
NASA Contractor Report 187625

(NA=_A-C:_-ldTb?_) ATA_'I A,"iAI. Y_[(_ TLJ(_,L

Rei;'_rt, i Jun. I')'_'_. - 3] ,4_y ,9-_)., (_Id

C)omir_ion Univ.) 1_.7 _) CSCL

ATAMM Analysis Tool

6)'3_

D--1off
hgZ-13371

Oncl cJs

G3/3_ O0 5,_Z,.5 &

Robert Jones, John Stoughton,
and Roland Mielke

OLD DOMINION UNIVERSITY RESEARCH FOUNDATION

Norfolk, Virginia

Cooperative Agreement NCC1-136
October 1991

N/ A
N;tb_)r/_|1/'k_ ,r ()i/; It 111(:_4; il_(J

Langley Research Center
0 I" F. t l"

Hampt()rL \tirglnla, 366., o22o

https://ntrs.nasa.gov/search.jsp?R=19920004153 2020-03-17T13:39:29+00:00Z

LIST OF SYMBOLS

SYMBOL

ADG

ADM

AMG

AMOS

ATAMM

C i

CMG

DP

DR

E

F

FDT

FU

I

IBM PC

I.D.

IE

DESCRIPTION

Algorithm Directed Graph

Advanced Development Model

Algorithm Directed Graph

ATAMM Multicomputer Operating System

Algorithm to Architecture Mapping Model

ith circuit in the CMG

Computational Marked Graph

Data processed

Data read

FDT file event: waiting for the channel in order to read

FDT file event: reading

Fire Data Time

Functional Unit

FDT file event: processing

International Business Machines Personal Computer

Identification

Input buffer empty

IF

I/O

M(C i)

N

NMG

O

OE

OF

P

P.
!

PR

0

R

S

T

T1

T2

T3

T4

T5

TB

Input buffer full

Input/Output

Number of tokens in C i

Number of nodes in the AMG

Node Marked Graph

FDT file event: testing

Output buffer empty

Output buffer full

FDT file event: waiting for the channel in order to write

ith path between source and sink in AMG

Process ready

FDT file event: returning FU I.D. to the resource queue

FDT file event: idle

FDT file event: writing

FDT file event: waiting for the channel in order to return the

FU I.D. to the resource queue; or a time interval

Time interval for one stay in the idle state of AMOS

Time interval for one stay in the examine state of AMOS

Time interval of the execute state of AMOS

Time interval of the test state of AMOS

Time interval of the update state of AMOS

Broadcast time

TBI

TBIO

TBIOLB

TBO

TBOLB

TBOmi n

TCE

T(C i)

Te

TE

TG

TMR

T(P i)

Time Between Inputs

Time Between Input and Output

l_x}wer bound limit of TBIO

Time Between Outputs

Lower bound limit of TBO

Minimum TBO due to overhead requirements

Total Computing Effort

Sum of transition times in C i

Evaluation time interval

Time to execute the algorithm operation belonging to the

critical node

Channel grab time

Triple Modular Redundancy

Sum of transitions times in Pi

°.°

Iil

CHAPTER ONE

Introduction

1.1 Overview

There are increasingly greater demands placed on computer systems today.

This is especially true in applications such as real-time signal processing and

control systems. Meeting these demands often requires a system with multiple

processors working concurrently on the same algorithm. Due to these concurrent

activities, a special model is needed to describe the system behavior and predict

its performance for real-time applications.

The Algorithm to Architecture Mapping Model (ATAMM) is a new Petri

net based model capable of describing the execution of large grain algorithms on

data flow architectures. A data flow architecture is one in which instructions are

enabled for execution by the arrival of their operands. This is contrary to

conventional computer architectures where the execution of instructions are

controlled by an instruction counter. Large grain means that the time required to

execute data by an algorithm operation is much greater than the time to transfer

data between the operations.

The ATAMM model provides a description of the data and control flow

necessary to specify the criteria for predictable execution of an algorithm by a

data flow architecture. The ATAMM model also provides the means to

investigate different algorithm decompositions without having to consider the

hardware. Once the intended hardware is selected, the model can be used to

match the algorithm requirements with the hardware c_,pa,_itity in order to

achieve optimum performance.

Computer diagnostics software is needed to productively analyze the

operation of an ATAMM based system. Computer software can provide the

means to analyze data reported by the system and portray the system behavior.

The software can also extract certain measurements from the reported data in

order to evaluate the system performance.

The detailed description of this research is taken from the Master's Thesis

by Robert L. Jones entitled "Diagnostics Software for Concurrent Processing

Computer Systems." The use of brand names in this report is for completeness

and does not imply NASA endorsement.

1.2 Research Objective

The objective of this research is to develop a software diagnostic tool

capable of analyzing ATAMM based systems. It will provide the means to

examine the overall system behavior and obtain performance measurements. The

performance measurements will indicate the computing speed, throughput,

concurrency, and resource utilization attained by the system. The software tool

also provides measurements associated with system overhead. The software is

developed within a window environment in order to provide user-friendly features

that facilitate the analysis process. This software diagnostic tool is able to assist

with the development of ATAMM based architectures and the investigation of

theories concerning the ATAMM model.

1.3 Report Organization

The ATAMM model is presented in Chapter Two and performance

measures are defined. The ATAMM based operating system (AMOS) is also

presented. A state diagram description of AMOS is used as a means to discuss its

operation. An overhead model associated with AMOS operation is considered.

Also, an approach that extends ATAMM to the modeling of a fault tolerant

system is presented.

The development of a software tool for analyzing an ATAMM based

system is presented in Chapter Three. The program input requirements and

output features are discussed.

Experimental results are described in Chapter Four and provide a

demonstration of the software developed in Chapter Three. First, the program's

overhead evaluation capabilities are demonstrated on a simulated system.

Information obtained from the overhead evaluation is then used with the

ATAMM model to predict system performance and behavior at two different

operating levels. The program is used to evaluate the resulting performance and

behavior for comparison with the predictions. Finally, the error reporting features

for the analysis of fault tolerant systems is demonstrated.

Five.

A summary is given and topics for future research are stated in Chapter

4

CHAPTER TWO

Theory

2.1 Introduction

This chapter presents the ATAMM model for describing the data and

control flow associated with a certain class of algorithms and distributed-

processing systems. A brief description of the ATAMM model and its application

is presented in Section 2.2. The state diagram description of the ATAMM

Multicomputer Operating System (or AMOS) is discussed in Section 2.3. The

communication events associated with AMOS are also discussed. These

communication events are of particular importance to the software developed in

the following chapter. The overhead tcssociated with AMOS is discussed in

Section 2.4 by considering the activities other than processing which must occur

for correct overall system operation. The extension of ATAMM to incorporate

fault detection and correction is discussed in Section 2.5.

2.2 ATAMM Model

There is considerable ongoing research today concerning the modeling of

multiprocessor or distributed-processing systems. Of particular interest is the

development of parallel architectures composed of identical, special purpose

computing elements [1]. The computing elements of a distributed system must

share resourcesand information. Therefore, there is a need to synchronizeand

control this sharing in order to obtain correct overall systemoperation [2].

The ATAMM model incorporates both the data and control flow necessary

for the executionof an algorithm decompositionon a _pe_laimultiprocessor

system. The model wasdesignedby Stoughtonand Mielke in order to describe

the control, communication, and scheduling issuesnot included in other models

[3]. The algorithm graphsapplicable to the ATAMM model must be decision

free with respect to data flow and contain computationally complex primitive

operations. The architecture is intended to be a dedicated distributed-processing

system consisting of identical computing elements (functional units). Each

functional unit is capable of executing any primitive operation of the algorithm. It

is assumed that the number of functional units range from two to twenty.

The ATAMM model is based on a special class of timed Petri nets which

lend themselves well to system modeling. A Petri net is a special kind of directed

graph capable of describing data and control flow of a system [2]. Petri nets serve

as both a graphical and mathematical tool. It is assumed that the reader is

already familiar with Petri net theory so a detailed discussion pertaining to the

topic will not be provided. The reader unfamiliar with Petri nets should refer to

[2] or some other source of information about Petri net theory.

Due to the decision free criteria, the timed Petri net representation is

simplified to a class of Petri net called a marked graph. An example of a marked

graph is presented in Figure 2.1. Circles represent nodes (transitions) and line

6

transition

token 0

Figure E.1. Parlial Marked Graph.

7

segments represent edges (places).

or data are indicated by black dots on the edges.

by the presence of tokens on all incoming edges.

Tokens representing the availability of signals

A node is "enabled" for "firing"

The node "fires" by

encumbering all input tokens, delaying for some time interval, and depositing one

token on each outgoing edge.

The ATAMM model provides the analytical means to integrate the

algorithm data flow with the data flow architecture [1]. The algorithm marked

graph (AMG), the node marked graph (NMG), and the computational marked

graph (CMG) constitute the three main components of the ATAMM model. A

flow diagram portraying the ATAMM modeling steps is presented in Figure 2.2.

Given some algorithm decomposition, the algorithm directed graph (ADG)

is used to describe the primitive operation data dependencies. It uses circles

(nodes) to represent primitive operations and line segments (edges) to describe

the data dependence. Squares are used to indicate sources and sinks of data. An

example ADG is provided in Figure 2.3.

The AMG is a marked graph representation of the ADG. The AMG

provides a description of the algorithm data flow. The edges represent data

containers and tokens are used to indicate the presence of data. The

corresponding AMG of the algorithm decomposition of Figure 2.3 is presented in

Figure 2.4.

Given some computing environment assumptions, the NMG specifies the

functional unit activities which must occur in order to execute a primitive

8

VJgure 2.2. ATAMM Model Componen[s.

Figure 2.3. Example ADG.

I0

Figure 2.4. Example AMG.

!1

node cannot be "fired" until the process is ready, input is available, and the output

has been read by the successor operation. Also, a functional unit must be

available to perform these computing activities. Once assigned to "fire" the read

transition, the functional unit will remain assigned in order to process and write

the data before becoming available once again.

The two modeling steps of ATAMM discussed so far have specified data

flow with the AMG, and the functional unit activities and control flow required of

each AMG node. The CMG is a marked graph which incorporates the AMG and

NMG specifications into one graph. Thus, the CMG displays the data and control

flow necessary to implement a decomposed algorithm on a multiprocessor data

flow architecture [1]. The CMG is constructed by replacing each AMG node by

the NMG. Source and sinks of the AMG are represented the same way in the

CMG. Each AMG edge is replaced with one forward directed edge for data flow

and one backward directed edge for control flow. The resulting CMG is

presented in Figure 2.6.

The CMG of Figure 2.6 has certain characteristics that should be

mentioned briefly. Execution of the CMG results in live, reachable, safe,

deadlock free and consistent behavior. Liveness indicates that every transition of

the graph can be fired from the initial marking [3]. Reachability implies that an

output will be produced for every input. The CMG is safe because the backward

control edges prevent data from being overwritten. The backward control edge

will prevent enablement of a primitive operation until previous output data are

14

Q_

E

c_

,r-1

15

picked up. The CMG is also deadlock free because once assigned to a primitive

operation, a functional unit will always be able to complete execution.

Consistency implies that the CMG will periodically produce output when input is

applied periodically [3]. This also means that primitive operations will also be

executed periodically.

There are two types of concurrency possible with executing an algorithm

decomposition as specified by the CMG. Primitive operations belonging to the

same data set which are independent of each other may be executed

simultaneously. This is referred to as parallel concurrency and provides

parallelism on a single data set [4]. The amount of parallel concurrency possible

depends on the number of parallel paths in the algorithm decomposition and the

number of functional units available. As with any data flow computer, new data

sets will be accepted for execution before the completion of previous data set

computations. This simultaneous processing of different data sets is referred to as

pipeline concurrency [4]. The amount of pipeline concurrency possible depends

on the ability of the algorithm decomposition to accept new data sets and the

number of functional units available.

The AMG and CMG for a given algorithm decomposition can be used to

calculate performance measurements. Two important performance measurements

are the time between input and output (TBIO) and the time between outputs

(TBO). TBIO is directly related to computing speed which indicates the amount

16

of parallel concurrency attained. TBO is associated with throughput and

therefore reflects the amount of pipeline concurrency attained.

Lower bound values for TBIO and TBO can be calculated using the AMG

and CMG. Lower bound (TBIOLB) can be determined from the AMG by

determining the longest path between the input source and the output sink. More

formally, let Pi be the ith directed path in the AMG and T(Pi) be the total path

time associated with Pi- TBIOLB is then defined as

TBIOLB = Max(T(Pi)) (2.1)

where the maximum is taken over all paths in the AMG [3]. A proof of this

theorem can be found in [5] and is based on critical path theory.

TBOLB is a result of how quickly primitive operations can be repeated

periodically. Let C i be the ith directed circuit in the CMG and T(Ci) denote the

total path time associated with C i. Also, let M(Ci) denote the number of tokens

contained in C i. Then, TBOLB is defined as

TBOLB = Max(T(Ci)/M(Ci)) (2.2)

where the maximum is taken over all circuits in the CMG [3]. TBOLB is thus the

largest time per token of all CMG circuits. The CMG circuits which determine

17

TBOLB are called critical circuits. A proof of equation 2.2 can be found in [5]

and is based on the maximum node firing rate of marked graphs.

Knowing TBOLB is important because it determines the minimum injection

interval of graph input. Data may temporarily be accepted within a time interval

shorter than TBOLB but at the cost of decreased computing speed (TBIO will

increase). However, it is important in real-time applications to have high

computing speed as well as high throughput. The ATAMM model provides the

means to match the algorithm requirements with resource availability for optimum

performance and establishes the criteria for predictable performance. Predictable

performance is attained by maintaining an input injection rate within the range

determined by ATAMM.

Implementing the ATAMM model requires three logical components. Two

of the components are the functional units and global memory already discussed.

A third component is needed to assign available functional units to primitive

operations as they are enabled. This component, called the graph manager, is

responsible for ensuring that the overall system operates according to the

ATAMM rules. The graph manager examines the CMG for enabled nodes and

assigns functional units (according to priority if more than one node is enabled)

from a queue of available functional units. The graph manager uses status

information communicated to it by the functional units to update the marking of

the CMG. As with global memory, the graph manager can be centralized or

distributed [1].

18

The integration of the graph manager with the hardware's operating system

constitutes the ATAMM Multicomputer Operating System (AMOS). The

resource queue, global memory, CMG, and the algorithm operations provide the

necessary support to AMOS. An AMOS controlled architecture consisting of IBM

PC's has been developed and tested to validate the ATAMM rules [6], [7]. A

centralized graph manager and centralized global memory were utilized in this

testbed. Another testbed, called the advanced development model (ADM),

utilizing VHSIC technology 1750A processors is currently being developed [8].

The ADM system is composed of four functional units, utilizing a distributed

graph manager and distributed global memory. There is also a 1553B module

which performs the source and sink activities and provides an interface with an

IBM AT. The IBM AT functions as a system monitor, provides the input data for

the graph, and stores the output data. It also stores time-tagged status events

generated by the functional units (discussed later) for analysis purposes.

One of the computing environment assumptions is that the same functional

unit will complete all NMG activities. Therefore, the internal token marking at

the "DP" edge is not important to the graph manager. Also, the "PR" edge

provides only redundant information. A simplified NMG providing a description

of the functional unit activities of AMOS is presented in Figure 2.7. When input

is available, previous output read, and a functional unit is available, the "F"

transition can be fired. This event marks the beginning of the primitive operation

19

IF

IE
OE

F D

Busy

OF

Figure 2.7. Reduced NMG.

ZO

execution. The completion of the execution is indicated by the firing of the "D"

transition.

2.3 AMOS Communication Events

The state diagram description of the AMOS curlently under development

is shown in Figure 2.8. It is composed of the five states: idle, examine, execute,

test, and update. A functional unit will initially start in the idle state. It will

remain idle until it finds its identification number (I.D.) at the top of the resource

queue (last in-last out) for available functional units. Upon finding its I.D., the

functional unit will progress to the examine state where it will examine the CMG

for enabled nodes. It will remain in the examine state until it locates an enabled

node. Once a node is found, the functional unit will transition to the execute

state and broadcast an "F" command to the other functional units indicating the

firing of the node process. This broadcast, as well as the two others discussed

next, provides the status information necessary for maintaining the data in global

memory, the resource queue, and the status of the CMG. Since the graph

manager may be distributed, this communication is especially important to ensure

that all individual graph managers contain the same CMG marking. Having

completed processing, the functional unit will write the output data to global

memory and broadcast the "D" command and the node process output data to the

other functional units

Before returning to the idle state, the functional unit enters the test state

where it may perform a self test. This state provides the means to remove a

21

SELF NODE

SELF

T2

Figure 2.8. AMOS State Diagram.

22

functional unit from the system for inspection during real-time operation. If the

functional unit checks out alright it will broadcast the "R" command announcing

the return of its functional unit I.D. to the bottom of the resource queue and

transition back to the idle state.

Since the operation of the system is asynchronous, the graph manager must

generally be interrupt driven. When a broadcast is received, a functional unit will

be interrupted from any of the states just mentioned and enter the update state.

It will remain in this state long enough to update the CMG, global data, and the

resource queue if necessary.

The "F", "D", and "R" commands not only provide the communication and

synchronization necessary for correct overall system operation, but also the means

to analyze the system performance. By time tagging and storing information

about each broadcast, such as the event (F, D, or R), the node number, and

functional unit I.D., the token movement within the CMG as well as functional

unit utilization and concurrency may also be extracted. However, such an analysis

requires the aid of a computer if it is to be done in a reasonable amount of time.

2.4 Overhead Model

The performance bounds discussed in Section 2.2 are ideal values. Read

and write times are the only overhead parameters considered in the CMG. When

one considers the AMOS state diagram which controls the functional unit

activities, it is apparent that there are other activities besides reading, processing,

and writing which must be considered.

23

Assume that the critical circuit of Figure 2.9 (a) determines TBOLB for an

algorithm containing at least two nodes and no recursion circuits. Within a TBO

time interval all transitions within the critical circuit must be fired. There are

needs associated with AMOS and the communication channel which must be met

in order to fire these transitions. These needs require functional unit computing

effort not associated with algorithm processing and therefore result in added

overhead.

Let TB equal the time to broadcast an "F", "D" or "R" command. Let TG

equal the time to grab the channel for the broadcast. It is assumed that it always

requires some minimum amount of time to obtain a channel. TG may however

be greater than this minimum value if there is contention with one or more other

functional units. Referring to Figure 2.8, T2 is the time to examine the graph and

T3 is the time to perform an "F" broadcast (TG + TB), execute the primitive

operation (TE), and perform a "D" broadcast (TG + TB). All functional units

will simultaneously transition to the update state for T5 amount of time following

a command broadcast. It is assumed that there are sufficient functional units to

fire nodes as soon as they become enabled.

Figure 2.9 (b) displays the time diagram associated with firing the nodes

within the critical circuit. Starting with graph marking (1), the time to fire the

critical node transitions and progress to graph marking (3) is equal to the

summation of T2, T3, and 2T5. The time to fire the "F" transition of the

successor node and return to graph marking (1) is the summation of T2, TG, TB,

24

v

E-,

E_

r-_
E-,

E-_

E-,

r_
E-,

E-,

E-,

I

v

I

0

v

S

E_

r_9
E._

c_
E_

E_

v

_rj

I,...

0

°F-I

o w....4

c4

° e...._

25

and T5. Neglectingsource and sink broadcasts,there will be 3(N-2) broadcast

interrupts during the TBO interval that must also be consideredwhere N is the

number of AMG nodes. These interrupts occur from the "F", "D", and "R"

broadcastsof the other N-2 AMG nodes. Also, there will be the interrupts

resulting from the "R" broadcastof the functional unit previously assignedto the

critical node and the "D" and "R" broadcastsof the successornode.

Therefore, the minimum theoretical TBO interval possiblebasedon this

model is

TBOmi n = T2 + T3 + 2T5 + T2 + TG + TB + T5 + 3(N-2)T5 + 3T5

TBOmi n = TE + 2T2 + 3(TG + TB) + 3NT5 (2.3)

This model assumes that there are sufficient resources to fire nodes as

enabled. This assumption makes it possible to neglect test time (T4) in the

model. If there are limited resources then TBO must be increased even higher.

This is because the computing capacity (computer time available) must be greater

than or equal to the computing effort (computer time used). Computing capacity

for a time interval T is equal to R times T where R is the number of resources

[3]. Total computing effort (TCE) is defined as the total amount of computing

effort required to execute all AMG transitions one time [3]. Since all AMG

transitions will fire within a TBO time period, the following condition must hold

[31.

26

R" TBO > TCE (2.4)

Functional unit test time increasesTCE. Therefore, either R must increaseas

wasassumedfor the model above,or TBO must increasein order to satisfy

equation 2.4. Both Equations 2.3 and 2.4 must be consideredwhen predicting a

theoretical lower bound for TBO.

2.5 Fault Tolerance

Many applicationssuchas critical control systemsrequire that output data

be reliable. A fault tolerant systemis usually created by providing processing

and/or data path redundancywithin the system. One such method is the useof

Triple Modular Redundancy(TMR) for the detection and correction of single

errors. The TMR approach implemented in the ADM systemtriplicates the

processingand the data associatedwith each AMG node [8]. A primitive

operation specified by a simplexAMG node (Section 2.2) is now specified by

three AMG nodeswith color extensionsred, green, and blue. The three colored

AMG nodesare enabled simultaneously. Executionof the colored AMG nodes is

performed simultaneouslyby three functional units. Each colored node triplicates

its output data for each colored successornode. Thesedata are also color

referenced. When all data are availableas input to a successornode, a majority

vote within the successornode executiondetermines the corrected data for

processing. Data are also triplicated at the sink, so a majority vote routine must

27

be implemented by the sink as well. A description of the AMG transformation

from simplex to TMR is shown in Figure 2.10.

A duplex method for the detection of single errors can also be

implemented. Duplex is implemented the same way as TMR except that nodes,

edges, and functional units are duplicated instead of triplicated. Nodes and edges

are referenced by the colors red and green.

Since redundant AMG nodes are enabled simultaneously as well as

executed simultaneously, a simplex description of a TMR or duplex system will

still suffice for analysis purposes [8].

28

Di.j

SIMPLEXAIVlG

TMR AMG

Ni.R

Ni.G

Ni .[3

Di,j.G

Nj.R

Figure 2.'10. Simplex to TMR Transformation.

29

CHAPTER THREE

Analysis Tool Development

3.1 Introduction

The development of the Analysis Tool program is presented in this

chapter. This program allows a performance evaluation to be made on

concurrent processing systems based on the ATAMM model. Input to the

Analysis Tool is a file containing information about the firing of each node

through a list of time-tagged events. This file is generated by collecting the

communication events of AMOS, discussed in the previous chapter, or by

simulation. The format for this file, called the FDT file, is discussed in Section

3.2. Efficient processing of this information requires that the data be read into

memory where it can be quickly accessed. The memory management

implemented in storing and accessing data obtained from the FDT file is

presented in Section 3.3. Presented in Section 3.4 are the two main activity

displays. These displays allow the user to view the node and functional unit

activities that occur during the execution of the graph. Measurements derived

from the FDT file such as TBI, TBO, TBIO, utilization, and overhead are

discussed in Sections 3.5, 3.6, and 3.7, respectively. The overall Analysis Tool

3O

program structure and user-friendly features inherent in the window environment

used to develop the program are presented in Section 3.9.

3.2 FDT File

Evaluating the performance of a concurrent processing system based on the

ATAMM model requires information concerning the state of each processor and

the algorithm with respect to time. The broadcast of events as a processor

progresses through the states of AMOS was discussed in Section 2.3. By knowing

the graph structure, these events imply information about the movement of tokens

within the CMG. Therefore, by recording these events along with the time of

occurrence, processor and algorithm activity can be reconstructed.

The FDT (Fire, Data, Time) file contains a list of information pertaining

to each AMOS broadcast event, in order of occurrence, which provides a means

of evaluating the system performance and graph execution. Basic information in

the FDT file includes the time occurrence of the event, name of the event, block

number, node color, FU I.D., and the current mode (simplex, duplex, TMR) of

the system.

The capability of evaluating overhead is made possible by adding

information to each AMOS broadcast event. This information is the time spent

waiting for a communication channel and the time spent updating the graph

structure for the broadcast. The update time also includes the read and write

time associated with processing a node when attached to the respective "F" and

"D" broadcast events. The format for the FDT file is presented in Figure 3.1.

31

T, lime,M,mode, even? ,N,node,C,eolor, resource

time " time of the event

mode • 1 --9 simplex; 2 ---> duplex: 3 ---> TMR

event name of the event IE. F. I. P. S. O. T. Q. R1

"F" broadcast "D" broadcast "R" broadcast

g]

_3 ¢j

I., ¢_

- k,

0
Q.; ,+_

Q; 0

.,o E

E

0

0

cO
c)

0

,.o

L

0

E

0

0

0

"o

0

..o

121

_ E

(_1

0

"0

0

,,o

t.,.,
o

°_

E F I P S 0 T Q R E

> Time

node : block number

If the value of node is less than or equal to zero

then the event is associated with a source or sink.

"P". "S". "0" even6y are associated with sources.

"E". "F". 'T' events are associated with sinks.

color" color of the node within the block

I --->red" _ --->green" 3 ---> blue

re_OU_Ce" identification number of the functional

unit processing the node or the device

performing the sink or source activity.

Figure 3.1. FI)T File Event Format.

32

The Analysis Tool also provides the option of including information

concerning voting errors, fatal errors or increase or decrease of available

functional units. When a voting error is detected, a voting error report is included

after the "O" event information in the FDT file so the Analysis Tool can single

out the node, node color, and functional unit involved in the error. A change-in-

resource report is included after an "R" event in order to allow the "available"

number of resources within the program data structure to be adjusted in response

to the change. The error information formats for voting errors and change-in-

resource are presented in Figures 3.2 and 3.3, respectively.

3.3 Data Storage and Access

Efficient processing of information available in the FDT file requires that

the data be brought in from the file and stored in memory. Depending on the

number of events recorded, this may require considerable memory so efficient use

and access of this memory is needed.

Information gathered from the FDT file is stored in a "C" data structure

array, called "all", with the following elements.

all[] = { the_time,

the event,

node,

color,

mode,

resource,

available,

working }

33

D.i_t_i.#._o,,t.N...;od_.C._olor.r_
t I

repealed cou,;t number of times

fatal" 0 ---> no fatal errors

1 --5 fatal error

coun{ the number of voting errors listed

node' the block number that was in error

code " 0

1

2

3

all three colored nodes were in error

red node was in error

green node was in error
blue node was in error

FUid" identification number of the functional unit

processing the colored node that was in error

Figure 3.a. FDT File Voting Error Information.

34

_, action, #, chanzes, FUid , C. code
1 I

repealed chalJges number of times

6ction action pertaining to first D.lid and code in the list

] ----> FU installed; R -----> FU removed

chaoyes • the number of changes listed

FUzd" identification number of tile functional unit

code • 0 --b died in queue

1---> died in process
2---> died in self Lest

S----> told to remove

4---> told to install

5 --> initial installation

Figure 3.3. FDT File Change-in--Resource Information.

35

The first six elements of the data structure are obtained directly from the file and

stored. "Available" and "working" are elements derived from the data as they are

read into memory. "Available" contains the total number of resources available to

the graph and is updated based on the change-in-resource report. As for the last

element, by incrementing a counter by one with the occurrence of a

ON HOLD READING event and decrementing by one with the occurrence of
u

an IDLE event, the number of "working" functional units can be determined and

stored. This makes it very easy to display the resource envelope and calculate

resource utilization discussed later in Section 3.6.

Since one would want to use as little memory as possible, the memory

required for this structure is allocated dynamically depending on how much is

needed. Instead of having to scan the file twice, once for the number of events

and then again for processing and storage, the Analysis Tool requires that the

number of events listed in the file be included as the first line in the file. Refer

to the appendix for the FDT file header format.

Due to the potentially large amount of information, locating data

concerning only a particular node or functional unit can be time consuming. A

solution to this problem implemented by the Analysis Tool is the use of link lists.

The link list is a collection of indices within the data structure array connected

together by head and tail pointers which allows the list to grow dynamically in

memory as needed. Indices are used instead of actual address pointers because

the link lists are stored in local memory and the data structure is stored in the

36

global heap which would require the use of far pointers (segment and offset). A

link list for one particular functional unit, for example, pointing to entries within

the data structure involving the functional unit, allows quick extraction of its

activity from the entire structure. See Figure 3.4 for an example. By having a

link list for each red, green, and blue node in a TMR block (Section 2.5) as well

as each functional unit, the node and FU activities can be easily displayed.

3.4 Node and Functional Unit Activity Displays

Playing back the activities involved in executing an algorithm is important

in the performance evaluation of a concurrent processing system. A graphical

display of both node and functional unit activities that took place allows one to

view a large amount of information brought together in one picture. By having a

time axis with cursors capable of measuring time along the axis, transition times

such as read, process, and write can be measured for any node or functional unit

activity.

3.4.1 Activity Blocks

The Analysis Tool presents both node and functional unit activities by

painted rectangles which will be referred to as activity blocks. Depending on the

display type, the blocks are painted a color representing either the functional unit

identification number, node number, or a transition such as processing. The

length of the block along the time axis represents the amount of time spent on the

activity.

37

the_ nodes [node][color]

head

tail

total

the time

the event

node

color

resource

mode

available

working

the fus[resource]

head

tail

total -_.......... total number of events pointed to

Figure :3.4. Link List Data Access.

38

The node activity display, called Graph Play, and the functional unit

activity display, called FU Activity, have distinctive activity block formats. Graph

Play activity blocks depict TMR, duplex, or simplex behavior with overlapped

blocks having three different sizes. The smallest activity block displays the red

node, the second smallest displays the green node, and the largest displays the

blue node activity of a TMR block. When operating in duplex, only red and

green node activity blocks will be present. Simplex mode behavior is displayed by

red node activity blocks only.

Activity blocks of the FU Activity display depict TMR, duplex, or simplex

behavior by including a colored band on top of the blocks. A red, green, or blue

band determines the respective nodes within a TMR block with which the activity

block is associated. As with the Graph Play format, duplex behavior is displayed

with activity blocks having red and green bands and simplex behavior is displayed

with blocks having red bands only. The portion of the activity block with the

colored band on top is associated with node processing activities. The remaining

portion of the activity block without the colored band is associated with functional

unit testing.

The Graph Play display can provide a view of single or total graph play.

Total graph play refers to the node activity of all nodes processing all data

packets whereas single graph play refers to the node activity associated with only

one user selected data packet. A default data packet number equal to one is used

when the Single Graph Play is initially displayed.

39

A Graph Play activity block without a view of the individual transitions is

shown in Figure 3.5 (a) and with the transitions in Figure 3.5 (b). Shown in

Figures 3.6 (a) and (b) are the activity blocks for the FU Activity without the

individual transitions and with the transitions, respectively.

3.4.2 User-Interactive Measurement of TBO and Throughput

The cursors in both the Graph Play and FU Activity displays allow time

measurements to be made as was mentioned in the previous section. For

example, one could move the cursors to the end of two consecutive write activities

of the output node and measure a value for time between output (TBO).

However, this measured TBO value may not be identical to the measured TBO

values presented in Section 3.5. The potential discrepancy exists in the rule that

governs the TBO measurement in Section 3.5 where the measurement is with

respect to sink activity instead of the output node activity.

If one is interested in throughput, an average TBO is needed. Throughput

is defined as the reciprocal of the average TBO. it is possible in both displays to

define an evaluation interval and obtain a measurement of average TBO for that

interval of time thereby allowing a calculation of throughput to be made. The

measurement is an arithmetic mean of the TBO values measured over the

evaluation interval for each data packet based on the definition of measured TBO

in Section 3.5. A default sink number equal to the number of the sink providing

the first activity in the FDT file is initially used to obtain the measurement;

however, the sink number can also be defined by the user. Refer to Figure 3.7

40

Blue

Green I_ ---

Red ___

Y

Color -> FU id

(a)

Blue

%iiig

Red _

Color -> Transition

(b)

Figure 3.5. Graph Play Activity Block

(a) Overall ActiviLy Display

(b) Display of Internal Transitions.

41

Node Color

Block Number -> Color

(a)

Associated with Testing

[llllllll
,_xx_xx_x_

_

Color -> Transition

(6)

Figure 3.6. FU Activity Block

(a) Overall Activity Display

(b) Display of Internal Transitions,

42

:A
c_

c_

c_

©

0_

c6

c_

43

for an example of the Graph Play display showing the measurement of mean

TBO.

3.4.3 Quick Access List of Data

There are two ways to obtain measurements of time spent performing

certain activities associated with nodes or functional units. One way is the use of

the cursors mentioned in the previous sections. However, both displays also

provide another means of obtaining time measurements along with other

identification information. By pointing the cursor to an activity block of interest

and performing a key sequence discussed in the appendix, a list of data pertinent

to that activity block will be displayed for quick and easy viewing. The data

include the node number, color, FU I.D., current mode, data packet number being

processed, and the transition times such as waiting, updating, and processing

represented by the activity block. Refer to Figure 3.8 for an example of the FU

Activity display showing a Quick Access List of information.

3.5 Automatic Measurement of TBI, TBO, and TBIO

Important to any algorithm and system analysis are the measurements

associated with computing performance. The Analysis Tool provides time

performance measurements of TBI, TBO, and TBIO (Section 2.2) for every data

packet that is processed by a predefined output sink.

TBI, TBO, and TBIO are shown within the Performance display along with

the corresponding data packet number and the current number of resources

available at the time the data packet was consumed by the sink. An example of

44

B

|

45

the Performance display is shown in Figure 3.9. These time measurements are

made with respect to source and/or sink activities by measuring the time between

certain source and/or sink events obtained from the FDT file. Rules governing

the measurement of TBI, TBO, and TBIO are as follows:

Measured TBI

1. Mark the time the last "O" event associated with the defined source

number occurs for some data packet number.

2. Repeat step 1 except with the next data packet.

3. Subtract the time of step 1 from the time of step 2 to obtain the

measured TB! between the two data packets.

Measured TBO

1. Mark the time the last 'T' event associated with the defined sink number

occurs for some data packet number.

2. Repeat step 1 except with the next data packet.

3. Subtract the time of step 1 from the time of step 2 to obtain the

measured TBO between the two data packets.

Measured TBIO

1. Mark the time the last "O" event associated with the defined source

number occurs for some data packet number.

2. Mark the time the last 'T' event associated with the defined sink number

occurs for the same data packet number.

46

m

f-r'l C-I_ LEB_ I_.., I..CI p_/ I,_E_ r'_.

m
.q.__.".
.o°o-

_o.'°-."

.°_°°

.°...

-..

.°-°° =

..-_-°-

°°_°_

-.o°°

o°°

. -.-.-

. o.-°o

.°-°°oO
•°_ o.-
•°- o.°

. o°o.o
-.--

-.-.°
.oo.-
.o°o._

&'u_ T--.4 _r_l Tti -I1_ "lml "r_

I.m. I_1 qL.ml qm4 Cr_ L-IJ IL"r_ C1_

IWn4 ,_m_l I_l,,_ ql_l qm_ grin4 "w'--a

o..

.-°o

.°o.° •

.°°-°°oo

Lo°.°
_°°°-
--°-°...

.'°°'_
_o°o°..

-°-°.°°.

°°-°°

.o-°°
•.°.- -
,.° o.o
_.ooo
.-°_-.°oo.._o°

o_-_-°
.o°_°
.°°°°.o
Lo°°°

.-o°°-q

.°.-_°.

-.°-
o°o.-.°o

-i!i_i

c_

c_
r_
c_

E
©

c_

a_
c_

47

3. Subtract the time of step 1 from the time of step 2 to obtain the

measured TBIO for the data packet.

A plot of TBO verses TBIO may be observed from the Operating Point

display (Figure 3.10) within the Performance display.

Just as the activities of functional units and nodes are organized in link lists

for quick access, the same organization is provided for all sources and sinks.

Consequently, arriving at these time measurements is made efficient since there is

no need to scan the entire data structure array for the source and sink events.

Since there may be more than one source or sink in the graph, the source

or sink number can be selected by the user. The default source and sink numbers

are the numbers associated to the first source and sink activities encountered in

the FDT file.

3.6 Concurrency Evaluation

The Analysis Tool provides a means of evaluating the concurrent

functional unit activity. This evaluation is accomplished through the Resource

Envelope display where the number of resources working in parallel at any time

can be easily established.

A resource envelope is a graph depicting the number of resources active

verses time. A resource is active when it is waiting for a channel, updating,

processing, or testing. This graph provides a visual evaluation of the achieved

concurrency and resource utilization. The Resource Envelope display provides a

48

49

I!

5,

o_

0

t_

0

E

,::5

05

49

average value of examine time can then be used to derive an approximate value

for actual idle time when the system is run on the same graph but with two or

more resources.

3.8 Error Reporting

Reports of voting errors and changes-in-resource in the FDT file was

discussed in Section 3.2. Including these reports permits the Analysis Tool to

recognize faults and system changes that may otherwise go undetected and may

even invalidate certain measurement calculations.

There is no automatic notification of voting errors that may occur during

normal observation of the node and functional unit activities. The Analysis Tool

uses the voting error reports to set flags in its data structure to later identify the

errors, if desired, in the Graph Play and FU Activity displays. If a report

indicates any voting errors while reading in the FDT file, a routine will be

invoked which will search back through the data structure array until the node-

functional unit combination identified in the report is found for each error. A

flag is set by placing a negative sign in the "available" field for the TESTING

event (Figure 3.1). When the Graph Play or FU Activity displays are in the error

reporting mode and detect a negative "available" value, an "X" is placed next to

the activity block to identify the node and functional unit responsible for the

voting error. This type of error report functions as a voting error histogram for

functional units when viewing the FU Activity display. Since the "X" marks will

54

accumulatehorizontally for each functional unit, the total number of voting errors

for each functional unit can be easily observed and counted.

Errors resulting from resources dying in the queue, or processing, or testing

can be inherently detected and displayed since a resource's extended stay in any

one of these states can be viewed from the FU Activity display. However, the

total number of resources available in the system is assumed to remain constant

unless the program is told otherwise. Since the Analysis Tool performs

calculations based on the total number of resources, a knowledge of when there is

a change in this number is necessary if the calculations are to remain valid.

When the Analysis Tool is reading the FDT file and storing data, it will adjust the

value stored in the "available" field upon encountering a change-in-resource report

thereby allowing the calculations based on this value to remain valid.

3.9 Window Environment Features

The Analysis Tool program was developed to be run in a window

environment for greater flexibility and user-friendliness. Written in the Microsoft

Quick C language, the Analysis Tool also uses Microsoft Windows as its window

environment. Since the window program structure is not unlike an object-oriented

language structure, the complexity of such a large project as this was greatly

reduced once this new programming concept was understood.

Window environment features include the capability to run more than one

application in parallel permitting the user to run more than one copy of the

Analysis Tool at the same time, thereby providing a means to analyze and

55

compare two or more FDT files simultaneously. As another example, the

Analysis Tool and a simulation program could be running concurrently allowing

an easier transition between them. Keeping with this parallelism, all of the

Analysis Tool's displays are managed by their own independent window which

allows the displays to be viewed at the same time. This provides an analysis

capability that would otherwise be lost if it were only possible to view one display

at a time.

Due to Microsoft Window's easy management of menus, the Analysis Tool

is entirely menu driven within each window. Most of the program-user interaction

is through dialogue boxes and mouse I/O so only slight use of the keyboard is

required.

56

CHAPTER FOUR

Experimental Results

4.1 Introduction

A demonstration of the Analysis Tool as a productive means to diagnose

ATAMM based systems from their behavior is presented in this chapter. A six

node graph is used for the simulation and analysis. First, the Analysis Tool is

used to infer information about the overhead that will alter the expected

performance. This information is then used to obtain theoretical time

performance values from the ideal values. Lastly, the Analysis Tool is used to

measure performance of the system at two theoretical operating points for

comparison with the expected performance.

The graph used for the demonstration is presented in Section 4.2 along

with the corresponding ideal performance estimates. Experimental results for the

overhead evaluation are presented in Section 4.3 using several features of the

Analysis Tool. The resulting operation at the theoretical lower bounds is

demonstrated in Section 4.4 using the remaining Analysis Tool features. A

demonstration of the system behavior with reduced resources is presented in

Section 4.5. Error reporting is demonstrated in Section 4.6.

57

4.2 Graph Description and Performance Estimates

The graph used to demonstrate the capabilities of the Analysis Tool

contains six nodes and parallel paths. The AMG for the graph is presented in

Figure 4.1.

The ideal lower bounds on performance can be calculated using the AMG.

Since the graph is without a recursion circuit, the ideal TBOLB, assuming zero

read time, is the largest node time (Section 2.2). There are two nodes that have a

transition time of 200 ms. which establish a TBOLB of 200 ms. The critical path

time of 400 ms. sets TBIOLB equal to 400 ms. Note that these lower bound

values are ideal in this case since read, write, and other overhead times have not

been considered. Predicted single graph play and total graph play for lower

bound operation are presented in Figure 4.2 (a) and (b), respectively. Single

graph play shows the node processing and concurrency involved with processing

one data packet. Total graph play displays the concurrency that occurs in a TBO

interval during steady state operation. The numbers enclosed in parentheses

indicate the data packet sequence. Number one indicates processing associated

with the present data packet; whereas, number two indicates processing associated

with the next data packet. The single resource envelope and total resource

envelope drawings are included in Figure 4.3 (a) and (b), respectively. These

envelopes determine the resources required by the respective graph plays of

Figure 4.2. Equation 3.1 with a computing power equal to 700 ms, TBO equal to

200 ms, and four resources, yields an expected resource utilization of 87.5 percent.

58

0
0
C_

0
o

c_

r_

[-.

0

Tm_

°_m4

59

.,d

3

IlY "_

5 6

pv-,q iv

.d
"ql

1

hb_ -.d

I

2

y-,q

I

100

I I

200

Time, ms.

4

I

3OO

pv

400

(_)

..in

(2)
1

I1_ ..dll

V-,_I

2(2)

(2)
3 5

s (1) 4 (1) 6
h.._l b,.- .,dl
jw,._ _._ I Iw- "_

(1)
5

V

(2)

(1)

t t + 200

(b)

Figure 4.2. (a) Single Graph Play. (b) Total Graph Play,

60

2
Gq
¢)
0

o 1
OrJ

I I t

300100 200

Time. ms.

I >

400

3

0

o 25q
CD

/

4

I I >

100 200

Time. ms.

(b)

Figure 4.3. (a) Single Resource Envelope

(b) Total Resource Envelope.

61

Ideally, simplex operation at theselower bounds is possiblewith four or

more resources. If, however, the systemhas less than four resources,predictable

performance is still possible. The ATAMM model also predicts that the graph

can be executedwith three resources(in simplex) at the sameTBIOLB value but

with TBO equal to 300 ms. The method used to obtain this operating point will

not be discussedsince it is beyond the scopeof this thesis. Again, using Equation

3.1 with TBO equal to 300 ms.and three resources, the expected resource

utilization is equal to 77.8 percent. The total graph play and total resource

envelope for this operating point are presented in Figure 4.4 (a) and (b),

respectively.

4.3 Overhead Evaluation Results

The performance estimates stated in the previous section are based on the

ideal case where overhead is not considered. Since the real world is not ideal, an

estimated overhead requirement is needed in order to predict theoretical

performance. A demonstration of the overhead evaluation features of the

Analysis Tool is presented in this section using an ATAMM based simulator in

TMR mode with assumed overhead parameters. The evaluation will utilize the

FU Activity, Performance, and Overhead displays of the Analysis Tool.

The overhead model discussed in Section 2.4 included all activities

required to execute the critical circuit of a graph in a TBO interval. It can be

used to estimate a worst case overhead requirement in order to establish a

minimum injection interval for predictable behavior. The model is useful to

62

(2)
I

y_

(2)
2

4
(I)

h_iI
ill,- -_ I

(2)
3

(1) (1)
5 6

(2)
4

(2)
5

t + 300

(a)

09
{D
¢0

0
09

3

2

t I t

100 200 300

Time. ms.

>

(b)

Figure 4.4. (a) TCP. (b) THE for TBO = 300.

63

establish an initial injection interval until the actual system is run and analyzed.

The Analysis Tool can then provide an overhead estimate that is more exact,

thereby giving support to a more realistic design.

The evaluation of the simulated system was done by performing four test

simulations with twelve resources (due to TMR) at different injection intervals.

Each system simulation assumed the following overhead parameters:

Channel Grab Time = 200 microseconds

Update of Graph and Data = 100 microseconds

Self'lest Time = 100 microseconds

Each functional unit will experience a wait time of at least the channel grab time

when attempting to broadcast. Even though these base times are known in

advance, the total wait time that results and how self testing effects resource

availability are not known. The simulator also assumes that there are three

independent devices performing the source and sink activities (one for each red,

green, and blue TMR edge). These devices also have the same channel grab time

and update time as the functional units. Therefore, the resulting TBI will differ

from the specified injection interval due to this added overhead.

The first test involved simulating the system with a zero injection interval.

The inherent nature of the data flow architecture will cause input to be taken as

fast as the edges and resource availability will permit at the expense of low

64

computing speed. This determines the minimum TBO that is possible as a result

of the system overhead and available resources. The results of this test are

presented in the FU Activity, Performance, and Overhead displays in Figures 4.5,

4.6 and 4.7, respectively. All of the displayed times have a ten microsecond

resolution. The unpredictable behavior of functional unit activity for this constant

supply of input can be observed in Figure 4.5. It is observed from Figure 4.6 that

TBO reaches a steady state value of 204.9 ms. with TBIO reaching a steady state

value much greater than the lower bound due to the low computing speed, as

expected. A time interval for the overhead calculations was defined over four

TBO intervals using the FU Activity display. The resulting measurements are

presented in the Overhead display of Figure 4.7. Summing the wait, update, and

test percentages shown determines that the overall overhead for the evaluation

interval is 2.2 percent. Adding this value to the 85.4 percent for processing

determines that the resource utilization is equal to 87.6 percent.

The second test involved injecting at the ideal TBO value of 200 ms. Since

this is below the minimum TBO due to overhead, TBIO should still be above its

minimum value. Referring to the Performance display of Figure 4.8, it is

observed that TBO reaches a steady state value of 204.9 ms. which is presumed to

be close to the actual TBOLB. An evaluation interval for the Overhead display is

again defined as in the previous test. The results of the Overhead display in

Figure 4.9 indicates that overhead and resource utilization have not changed

appreciably.

65

w

E-4

CD

o

bh

0

@

66

qlm4 qlma ipi4 ipiml qiiit qiima irma qpn4

ol

i_ill Lm1_ Lmi_ LIml_ _mIJ Lmm_ LDI_ _QJ

Imm iFml CII_ Lf_ O_ IL_O qlmm4 IC_I ll_ I_

oO_o

oo_oo

pob_q

_lloOboi_o

JO00

kwoomo_

o

Q_

0

c_

Q_
C_

r_
O

Q_

o_

67

E-,

0

;D

-r'_l

0

r_

E--'

0

0

68

d

E-_

U)

E-

0

E
0

li)

Q)

69

6

{D
E_

O

¢/}
,,--q

{_

>
0

c_
-4
{I.}

?0

71

A useful measurement that can help in establishing a theoretical TBOLB is

the processing time percentage associated with executing the critical circuit. This

value should be maximum for injection intervals below TBOLB and decrease for

injection intervals above TBOLB. The decrease is due to the added idle time that

is introduced when TBO is greater than TBOLB. The FU Activity display can be

used to select only the functional units processing nodes two and four which

comprise one of the critical circuits. When the viewing window is expanded, an

interval containing just the critical circuit activities can be defined as shown in

Figure 4.10. One can observe the percentage of time spent processing the critical

node versus the time spent on overhead and in idle. It is determined from Figure

4.10 that the critical processing is equal to 97.5 percent. The results of this

measurement for the other three tests as well as this test can be inspected in

Table 4.1.

Information included in the Performance displays of the previous tests

assisted with the injection interval choice of the remaining tests. When a TBI of

200 ms. was desired in test two, a 202.3 ms., TBI value resulted due to device

overhead. Therefore, it was assumed that the specified injection interval for other

TBI values should be the desired TBI minus 2.3. The previous tests also showed

that the minimum TBO is equal to 204.9 ms. Therefore, a TBI value equal to

204.9 ms. was used for the third test. The added 4.9 ms. results in 2.4 percent

added overhead which is close to the measured overhead percentage. TBI for the

final test was chosen be 210.0 ms. to allow twice the overhead (4.8 percent).

71

B
E-,

I,,-,

O

• ,,,,,,i

°_

>

_5
,r--,I

72

0"3

O
.,---4

o

o

E-,

o
h

-,.-I

O N

0_

O

M

[._

[.-,

Lo

o'_

c..D

O/

O/

Q6
_o

O

O
cx/

tc
O_ o_

¢o co

O./ o_

tc _6

O_ O_

O O

c_ O_

O O
0_/ O2

o_

0_

0o

O_

O
O

O
d

O
O

°_

O

[.-,

d

[.-,

[.-,

73

However, an injection interval of 202.6 ms. was used for test three and an

injection interval of 207.7 ms. was used for test four to account for the added 2.3

ms. in device overhead. The results of these two tests, using the same Analysis

Tool features, along with the previous test results are included in Table 4.1.

Table 4.1 indicates that the TBIO of 412.1 ms. that resulted in test four

was less than the TBIO of test three. The decrease in the critical processing time

percentage between test three and test four indicates that a TBO of 210.0 ms.

resulted in increased idle time. Therefore, theoretical TBOLB for the simulated

system must be between 204.9 ms. and 210.0 ms. It was assumed heuristically that

a TBO equal to 207.5 ms. would provide minimum TBIO and minimum idle time

for the critical circuit.

4.4 Graph Operation at TBOLB and TBIOLB

The ideal lower bound values for TBO and TBIO were predicted in

Section 4.2. An evaluation was made in Section 4.3 in order to establish

theoretical lower bound TBO and TBIO values in consideration of system

overhead. This section will now demonstrate the remaining features of the

Analysis Tool while displaying the graph operation at the theoretical TBOLB and

TBIOLB. The observed behavior should be comparable to the predictions

included in Figure 4.2.

It is inferred from the previous section that an added 3.75 percent for

overhead should be added to the ideal TBO. Therefore, the injection interval

74

should be 205.2ms. in order to obtain a TBI equal to 207.5 ms. Theoretical

TBIOLB is presumed to be 412.1 ms.

Simulation results of the graph with twelve resources at a TBI equal to

207.5 ms. are included in Figures 4.11 through 4.15. The Single Graph Play and

Total Graph Play displays of Figures 4.11 and 4.12, respectively, can be compared

to Figure 4.2. Note the defined time interval marked in the Single Graph Play

display determines the approximate TBIO. The mean TBO can be determined

from the TBO box shown within the Total Graph Play display. Included in

Figures 4.13 and 4.14 are the Single Resource Envelope and Total Resource

Envelope displays, respectively, which show the functional unit utilization.

Measurements of resource utilization are included in the Utilization display also

shown in Figure 4.14. The resulting operating point can be observed by referring

to Figure 4.15 which shows the plot of TBO verses TBIO along with the

performance times associated with each packet. Observe that TBO quickly

reaches a steady state value of 207.5 ms. with a TBIO value of 412.1 ms., as

expected. The measured utilization of 86.2 percent results in only a 1.5 percent

difference from the ideal prediction.

4.5 Graph Operation at TBIOLB and TBO for Reduced Resources

A demonstration of graph operation with fewer resources is presented in

this section. Predictions were made in Section 4.2 on the behavior and

performance of the system for three resources (nine for TMR). The results

75

I

C

nC

i

[]

E

vml

©

Q_

O

c_
,ml
f_

o_

f_

c_

o_

o_

76

o
..,-t

o
Idml

,m.I

olmq

o
E--

c_

Q)
L,

oo-,i

77

m

m ii

m

mBmmm

rT'11

i

i| •

.... i
|l

i

i

..°

.°.°.,.°,

.:.°.
-°o
.°°°.°
.,,.-..
._...-..°°.-.°..
°°,..°°°.°.,
°.,

..°.-,.°.°.o.-°°°,..°°-.
-._°.
.°.°.
-,.-°.
.°.oo.

-.°_.

.-o°°,

.-..°..

°.-.-_
.°°.°..°.°°,.°°°°,-°°.°.
..-.-..°.°
--.-...

°°°°,°°...-°..
o°.°-,
-°o°-...o
.°°°.,
.°-_-,
.°-°-,.°-°°,
...-°,
.°.°.,°-,
.°-.°.

...

..-.-_

.°-.°.
-°-.°.
-.°.....

:-.-o':..
..,
:...o..
_..-°-.
..°.-.
:.-.:,
...-...
._o.-

.,-,,-°,

.°°-,.,

.,,.°..,
-..°.-,
. --.o,.°°
:.-..,
.o,.-o.
.-,.-o,

"'°°'",.:.:,

.,.o.:

..°°.,
:.-.-,.°,.°o.-.-°,

*.-.o,

:.-.:.-.::
-:-:o:

._°..

.:.-.,
-°-:
m

m

/l

O

O

O

O

b'

C_

O

O

s-,

r_.

'78

0

0

0

0

N

o_

0

0

0
[--.

79

m

i.l.,,a

il

"i"
:..._:...
C-:o:.

..':.:.:

.-.-..
::::'::
5::.-
.-o..-

,.:..-_:

-_,_.-
:--::
_::-:i
..o

_--:::

.:.,.';:;

:.k-:-.':
::.::!
:_:..':,':

:.:...-::

:.;._-.,

.::.:.:
:"---'-I

.k=.:.:

.,,o,,,

,,-.-o
.-_o
o

...-.
oo.

.-.o.,

.-o-.,

.--..

.;.,,..-.

.o.-.-.

..o.-
[.-._-.;

o__o.
..- -..

,-o-,,-,
C._'o:.

0

I..,
@

.r-._

1,,,,
O

I,-,

,,r-,.4

8()

shown here using the Graph Play, Resource Envelope, Utilization, and

Performance should again be comparable with the predictions.

The results of the overhead evaluation will again be used for establishing

theoretical TBO and TBIO values. As in the previous section, it is presumed that

theoretical TBIOLB is 412.1 ms. Also, it is assumed that the 3.75 percent

overhead requirement is independent of TBO. Therefore, TBO is increased by

3.75 percent in order to attain this minimum TBIO. Therefore, the system was

simulated for nine resources with a 309 ms. injection rate (for a TBI equal to

311.3 ms).

The Total Graph Play display that resulted is displayed in Figure 4.16.

Included in Figure 4.17 are the Total Resource Envelope and Utilization displays.

Inspection of these displays shows that the resulting behavior is in agreement with

the predicted behavior. The Performance display of Figure 4.18 presents a

graphical plot of the operating point along with the individual packet performance

times. The Performance display indicates that the system reaches steady state

TBO and TBIO values of 311.3 ms. and 412.1 ms., respectively. The measured

resource utilization of 76.6 percent results in only a 1.5 percent difference from

the ideal prediction.

4.6 Error Reporting Demonstration

The only Analysis Tool feature not demonstrated thus far is that of fault

detection and reporting. This feature is useful when analyzing a real system but

not useful for a simulated system. Since an FDT file from a real ATAMM based

81

J

Q

u
m

m

0

0

O0

0

D_

_Z

cG

_D

0

_D

82

0

0
0
_Q

0

C_
[/I
°._

0

N
°_

C_
0

0

0

0

t_

°_

f13

0
°_d.1

c_
Q_

0

c_

c_

0

84

system was not available during the preparation of this thesis, some improvisation

will be necessary.

The FDT file used in Section 4.5 was altered so it would appear to be an

FDT file generated by a real system. Faults were inserted at the following places

in the FDT file using the voting error reports discussed in Section 3.2.

Packet Node Color F.U.

2 1 Green 8

2 2 Blue 9

2 4 Red 4

3 4 Red 4

3 5 Blue 3

When the error displaying mode is selected within the Graph Play display or the

FU Activity display, detected errors will be indicated by "X" marks next to the

corresponding activity blocks. The "X" mark will be above the activity block of

the FU Activity display and to the right adjacent side of the Graph Play activity

block. Inspection of the Graph Play display (Figure 4.19) and the FU Activity

display (Figures 4.20) of the modified FDT file indicates errors at the specified

locations as expected.

85

(:3

Q_

0

c_

rJ_

c_

Q.

c_
s-

86

o
o,,-_

0
qL_q

,i,--q

°_-,_

c_

c5
c_

o_

87

CHAPTER FIVE

Conclusion

5.1 Summary

Diagnostics software is developed in this thesis in order to productively

analyze an ATAMM based distributed-processing system. The software is

referred to as the Analysis Tool. The Analysis Tool provides a graphical portrayal

of the processor activities and node activities resulting from the execution of an

algorithm graph. The Analysis Tool also provides automatic and user-interactive

time measurements. These time measurements make it possible to evaluate the

system's performance and overhead requirements.

The Analysis Tool is developed in the Microsoft Windows environment for

increased capability and user-friendliness. Utilizing a window environment

permits the Analysis Tool to run concurrently with other software applications

(such as a simulator). The window environment also permits one to view all of

the Analysis Tool displays simultaneously.

Experiments were performed that demonstrated the overhead evaluation

capabilities of the Analysis Tool. The Analysis Tool was used to determine the

overhead requirement of a simulated system. The theoretical lower bound

performance of the system was determined based on the overhead requirement.

88

The Analysis Tool also showed the effect of overhead on input injection. The

correct input injection rate for a desired TBI was determined from the observed

effect. Without the Analysis Tool, such investigation of system overhead would be

difficult.

The system activity displays and performance measurement capabilities of

the Analysis Tool were also demonstrated. These Analysis Tool features are

essential in order to productively study an ATAMM based system. The simulated

system was analyzed at two different operating levels. The Analysis Tool provided

the means to compare the resulting node and functional unit behavior with the

predicted behavior. Measured TBI, TBO, and TBIO values indicated that system

performance matched the expected performance. Resource utilization

measurements were comparable to the ideal calculations. The ideal calculations

neglected the effect of system overhead. Therefore, the discrepancy in the

measured and calculated resource utilization values are primarily attributed to the

added overhead determined in the earlier tests.

5.2 Topics for Future Research

Future research involves the inclusion of multiple graphs and multiple

communication channels to the problem domain of ATAMM. Enhancements to

ATAMM to include multiple functional unit types should also be investigated.

Example applications include the execution of multiple graphs with priority

assignments by a set of homogenous functional units or the execution of a

89

partitioned graph by sets of functional units having different capabilities. These

model enhancements will thus require future modifications to the Analysis Tool.

The goal of the current memory management implementation is to

optimize the speed at which pertinent data can be accessed. However, this caused

inefficient use of memory. The added information required with the inclusion of

multiple graphs and channels will require more memory for storage. Therefore, a

different management of memory may be required in the future.

There is continuing interest in the investigation of reliability and fault

tolerant issues. The ongoing research on fault tolerance and real-time graph

optimization with the ADM system will provide possible refinements to the

ATAMM model. Any ATAMM refinements will no doubt spawn other

meaningful research topics for future consideration.

An ATAMM design tool and simulation software is currently under

development. It is intended that these tools working in conjunction with the

Analysis Tool will aid in the research of all these topics.

90

REFERENCES

[11 John W. Stoughton and Roland R. Mielke, "Strategies for Concurrent

Processing of Complex Algorithms in Data Driven Architectures," NASA

Technical Paper 181657, Grant NAG1-683, February 1988.

[2] Tadao Murata, "Petri Nets: Properties, Analysis and Applications,"

Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

[31 Roland R. Mielke, John W. Stoughton and Sukhamoy Som, "Modeling and

Optimum Time Performance fl)r Concurrent Processing," NASA Contractor

Report 4167, Grant NAG1-683, August 1988.

[4] S. Som, B. Mandala, R. R. Mielke and J. W. Stoughton, "A Design Tool for

Computations in Large Grain Real-Time Data Flow Architectures,"

Proceedings of the IEEE Southett, tcon 90, New Orleans, Louisiana, April
1990.

[51 Sukhamoy Som, "Performance Modeling and Enhancement for the

ATAMM Data Flow Architectures," Ph. D. Dissertation, Old Dominion

University, Norfolk, Virginia, May 1989.

[6] S. Som, J. W. Stoughton and R. R. Mielke, "Performance Prediction,

Simulation, and Measurement for Real-Time Computing in a Class of Data

Flow Architectures," Technical Paper Presented at the ISMM International

Conference on Computer Applications in Design, Simulation and Analysis,
New Orleans, Louisiana, March 1990.

[7] W.R. Tymchyshyn, "ATAMM Muiticomputer System Design," Master's

Thesis, Old Dominion University, Norfolk, Virginia, August 1988.

[8] M. Malekpour, R. Obando, R. R. Mielke, and J. W. Stoughton, "ATAMM

Simulation Tool for Data Flow Architectures," Modeling and Simulation

Conference, Pittsburgh, Pennsylvania, May 1990.

[91 Rodrigo A. Obando, "Software Tools for Performance Evaluation of

Concurrent Processing," Master's Thesis, Old Dominion University, Norfolk,

Virginia, October 1987.

91

[iO]

[11]

[12]

Charles Petzoid, Programming Windows, Redmond, Washington, Microsoft

Press, 1988.

M. Waite, S. Prata, B. Costales, H. Henderson, Microsoft OuickC

.E£.._, Redmond, Washington, Microsoft Press, 1988.

Carl Townsend, Understanding C, Indianapolis, Indiana, Howard W. Sams

and Company, 1988.

92

A.1

A.2

A.3

A.4

APPENDIX

ANALYSIS TOOL USER'S MANUAL

TABLE OF CONTENTS

Overview

System Requirements

FDT File

Using the Analysis Tool

A.4.1 Window Management

A.4.2 Opening an FDT File

A.4.3 Viewing Node and Functional Unit Activity

A.4.3.1 Viewing Internal Transitions

A.4.3.2 Quick List of Data

A.4.3.3 Measuring Throughput

A.4.4 Controlling the Cursors

A.4.5 Viewing a Slice of the Whole Picture

A.4.6 Measuring TBI, TBO, TBIO

A.4.7 Measuring Concurrency

A.4.8 Measuring Overhead

A.4.9 Getting Help

A.4.10 Selecting Colors or Patterns

93

A.I Overview

The Analysis Tool is a program that provides an efficient means to evaluate

the performance of a concurrent processing system that is based on the ATAMM

rules. Its input comes from data stored in an FDT file. Performance evaluation

is made possible by providing a display of node and functional unit activity along

with functional unit concurrency. Also, measurements of time performance,

functional unit utilization, and overhead is provided.

A.2 System Requirements

The Analysis Tool program requires an IBM PC or compatible, the

Microsoft Windows 286/386 multitasking environment, and a mouse. The

Analysis Tool system is divided into several modules each occupying its own code

segment. The largest code segments are moveable and discardable. This means

that even though the entire system requires approximately 100k bytes, the system's

code will manage with much less memory, tlowever, the Analysis Tool utilizes

dynamic allocation of global and local heap space for storage and management of

FDT file data. Therefore, the total amount of memory the Analysis Tool requires

depends on the size of the FDT file.

Since the Microsoft Windows environment manages all aspects involved

with software/hardware interaction, the type of monitor and printer attached to

the computer is of no concern to the Analysis Tool. Peripheral devices need only

be supported by the Microsoft Windows environment.

94

A.3 FI)T File

The AnalysisTool usesthe FDT file as input in order to obtain the

information neededto graphically reproduce the node and functional unit activity

and obtain performancemeasurements.The event intormation format for this file

is discussedin Section3.2 of the AnalysisTool Development chapter.

Information concerningthe number of eventsand the initial number of

resourcesmust be included at the beginning of the file. The first line of the FDT

file must state the number of eventslisted in the file and have the following form:

EVENTS = number of events

If voting error reports and change-in-resource reports are not included in the FDT

file the second line of the file must state the number of resources present in the

system as follows:

R = resources

If, however, voting error and change-in-resource reports are included the resource

declaration statement must be omitted. Instead, 'T', "Q", and "R" events followed

by a change-in-resource report announcing the "initial installation" of the

functional unit must be present for all functional units in the system. These

95

reports replace the "R = resource" statement in order to initialize the Analysis

Tool's "available" data structure element.

A.4 Using the Analysis Tool

When the Analysis Tool is running, a window (called the Analysis Tool)

provides a means to open FDT files, create the primary display windows for

viewing, and obtain help on any of these windows. You may exit the Analysis

Tool program by selecting the "Exit" menu item or closing the Analysis Tool

window from its system menu.

A.4.1 Window Management

Each display is devoted to its own window which can overlap other

windows. This allows the viewing of more than one display simultaneously.

Consult a Microsoft Windows user's manual for detailed information concerning

the use of windows.

A.42 Opening an FDT File

Select the "Open" option in the Analysis Tool window's menu. A dialogue

box will appear allowing you to select an FDT file to open. Choose "OK" to open

the file shown within the iistbox or "double click" the left mouse button on the file

name that you want opened. After opening an FDT file, the Analysis Tool will

read and store the file data and display the file name, number of nodes in the

graph, number of resources, and the number of events listed in the file within the

Analysis Tool window. Select the "Open" menu option again to open and analyze

96

another FDT file. The Analysis Tool will close all of its display windows that are

presently open and reinitialize the system for the new FDT file.

A.4.3 Viewing Node and Functional Unit Activity

You can view the node and functional unit activity encoded in the FDT file

by selecting the "Graph Play" and "FU Activity" options, respectively, from the

Analysis Tool window menu. Selecting the "Assigned FU's" menu item from the

Graph Play window displays a window showing the color-to-functional unit

mapping associated with the node activities. Selecting the "Node Assignment"

menu item from the FU Activity window displays a window showing the color-to-

node mapping associated with the functional unit activities.

The Graph Play window provides a view of either the "Single Graph Play"

or 'Total Graph Play" depending on which respective menu item is selected. A

default data packet number equal to one is used for the single graph play. You

can define another packet number by selecting the "Packet Number" menu item

and entering a number within the dialogue box that appears.

Selecting the "Display Nodes" menu item allows you to select the node

activities you desire to view. Delete the "X" marks, within the dialogue box, next

to the node number that you want deleted from the display. Placing an "X" mark

in the "All" box causes all nodes to be displayed. The "Display FU's" menu item

provides the same feature for the functional unit activities.

The Graph Play window and the FU Activity window can be made icons or

closed from their system menus.

97

A.4.3.1 Viewing Internal Transitions

When the 'q'ransitions" menu item is selected within the Graph Play or FU

Activity window, the activity blocks are partitioned in order to expose the

transitions that comprise the activity. Select the 'Transition Assignment" menu

option, when in this mode, in order to inspect the color-to-transition mapping.

A.4.3.2 Quick List of Data

A list of information pertaining to an activity block can be displayed by

placing the arrow cursor within the boundaries of the block and clicking the left

mouse button while holding down the SHIFT key. The listed information includes

the node number, node color, functional unit I.D., mode, data packet number

processed, and the transition times associated with the activity.

A.4.3.3 User-lnteractive Measurement of TBO

A measurement of average TBO can be obtained by defining a time interval

using the two time cursors (see Section 3.4. Controlling the Cursors) and selecting

the 'TBO" menu item. if the calculation can be made with respect to the defined

time interval a box displaying the average TBO for that interval will appear. If

not, you will hear a "beep".

A.4.4 Controlling the Cursors

Selecting the "Split Cursor" menu item creates two time cursors that can be

used to measure time differentials and define evaluation intervals. The time

difference between the two cursors is displayed in parentheses at the bottom of

the window. Placing the arrow cursor at a point of interest and pressing the left

98

mousebutton movesthe left most time cursor to this new location. The right

most time cursor canbe controlled in the samewayusing the right mousebutton.

Select this menu item again in order to rejoin the cursors.

A.4.5 Viewing a Slice of the Whole Picture

When there are two time cursors within the Graph Play, FU Activity, or

Resource Envelope window, an enlarged view of the activity bounded between the

cursors can be obtained by selecting the "Slice" menu item. Using the scroll bar

controls at the bottom of the window allows you to slide this "slice" left or right in

order to view activity outside of the viewing window. The step increment used

when the slice is stepped left or right (using the scroll bar arrows) can be user

defined. Selecting the "Increment Factor" menu item will display a dialogue box

for the input of a new increment factor. The default step increment is equal to

100. Selecting the "Whole" menu item returns a view of the whole picture.

A.4.6 Automatic Measurement of TBI, TBO, and TBIO

A window listing TBI, TBO, and TBIO performance measurements can be

created from the Analysis Tool window by selecting its "Performance" menu item.

Measurement values are listed for every data packet processed by the predefined

sink. Also listed are the associated data packet numbers and the number of

resources in the system when the data packet was consumed by the sink.

Selecting the "Source" or "Sink" menu item allows you to define the source

or sink number, respectively, used to obtain these measurements. The default

source and sink numbers are associated with the first source and sink activities

99

occurring in the FDT file, respectively. The Performance window can be made an

icon or closed from its system menu.

A plot of TBO verses TBIO can be viewed by selecting the "Operating

Point" menu item. The intersection of a vertical and horizontal line represents

the TBIO and TBO axis values. Placing the arrow cursor at a point of interest

within the Operating Point window and pressing the left mouse button causes the

vertical and horizontal lines to intersect at the point. The (TBIO, TBO)

coordinate value associated with the intersection of the two lines is displayed at

the bottom of the window. The window can be closed from its system menu.

A.4.7 Measuring Concurrency

A resource utilization envelope can be displayed for concurrency

measurements by selecting the "Resource Envelope" menu item from the Analysis

Tool window. Either a "Single Resource Envelope" or a 'Total Resource

Envelope" can be viewed by choosing the respective menu item. The data packet

number that the single graph play is based on can be defined by selecting the

"Packet Number" menu item. Enter the desired packet number when the dialogue

box appears. A default packet number equal to one is initially used.

Selecting the "Utilization" menu item creates the Utilization window. This

window provides functional unit utilization measurements. The measurements are

based on a time interval defined by the Resource Envelope window's cursor

positions. Each time the "Utilization" menu item is selected, the utilization

measurements are updated with respect to the present cursor positions. If the

IO0

time between the cursors is zero a default evaluation interval is used. The default

evaluation interval is equal to the time between the first node activity and the last

event in the FDT file.

Both the Resource Envelope window and the Utilization window can be

made icons or closed from their respective system menu.

A.4.8 Measuring Overhead

A bar graph providing overhead measurements can be viewed from the

Overhead window by selecting the "Overhead" menu item from the Analysis

Tool's window menu. When the Overhead window is first created, the

measurements are based on a time interval equal to the time between the first

node activity and the last event in the FDT file. A new evaluation interval can be

defined from either the Graph Play, FU Activity, or Resource Envelope window

by using the time cursors and selecting the "Overhead Interval" menu item within

the respective window. The Overhead window will automatically update its

measurements with respect to the new evaluation interval. The Overhead window

can be made an icon or closed from the system menu.

A.4.9 Getting Help

A help window providing help on the Analysis Tool, Graph Play, FU

Activity, Performance, Resource Envelope, or Overhead window can be displayed.

Select the desired Help window from the "Help" menu within the Analysis Tool

window. The Help window can be made an icon or closed from the system menu.

101

A.4.10 Selecting Colors or Patterns

A print-out of the Analysis Tool displays is possible with the use of a screen

dump program, it is possible to switch from colors to patterns for the purpose of

printing. Selecting the "Pattern" menu item within the Analysis Tool window

"paints" the graphic images with patterns instead of colors. Selecting this menu

item again allows the use of colors once again. A Microsoft Window screen dump

program is included with the Analysis Tool package.

102

Report Documentation Page

I Report No

NASA CR-187625

4. Title and Subtitle

ATAMM Analysis Tool

7 Author(s)

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

October 1991

6. Performing Organization Code

8. Performing Organization Report No.

Robert Jones, John Stoughton, Roland Mielke

9. Performing Organization Name and Address

Old Dominion University Research Foundation
P. O. Box 6369

Norfolk, Virginia 23508-0369

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

10. Work Unit No.

590-32-31-01

11. Contract or Grant No.

NCC1-136
13. Type of Report and Period Covered

Contractor Report
611189-5131190

14. Sponsoring Agency Code

15. Supplementary Notes

Technical Monitor: Paul J. Hayes, ISD-lnformation Processing Technology Branch
Robert Jones is currently employed at Langley Research Center.

16 Abstract

Diagnostics software for analyzing ATAMM (Algorithm to Architecture Mapping Model) based
concurrent processing systems is presented in this report and is a new model developed by
researchers at Old Dominion University and the NASA Langley Research Center. ATAMM is
capable of modeling the execution of large grain algorithms on distributed data flow architectures.
The tool graphically portrays algorithm activities and processor activities for evaluation of the
behavior and performance of an ATAMM based system. The tool's measurement capabilities

indicate computing speed, throughput, concurrency, resource utilization, and overhead.
Evaluations are performed on a simulated system using the software tool. The tool is used to
estimate theoretical lower bound performance. Analysis results are shown to be comparable to the
predictions.

17, Key Words (Suggested by Authorls))

Diagnostic software
Dataflow architecture

Multicomputer operating system
Petri nets

Concurrent processing

18 Distribution Statement

Unclassified - Unlimited

: Subject Category 33
I

19. Security Classif. (of this reportl

Unclassified
20. Security Classif. (of this page)

Unclassified
21 No. of pages

106
22. Price

A06

NASA FORM 1626 OCT 86

