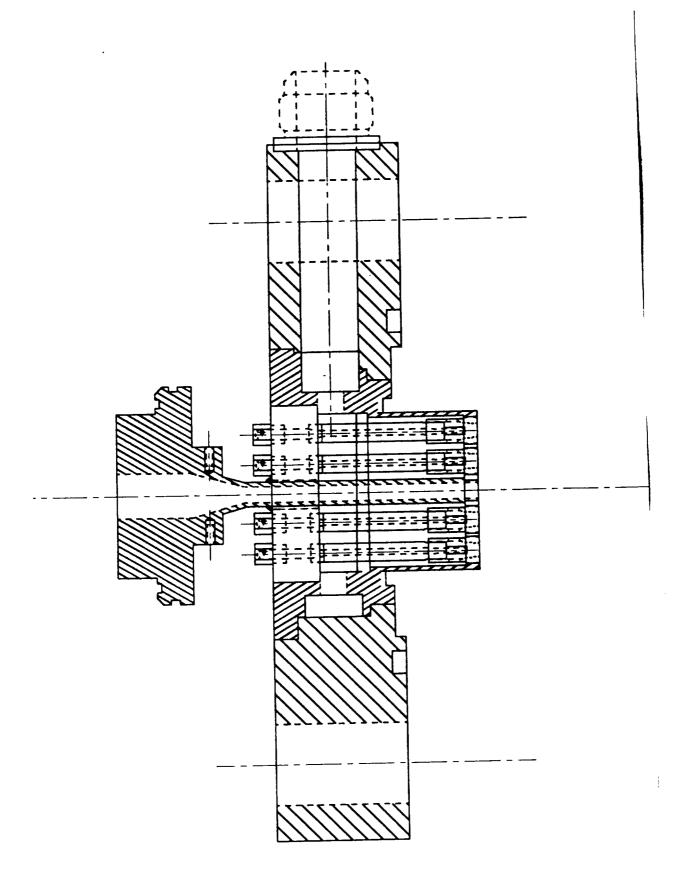
TechSust


CONE ANGLE = 450

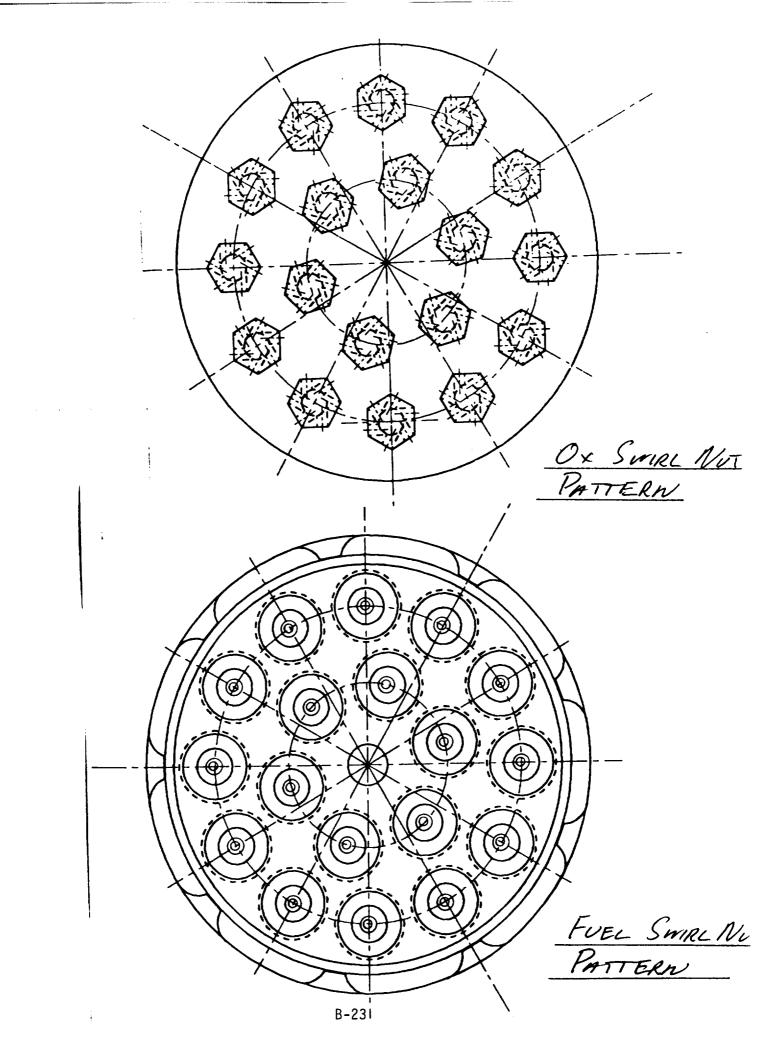
- Due to tight fit between elements, the fuel sleeve outer diameter is restricted to less than or equal to 0.330".
- Fuel sleeve O.D. is dependent on desired fuel cone angle.

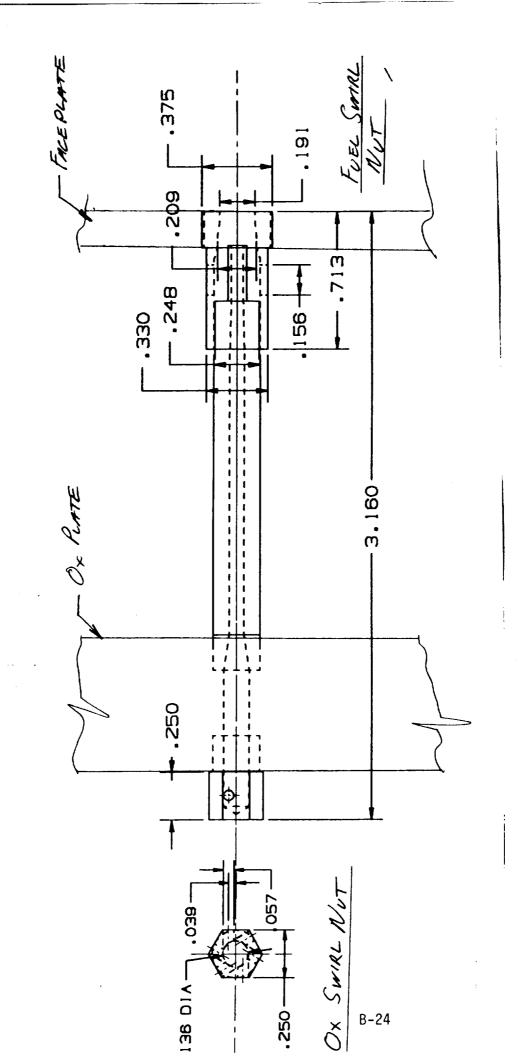
ROUGH SKETCH OF OX POST AND FUEL ANNULUS GEOMETRIES (NOT TO SCALE)


	SM2	
AEROJET	2	OMPAN
▲ 	0	5


CARBON DEPOSITION SWIRL COAX INJECTOR CURRENT DESIGN POINT

 $P_{c} = 2000 \text{ psia}$ OX FLOWRATE = 3.85 lbm/s FUEL FLOWRATE = 10.39 lbm/s MIXTURE RATIO = 0.37 $\Delta P_{0x} = 300 \text{ psi}$ $\Delta P_{0x} = 300 \text{ psi}$ $\Delta P_{f} = 600 \text{ psi}$ $\Delta P_{f} = 600 \text{ psi}$ NO. OF ELEMENTS = 18 NO. OF ELEMENTS = 18 O. OF ELEMENTS = 18 $OX CONE HALF ANGLE = 20^{0}$ $FUEL CONE HALF ANGLE = 20^{0}$ $FUEL CONE HALF ANGLE = 45^{0}$ $D_{0x} \text{ ORIFICE = 0.0635 \text{ in}.$ $D_{0x} \text{ POST = 0.100 \text{ in}.$ OD FUEL ANNULUS = 0.1910 in.


DESIGN


BRIAN CAROTHERS

SWIRL ELEMENT ACCESSIBILITY

Ζ
Щ
5
S
S
Ш
S
S
٩
\checkmark
S
22

NO -+ YES COLD FLOW TESTING	YES F-O-F TRIPLET EXPERIENCE	NO YES COMPLETED STRESS ANALYSIS	YES	NO	N N	NO
PERFORMANCE ANALYSIS 1) CONE ANGLES	THERMAL ANALYSIS	STRESS ANALYSIS	MATERIALS	PRODUCIBILITY	DESIGN 1) FACE NUTS 2) CONFINED ENVELOPE	FABRICATION

.