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PREFACE

This compilation is a summary of a technical review of the Configuration Aeroelasticity Branch of the
Structural Dynamics Division. The Configuration Aeroelasticity Branch is one of five branches in the Structural
Dynamics Division. Each of these branches participates in periodic technical reviews to improve inter-branch
communication and dissemination of technical develdpments and information concerning the work being
conducted. This compilation contributes further to this goal of the technical reviews as well as providing a
thorough overview of the Configuration Aeroelasticity Branch for other interested individuals and
organizations.

The papers presented herein are assembled according to the various working units within the
Configuration Aeroelasticity Branch. The first paper, authored by Rodney H. Ricketts (branch head), provides
a full description of the branch and its associated facilities and program efforts. The following ten papers cover
specific projects conducted or underway in the branch. The final paper describes the primary facility operated
by the branch, the Langley Transonic Dynamics Tunnel, and is authored by the facility safety head, Bryce M.
Kepley.

The following Configuration Aeroelasticity Branch engineers also deserve specific recognition for
their contributions to this publication:

• Frank W. Cazier, Jr., Michael H. Durham, Donald F. Keller, and Ellen C. Parker of the Aircraft
Aeroelasticity Group

• Paul H. Mirick, Matthew L. Wilbur, and W. Keats Wilkie of the Rotorcraft Aeroelasticity Group

• Bryan E. Dansberry, Clinton V. Eckstrom, Moses G. Farmer, and Jos6 A. Rivera, Jr. of the Aircraft
Aeroelastic Validation Group

• Renee C. Lake and Howard E. Hinnant of the Rotorcraft Structural Dynamics Group.

Special thanks are extended to the Configuration Aeroelasticity Branch secretary, Christine Caldwell, for the
many hours of work that she contributed to make this publication possible.

Stanley R. Cole
Technical Review Editor
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CONFIGURATION A EROEL A S TICI T Y

AIRCRAFT

DEVELOPMENT TESTS

\

TRANSONIC DYNAMICS, TUNNEL

BASIC STUDIES

ROTORCRAFT '

AEROELASTICITY

The Configuration Aeroelasticity Branch (CAB) is one of five branches in the Structural

Dynamics Division at NASA Langley Research Center. Research is conducted in the

areas of aeroelasticity and structural dynamics in support of a wide variety of

aerospace vehicles, including aircraft, rotorcraft and space launch systems. Basic

research to determine fundamental physics of aeroelastic phenomena and tests to

support full-scale vehicle development are conducted in the Transonic Dynamics
Tunnel (TDT) by branch personnel.
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_ Configuration Aeroelasticity Branch

Four Necessary "P's"

People

Ph(F)acilities

Program

Ph(F)unding

The four elements necessary for viable research include people, facilities, program,

and funding. With any element missing, the research cannot be successfully
conducted. These elements can be called the Four P's when the "F"-words are

misspelled by substituting Ph for F. This paper describes the people, facilities and

the research program of the CAB.



_ Configuration Aeroelasticity Branch

fResearch, Operations/Management

Aircraft

Aeroelaslicity
Group

(7)

Rotorcraft

Aeroelaslicily
Group

(9)

Facilities

Operations

Group
(9)

Aircraft

Aeroelastic
Validation

Group
(4)

Rotorcraft
Structural

Dynamics

Group
(6)

Branch

Office

(4)

The CAB is organized into five groups which report to the branch office. Two of the

groups conduct research related to aircraft, two groups conduct research related to
rotorcraft, and one group is responsible for facility operations. The numbers in

parentheses define the number of personnel in each group. The personnel include 25

NASA and Army civil servants and 12 non-personnel service (NPS) contractors. NPS

contractors represent the following companies: Lockheed Engineering and Sciences

Company, Wyle Laboratories, and Vigyan Associates.



_ Configuration Aeroelasticity Branch

f
Facilities

Transonic Dynamics Tunnel (TDT)

Hover Lab

Data Acquisition System

The CAB conducts research using its three facilities, namely, the Transonic Dynamics

Tunnel (TDT), the General Rotor Aeroelastic Laboratory (GRAL) and the data
acquisition system. Each of these is described in the following charts.
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The TDT (shown above) is a major national wind-tunnel facility for conducting
aeroelastic tests in the transonic regime. It is a closed-circuit, single return tunnel with

a 16' by 16' test section. The TDT uses Freon or air as a medium for testing to Mach
number 1.2. When Freon gas is used in tests, it must be reclaimed and stored as a

liquid for future use. The reclamation processing system is currently being upgraded

through a $6.5 million Construction of Facility (CoF) project.
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The helicopter GRAL is located in a high-bay area of Building 647. It consists of a room

for model build up and checkout and a large (30'x 30'x 20' high) screened area for

testing the rotor in hover. The models are elevated 15' above the floor during testing.

The helicopter rotor testbed (ARES) is shown in the screened area pictured above.

7



ORi_ _. ,L . ,-,_L.

_}LACK AND WHITE PHOTOGRAPN

The Aeroelastic Rotor Experimental System (ARES) is the testbed used in rotor

research. Advanced blades and hubs are mounted on ARES and first tested in the

GRAL before being tested in the TDT. A hingeless rotor system being tested on ARES
is shown above.
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A new MODCOMP data acquisition system (DAS) became operational in the spring of

1988. It supports research testing in the TDT, GRAL, and calibration laboratories. The
view of the DAS above shows the array of hard disk drives present in the system.
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_ Configuration Aeroelasticity Branch
ii

f Data Acquisition
J llll

-- TDT vs NTF

NUMBER OF COMPUTERS

SPEED (mips), per CPU
total

HARD DISKS, number

capacity, megabytes

DIGITAL TAPES, number

speed, kilobytes/sec

ANALOG SAMPLING RATE

kilosamples/sec

NTF TDT RATIO

4 3

0.9 2.5

3.6 7.5 2+

4 8

1 2 2

6 6

120 750 6+

40 287 7+

j
Ill II I

In comparison to the data acquisition system of the National Transonic Facility (NTF),

the TDT data acquisition system has more than twice the speed, twice the hard disk

storage capacity, more than six times the digital tape capacity and more than seven

times the data sampling rate. The TDT system is used to acquire data, to reduce it at

"near realtime" speeds, and to provide on-line measurements of aerodynamic

perlormance, model load'.; arid aeroelastic stability characleristics.
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_ Configuration Aeroelasticity Branch

Determine aeroelastic characteristics and develop
databases for validating new computational codes

1989 1990 1991 1992

Benchmark aeroelastic models

NASP buzz/panel flutter

AFW active controls

Planform/wing-tip flutter effects

ARES vibration (mass) & noise (BVI) reduction

rotors

One technical objective of the CAB is to determine the aeroelastic characteristics of

new aerospace configurations. Another objective is to develop experimental

databases for use in validating new computational aeroelastic codes. Some of the

milestones to meet these objectives are shown on the chart above for the years 1989

to 1992.

Aileron buzz and panel flutter model tests and analyses are being conducted to

support the National Aerospace Plane (NASP) program. Aeroelastic models are

being developed for measuring benchmark data for code validation. Highly

maneuverable and agile rotor/control systems (HiMARCS) will be developed and

tested in support of advanced Army rotorcraft programs. Active Flexible Wing (AFW)
model and NASP model studies are described in the following charts.
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OPEN- AND CLOSED-LOOP

FLUTTER CHARACTERISTICS OF
MODIFIED AFW MODEL DETERMINED IN TDT

The Active Flexible Wing (AFW) model was tested in the TDT to define the open-loop

and closed-loop flutter characteristics of the model. The AFW was modified with a tip

boom to allow flutter of the model to be achieved within the tunnel operational

envelope. The wing tip boom had a decoupler device that allowed a soft-spring

suspension in addition to the normal stiff condition. The model with the soft spring

condition had a substantially higher flutter speed than the stiff condition. Therefore,

the tip boom also served as a flutter stopper when the soft suspension was engaged.

Three flutter suppression system (FSS) control laws were tested. One law was able to

suppress flutter to 24 percent above the open-loop condition.

The next test of AFW is scheduled for February 1990, and will integrate FSS control
laws with rolling maneuver load alleviation (RMLA) Control laws.
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INASP AEROELASTICITY STUDIES IN TDT]

ALL-MOVEABLE WING MODEL AILERON BUZZ MODEL

PANEL FLUTTER MODEL

fz
/
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FUSELAGE SHAPE STUDY

ii j

A_km_vea_

70 sweep _,_lt_ wir_g

• Wing tip _ill_

n'_ottnted with

pitch plunge

The CAB has conducted a number of flutter model studies in support of the NASP.
These studies have been conducted in cooperation with McDonnell Douglas and
Rockwell International. Three of the studies are shown above. One test determined

the flutter and divergence characteristics of an all-moveable wing. Another test
determined the buzz characteristics of a full-span aileron. A third study investigated
the panel flutter characteristics in the transonic region. A fourth study to investigate the
fuselage shape effects on flutter has been initiated.

BLACK "_
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_ Configuration Aeroelasticity Branch
ii i

• Insure new vehicle designs are safe
from aeroelastic problems

1989 19921990 1991

A12 fluller clearance

F106 VF flight flutter tests

ATLAS II ground-wind loads

ATF flutter clearance

Navy ATF

F16 Agile

LHX

j
II I

The second technical objective of the CAB is to insure that new full-scale vehicle

designs are free of aeroelastic problems. These tests are conducted in cooperation

with the Department of Defense. Several milestones are shown in the chart above.

They include testing Navy A-12 and Advanced Tactical Fighter (ATF) models for flutter
clearance and an LHX helicopter model for aeromechanical stability. The ATLAS II

ground wind loads test and the F106 vortex flap fight flutter tests are described in the

following charts.

14



TDT TESTS SHOW THAT GROUND WIND LOADS
ARE NO PROBLEM FOR ATLAS II
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A model of the ATLAS II launch vehicle was tested in the TDT to determine the ground-

wind-load characteristics of the launch complex. The model was attached to a floor-
mounted turntable to allow various orientations of the model launch complex to the
wind direction. Tests were conducted with and without a new damper system to

determine response characteristics. Results indicate that the damper is required to
meet minimum allowable wind criteria without exceeding the critical load unit.

BLACK AND '; '_"
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WALLOPS TELEMETRY STATION

The CAB participated in flight testing of the F106B vortex flap vehicle to expand the

envelope for follow-on performance tests. The added flap changed the aerodynamic

and structural characteristics of the original vehicle, and, therefore, changed the flutter
characteristics of the aircraft. For this reason, flutter clearance tests were required.

Test engineers monitored aircraft instrumentation during flight and evaluated the

vehicle flutter stability. Through a series of systematic flights which gradually
expanded the envelope, a flutter-free flight regime was defined.

ORIGINAL PAGE
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_ Configuration Aeroelasticity Branch
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f

• Develop improved methods for predicting and
reducing rotorcraft vibrations

1989 1990 19921991

l'Couple d

lTiltrotor

rotor-airframe

Passive control (damping)

Extension/twist coupling

'Improved FEM methods (difficult components)

_,irframe opUmization j
I I I II I I I

A third technical objective of the CAB is to develop improved methods for predicting

and reducing rotorcraft vibrations. This is achieved through airframe structural

optimization and through passive means such as damping treatment of structures,

In addition, composite materials are being used in aeroelastic tailoring applications to

improve twist performance through extension twist coupling of helicopter and tiltrotor

blades. Improved finite element methods (FEM) are achieved through validation and

comparisons with experimental data. Results of ground vibration testing of a

helicopter airframe to identify difficult-to-model components are shown in the following

figure.
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GROUND VIBRATION TEST OF HELICOPTER AIRFRAME
IDENTIFIES IMPORTANT CONTRIBUTORS

TO VIBRA TORY RESPONSE

COMPLETE AIRFRAI

SECONDARY PANEL EFFECTS

CANOPY GLASS EFFECTS

_:;_| t_tt'I:'1_ D-I)OWN AIRFRAME

A cooperative NASA/industry program to improve FEM methods has been in place

since 1984. Difficult components studies are being conducted as a part of this

program. In these studies, various configurations of a full-scale helicopter are tested to

determine the vibration characteristics. In the example shown above, effects of

secondary panels and canopy glass were determined. Results from NASTRAN finite

element models (not shown) were then compared with the experimental results to

indicate area of agreement and non-agreement. Based on these comparisons, the
FEM methods were updated to improve predictions•
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EXPERIMENTAL TRANSONIC FLUTTER CHARACTERISTICS OF

SUPERSONIC CRUISE CONFIGURATIONS

M. H. Durham, S. R. Cole, F. W. Cazier, Jr., D. F. Keller
NASA Langley Research Center

Hampton, VA

E. C. Parker
Lockheed Engineering and Sciences Co.

Hampton, VA

W. K. Wilkie
USAARTA-AVSCOM, ASTD

NASA Langley Research Center
Hamplon, VA
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OVERVIEW

• Background

• Objectives

• Model description

• Results

• Video

• Summary

\ j

This figure presents an overview of the presentation. The presentation begins

with background information that led to the experimental study concerning transonic

flutter of supersonic cruise conligurations. The program objectives are then defined

including some description of the approach taken to meet the objectives. The

development and physical characteristics of the wind-tunnel models are then

discussed, followed by experimental results from the wind-tunnel test. In the actual

presentation at the CAB technical review, a short video was shown of actual flutter for

one configuration. The presentation concludes with a brief summary.
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ARROW WING FLUTTER

BACKGROUND

• Renewed interest in SST's

- HSCT, NASP

• Advanced SST designs of the 70's

- SCAR, AST
- flutter deficiencies

• Related Studies

- Semispan arrow wing

- Full-span SCAT-15

The High Speed Civil Transport and the National Aero-Space Plane (NASP)

programs have brought a renewed interest in the flutter characteristics of highly-swept

low-aspect-ratio wings. Looking back at the supersonic transport (SST) studies of the
late 1970's there were documented flutter deficiencies in strength-designed SST's.

This presentation covers results from a NASA study, conducted in the Langley

Transonic Dynamics Tunnel, to determine the flutter characteristics of a generic arrow-

wing configured supersonic transport.
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OBJECTIVE/APPROACH

• OBJECTIVE

- Extend experimental flutter
database

- Understand arrow wing
flutter mechanism

• APPROACH

- Develop aeroelastic model
and test in TDT

\ J

The objectives of this study were to extend the SST experimental flutter
database and to better understand the arrow wing flutter mechanisms. Some earlier

test results of simple small-scale arrow wings can be found in the literature. The

current study builds on earlier results by investigating the effects of additional airplane

design parameters and by using a structural model more representative of proposed

flight vehicles.

The approach taken to accomplish these objectives was to develop aeroelastic

arrow wing models and to test them in the Langley Transonic Dynamics Tunnel (TDT).

22



ARROW WING FLUTTER

WIND-TUNNEL MODEL IN TDT

Semispan cantilevered models were used for this generic arrow-wing study.
The photograph shows an arrow-wing flutter model side-wall mounted in the TDT. The
flutter models were designed as twentieth scale geometric representations of a
Langley Advanced Supersonic Technology series (AST-200) arrow-winged SST. The
AST series was a refinement of an earlier Supersonic Cruise Aircraft Research
transport configuration that was designed for a cruise Mach number of 2.7.

ORIGIN,_,L PAGE
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ARROW WING FLU1 f ER

PARAMETERS STUDIED

• Fuel Ioadings

• Engine nacelles

• Wing-mounted vertical fin

• Wing angle-of-attack

• Wing-tip mass and stiffness
distributions

\ j

Configurations studied included known flutter sensitive parameters such as

engine nacelles and fuel Ioadings. In addition, a wing-mounted vertical fin, wing
angle-of-attack, and wing-tip mass and stiffness variations were tested to determine

their effects on flutter. For brevity, only the results of the engine nacelle and fuel

loading variations are discussed in this presentation.

The wing-tip mass and stiffness variations were included to study an anomaly
encountered in a flutter test conducted during some SST work in the late 1970's. An

unexpected flutter boundary for a full-span arrow-wing model was found during tests in

the TDT. Post-test analyses showed that some errors in the mass modeling of the

wing-tip region may have caused the flutter predictions to be unconservative by about

10 to 30 percent for this cable-mounted model. In the current study, two arrow-wing

structural models were built with different wing-tip mass and stiffness distributions to

investigate the flutter sensitivity to this parameter.
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ARROW WING FLUTTER

MODEL PLANFORM

IF- ............. 1
I i ................ _ Z_L " " ]--1

I \ ..... / t
k

. Engine Nacelle _-""_"

_-- :Plle ----_

91.:)2 _!

-- 108.46

_. Arrow Wing S

The planform shape of the arrow-wing models is shown in the figure. The

leading-edge sweep was 73 degrees on the inboard 70 percent of the wing semispan

and 60 degrees on the leading edge of the cranked tip (outboard 30 percent

semispan). The trailing edge was cranked at two locations as shown. The models

had a 3 percent thick bi-convex (symmetric circular arc) airfoil section and a wing

planform area of 10.02 square feet.

The vertical fin, also shown in the figure, was mounted streamwise and

perpendicular to the wing reference plane on the model upper-surface at the 70

percent wing span. The fin shown in figure 6 was constructed from a solid 0.125 inch
thick aluminum plate covered with balsa to form a 3 percent bi-convex airfoil. An

aluminum and a steel fin were available for these tests to study the effect of variations

in the weight and inertia of the vertical fin. For the purpose of this study the solid fins

were considered rigid relative to the elastic arrow-wing model.

Two flow-thru nacelles (see figure) were designed to model under-wing aircraft

engines. The model nacelles were constructed of contoured aluminum tubes

weighted with lead rings. The weight- and inertia-scaled nacelles were rigidly
attached to the model lower-surface at the 28 and 51 percent semispan.

25



MODEL DESIGN

Forward-spar,,,_"--'__.._ Aft-spar
wing-tip / \ --"----_ wing-tip

/ \ _7-'---- ...
/ f-.7\ ." "-.
l ,." ',

/
I / / ,

0 0 0 0 0 0

The model structural design consisted of a 0.25 inch thick aluminum alloy (7075-T651)
plate covered with balsa wood. Cutout patterns in the aluminum plates were used to
create a mass and stiffness distribution representative of a typical aircraft wing built

with rib and spar construction. The figure provides a sketch of the cutout patterns for
the aluminum plates used in the two basic wing configurations. Cutouts in the wing-tip
regions were varied to model forward or aft spar mass and stiffness distributions. The
plate thickness and overall cutout pattern were chosen so the model would flutter
within the tunnel boundary. The balsa was bonded with its grain orientation
perpendicular to the model plates to minimize any stiffening effects. The balsa was
then milled to the desired airfoil shape.

To cantilever the wings, the two root tabs on the models were clamped to a steel

mounting beam which was attached to the tunnel side-wall turntable. Using the two
mounting tabs instead of clamping the entire root allowed a wing mid-chord root
flexibility that was more representative of an elastic fuselage and blended wing
aircraft. A half-fuselage fairing covered the mounting hardware and provided an

aerodynamic root condition similar to a blended wing-fuselage.

Wing fuel Ioadings were modeled using lead block inserts of various thicknesses
distributed in the mid-wing area. Two wing fuel Ioadings, full-fuel and half-fuel, were
tested. The full-fuel configuration represented a fuel loading approximately equal to

the weight of the wing structure and corresponding systems (i.e. a wing carrying its

weight again in fuel).

26
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f NACELLE EFFECTS

12-
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240 -
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L ..... L ...... I........... I
.6 .8 1.0 1.2

M

Flutter boundaries for some of the configurations tested are plotted as flutter
dynamic pressure and flutter frequency versus Mach number in the following two
figures. The boundaries represented by the curves faired through the flutter test points
are interpretations of the finite number of experimental data points. The boundaries
represent neutral flutter stability. The flutter models were stable when tested at
dynamic pressures below the boundaries and would be unstable above the
boundaries. No unusual flutter mechanisms were encountered. All test configurations
had similar flutter behavior. The model flutter mode "shape" varied between the
subsonic and transonic regions. The flutter points in the subsonic region were

predominantly wing second bending motion and involved considerable mid-wing
leading edge deflections. The transonic and supersonic flutter points were
predominantly the first wing bending mode and were characterized by large wing tip
deflections. This trend in modal content is supported by the variations of flutter
frequency versus Mach number. Subsonic flutter frequencies were closer to the wind-
off second wing bending frequency, while the transonic flutter frequencies approached
the wing first bending mode frequency. The lowest experimental flutter frequencies
corresponded to the Mach number at the minimum flutter dynamic pressures. The
transonic dip occurred between a Mach number of 1.00 to 1.04.

The effect of engine nacelles on flutter of the wing with an aft-spar wing-tip
cutout pattern is presented in this figure. Results are for the clean wing, wing with one
inboard nacelle, and wing with both nacelles. Below a Mach number of 0.8 there is no
significant effect on flutter. However in the transonic region the addition of each
nacelle had a destabilizing effect on the flutter boundary. The transonic minimum
flutter dynamic pressure was lowered by 23 percent with the addition of both engine
nacelles.
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ARROW WING FLUTTER

FUEL EFFECTS
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The fuel effects portion of this study was conducted for the forward-spar wing-tip
configuration. This figure presents fuel loading effects on the flutter of the wing without
nacelles. The figure shows that adding fuel had a destabilizing effect on flutter. These

clean wing boundaries show that the half- and full-fuel Ioadings lower flutter dynamic
pressures by about 18 percent and 25 percent, respectively, in the subsonic region,
and as much as 10 percent for the transonic dip.
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ARROW WING FLUTTER

SUMMARY

Experimental flutter boundaries were obtained for the
cantilevered semi-span models

Engine nacelles reduced the transonic flutter dynamic
pressures by 25-30%

Wing-fuel Ioadlngs reduced subsonic dynamic
pressures by 25% and the transonic dynamic pressures
by as much as 10%

Wing angle-of-attack produced steep transonic
boundaries

Addition of a verUcal fin and the variations of wing-tip
mass and stiffness each had small (5-10%) effects on
flutter J

In summary, a generic arrow-wing configured supersonic transport was flutter tested in

the Langley Transonic Dynamics Tunnel. Experimental flutter boundaries were obtained for
the cantilevered semispan models. The shapes of the transonic dip in the flutter boundaries

and the supersonic recoveries were well defined. Tests were performed to determine the
effects on flutter of engine nacelles, fuel Ioadings, a wing-mounted vertical fin, wing angle-of-

attack, and wing-tip mass and stiffness distributions. The flutter effects of these basic airplane
parameters extend the experimental flutter database for arrow-wing configured supersonic

transports.

Results of the arrow-wing configurations tested indicate the following:

. The addition of engine nacelles reduced the transonic flutter dynamic pressures by 25 to

30 percent, with little effect on subsonic portions of the flutter boundaries.

. Wing-fuel Ioadings reduced subsonic dynamic pressures by 25 percent. For the forward-
spar clean wing configuration, wing fuel reduced the transonic minimum flutter dynamic

pressures by 10 percent.

. Wing angles-of-attack of 4 to 6 degrees produced steep transonic boundaries with
stabilizing effects of 20 to 30 percent for Mach numbers less than 0.75, and destabilizing
effects of 22 to 27 percent on the transonic minimum flutter dynamic pressures. (This
result was not specifically covered in this presentation.)

. Increasing the wing-mounted vertical fin weight and inertia had a slight stabilizing effect

(5 to 10 percent) on flutter dynamic pressures. (This result was not specifically covered

in this presentation.)

. Wing-tip mass and stiffness variations tested changed flutter dynamic pressures by 5 to

10 percent. (This result was not specifically covered in this presentation.)
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AEROELASTIC EFFECTS OF SPOILER SURFACES MOUNTED

ON A LOW-ASPECT-RATIO RECTANGULAR WING

Stanley R. Cole
NASA Langley Research Center

Hampton, Virginia
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BACKGROUND

• Desirable to have flutter suppression capabilities

• Aerodynamic spoiler surfaces are one such technique

• Spoiler effects on flutter undetermined

Experimental aeroelastic wind-tunnel testing has always been risky in terms of
model integrity due to the fact that aeroelastic instabilities, such as flutter or static

divergence, often quickly destroy the model. Occasionally, such losses represent the
only useful information obtained after a great financial and time investment has been

made to explore an aeroelastic phenomenon. To make matters worse, the test facility

is also at risk from the debris of a destroyed model. Many test techniques, physical

mechanisms, monitoring techniques, and safety features have been developed and
are being developed when possible to reduce risks to both models and test facilities

during aeroelastic testing.

One such technique which has been used recently on several aeroelastically

scaled flutter models is a deployable spoiler surface intended to substantially disrupt

the aerodynamic forces on the model and thereby prevent flutter. This presentation

describes a research study which was undertaken to specifically examine the

effectiveness of such surfaces in preventing flutter.
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A-6 SPOILER CONFIGURATiON

This photograph shows an example of a wind-tunnel model previously tested in
the Langley Transonic Dynamics Tunnel (TDT) which utilized spoiler surfaces for
flutter suppression. The model is a geometrically-scaled replica of a Navy attack
vehicle. The wing is aeroelastically scaled to allow for flutter clearance testing. The
inset in the figure shows the spoiler surfaces above and below the wing structure in
the deployed state. These spoilers could be remotely deployed and retracted to allow
for efficient testing.

OR1GINAE F',z_ _

BLACK AND WHITE !:,_i_j_C_P,APH
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OBJECTIVE/APPROACH

Objective

- Determine the effectiveness of aerodynamic spoiler
surfaces in suppressing flutter

• Approach

- Utilize an inexpensive wing model previously tested in
the TDT

- Attach fixed vertical spoiler surfaces

- Flutter test configurations in the TDT

The objective of the project was to determine the effectiveness of aerodynamic

spoiler surfaces in suppressing flutter and to develop guidelines for locating and sizing

such surfaces on models to maximize their effectiveness in suppressing flutter. The

approach to accomplishing this objective was to utilize an inexpensive wing model
which had been previously tested in the TDT. The spoiler surfaces tested in this study

were fixed in position and could not be remotely deployed as would be required for

testing of an actual aeroelastic model. Identical spoiler surfaces were mounted above

and below the wing surface at the same spanwise and chordwise location. The

spoiler surfaces were tested on a 1.5 aspect ratio, rectangular semispan wing model in
the TDT.
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The wind-tunnel wing model is shown in the photograph from a previous flutter test
(prior to the addition of the spoiler surfaces). The model consisted of a relatively rigid wing
surface which was integrally connected to a rectangular flexible support beam (shown in the
following figure) at the root of the wing. The wing had zero sweep and a 1.5 panel aspect
ratio. The airfoil was a NACA 64A010 symmetrical shape. The wing stiffness was provided by
a flat 0.25-inch thick aluminum plate which was covered by balsa wood to provide the airfoil
shape while minimizing the weight. The aft 40 percent of the wing chord contained 49 1.375
-inch holes drilled through the aluminum plate in order to reduce the weight of the wing and to
shift the center of gravity of the wing forward to a chordwise position more representative of a
typical wing. The wing aluminum plate was rounded at the leading edge and tapered at the
trailing edge to meet the airfoil shape. The rectangular support beam extended from the wing
root at the 30 percent chord location to provide the flexibility needed to test the model to flutter.
This beam section consisted of a 0.25" thick aluminum core cut from the same plate as the
wing structure with two 0.0625" thick aluminum plates bonded and riveted to both sides• The
thin plates extended over a portion of the wing plate to relieve stress concentrations at the
wing root. The bond matedal resulted in a total thickness of 0.391". The support beam was
2.25" wide and was 11.33" long from the wing root to the wind-tunnel wall support. The
support beam was cantilevered at the tunnel wall on a turntable to allow remote control of the
wing angle of attack during testing. A splitter plate was mounted at the wing root to provide a
symmetry reflection plane for the wing aerodynamics. Sufficient clearance was provided
between the splitter plate and the wing root and support shaft to prevent contact during testing.
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SPOILER MOUNTING POSITIONS

Flow

1
I

-q = 0.45 >I
q= 0.67

Wing surface
planform

/ Spoiler

/

A
11= 0.90 -

x/c = 0.1

Wing surface

The spoiler surfaces consisted of rectangular plates which were attached

directly to the top and bottom of the wing. The spoiler surfaces were constructed from

0.05" thick aluminum plate. The figure shows a planform- and an end-view line

drawing representing the shape and orientation of the spoiler surfaces when mounted

on the wing. For a spoiler height of 0.50" and a width (spanwise) of 3.0", variations

were made in the spanwise location on the wing surface. Three mounting positions

were available for the spanwise variations along the x/c=0.10 chord of the wing.

These positions corresponded to h=0.45, 0.67, and 0.90 as the point at which the

spoiler was centered spanwise. The dashed lines in the planform view indicate these

optional locations for mounting and testing the spoiler surfaces. Rectangular

segments of balsa wood were removed at each of these position options so that the

spoilers could be mounted to the wing. Dummy weights were available for each of the

possible test configurations so that the total weight and weight distribution of the model

always remained the same regardless of the spoiler configuration being tested. The

idea behind this was that the structural and inertial properties of the model would be

essentially constant for all configurations so that any aeroelastic stability changes

would be purely a function of aerodynamic changes. The gaps in the wing surface

(where the balsa wood was removed for the spoiler mounting slots) were covered with

aluminum tape to help smooth the wing aerodynamically.
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SPOILER CONFIGURATIONS

Height
Variations

I...... ]0.25"

I 10.50.

o0 f!

Width
Variations

I--- 10.50,,
o5_!

o0 f!

4.5"

Several variations in the geometric dimensions of the spoiler surfaces were

tested during the wind-tunnel test. Spoiler vertical height and width (spanwise)

variations were tested at the x/c=0.10, q=0.67 mounting position. The spoiler heights

(hs) available for testing at this location were 0.25", 0.50", 0.75", and 1.00" (width -

3.0"). The spoiler width (w) variations were 5, 10, and 15 percent of the wing

semispan (w=1.5", 3.0", and 4.5", respectively) with the height held constant at 0.5".
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EXPERIMENTAL RESULTS

• Model vibration characteristics

Wind-tunnel test results

- Spoiler height effects

- Spoiler width effects

- Spoiler area effects

Tests results from ground vibration tests and from the wind-tunnel test are

shown in the following six figures. The wind-tunnel tests results are categorized as

spoiler height effects, spoiler width effects, and a combination of these two as spoiler
area effects.
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MEASURED NODE LINES

--o-.- Experiment

First bending

2.85 Hz

First torsion

13.1 Hz

Second bending

26.2 Hz

Second lorsion

62.6 Hz

A ground vibration study was conducted on the wind-tunnel model to determine

its natural frequencies and to locate modal node lines. The model was excited by an

impulse air shaker to minimize distorting the modes. A lightweight roving
accelerometer was used to locate the node lines of the natural vibration modes while

exciting the model with the impulse air shaker.

Measured node lines determined during the ground vibration test of the model

prior to the addition of the spoiler surfaces are shown in the figure. Node lines
measured following the addition of the spoilers were very similar to the experimental

node lines shown in the ligure. The measured natural frequencies of four of the

primary vibration modes of the model are also given in the figure.
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SPOILER
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This figure indicates the effects of varying spoiler height (above the wing

aerodynamic surface). The primary objective of this research at the outset was to

determine the flutter suppressing capability of spoiler surfaces such as tested in this

study. The figure gives insight into the flutter suppression capability of spoiler surfaces

as a function of spoiler height. As the spoiler height is increased, there appears to be
a stabilizing effect on the flutter condition of the model for conditions below a Mach

number of approximately 0.7. For the 0.25" and 0.50" spoiler heights, this stabilizing

trend is even more dramatic at transonic Mach numbers. But for spoiler heights

greater than 0.50", this trend in the transonic range did not continue. In fact, a new

instability was excited which does not appear to be classical flutter as was

experienced at previously discussed conditions. The new instability appears to be a

nearly single-degree-of-freedom torsional instability which is highly Mach number

dependent and was found to occur at dynamic pressure conditions far below the

expected flutter condition. The motion in this torsional instability appeared to be very

similar to the wind-off first torsional mode of the wing. As the Mach number was

decreased, the instability tended to transform from the torsional instability to the

classical flutter instability in which the motion is primarily a coupling of the wing first

bending mode and the wing first torsion mode.
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This figure provides a further indication, based on instability frequency, that the

observations made for the previous figure quantify the behavior of the model due to
the spoiler surfaces. The 0.00", 0.25", and 0.50" cases shown in this figure indicate

slight variations in the instability frequency measured. But for the 0.75" and 1.00"

spoilers, the figure shows a dramatically increasing instability frequency as Mach
number is increased. This frequency rapidly approaches the wind-off first torsion

mode frequency. This behavior is supportive of the observation that this Mach number-

dependent instability is a single-degree-of-freedom torsional instability.
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This figure and the next figure show the effects of varying spoiler width. The

comments concerning the spoiler height effects from the previous two figures describe

the effects of increasing spoiler width equally well. The results in this figure and in the

following figure show that as the spoiler width is increased a torsional instability again

predominates the flutter condition at higher Mach numbers.
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The cause of this unusual torsional instability has not been determined based on the
experimental results, but a number of possible influences are suggested in related literature.
Perhaps the most likely cause is a periodicity of vortex shedding related to the Strouhal
number occurring about the spoiler surfaces which drives the model in the first torsion mode.
A number of other studies have shown that such wing-wake frequency response develops for
a range of Strouhal numbers (based on frequency in units of radians/seconds) from 0.93 to
1.32 for two-dimensional flat plates and airfoils.

The Strouhal number was calculated for the spoiler surfaces based on the total
projection of the spoilers in the vertical direction perpendicular to the freestream flow. In other
words, the Strouhal number is based on the sum of the upper surface spoiler's projection
above the wing surface, the wing thickness at the chordwise location of the spoiler, and the
lower surface spoiler's projection below the wing surface. Based on this dimension, the
Strouhal number (Sh) for the torsional instability was between Sh=0.038 and 0.055 for the
configurations which exhibited the torsional instability in the figures on pages 40 and 41 of this
report. The Strouhal number for the torsional instability case in the above figure was
calculated based on the spoiler's width along the span of the wing. The Strouhal number for
the torsional instability cases with this configuration was nearly constant with an average

Strouhal number (Sw) of Sw=0.068. Obviously, the Strouhal number as calculated for all of
the torsional instability conditions in the current study is far below the values found in previous

studies and appears to discount the possibility of the torsional instability being excited by
shedding vortices.
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Interestingly, it is possible to categorize the spoilers as to their ability to excite

the torsional instability by their planform area. The figure shows that even for several

combinations of spoiler height and width, none of the spoilers excited the torsional

instability if their area was equal to or less than 1.50 in2 (per spoiler plate). Further, all

of the spoilers generated the torsional instability if the surface area was equal to or

greater than 2.25 in2. Additional work would be required before stronger conclusions

could be made concerning the relationship between spoiler sizes and the torsional

instability.
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CONCLUDING REMARKS

Increasing spoiler height or width:

- subsonically

• slightly increased flutter q

- transonically

. substantially increased flutter q
for smaller spoilers

• induced M-sensitive torsional
instability for larger spoilers

An experimental study has been conducted to determine the effectiveness of

vertical spoiler surfaces located on the 10 percent chord in suppressing flutter onset

for a 1.5 panel aspect ratio, rectangular wing wind-tunnel model. The study included

variations in the spoiler geometry (height and width) and location (spanwise) on the

wing surface.

The wind-tunnel test showed that slight increases in the flutter dynamic

pressure conditions were obtained due to the spoiler surfaces at subsonic Mach
numbers. This effect at subsonic Mach numbers demonstrated consistent trends in

that increasing spoiler dimensions (either height or width) resulted in increasing flutter

dynamic pressures. The largest spoiler surfaces tested for either height or width

variations resulted in approximately 15 percent increases in the flutter dynamic

pressures at subsonic conditions.

At transonic Mach numbers, much larger increases in the flutter dynamic

pressure were experienced for the smaller size spoilers tested indicating that they

were very effective in suppressing flutter. On the other hand, several of the larger size

spoiler surfaces induced a torsional instability in this Mach number range. This
detrimental torsional instability was extremely Mach number sensitive and was found

to occur at dynamic pressure conditions well below the expected flutter dynamic

pressures.

A limited amount of experimental data were obtained to examine the effect of

spanwise location of the spoiler surfaces on flutter (not shown in this presentation).

For the three spanwise locations tested in this study, no measurable effect of spoiler
location was found.
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PLANFORM CURVATURE EFFECTS ON FLUTTER OF

56 DEGREE SWEPT WING DETERMINED IN TDT

Donald F. Keller
NASA Langley Research Center

Hampton, VA
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PRESENTATION OUTLINE

• Background

• Objectives and Approach

• Structural Models

• Aerodynamic Models

• Flutter Results

• Summary
...... J

This presentation reports on a NASA in-house study which investigated the effects of planform
curvature on the flutter characteristics of a generic 56 degree swept wing model. The presentation

includes results from analysis and experimental models tested in the Transonic Dynamics Tunnel
(TDT).

A brief background on planform curvature and its use in a recent NASA High Speed Civil

Transport (HSCT) concept is presented followed by a list of this study's objectives and the approach
used to complete them. The experimental and analytical structural models are then presented

along with a comparison of the natural frequencies and node line locations obtained from them. A
figure showing the aerodynamic model and the method used in the flutter analysis is also shown.

Next, the flutter results obtained in the TDT are compared to those obtained from the flutter
analysis. This figure also shows the effects that planform curvature had on the flutter characteristics

of the models tested. Finally, a brief summary of the results is presented.
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HSCT

BACKGROUND

High Speed Civil Transport

• NASA Concept
- Mach 3 to Mach 5

- 250 passengers
- 6500 nautical miles

• Previous strength designed HSCT's flutter deficient

• Planform curvature

- Increased low speed performance and pitch stability

Due to a recent increase of interest in HSCT's, NASA and several airframe manufacturers have

developed new designs to meet the configuration requirements of a Mach 3+ HSCT. A sketch of a
NASA concept currently being studied is presented in the figure. A HSCT of this design would
cruise at Mach 3 to Mach 5, carry 250 passengers, and have a range of 6500 miles. Many

previous HSCT designs, however, have had serious llutter deficiencies, especially in the transonic
region. This NASA concept currently being studied involves curving the leading and trailing edges
of the outboard portion of a high speed transport wing. ]-his is to improve aerodynamic performance

and to help reduce the pitch up instability associated with highly swept wings.
As a result, this study was conducted at the TDT to investigate the effects of planform curvature,

the curving of the leading and trailing edges of a wing, on the flutter of a generic HSCT wing.
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WING PLANFORM CURVATURE STUDY

Objectives:

• Determine the effects of planform curvature on the

flutter characteristics of a cantilevered wing

• Correlate test results with analysis

Approach"

• Design models

• Perform a flutter analysis using finite element models

• Determine flutter characteristics in TDT

J

The first objective of the study was to experimentally determine the effects of planform curvature
on the flutter of a generic swept wing model. This model would represent the outboard portion of
the wing of the recent NASA HSCT concept and would provide some general information on how

planform curvature could effect the flutter characteristics of an actual HSCT wing. The second
objective of the study was to correlate the experimental flutter data with analytical results obtained

from an unsteady aerodynamics flutter prediction program.
Three models were designed that would flutter within the TDT operating envelope. The first

model had straight leading and trailing edges (i.e. no planform curvature) and served as the
baseline model. The other two models, however, had different degrees of planform curvature.

Following design, the models were constructed and a flutter analysis was performed using
information obtained from a ground vibration test and a finite element analysis. The three models
were then flutter tested in the TDT and the experimental results compared with the analytical
results.
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r Model Planforms

40.0

3unting tab

Note: All dimensions in inches

The planforms of the three models tested are shown overlayed in the figure. The baseline model,
no planform curvature, had a leading edge sweep of 56 degrees and a trailing edge sweep of 37
degrees. The radius of curvature of the leading edge of the other two models was 200 in. and 80 in.,
respectively. The radius of curvature of the trailing edge was determined so that the planform area of
each model was 900 in. 2. The span for all three models was 32 in. which gave each model a panel
aspect ratio of 1.14. The length and location of the root and tip chords were also the same for all
three models. In addition, each model had a 4 in. mounting tab which was clamped between a steel

plate and steel beam when the models were mounted in the TDT.
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A photographlookingdownstream at the moderately curved wing (RLE=200 in.) mounted in the
TDT is presented in the figure. The three semi-span cantilevered models used during the test
consisted of a 0.188-inch-thick aluminum plate to which balsa wood was bonded and contoured to
form a 3% thick bi-convex airfoil. The models were mounted cantilevered along their entire root to a
splitter plate assembly which was then attached to the side-waU turntable in the TDT. The splitter
plate was located outside the tunnel wall boundary layer to provide freestream flow conditions over
the models.

£)R/GTNAL PAGE

BLACK AND WHITE PHOTOGRAPH
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f
STRUCTURAL MODELS

FINITE ELEMENT MODELS

Aluminum and balsa elements_

Aluminum elements \.

No curvature R_E=200 in. RLE=80 in.

• MSC NASTRAN

• Provide input for flutter analysis

• Quadrilateral (CQUAD4) plate elements

• Separate elements used to model aluminum plate and balsa

Three finite element models representing the experimental models used in this study were

developed using the MSC NASTRAN finite element program. These were used primarily to provide
input tor the flutter analysis. The models were constructed of quadrilateral (CQUAD4) plate
elements. Separate elements were used to model the aluminum plate and the balsa wood which
formed the airfoil shape. Regions where elements representing the aluminum and balsa were both

employed are depicted by the shaded areas.
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Comparison of Frequencies and Node Lines

Model

..........f = 6.7 Hz.
f = 5.8 Hz.

........................Experimental
Analytical

Mode2

....... f = 22.7 Hz.
f = 22.9 Hz.

Mode3

..........f = 38.4 Hz.
f = 35.5 Hz.

Mode4

..........f = 52.5 Hz.
_f = 53.8 Hz,

RLE=200 in.

..........f = 6.2 Hz.
f = 5,7 Hz.

..........f = 20.0 Hz.
f = 20.3 Hz.

.......... f = 38.4 Hz.
f = 37.6 Hz.

.......... f = 46.4 Hz.
f = 47.9 Hz.

..........f = 6.8 Hz.
f = 6.3 Hz.

..........f = 18.4 Hz.
_f = 18.4 Hz.

..........f = 39.0 Hz.
_f = 38.1 Hz.

..........f = 49.7 Hz,
f = 48.2 Hz,

.J

A comparison of the experimental and analytical structural models is illustrated in the above
figure. The figure presents the experimental and analytical natural frequencies and node line
locations for the three models studied. The frequencies and node lines were important in
understanding the vibrational modes involved in the flutter of each model (primarily mode 1 and
mode 2) and in determining the accuracy of the analytical structural models which were used in the
flutter analysis. The experimental frequencies were obtained by exciting the models while mounted

in the TDT and recording the resulting frequency spectrum output from an accelerometer mounted
in each model. A modal survey was also conducted on each of the three experimental models to
determine the location of the node lines for each of the first four vibrational modes. The analytical

natural frequencies and node line locations were output from MSC NASTRAN using the three
structural models shown in the previous figure. The analytical results correlated well with the
measured data as all but one of the analytical natural frequencies were within 10 percent of the
experimental frequencies and the analytical node lines generally agreed with the experimental
data.
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AERODYNAMIC MODELS

64 Collocation Points (8x8 array)---_
\

No curvature R LE=200 in. R LE=80 in.

• FAST Flutter Analysis Program

- Subsonic kernel function aerodynamics

- Analytical mode shapes and generalized masses
- Experimental natural frequencies
- Match point flutter solution

A flutter analysis for each of the three models tested was performed using the FAST flutter

analysis program. The aerodynamic models used in the flutter analysis are shown in the figure.
Using calculated mode shapes, the program was used to calculate the unsteady aerodynamic
forces for the natural vibration modes at each of the 64 collocation points (8X8 array) using a

subsonic kernel function. Next, experimental natural frequencies and calculated generalized

masses were input into the program. A match point flutter solution was then performed using FAST

which output the correct density and flutter frequency for a specified flutter velocity.
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The experimental and analytical flutter boundaries presented in the figure are plotted as Flutter
Speed Index (FSI) and flutter frequency ratio versus Mach number. The FSI is a non-dimensional
velocity parameter used to correlate flutter results obtained for different models. Its value depends on

the flutter velocity, V, root semi-chord, b, first torsional frequency, co2, and the square root of the mass
ratio,p.. The value of flutter frequency ratio depends on the flutter frequency, Ft, and the first torsional
frequency, F2. The experimental boundaries were obtained over a Mach number range of 0.60 to 1.00
using air as the test medium while the analytical boundaries were calculated over a Mach number
range of 0.60 to 0.95 using FAST. The experimental flutter results presented in the figure show that
the FSI and flutter frequency ratio increased as the planform curvature was increased. Both of these
trends are also seen in the analytical flutter results which correlate very well with the experimental
results. The flutter analysis also revealed that the participation of the second mode (first torsion) in the
flutter increased as the planform curvature was increased.
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SUMMARY

• Structural and flutter analysis

the experimental data

agreed well with

• Flutter speed index increased as planform curvature
increased

In summary, both the structural and flutter analysis agreed well with the experimental results.

Also, flutter speed index was shown to increase as planform curvature was increased for a series of
generic flutter models used to represent the outboard portion of the wings for a recent NASA HSCT

concept. This beneficial effect means that curving the leading and trailing edges of the outboard
portion of a HSCT wing would not only improve the aerodynamic performance of the aircraft but

could also improve its flutter characteristics.
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AN IN-IRODUCTION TO ROTORCRAI 1 IESTING IN TDT

Paul H. Mirick

USAARTA-AVSCOM, ASTD

NASA Langley Research Cenler
Hamplon, VA
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RESEARCH OBJECTIVES & AREAS

ARES MODEL DESCRIPTION

EXAMPLES OF RESEARCH WITH ARES

ARES ENHANCEMENTS UNDERWAY

SUMMARY

This presentation covers the research areas and objectives of the Rotorcraft

Aeroelasticity Group. The Aeroelastic Rotor Experimental System (ARES), which is

the primary test bed for rotorcraft testing in the TDT is described and three examples of

research conducted are given. The enhancements of the ARES which are currently

underway are also described.
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• PERFORM RESEARCH INTO FUNDAMENTAL
ROTORCRAFT PHENOMENA

• INVESTIGATE ADVANCED ROTORCRAFT
CONCEPTS

• DEVELOP HARDWARE AND TEST TECHNIQUES
TO TAKE ADVANTAGE OF UNIQUE CAPABILITIES
OF TDT

The objectives of rotorcraft testing in the TDT are usually one of the following:

a. Investigate a fundamental rotorcraft phenomena.

b. Investigate a new concept.

c. Develop new hardware or test techniques which will take advantage on the unique

capabilities of the TDT.
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The research areas covered by the Rotorcraft Aeroelasticity Group include:

a. Fixed system vibratory load

b. Rotor performance
c. Blade loads

d. Aeromechanical stability and

e. Acoustics
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The primary test bed for rotorcraft tests conducted in the TDT is the ARES model.

This model was first developed by the Army and NASA in 1976. Since then, a number

of modifications have been made which have improved the model's capability. The
model is stand mounted to the TDT test section floor. The nominal rotor diameter of

rotors tested on the ARES is 9 feet. The model has skins to provide an aerodynamic
fairing around the drive system.
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Power is provided to the rotor by a water cooled electric motor which is capable of

producing 47 HP and 12000 RPM. The motor RPM is controlled by a motor generator
set which allows the desired rotor RPM to be obtained. Power is transmitted to the

rotor through a two-stage belt drive system which provides a reduction ratio of about
14 to 1. Typical model rotor RPM are between 600 and 700 RPM. Control of the

model is by the use of a hydraulic fly-by-wire system. The model uses a conventional

swashplate which is driven by three hydraulic actuators• By adjusting the swashplate
position, the rotor collective and cyclic pitch are changed to either trim the model rotor

or to simulate desired rotor loading conditions. The whole model can also be pivoted
about a pitch bearing by another hydraulic actuator. This angle is referred to as the
rotor shaft angle.
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ARES instrumentation consists of a six component strain gage balance. The motor,

rotor drive system, and the rotor control system are on the metric side of the balance.

However, the skins are attached to the bulkheads which are on the ground side of the

balance. Therefore, the measured forces and moments provided by the balance are

due to the rotor and do not include any contribution from the fuselage skins. For

measurements in the rotating system there is a 30 channel slip ring located at the base

of the rotor shaft. The rotating system parameters measured are taylored to each test.

Typical measurements are blade angles, blade strain gage readings, and pitch link
loads.
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What makes the ARES a valuable tool in rotorcraft research is its versatility. The

rotor shaft is threaded which allows different hubs to be easily adapted to the rotor

shaft. Likewise, the hub blade attachment cuffs are designed to accept different

blades. The third attribute of the ARES is the control system. The fly-by-wire system

allows for high frequency control inputs to the rotor blades.
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BLADE MOTION

\ Lagging ._.

Flapping \ .--'

...........
I i //"" (blade pitch)

Rotor
Hub Type

Motion Articulated Hingeless Bearingless

Flap

Lag

Pitch

Hinge

Hinge

Hinge

Flexure

Flexure

ttinge

Flexure

Flexure

Flexure

The purpose of this diagram is to explain the differences in types of rotor hubs.
Each blade has three degrees of freedom which the hub must allow. A back and forth
movement in the horizontal plane of a rotor which is referred to as lead-lag or as lag.
An up and down motion which is referred to as blade flapping and a degree of
freedom to allow the blade angle of attack or pitch to be changed which is referred to
as pitch or feathering. The simplest way to allow these motions is to use hinges or
bearings. This design is known as an articulated hub and it has hinges or bearings
which allows flap, lag, and pitch. While the articulated is simple in concept, its design
is complex. Each hinge consists of many parts which have limited life, require
lubrication, and require periodic inspection. This requires many maintenance
manhours which is undesirable. With improvements in materials technology, two rotor
hub types which replace the hinges with flexible structural members have become
more feasible. These are the hingeless and the bearingless rotor hubs. The hingless
rotor hub replaces the flap and lag hinges with flexbeams which flex to allow the flap
and lag motion but retains the bearings to allow blade pich changes. The bearingless
rotor hub replaces all hinges with a flexbeam to allow blade flap, lag, and pitch.
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This figure shows an example of each type of hub that has been tested on the

ARES. The articulated hub has a coincident flap and lag hinge with the feathering
bearings outboard. The hingeless hub shown has a flap flexure inboard, then the
feathering bearing, and finally the flap flexure. The bearingless hub has a single
flexure which allows the flap, lag, and feathering motion. Each type of rotor hub has
different dynamic characteristics and problems. Therefore, it is necessary to have the
capability to test the different types of hubs.

7O



I_1J1

L'-"-_

llJ'U_._I
0
IlL

i-.
iii

0
Ill

I

I-.

I

0
IlL

I

I--

IZl
I

I,-

I

a
i.-
I

I,-

I

!-

I

I-.

I

0
I

I-.

I

l-
I

iii

IlL
IL
I

I-,

71



ORIGINAl_PAGE
BLACKAND WHITE PHOI-OGRAPI_

The figure shows four different blades which were built for testing on ARES.
Descriptions of each blade follows starting from the bottom of the figure. The first
blade has a simple rectangular planform with a NACA 0012 airfoil. The second blade
is shown with a swept tip but has provisions for installation of different tips. This blade
also has tabs which can be adjusted to change pitch moment. A companion blade
was designed with different internal torsional stiffness to investigate this effect. The
third blade (referred to as the Growth Blackhawk Blade or GBH which will be
discussed later) has a tapered tip and has different airfoils at different radial stations in
order to obtain the desired performance from the blade. A companion blade was
designed that allows the blade mass distribution to be varied. The fourth blade has an
experimental tip geometry based on a British design called the BERP tip. Due to the
restrictions on testing in R-12, this blade has not been tested in the TDT.
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HYDRAULIC / FLY BY WIRE

• COLLECTIVE AND CYCLIC FOR ROTOR TRIM

• SIGNAL MAY BE ADDED TO TRIM

• EXCITE ROTOR FOR STABILITY TESTS

• HIGHER HARMONIC CONTROL INPUT

The ARES control system also allows for flexibility in testing. The model uses
electrically controlled hydraulic actuators to drive the swashplate. As illustrated on the
following page, it is possible to add an arbitrary signal such as the higher harmonic
pitch signal to the trim signal. This capability is used in stability testing to excite
frequencies of interest in the rotor system. Other investigations which use this
capability have been conducted to examine the effect of higher harmonic inputs on

rotor loads, fixed system vibrations and rotor acoustic signal.
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ROTOR EXPERIMENTS VALIDATE

ANALYTICAL M_HOD

HINGELES$ ROTOR MODEL IN TDT

O

3
IN+PLANE
DAMPING, 2

% CRITICAL

FORWARD FLIGHT
(ADVANCE RATIO = 0,2)

EXPERIMENT_o

4 8 12
COLLECTIVE PITCH, deg

The previous figures have covered ARES capability. The next three figures are

examples of how the ARES capability is used to accomplish a research objective. The

first example is a test of a hingeless rotor design. This test was conducted to obtain
data to be used for validation of an analytical method. A hingeless rotor similar to the

one shown earlier was installed on ARES. The control system was used to excite

in-plane motion of the blade. Once the motion was excited, the control input was

turned off and the rotor in-plane motion was then examined with a moving block

analysis to determine its damping characteristic. This procedure was repeated over a
combination of rotor RPMs, collective pitch settings, and forward flight conditions. The

two plots show typical data obtained and the correlation with pretest analytical
predictions.
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The second example is a test conducted with the GBH rotor blade. The blade was

designed for the Army's UH60 (Blackhawk) helicopter. The original Blackhawk design

was for an aircraft gross weight of 18,500 Ibs at a density altitude of 4000ft/95°F. The

army had a requirement to increase the Blackhawk's capability to 24,500 Ibs at a

density altitude 4000ft/95°F. A rotor was designed by the Army Aerostructures

Directorate at NASA Langley Research Center to meet this mission. A baseline rotor

representative of the current Blackhawk rotor and the new rotor design were tested in
the TDT. The two graphs compare the rotors at their design condition. These graphs

examine power as a function of forward speed. As shown, the GBH performed better
than the baseline at both design conditions.
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The third example is an experimental program to modify the noise produced by
blade vortex interaction (BVl). BVI is the result of a blade passing through or near the
vortex generated by another blade. A higher harmonic pitch (HHP) control signal
which was added to the normal rotor collective and cyclic was developed to reduce the
blade pitch in the region where BVI occurs and thereby reduce the noise associated
with the BVI. BVl is most noticeable during low speed descending flight and therefore
this was the area of primary interest. The two diagrams show the measured noise
level with and without the HHP over a range of advance ratios and descent angles.
The noise level in the primary area of interest (low speed descending flight) was
reduced from 87db to 81db.

OF ;',_:,_ QUALITY
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ABILITY TO CHANGE MODEL BODY FREQUENCIES

- TUNE MODEL TO AVOID UNDESIRABLE
FREQUENCIES

ABILITY TO SIMULATE ROTOR BODY DYNAMIC
INTERACTIONS

- IMPROVES CAPABILITY TO INVESTIGATE
AEROMECHANICAL STABILTIY AND VIBRATION
OF A COUPLED ROTOR/AIRFRAME SYSTEM

While the ARES is an excellent testbed for rotorcraft tests, there are some

improvements that are desired. With the current ARES model it is very difficult to
change the model body frequencies in order to avoid any undesirable frequencies or
to simulate rotor and body interaction. The easiest way to change the model dynamics
is to modify the way the balance is mounted to the stand. The current ARES has the
balance rigidly mounted to the Iongeron with the ability to change rotor shaft angle
about a pivot point. Two refinements to the ARES model are being developed which
will change the way the balance is mounted and thereby give the desired
enhancements to the ARES.
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ARES 1.5

FRONT

The first modification (ARES 1.5) has the balance mounted on a spherical bearing

at the front of the balance. The model is also supported in the pitch and roll directions

by two elastomer springs and two dampers. From the balance up the model is

unchanged from the basic ARES model. By making changes in the springs and
dampers, it is possible to adjust model frequencies and damping.
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The second modification (ARES II) has the balance supported on six hydraulic

actuators. A controller will command the actuator positions which will drive the

balance and rotor system in a desired manner. This will give an active means of

controlling the model rigid body dynamics. A wooden mock up of the ARES II is shown

in the figure.
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, ARES IS THE PRIMARY TEST BED FOR
ROTORCRAFT TESTING IN TDT

• ARES PROVIDES FLEXIBILITY TO CONDUCT
ROTORCRAFT RESEARCH

• ENHANCEMENTS TO ARES WILL PROVIDE
NEW AND IMPROVED CAPABILITY FOR
CONDUCTING ROTORCRAFT RESEARCH

The ARES is the primary test bed for rotorcraft testing in the TDT. The ARES model

provides the flexibility to conduct rotorcraft research in many areas. With the new
enhancements underway, the ARES will have new and improved capability for

conducting rotorcraft research.
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ROTORCRAFT VIBRATION REDUCTION RESEARCH AT THE TDT

Matthew L. Wilbur

USAARTA-AVSCOM, ASTD

NASA Langley Research Center
Hampton, VA
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• Rotorcraft vibrations are a continuing problem

• Historically, vibration problems have been

corrected in post-design phases

• Curren! trends are to address vibrations

throughou| tile design phase

• Failure has shown that an'dyses are not

accurate/sophisticated enough

Helicopters have always had vibration problems, and such problems continue
today. Historically, severe vibration problems have been addressed by the
manufacturers after a flight vehicle had already been built, using trial and error
techniques to reduce the vibratory loads to an acceptable level. However, within the
last ten years, attempts have been made to address vibration problems during the
helicopter design phase through the use of computer analyses. Once implemented,
however, these designs have generally failed to demonstrate significant reductions in
vibration levels. This has shown that helicopter analyses are not yet sophisticated
enough to be used reliably to design low vibration rotor systems. This paper will

discuss a research project designed to further the understanding of the sources of
rotorcraft vibrations. This research is being performed at the NASA Langley Research
Center Transonic Dynamics Tunnel (TDT).
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The photograph above, along with the following word chart, represent the
terminology which will be used throughout this paper. The photograph shows a
Sikorsky S-76 helicopter in flight. As indicated, the rotor rotates counterclockwise at a
rotational velocity of _. Also shown on the photo is the generally accepted blade-
azimuth orientation. As a blade passes over the tail of the aircraft, it is at 0° azimuth.
The other angles are indexed from the tail and in the direction of rotation so that 90 °
azimuth is over the right side, 180 ° azimuth is over the nose, and 270 ° azimuth is over
the left side of the aircraft. When a blade is between 0 ° and 180 ° azimuth it is called

an advancing blade, since it is advancing into the free-stream velocity. Likewise, a
blade in between 180 ° and 360 ° is called a retreating blade since it is retreating from
the free-stream velocity. Advance ratio, p, is a velocity term used for rotorcraft. It is the
ratio between the free-stream velocity, V, and the rotor tip velocity denoted by _R,
where R is the rotor radius. The other term listed is nP (or n per revolution) which
represents a frequency relative to the rotor rotational frequency. In other words, the n

is a multiplier which is applied to the rotor rotational velocity.
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AIRLOADS

270°

Retreating

Advancing
90°

The figure above, along with the following word chart, represent some

fundamental rotor dynamics and discuss the major sources of rotorcraft vibrations.

Primarily, the oscillatory shear applied to the hub by the rotor blade is the driving force

behind vibratory loads. These shears are caused by a coupling of the airloads which

are applied to the blade, and the blade's response to those airloads. This is shown

graphically in the upper figure. The figure shows two in-plane views of a rotor in
forward flight. The flight direction is into the page so that the blade on the right is at
90 ° azimuth, and the blade on the left is at 270 ° azimuth. The applied airloading is

shown as well as the blade's modal response. As is apparent from the figure, the

airloading environment of a rotor is highly oscillatory in nature. On the advancing side,

the majority of the airloading is applied to the central section of the blade while the tip

actually produces a negative load. On the retreating side, the majority of the airload
has shifted out towards the tip of the blade while the inboard sections produce little or

negative lift. The oscillatory airloading in turn excites the blade's modal response.
The two effects combined produce a large oscillatory shear at the blade root which is

transferred directly to the hub and into the helicopter body.
For a 4-bladed rotor as will be discussed in this paper, the primary vibratory

loading of concern is the 4P (or 4 per revolution) load since each of the 4 blades apply

their own root shear to the hub.
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Vii)ration Reduucliqm Melhods

• Change airh)ads

• Active controls

• Planform

• Twist dis! ribun! ion

• Pitch-flap coupling

• Change nnodes/frequencies

• Stiffness

• Mass

The figure above discusses some of the basic techniques which could be used

to reduce a helicopter's vibratory loads. Since the airloads and the blade modal

response are the largest drivers of vibratory loads, it is natural to expect that changing

these characteristics will affect the vibratory characteristics of the rotor system. There

are several ways in which these changes could be effected. To change the airloads, a

designer could employ active controls to adjust the pitch of each blade individually as
it rotates. Other choices would involve passive means of changing the airloads such

as planform changes, blade twist changes, or blade pitch-flap coupling changes. To

change the blade modal response, the frequencies and/or the mode shapes could be

adjusted by changes in the blade stiffness or mass distributions. In the figure, mass

distribution has been italicized since it is the subject of a research program designed

to experimentally investigate the cause and effects of rotorcraft vibrations. This

research program is the subject of the remainder of this presentation.
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Tailored (;rowth Black ! iawk ((; BII-T) Rolor l'rogram

• Objective

• Investigate passive means of reducing fixed-system
vibratory loads

• Provide a data base for correlation with and

development of analytical methods

• Approacln

• Buihl aeroelastically scaled rotor blade hardware

with provisions for insertable masses along radius

• Test on the ARES testbed in the TDT

The project is called the Tailored Growth Black Hawk (GBH-T) Rotor program

and is being performed at the TDT. The objective of the program is to investigate a

passive means of reducing rotorcraft fixed-system vibratory loads through the use of

blade non-structural mass. This allows for the development of a data base for use in

correlation, validation, and development of more accurate analytical prediction

methods. The approach taken was to have aeroelastically scaled rotor blade

hardware fabricated which have provisions for insertable masses along the blade

radius. These blades have been tested on the ARES helicopter testbed in the TDT.
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ROTOR BLADE COMPONENTS

4_.\ -_._.. AI RFOIL GLOVE

_ _ t-,fJ -- , _"

STEEL SPAR -"__ _-""_

The figure above shows the main components of the GBH-T rotor blades. The

basic blade consists of the airfoil glove and the steel spar as shown. The airfoil glove

is responsible for maintaining the aerodynamic shape and to provide the majority of

the blade stiffness. The glove has an internal channel centered about the quarter-

chord which runs the full length of the blade. This channel is made to accept and lock

in place the steel spar. The steel spar has cutouts located every 5% of blade radius,

(or length) beginning inboard at the 30% radial station and extending outboard to the
90% radial station. These cutouts provide a mounting area for the insertable non-

structural masses. The masses were made from tungsten (0.27 Ibs) and steel

(0.11 Ibs) to provide an additional parameter of study. Throughout testing, only one

mass was inserted in the spar at a time providing a local change in the mass

distribution.
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Testing of the GBH-T rotor blades was conducted on the ARES model in the
TDT. The photograph shows the model as tested. Configurations tested include the
baseline configuration in which none of the insertable masses were installed. Also
tested were several configurations in which a single tungsten mass was installed.
These configurations ranged from a mass installed at the 30% radial station to the
85% radial station. Finally, one configuration was tested in which a single steel mass
was inserted at the 80% radial station.

The testing was comprised of sensitivity studies. Measurements provide
vibration sensitivities due to the forward flight velocity, the radial mass placement, the
rotor thrust condition, and the rotor trim condition.
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The figure shows results for two of the configurations throughout the forward

flight speed range. Plotted is the 4 per revolution load in the fixed-system Normal

direction (the direction along the rotor shaft or thrust axis) versus rotor advance ratio.

Also shown is the equivalent full-scale flight velocity and the magnitude of the 4P

vibration in g's. The data show that the configuration in which a tungsten mass was

placed at the 85% radial station results in lower vibrations than the configuration in

which a tungsten mass was placed at the 30% radial station. It is useful, however, to

look at many configurations at one time. To do so requires a look at a cross-section of

the data at individual forward flight velocities. Three sets of forward flight data

(denoted by speed as low, mid, and high) will be examined more closely.
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This figure shows the 4P Normal load plotted versus the radial location of an
added tungsten mass. Results are shown for the three forward flight velocities
denoted on the previous figure. The horizontal lines represent the vibratory load

generated by the baseline configuration (the configuration without any insertable
masses installed). As is shown, the mass placement has a substantial effect on the
fixed-system loads at the low and high speeds. The mid-range speed shows little
sensitivity to mass placement, however, the load levels are already quite low at this

speed. The data also show that for the GBH-T rotor, different mass locations are
required to minimize the vibrations between the low and high speeds.
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• Only comprehensive study available

• Analysis validation / development

• CAMRAD -- Government owned helicopter code

• Optimization efforts

• Industry

The data base generated by the GBH-T research program is the only
comprehensive study of its kind available in the public domain. The data base will be

used for analysis validation, correlation, and development. Within the Government, it
will be used to correlate with the Comprehensive Analytical Method for Rotorcraft

Aerodynamics and Dynamics (CAMRAD), a government owned and developed
rotorcraft analysis, and to compare with rotorcraft optimization efforts. It is also
expected to be used within the rotorcraft industry for comparison with proprietary
analyses.
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I SUMMARY |

• Tailoring blade nnass distribution is a passive
means of reducing fixed-system loads

• TDT test has provided a data base fiw use with
analysis development and validation

• Test indicates that mass distribution must be
tailored to suit vibration requirements

In conclusion, the Tailored Growth Black Hawk (GBH-T) rotor program has

shown that tailoring the blade mass distribution is an effective passive means of
reducing rotorcraft fixed-system loads. The test has provided a data base to be used

in the correlation, development, and validation of rotorcraft analytical methods. Finally,

the results show that the GBH-T rotor would require tailoring specifically intended for
reducing the vibrations for a particular flight velocity and that no one mass location can

provide reduced vibrations throughout the flight envelope.
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A PRELIMINARY STUDY TO DETERMINE THE EFFECTS OF TIP GEOMETRY

ON THE FLU'I-I-ER OF AFT SWEPT WINGS

Bryan E. Dansberry, Josh A. Rivera, Jr., and Moses G. Farmer
NASA Langley Research Center

Hampton, VA
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OUTLINE:

* Background Information

* Objective

* Approach

* Test Procedure

* Results

* Comments

This talk will cover the points shown in the figure. First, background information
concerning the study will be covered. That will lead into a definition of the main
objective of the study and the approach taken. At this point, a technique typically used
in the Transonic Dynamics Tunnel (TDT) to define a flutter boundary will be discussed.

A presentation of the results will follow and, finally, summary comments concerning
the study will be presented.
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OBJECTIVE:

* Add To The Parametric Data Base

APPROACH:

* Test 6 Flat-plate Models

* Two Aspect Ratios

* 3 Tip-chord Orientations
- Parallel To The Root Chord
- Perpendicular To The Mid-chord
- Perpendicular To The Root Chord

The basic aerospace design practice which led to this study can be stated as:
the continued efforts of engineers to maximize the aerodynamic and structural
efficiency of new aircraft designs by employing new and novel aerodynamic and
structural concepts will often lead to unconventional geometric configurations which
may have serious aeroelastic deficiencies. Many of the new configurations which
have recently been in the public eye have unusual tip geometries.

A search of reference material produced very little in the way of parametric data
on the effect of tip geometry changes on flutter. The basic objective of this study,
therefore, was to add to the parametric studies data base some information concerning
the effect of tip-chord orientation on wing flutter. To achieve this end, six flat-plate
models were tested in the TDT. The models were made from quarter-inch aluminum

sheet and were instrumented with strain guage bridges so that flutter frequency could
be defined as the flutter boundary was experimentally determined. Flutter
characteristics of these models were defined in the Mach number range from
0.3 to 1.2.
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H-SERIES L-SERIES

1

These six models were divided into two series of three models each. These

series were identified as the H-series and the L-series for higher-aspect-ratio series

and lower-aspect-ratio series, respectively. As can be seen in the above figure, the

aspect ratio was the primary difference between the series. This figure also illustrates
the primary variable within each series, tip chord orientation. Three orientations were

tested in both series. The first was streamwise, or parallel to the root chord, the

second was perpendicular to the model mid-chord line, and the third was

perpendicular to the root chord or 90 degrees from streamwise.
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H-SERIES MODELS
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[H SERIES GEOMETRIC CONSTANTS:

planform area = 671.5 sq. In. ];)lanforrn area =

root chor(J - _54.7'._ irl.

leading edge .';weep = (_0 deg,

Iralling edge sweep - 41 (:leg.

L SERIES GEOMETRIC CONSTANTS:

:507,1 sq. IB,

Within each series, planform variables such as leading edge sweep, trailing

edge sweep, and root chord length were held constant. Planform area was also a

constant for each series. The planform area of the L-series was 20 percent less than
that of the H-series. The rectangular area at the root of each wing, denoted by slashes

in the figure, was the mounting tab. When mounted in the wind-tunnel test section, the

tab was sandwiched between two angle irons to provide a fixed-root, cantilevered

condition. The entire mounting apparatus was separated from the free-stream flow by

a splitter plate.
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First Five Measured Natural Frequencies
(Hz)
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The next two figures show the experimentally defined vibrational characteristics
of the six models as determined by ground vibration tests performed prior to flutter
testing. The major point to be made here is that although the geometric variable has
been well isolated, no attempt was made to hold constant the vibrational
characteristics of the models within either series. Therefore, the test results represent
integrated aerodynamic and structural effects. The above figure shows the
fundamental frequencies of the six models. Note that the characteristic frequencies of
the high-aspect-ratio series models are fairly constant while the L-series shows larger
deviations between models.
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2 13

NODE LINE

PLOTS

Reflecting the results shown in the previous figure, the node lines of the second
and third models are of similar character for all three H-series models while the lower-

aspect-ratio models show much greater deviations. This is likely due to the fact that

the changes in tip geometry effect a larger portion of the total area of the L-series
models.
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The above figure shows a picture of model H1 mounted in the TDT. A splitter
plate was located along the root chord of the models. The splitter plate served to
separate the mounted hardware from the free-stream flow and also prevented the
tunnel-wall boundary layer from affecting the results. Although it is difficult to see in
this picture, aerodynamic trip strips were placed on both surfaces of the models to
better simulate Reynolds number effects. These strips ran from root to tip on every
model.
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Test Procedure Used In TDT To Determine

Typical Flutter Boundary.
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The method typically used in the TDT to define a flutter boundary is illustrated
above. This figure shows a plot of the variation of dynamic pressure (q) at flutter onset

versus Mach number for a model with a typical flutter boundary. The solid lines with
arrows at the end represent lines of nearly constant total pressure. The TDT is a
variable density tunnel, making it advantageous to initiate testing at a lower density
(therefore a lower total pressure line) than where flutter is expected. As the test
progresses the motor speed of the tunnel is slowly increased, enchancing flow
conditions along a line of constant pressure until either the motor limit is reached (the
open symbols) or a flutter condition is identified (the solid symbols). At this point motor
speed is reduced, decreasing Mach and q to a safe level. Air is then bled into the
tunnel increasing total pressure and density and the process is repeated along higher
total pressure lines until the flutter boundary is satisfactorily defined.
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The above figure shows the flutter characteristics of the higher-aspect-ratio

series of models. Again, the variation of flutter q with Mach number is shown. The

variation of flutter frequency with Mach number is also displayed. For all six models,

the flutter frequency at all conditions was between the first bending and first torsion

frequencies. This indicates that the flutter mechanism for all models was a coupling of

the bending and torsion modes, the most common mechanism of flutter.
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The above figure, with axes identical to the previous figure, shows the flutter

characteristics of the lower-aspect-ratio series models. The dashed lines shown in the

two previous figures indicate total pressure lines at which flutter was not found. These
dashed lines are included to indicate that the flutter boundaries of these models do not

continue their downward trend, but turn up as they enter the supersonic regime.
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The above figure is a composite of data from the two previous figures. Only the

six experimentally determined flutter boundaries are shown. Once again, the figure

shows the variation of dynamic pressure at flutter onset with Mach number. The open

symbols represent the higher-aspect-ratio (H-series) models and the dark symbols

represent the lower-aspect-ratio (L-series) models. The circles represent models with

"standard" streamwise wing tips, the squares represent models with tip chord oriented

perpendicular to the mid-chord line, and the triangles represent models with a tip

oriented perpendicular to the root chord.

The most obvious characteristic of the data is that the lower-aspect-ratio models

all have a higher flutter q than the higher-aspect-ratio models. That is to be expected

because a reduction in aspect ratio usually results in an increase in flutter q. It is

somewhat surprising that all the L-series models have a very pronounced transonic

dip which eliminates much of the gain in flutter q observed in the subsonic region.

Another feature of the data is that the bottom of the transonic dip was above

M=I in all cases. However, this is not unusual for highly swept wings.

(Continued on next page)
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(Cr,_ntinued from previous page)

A third feature is the homogeneous nature of the H-series results as compared

to the L-series. All three boundaries for the H-series are similar in shape and nearly

lie on top of each other. The L-series models display a much greater sensitivity to

changes in tip geometry. This is probably a reflection of the greater disparity in
vibrational characteristics within the L-series of models.

Another point of interest is the trend measured for the two models represented

by square symbols. These are the models whose tip chord was oriented

perpendicular to the mid-chord line of the wing. These models both display lower
flutter boundaries than the other models in their series. In other words, this tip

orientation appears to adversely affect the flutter characteristics of the configurations

tested in this study. Further investigation would be required prior to making more

substantial conclusions concerning the wing tip shape.

111



SUMMARY:

* 6 Flat-Plate Models Tested

* Integrated Aerodynamic And Structural Effects Determined

* Results Showed:

- L-series Show Greater Variation Of Results

- Flutter q Varies Inversely With AR In Subsonic Region

- Tip Orientation Perpendicular To Mid-chord Had
Lowest Flutter q

To summarize, a study was performed in the TDT which provided some
preliminary insight into the effects tip geometry changes can have on the flutter of
swept and tapered wings. The results shown represent the integrated aerodynamic
and structural effects of changing tip geometry for six flat-plate wing-models. The
results indicated that in the subsonic region, a decrease in aspect ratio produces a

large increase in flutter q. In the transonic region, however, this increase in q was
largely negated by an unusually deep transonic dip for the lower-aspect-ratio wings.
Also, the lower-aspect-ratio series of models displayed a greater sensitivity to the
changes in tip geometry. Finally, the models with tip chords oriented perpendicular to
the wing mid-chord line had the lowest flutter boundaries. Further work is required

before any strong conclusions can be reached.
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AEROELASTIC MODELS PROGRAM

Clinton V. Eckstrom

NASA Langley Research Center
Hampton, VA
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OUTLINE

Background

Objectives

Approach

- Status

- Models

Summary

OUTLINE (Slide 2):

This slide presents a brief outline of the presentation. The presentation begins

with a brief background on the Aeroelastic Models Program which includes a

description of some of the aeroelastic challenges to be worked. The program

objectives are then defined along with our approach to meeting these objectives and

our current status. This is followed by a description of what models we are currently
working with followed by a brief summary.
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BACKGROUND

Wind tunnel model measurements needed for

Development / Validation of analysis programs

"Aeroelastic Models Program" proposed

Joint activity between CAB and UAB

Program aimed at some specific aeroelastic
challenges

BACKGROUND (Slide 3):

The development of CFD codes often requires experimental data to check and

validate the analysis results. In some instances experimental results may be required

to assure that the right types of flow phenomena are being modeled. This type of

model test data is used in the Structural Dynamics Division by the Unsteady

Aerodynamics Branch (UAB) for validation of codes such as the CAP-TSD code.
As a result of the need for code validation data an "Aeroelastic Models

Program" was proposed by a committee set up by the Structural Dynamics Division
Office. Bob Bennett of UAB chaired that committee. For this reason it is not

unexpected that implementation of the program is a joint CAB and UAB activity. The

proposed program is aimed at several specific aeroelastic challenges, four of which

are presented on the next slide.
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AEROELASTICITY CHALLENGES
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AEROELASTICITY CHALLENGES (Slide 4):

The first example aeroelastic challenge deals with transonic flutter. The plot,

which presents a dynamic pressure flutter boundary as a function of Mach number,
shows results for both experiment and analysis. The minimum or critical flutter point

noted on the figure is at the bottom of the flutter dip at the transonic speed range.

Analysis results normally do not accurately predict experimental results in this region.

Slide 5 shows a typical cantilevered model that might experience such a transonic

dip in the experimentally determined flutter boundary.
The second example aeroelastic challenge deals with wing/store limited

amplitude flutter. The plot, which presents flight altitude as a function of Mach number

for a fighter aircraft, shows upper and lower speed boundaries and a cross hatched
area in the transonic speed range where limit cycle wing/store instabilities can occur.

Slide 6 shows a fighter model with stores used for store flutter clearance testing.

(Continued on next page)
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(Continued from previous page)

The third example challenge deals with novel shock induced instabilities such

as one experienced on a high aspect ratio transport type wing. The plot, which

presents dynamic pressure as a function of Mach number, shows a region of wing high

dynamic response at transonic speed, but at dynamic pressures well below the

predicted flutter boundary. Slide 7 shows the wing on which the instability was
measured.

The fou_h example challenge deals with a wing response encountered on the

B-1 aircraft that is now attributed to a dynamic vortex-structure interaction. The plot,

which presents angle of attack as a function of Mach number shows a trace of wing

response measured during flight testing. At the initial flight angle of attack the wing

response increases in amplitude until angle of attack is reduced toward zero degrees.

Slide 8 shows the B-1 flutter model being tested in the TDT.
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TYPICAL CANTILEVERED MODEL (Slide 5):
The flexible rectangular wing model shown is typical of those used to define

flutter boundary characteristics. The model is cantilevered from a splitter plate
mounted off the tunnel wall to eliminate wall boundary layer effects. These models are
typically instrumented with a bending and a torsion strain gage bridge located near the
wing root to monitor wing motion for determination of flutter onset.

ORIGINAL PI_GE
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F-16 FIGHTER

F-16 FIGHTER WITH STORES (Slide 6):

An F-16 fighter flutter model is shown in the Transonic Dynamics Tunnel with

three different store types suspended from the wing. Also shown on the tunnel floor

are several other store types that are used in various combinations with this fighter

aircraft. From the variety of store shapes and sizes, and fin locations and sizes, it is not

hard to imagine that some flow instabilities might occur to cause limit cycle oscillation.
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DAST ARW-2 WING (Slide 7)

The DAST ARW-2 is a high aspect ratio (10.3) transport-type wing. During

unsteady pressure measurement tests the unexpected region of high dynamic
response was encountered at transonic conditions.
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SHOCK-INDUCED INSTABILITY STUDIE D IN TDT

WIND TUNNEL

............................................................

B-1 FLUTTER MODEL (Slide 8)

The B-1 flutter model was tested in the TDT to see if the instability encountered

in flight could be reproduced during wind tunnel testing. The wing responses

measured in the tunnel test and in flight are shown for comparison. At the time the

wind tunnel test was conducted the instability was thought to be shock-induced as

indicated by the figure title. It was later considered to more likely be a vortex

interaction problem. The Aeroelastic Models Program proposes further study of this

phenomena using a side wall mounted half-fuselage/wing B-1 model instrumented for
measurement of unsteady pressures.
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OBJECTIVES

- Obtain data for code validation / development

- Understand physics of unsteady flow

- Obtain data for empirical design

OBJECTIVES (Slide 9):
As indicated earlier, the program's first objective is to acquire data useful for

analytical code development and validation. In order to do this it may also be

necessary to perform tests aimed primarily at developing an understanding of the

unsteady flow phenomena of interest. For some aeroelastic problems it may be

necessary to limit our objective to obtaining data for empirical design methods.
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APPROACH

Design and Build Models

Use Existing Models

Conduct Tests in TDT

Measure Model / Flow Characteristics

Flutter Boundaries

Dynamic Responses

Unsteady Surface Pressures

Flow Visualization

APPROACH (Slide 10):

Our approach to the Aeroelastic Models Program is to design and build models
for testing or to use existing models where possible. The testing will be conducted in
the Transonic Dynamics Tunnel. Our plan is to make extensive measurements of both
model and flow characteristics as listed,
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STATUS

- Test Program Defined

- New Initiative Proposed

- Test Group Formed

- Model Fabrication Initiated

,J

STATUS (Slide 11):

At present, the Aeroelastic Models Program test plan has been defined as
shown on slide 12 where the planned model types are listed. A new initiative has

been proposed to fund and implement the program. A test group has been formed,
which as indicated earlier, is a combined effort of CAB and UAB. The test group

members are listed on Slide 13 in alphabetical order. Fabrication activities on two
models have been initiated.
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PLANNED MODEL TYPES

Rigid wings on flexible mount system

Series of flexible wings with circular
arc airfoils

Wing canard model

Fighter wing with stores

Generic transport model

Use some existing models with
modifications

PLANNED MODEL TYPES (Slide 12):

The overall program includes tests of: (1) a series of panel aspect ratio 2.0 rigid

airfoils to be tested on a flexible mount system referred to as PAPA (Pitch and Plunge

Apparatus), (2) a series of circular arc airfoils having the same aerodynamic shape but

with different structural stiffness, (3) a clipped delta wing and canard model, (4) a

generic fighter wing to be tested with various store types and combinations, (5) a

generic transport model for evaluation of transonic flow conditions, and (6) the use of

some existing models such as an instrumented semispan-half fuselage model of
the B-I.
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CAB

TEST

Bryan Dansberry

Clinton Eckstrom

Moses Farmer

Jose Rivera

GROUP

UAB

Robert Bennett

David Seidel

TEST GROUP (Slide 13):
The test group consists of members from both the Configuration

Aeroelasticity Branch (CAB) and the Unsteady Aerodynamics Branch (UAB). Each test
group member will have responsibility for a particular model test with all other
members functioning as a part of the test team.
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CURRENT MODELS

- NACA 0012 rigid wing on flexible mount

- Flexible wings with circular arc airfoils

- Supercritical rigid wing on flexible mount

- Delta wing/canard unsteady pressure model

CURRENT MODELS (Slide 14):

Our first model is a NACA 0012 rigid wing to be tested on a flexible mount

system. It has been fabricated and is currently being instrumented.

The second model type consists of a series of flexible wings with circular arc

airfoils one of which is currently being fabricated. These models will be used for an

oscillating shock study as shown on Slide 15.

The third model is a supercritical airfoil on a flexible mount similar to the first

model. Fabrication of this third model will begin as soon as the validity on the design

and layout of the first model is proven by the wind tunnel test scheduled for June.

The fourth model is an existing wing/canard unsteady pressure model as shown
on Slide 16.
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CIRCULAR ARC AIRFOIL OSCILLATING SHOCK STUDY

- 18% thick airfoil

- Shock oscillation in
narrow Mach range

- Shock oscillation 180 °

out-of-phase

- Large pressure
fluctuations

- Coupling with
structural modes

I Time 1 Strong Upper Shock

Wake

CIRCULAR ARC AIRFOIL OSCILLATING SHOCK STUDY (Slide 15):

Tests with rigid circular arc airfoil models have established that an oscillating

shock system exists as shown in the sketch for 18% thick circular arc airfoils. Our goal

is to determine if, and possibly how, this oscillating shock system might couple with

model structural modes. The model currently being fabricated has only strain gage

bridge and accelerometer instrumentation to measure model response. If significant

structural response occurs, then later models of varying structural stiffness will include

a row of pressure transducers to measure unsteady pressures at an outboard

spanwise station.
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WING/CANARD MODEL (Slide 16):
For this model we need to rebuild the canard to take higher loads. Also both the

canard and the wing need to be instrumented with new pressure transducers for

measurement of unsteady pressures. The canard is difficult to see as it was painted a

flat black the same as the splitter plate to facilitate use of a laser flow visualization

system used for this test. The canard is mounted on the shaft of a large hydraulic
actuator. The initial pitch angle can be set at varying angles up to 50 degrees and the

model can then be oscillated in pitch up to +/-12.5 degrees. Both the wing and the

canard have the same planform layout with a 50-degree leading edge sweep and a

clipped tip region.

ORIGINAL r_ ,_,-,__-
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SUMMARY

Fabrication completed for NACA 0012 model

First flexible Circular Arc Wing model is
being fabricated

Initial tests in TDT to start this June

SUMMARY (Slide 17):

In summary, fabrication has been completed for the NACA 0012 model. Tony
Rivera covers details of this model and its planned testing in the next presentation.
The first flexible circular arc airfoil model is being fabricated. It is of simple aluminum
plate/balsa wood construction so it will be available very soon and will be tested at the
first reasonable opportunity (Model was tested April 12-13, 1990). The first major
scheduled test starts in June, 1990, so very quickly the Aeroelastic Models Program
will be underway.
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NACA 0012 PRESSURE MODEL AND TEST PLAN

Jose A. Rivera, Jr.

NASA Langley Research Center
Hampton, VA
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NACA 0012 PRESSURE MODEL AND TEST PLAN

A description of the NACA 0012 pressure model, the instrumentation, and the

plan for a test to be conducted in the Transonic Dynamics Tunnel (TDT), are the

subject of this presentation.

In the past steady and unsteady pressures have been measured on rigid

oscillating models, such as the rectangular supercritical wing shown in figure 1, and

models with oscillating control surfaces as shown in figure 2. In addition, flutter

boundaries have been determined for (complex and simple) flexible models. An

example of a complex model with nacelles is shown in figure 3. Presently, with the

Pitch and Plunge Apparatus (PAPA) figure 4, flutter boundaries can be determined for

rigid models because the PAPA allows the degrees of freedom necessary for the

instability. The PAPA is a flexible mount system on to which a rigid model can be

mounted. The rod system allows the wing model to pitch and plunge. The new

direction of this project is to combine a rigid model on a flexible mount with steady and

unsteady pressure measurements at various test conditions (including transonic Mach

numbers) including flutter. This is planned for June of 1990.

The objective of the wind-tunnel test is to gather both pressure (steady and

unsteady) and flutter data for analytical code validation. In addition, the data gathered

will add to the understanding of the physics behind the structural dynamic and the

aerodynamic interaction associated with flutter and other dynamic instabilities.

To accomplish this a standard symmetric airfoil (NACA 0012) with steady and

unsteady pressure measurement capability is mounted on a flexible mount system, or

Pitch and Plunge Apparatus (PAPA), in the Langley TDT. Then pressures are
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measured at various conditions including during flutter.

A photograph of the NACA 0012 pressure model is shown in figure 5. The

model has an unswept rectangular planform with a NACA 0012 airfoil section. The

wing semi-span measures 32 inches with a chord length of 16 inches.

Figure 6 is a list of instrumentation for the wind-tunnel test. A total of 80

pressure transducers are mounted within the wing model. Forty are located to

measure pressures at the 60% span station, and forty to measure pressures at the

95% span station near the wing tip. The location of each pressure transducer along a

chord is shown in figure 7.

Figure 8 shows a photograph of the model divided into its three major sections,

and photographs showing details of the instrument installation. The upper left

photograph shows a pressure transducer, a transducer/sleeve assembly, and the

internal face into which this assembly is installed. The pressure transducers are

installed within sleeves to facilitate handling. After installation and appropriate

sealing, the transducer will sense the pressure at the orifice along the surface of the

wing model.

The wing model also has 4 accelerometers situated to identify non-rigid motion

of the wing model. The upper right photograph of figure 8 shows an accelerometer

and the pocket (close to the trailing edge and wing tip) into which it is installed.

Figure 9 is a photograph of the PAPA rod system mounted in the TDT test

section. Flow is essentially towards the reader. The PAPA has 2 strain gage bridges

oriented to measure bending and torsional moments from which wing model plunge

position and pitch angle can be obtained. In addition the PAPA is instrumented with
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accelerom.eters to determine pitch and plunge motion.

The PAPA splitter plate (figure 10) is instrumented with 20 pressure transducers

divided in groups of 5 located above, below, in front of and behind the wing model to

measure splitter plate pressures. In addition a boundary layer rake is situated above

and behind the wing model. This rake includes 10 pressure transducers.

Data obtained during the test will include steady and unsteady pressure

measurements at various conditions with the flexible PAPA, and with the PAPA

rigidized. In addition, the conventional and stall flutter boundaries will be determined.

Pressure measurements will be obtained during and leading up to flutter.

The schedule being worked towards is shown in figure 11. At present (March

1990), pressure transducers are being installed in the wing model, and software is

being developed for the wind tunnel test. Instrumentation checkout and ground

vibration test will lead up to the wind-tunnel test in June 1990.

In summary, a wing model has been described which will be used for a wind-

tunnel test in order to combine a rigid model/flexible mount with unsteady pressure

measurements. Also the flutter boundaries for this arrangement will be determined.

The test will provide pressure and flutter data for analytical code validation, and to

understand the physics behind the structural dynamic and the aerodynamic

interactions associated with flutter and other dynamic instabilities. These tests will

begin in June 1990.
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PA SPLITTER PLATE

Boundary
layer rake

Static
pressure

ports

(ii)i,

Figure 10 - PAPA splitter plate and flutter model mounted in the TDT.
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INVESTIGATION OF THE USE OF EXTENSION-TWIST

COUPLING IN COMPOSITE ROTOR BLADES

Renee C. Lake

USAARTA-AVSCOM, ASTD

NASA Langley Research Cenler
Hampton, VA
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Tiltrotor aircraft, such as the XV-15 shown in the accompanying photograph, are

designed to operate in both helicopter and airplane modes of flight. This operational

flexibility results in several conflicting design requirements. One such design

requirement, which has significant effects on aerodynamic performance, is the built-in
twist of the rotor blade. Typically, the twist is not optimum for either flight mode.

Performance could be improved if it were possible to vary blade twist between the

airplane and helicopter modes. Tiltrotor aircraft typically vary rotor speed by 20

percent between flight modes, (100% rpm in helicopter mode, 80% rpm in airplane

mode), which induces a change in the centrifugal force. This change in centrifugal
force accompanying the change in rotor speed can be exploited to passively change

twist in composite rotor blades which employ extension-twist structural coupling.
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Linear Twist Performance Relative
to XV-15 Twist Performance
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Recently, the aerodynamic performance of the XV-15 with its existing metal rotor

system was determined for hover in the helicopter mode and forward flight in the

airplane mode. A companion study was initiated to determine the optimum linear twist

and associated performance improvement for each flight mode. The performance

associated with the extension-twist-coupled rotor blades was compared to the

performance associated with the existing metal rotor blades. The results (shown in the
figure) indicate that the optimum linear twist corresponds to -20 ° in hover and -42 ° in

forward flight. The associated aerodynamic performance improvements to the

conventional twist design were about six percent in both flight modes. These figures
represent substantial improvements in performance using passive twist control via

extension-twist-coupled rotor blade designs.
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PASSIVE TWIST CONTROL MECHANISM

Rotation Direction • Blade twist distribution is altered by a

e 9 change in axial force

........." mposite Structure

Change __: '_..___in Twist_ "' ................"" )

\
Centrifugal Force

With the advent of composite materials technology, the development of a

passive twist control mechanism can be effected through the implementation of elastic

tailoring in the design of the rotor blade spar. Specifically, the use of an extension-

twist-coupled layup allows the blade structure to twist in response to an extension,

such as that created through a change in centrifugal force, and vice-versa. Thus, the

use of such a layup allows the rotor blade to passively change twist as a function of

rotor speed.
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Problem Statement

Accurate, reliable computational methods for predicting
the structural dynamic characteristics of composite rotor
blades are essential to the development of advanced,
cost-effective rotor systems.

Objective

Investigate, both analytically and experimentally, the
dynamic characteristics of composite rotor blades
exhibiting extension-twist coupling.

With this concept in mind, the above problem statement has been identified for

this research investigation. That is, to accurately and reliably predict the structural

dynamic characteristics of elastically-coupled composite rotor blades. The objective of

this research is to investigate the dynamic characteristics of composite rotor blades

through the effective implementation of experimental and analytical investigations.
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Approach

• Conduct static/dynamic experiments of composite
rotor blade structures

• Develop and evaluate companion FEM models of
composite rotor blade structures using MSC/NASTRAN

• Composite tube studies
- ground vibration tests (frequency, mode shape, etc.)

• Composite rotor blade studies
- ground vibration tests

hover test (twist vs. rpm)

• Application to tiltrotor blade

The approach designed to meet this objective is summarized in the figure. To
_stablish an experimental database, static and dynamic experiments have been
performed on fabricated composite rotor blade structures, providing a verifiable means
of comparing with analytical investigations. In addition, companion finite-element
models of these structures have been developed and analyzed in MSC/NASTRAN.
This has been performed for each of two tasks within an in-house research program:

composite benchmark models and composite model rotor blades. The first task
involves the investigation of composite tubular specimens, which are simplistic
representations of rotor blades and which provide the foundation for the development
of a database on elastically-coupled composite structures. The second task involves
the development of a model-scale helicopter rotor blade. This study will provide a
more in-depth understanding of the structural dynamic characteristics of elastically-
coupled rotor blades. In addition to the ground vibration tests which have been
performed in each of the two studies, a hover test has been conducted for the
composite model rotor blade, where the blade twist was measured as a function of
rotor speed. Following the completion of these two tasks, the application of extension-
twist coupling in the design of a tiltrotor blade, which is a more highly-twisted version
_ a helicopter rotor blade, will be investigated.

While the scope of the in-house research effort includes both static and dynamic

studies, this paper will focus on results obtained as part of the dynamics studies.
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The experimental/analytical investigation of the extension-twist-coupled

composite tubular specimens was performed for three cross-sectional designs:

square, D-shape, and elliptical. These three designs are shown as a photograph
above and as a drawing in the following figure.As these cross-sections are non-

circular, they are prone to cross-sectional warping deformations. Additionally, the

presence of extension-twist coupling in a laminate acts to "magnify" the warping effect,

therefore a significant effect on the structural dynamic behavior may occur. The

specimens were 24 inches in length and were fabricated from 4 plies of 0o/90 ° T-

650/42 graphite fiber with ERLX 1925-2 epoxy resin plain weave "prepreg" fabric.

The fabric plies were rotated 20 ° off-axis to achieve the desired extension-twist elastic

coupling.
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Extension-Twist-Coupled D-shape Tube
Free-free condition

2O0O

1500

Frequency,
Hz 1000

5O0

1 Z-Bend 1 Y-Bend 2 Z-Bend

I E] Test[] FEM Analysis
i

1 Shear 2 Y-Bend

A free-free ground vibration test was conducted to determine the modal
_mperties (frequency, mode shape and damping) for each specimen type. The

excitation was provided using a roving impact hammer, while the response was
measured using three single-axis accelerometers which were mounted in a tri-axial
configuration on an aluminum block affixed to one end of each specimen.

The results of the test/analysis comparison for the D-shape tube are shown in
the preceding figure. The mode shape and frequency data are plotted in tabular
fashion for both experimental and analytical data. The finite-element model of the
tube, which was constructed of 300 flat plate elements, is shown plotted in a deformed
(first vertical bending mode) versus an undeformed outline for the tube. A single solid
element was used to represent the accelerometer mounting block affixed to the test
specimen. Five global or "non-shell" modes, which are the primary mode types of

interest, were determined in the 0-2000 Hz frequency range: first vertical bending, first
lateral bending, second vertical bending, first vertical shear, and second lateral
bending. (The first vertical shear mode was identified by the relative shearing of
leading and trailing edges in the vertical plane with no net torsion present in the
mode.)

As a means of facilitating test/analysis correlation, the modal frequencies are
olotted versus mode shape for both test and analysis in a bar chart fashion. The
c)verall agreement for the D-shape tube results is good, ranging from 2% difference

(first vertical bending case) to 13.8% difference (second vertical bending case). The
average difference is approximately 6.5%.
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Extension-Twist-Coupled Elliptical Tube
Free-free condition

Frequency,
Hz

2000

15O0

1000

500

1 Z Bend 1 Y Bend 2 Z Bend 2 Y Bend 1 Torsion

The test and analysis results for the elliptical tube are shown in the figure on the
preceding page and the figure above, plotted in a fashion similar to that of the D-shape
tube. The finite-element model for this specimen was constructed from 350 flat plate
elements. A total of four solid elements were used to represent the accelerometer

mounting block in this instance, due to the curved geometry of the mounting surface.
Because of the improved coherence and phase characteristics of the measured data
in the upper frequencies, the frequency range of interest for this specimen was

extended to span 0-2500 Hz. Again, five global modes were identified for the elliptical
tube within this range: first vertical bending, first lateral bending, second vertical

bending, second lateral bending, and first torsion. Results from the comparison of test
and analysis data show very good agreement, ranging from 1% difference (first vertical

bending) to 9.3% difference (first lateral bending). Overall, the average difference in
test and analysis data was approximately 5.7% for the five modes.
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2000

1500

Frequency,
Hz 1000

500

0

Extension-Twist-Coupled Square Tube
Free-free condition

[] Test 1[] FEM Analysis

1Z-Bend 1Y-Bend 2 Z-Bend 2 Y-Bend

In the final specimen case, the results from the vibration test of the square tube
are compared with those obtained from the corresponding finite-element analysis and
are shown in the preceding figure and the above figure. The finite-element model of
the square specimen, which is shown in the first vertical bending mode, was
constructed from 200 flat plate elements. The accelerometer mounting block was

represented using a single solid element, similar to that in the D-shape specimen finite
-element model. Four global modes were identified in the 0-2000 Hz frequency range:
first "vertical" bending, first "lateral" bending, second "vertical" bending, and second
"lateral" bending. The terms "vertical" and "lateral" are used here to indicate the
general plane of deformation for the bending modes, although the "true" bending
planes are slightly canted from absolute vertical and lateral axes. The magnitude of
this inclination is on the order of 22 ° for the first vertical and first lateral bending
modes, and approximately 6 ° and 2 ° for the second vertical and second lateral
bending modes, respectively. It must also be noted that some torsional deformation is
present in each of the second bending modes, thereby producing a "coupled" mode.
Although the agreement of this data was within 9.5% overall (second lateral bending),
the average difference was approximately 7.2%, with the best-case (first lateral
bending) showing 5.8% difference between test and analysis data.

Collectively, these results suggest that the structural dynamic characteristics of
composite structures employing extension-twist coupling can be determined within

practical engineering accuracy. The investigation of these tubular specimens leads to
an enhanced understanding of the structural dynamic characteristics of elastically-
coupled structures and provides a basis for the development of practical composite
rotor blade designs incorporating extension-twist structural coupling.
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Development of Model Rotor Blade

C=omposite Model Prog[am

single-cell,non-warping

single-cell, warping-prone

multi-cell, warping-prone

{Existing blade molds 1

Application of exlension-lwist-coupled layup

_/ G(4plies, 0°/90 ° Gr/E cloth, rotated to 20 °)
--r/E cloth

_. --Fiberglass skin

Demonstration of concept

With the results of this phase of the research task in place, the development of a

model rotor blade was initiated. The above figure summarizes the basic steps that

have been taken towards this goal, with the fundamental development proceeding

from single-cell, non-warping tubular specimens (circular cross-sections), to the single

-cell, warping-prone tubular specimens (non-circular cross-sections) as presented.

This, in turn, led to the next step of the program, which was the development of a

model rotor blade (multi-cell, warping-prone design). A complete set of model rotor

blades was fabricated using an existing set of blade molds for a NACA 0012 cross

-sectional design. The layup design of the rotor blade spar incorporated four plies of

0o/90 ° Fiberite graphite/epoxy fabric, rotated to 20 ° off-axis, such that the desired

extension-twist coupling effect could be achieved. The culmination of this phase of the
research task was then effected through a demonstration of concept with the planned

hover test, in which the actual blade twist was measured as a function of rotor speed.
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The set of fabricated blades are shown in the following photograph, as mounted

on the ARES (Aeroelastic Rotorcraft Experimental System) test stand during the hover

test in the Transonic Dynamics Tunnel (TDT). The darker part of the blade structure

corresponds to the elastically-coupled graphite/epoxy blade spar, while the trailing

edge, which is essentially honeycomb filler wrapped by the single layer of fiberglass

skin, appears as the lighter portion of the structure.
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Extension-Twist-Coupled Model Blade FEM

• 8.25 ° pre-twist
• 326 grid points
• 290 CQUAD4 plate elements
• 60 CHEXA/CPENTA solid elements
• 59 CBEAM beam elements

The MSC/NASTRAN finite-element model of the model rotor blade is shown in

the following figure. The blade incorporates about 8.25 ° of pre-twist over its 42.5 inch

length. The finite-element model is composed of 326 grid points, 290 flat plate
elements, and 60 solid elements contained in the model (representing the balsa filler

and honeycomb components of the structure). In addition, a total of 59 beam elements

were used to represent the two internal ballast weight tubes within the blade as well as

the transition blade area, rotor cuff, and hub arm.

162



m

(1)

or"

_i li !

N

163

N

_"O1

C_I Ckl U_ O O O O
Od O") I_ (:O CO O Cr)

OJ O0 0 O0 LO 0 0
•r..r- .r- Ckl O0

0 O0 O0 0 O0

c v'c _- _c_._c oh5
_-0 c_ c ._ • 0

c ,_ _ r._-_
•"' m '.-,'-..o g _ t.._ ,.--c'_ ..O _
r, = ,., ._ _ _o
=__c=O_c=c
4--,-,--'0"0 :DO

LL LL 001-- LLr,_ LL (/)
.1I

h5

,m



Extension-Twist-Coupled Rotor Blade
cantilevered, unballasted

400

300

Frequency,
Hz 200

100

0

1 Flap

.......................... I_ Test

FEM Analysis

1 Lag 2 Rap 3 Rap 1Tors. 2 Lag 4 Rap 2 Tors.

The results of the ground vibration test are compared with those obtained from

the finite-element analysis for the cantilevered, unballasted configuration of the blade.

There were eight mode shapes identified in the 0-350 Hz range: first flap (vertical)

bending, first lead-lag (lateral) bending, second flap bending, third flap bending, first
torsion, second lead-lag bending, fourth flap bending, and second torsion. The

deformed mode shape displayed in the preceding figure is that of second flap

bending. The test and analysis data correlated well, ranging from 2% difference in the

second flap bending mode, to 12.7% difference in the first torsion mode. The average

difference in test and analysis data was approximately 8.8%.
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EXTENSION-TWIST-COUPLED BLADE TEST IN HOVER

Strain gage locations

.--- 8.25 ° twist

MEASUREMENTS

• Twist as a function of rpm

• Flap-wise, chord-wise loads

TEST PARAMETERS

• ballasted, unballasted blade configurations

• atmospheric and near-vacuum conditions

• 0-800 rpm range sweep

• collective pitch sweep

STATUS

• Hover test initiated 9/89

• Testing completed 2/90

• Data reduction initiated

An overview of the hover test is presented in the following figure, indicating test

and measurement parameters. The blades were mounted on an articulated hub, with

a total of four strain gage locations per instrumented blade. These gages were used to

determine measurements of blade twist as a function of rotor speed and were

calibrated such that twist readings were output real-time during the course of the test.

The flapwise and chordwise bending moments were also monitored and recorded in
addition to the usual balance information. The blades were tested in both ballasted

(ballast weight tubes filled), and unballasted (ballast weight tubes empty)

configurations in atmospheric conditions. The ballasted configuration was additionally
tested in a near-vacuum condition. This was done to divorce any contributions of

aerodynamic-induced twist effects from the twist due to the elastic-coupling effects.

Data was obtained for a 0-800 rpm range sweep, with corresponding sweeps in

collective pitch, ranging from the minimum pitch necessary to obtain a zero coning

condition, to a maximum of 17 °. Hover tests were initiated in September 1989 in the

hover test facility behind the TDT, with an initial unballasted, atmospheric test

configuration. Testing was suspended soon after completion of the first configuration

due to minor structural damage to two of the blades. The damage was associated with

an adhesive bond failure between the weight tubes and the clear tube designed to

close-off the weight tubes. Following the repair of the set of blades, testing resumed in

the TDT and was completed in February 1990. Data reduction has been recently

initiated for all test configurations, therefore a complete set of the results from

processed data is forthcoming.
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Summary

Dynamic testing and analysis of composite specimens is
essential to the establishment of structural dynamics
database

• Correlation of test/analysis provides basis for improvements
in finite-element techniques and modeling methodologies

Derivative blade designs resull in improved dynamic and

aerodynamic characteristics to meet future Army performance
requirements

In summary, the dynamic testing and analysis of the composite tubular

specimens has further enhanced the establishment of a structural dynamics database

for elastically-coupled composite structures. In addition, the correlation of test and

analysis data provides a basis for improvements in finite-element modeling

techniques. This can be seen from the results of the warping-prone tubular specimen

study, which exhibited good correlation between test and analysis (generally within

10%, with the exception of the 13.8% difference in the D-shape tube second vertical

bending case), and additionally with the results of the model rotor blade study (within

12.7% difference overall). Advanced rotor blade designs which may be derived as a

result of this research investigation will result in improved dynamic and aerodynamic
characteristics.
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IMPROVED FINITE ELEMENT METHODS FOR ROTORCRAFT STRUCTURES

Howard E. Hinnant
USAARTA-AVSCOM, ASTD

NASA Langley Research Cenler
Hamplon, VA
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Problem

Current day rotorcraft dynamic
analyses are not accurate enough

• Analyses are not easy enough to use

Dynamic finite element analyses available today do not accurately predict the
dynamic characteristics of rotorcraft. In particular, there continues to be a lot of trouble
predicting some of the higher frequencies. The problem may be in the finite element
codes or in the way engineers use the codes to approximate the physical structure. A
leading cause of the misuse of a code is that the codes are often not very easy to use.
There is a lot of tedious, repetitive work in building a good finite element model.
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The above photograph shows a Boeing CH-47D helicopter airframe mounted in

a ground shake test rig. The finite element model associated with this helicopter is

shown in the following figure. The complexity of such structures leads to many

approximations both in code development and in code use.
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Objective

• Develop technology needed for more
accurate and easier to use analyses

The objective of this research is to develop finite element technology which can

be used to improve the analysis capability of the rotorcraft industry. Improvements are
needed to both the accuracy of finite element codes and in the user interface of these

codes. An improved user interface should encourage the building of better finite
element models.
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Approach

Develop a research finite element code for
testing new ideas and techniques

Fabricate and test a simple physical model

Validate code with test results

When satisfied with accuracy, increase
complexity of physical model and analysis
in order to more closely approximate a
real-life structure

The approach taken with this research effort is to develop in-house a research

finite element code for testing new computational and modeling techniques. A small,

simple structure will be fabricated for testing. ]he code will be validated with the test
results. If the validation is not accurate, then the code or the finite element model will

be modified as necessary to improve the accuracy. When accuracy is satisfied, the

complexity of both the finite element analysis and of the physical structure will be

increased, and the process will be repeated. The cycle will continue in this way until
experience and confidence indicate the ability to analyze full scale rotorcraft structures

(see flow chart on the following page).
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Finite Element Advanced Technology

Features include

• Tapered p-version beam element

• General constraints - degrees of freedom can be
made functions of other degrees of freedom

• Coordinate system definitions can be based on other
coordinate systems

• Database m&naged by SQL (Structured Query
Language) - A standard relational database format
used for all types of data

The name of the research code developed is FEAT, which stands for Finite
Element Advanced Technology. Features of FEAT include: A tapered p-version beam
element. The beam's cross-sectional dimensions are allowed to taper from one end to
the other. This allows much easier and more accurate representations of tapered
structural members. Discussion of the p-version aspects of the element will follow later.

Any degree of freedom can be set to a constant or can be a linear function of

other degrees of freedom. The constraint equations are defined with respect to local
coordinate systems in which the degrees of freedom were defined. This constraint is
analogous to the NASTRAN MPC constraint.

Coordinate systems can be defined with respect to previously defined
coordinate systems, allowing the user to build complex chains of coordinate system
definitions.

The input data for the program is stored in a Structured Query Language (SQL)
database. SQL was developed by IBM specifically for manipulating relational
databases and was adopted as an ANSI standard about four years ago. It is rapidly
being accepted and endorsed by commercial database developers. Using a standard
database in a finite element code has several advantages. A user, without the aid of

FEAT, can query the database about his model. For example: "What elements are
connected to grid point 738?" Another advantage is that FEAT is already capable of
running in a multi-user network environment. SQL will handle multiple accesses to a
database across the network. Still another advantage is that a lot of code
development in FEAT was avoided because SQL handles many of the data
manipulation tasks.
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Finite Element Advanced Technology

Features (continued)

• All data structures allocated at run time. An analysis
only takes up as much memory as it requires

• Global matrices use "skyline" storage technique.
This saves vast amounts of storage and
computational requirements.

• Matrix resequencing at the degree of freedom level is
done with Reverse CuthilI-McKee

• Runs on a PC under 0S/2

All data structures in FEAT are allocated dynamically at run time. There is no

program statement in FEAT that gives a limit on the size of a job that the program can
handle. Instead FEAT queries the SQL database for the size of the job, and then

allocates only enough memory to handle the job. This allows the program to coexist

with other programs in a multi-tasking environment in a very efficient manner. An
added benefit is that the code is much easier to read and maintain when using

dynamic data allocation.
The global matrices use the skyline storage technique. This technique takes

advantage of the bandedness of structural problems by not explicitly storing many of

the zeroes which appear in the global matrices. This not only saves vast amounts of

storage, but also greatly reduces the computational requirements.
To further reduce the storage and computational requirements, the degrees of

freedom are recorded using the Reverse CuthilI-McKee algorithm to reduce the skyline
to a near minimum. FEAT currently runs on a PC under the OS/2 operating program.

A port to VMS or Unix should be relatively easy.
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Comparison Of
h-Version & p-Version

h-version

V=qO+qlx
on each element

p-version

V=qO +ql x + ... +qp xP
on each element

H-version elements, such as in NASTRAN and EAL, have fixed order

polynomials which describe the displacement on each element. On this slide, I have

shown linear polynomials. However, h-version elements can have any order

polynomial describe the displacement. What makes it an h-version element is that the

order of the polynomial is fixed when the element is developed. The p-version

element has a path order polynomial on each element, where p is input by the user of

the program. With h-version elements, one normally divides the domain up into a

relatively fine mesh, but have a higher order polynomial approximate the displacement
on each element.
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To demonstrate the difference between h-version and p-version elements, the
figures above show two h-version solutions to a problem where the exact answer is

known to be a cDsine curve. The top figure is a two element approximation containing
three degrees of freedom. The bottom figure shows the mesh refined to five elements
for a total of six degrees of freedom. In general, as one adds more and more

elements, the finite element solution will approach the exact solution over the entire
domain.
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The two figures above show p-version solutions for the same problem

discussed on the preceding page. These p-version solutions have the same number

of degrees of freedom as the previous h-version solutions. In the bottom figure, one

element using a 2nd degree polynomial has been raised to the 5th degree. The fact

that convergence is achieved by raising the order of the polynomials, instead of

refining the mesh, is what makes this a p-version solution.
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Comparison Of Changes Needed In
Input Data For h- & p-Version Models

Original h-version
data deck

h-extended
data deck

Original p-version p-extended
data deck data deck

Obtaining convergence by making your existing elements more accurate,

instead of by adding more elements, has important implications for the finite element

user. If one is trying to model a helicopter, it may take 10 man-months to generate the
finite element model. If someone comes up and says: "That's great, but it is

converged?", with an h-version code, you have no choice but to refine your mesh.

This will probably double the size of your input deck and take another 5 to 10 man

-months to generate. However, if you are using a p-version code, the modifications to

the input data deck will take at most a man-afternoon. The size of the input data deck

stays the same, only a few numbers in the data deck will change. This is the BIG

advantage of p-version elements. It wilt be shown later that p-version elements are

computationally more efficient than h-version elements, but the savings in computer

time is nothing compared to the savings in engineering man-hours.
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Conservation of Complexity

• Having p-version does not add complexity.

• It shifts complexity from the user to the finite
element developer.

h-version p-version

£ 4

ComplexilyI..............!

User Developer User Developer

Some people complain about the complexity that p-version elements add to a

finite element code. If one stands back and looks at the whole picture, that is, the user

as well as the code developer, you can see that p-version elements don't add

complexity, but merely shifts complexity from the user to the code developer. In my
opinion, this is where the burden belongs.
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Venn Diagram of
Finite Element Tools

Finite Element Tools Finite Element Tools

WRONG! RIGHT!

Another misconception people have about p-version elements versus h-version

elements is that they are two separate and non-overlapping entities. You have to

choose to go with one way or the other. This is not completely true. H-version

elements are actually a sub-set of p-version element. If you are using a p-version

code, and you determine that you need an h-version elements, you simply say to

yourself, "1 will not change the order of the polynomials on that element. But I might
subdivide that element." In other words you can use p-version elements as if they
were h-version elements but not vice-versa.

182



Comparison Of h- And
p-Version Convergence

Percent Error vs Number of Degrees of Freedom.
Fifth bending frequency
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This figure shows actual results from FEAT. Plotted here is the percent error in

the fifth bending frequency of a cantilevered beam versus the number of degrees of

freedom in the finite element models. A p-version model is shown with the circle

symbols, and an h-version model is shown with the squares. Note that the p-version
model achieves a much lower error with fewer degrees of freedom. This translates to

less computational effort for a given accuracy.
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Current Status / Future Plans

While development continues, FEAT is currently
useable as a research tool.

• Contains only beam elements and concentrated
masses. Plate elements will be included late this
year or in early 91.

• A simple structural model has been fabricated and
will be tested within one month. Correlation with
FEAT will follow.

Complexity will be added to the structural model at
about the same time as plate elements are added
to FEAT.

While development continues, FEAT is currently useable as a research tool. It

contains only beam elements and concentrated masses at the moment, but a p-

version plate element should be installed late this year or early next year. The first

simple structural model has been fabricated and should be tested shortly. Complexity

will be added to the physical model when plate elements are added to FEAT.
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Summary

• Need to improve the dynamic analysis
capability.

• FEAT is a research finite element code
which will be used to experiment with
new methodologies and modeling
practices.

p-version elements greatly reduce the
complexity of the convergence study.

In summary, there is a need to improve the finite element technology on which

the rotorcraft industry depends. FEAT is a research finite element code which will be

used to try out new computational techniques and modeling practices. And finally, p

-version elements greatly reduce the complexity of a convergence study.
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The Transonic Dynamics Tunnel (TDT) is a unique wind tunnel of the Langley
Research Center that is located in the East Area of Langley Air Force Base, Hampton,

Virginia. An aerial view of the TDT is shown in figure 1. The purpose of this facility is

to determine the aeroelastic characteristics of high speed aircraft, rotorcraft, and most

other aerospace vehicles produced in the U.S. Additionally, considerable efforts have

been devoted to ground-wind loads tests for launch vehicles, especially the space
shuttle. Since the wind tunnel supports a broad range of activities, such as basic

research, industry and Department of Defense projects, there is a high demand for test

time that normally perpetuates a schedule backlog of 1-1/2 years based on 2-shift

operations. This backlog has recently diminished because of restrictions associated

with a heavy gas test medium that will be discussed later.

The facility was originally constructed in the late 1930's as the 19-foot Pressure

tunnel utilizing air as the test medium; however, it was modified in the late 1950's to
become the TDT. Since that time, the test medium has been air or heavy gas (R-12)

operating at atmospheric or subatmospheric pressure. Until the recently imposed

limitations on operations, the test mode was heavy gas for approximately 80 to 90

percent of the time. Other subsequent modifications include a dedicated data
acquisition system, a new cooling tower, and increased tunnel drive power which

provided an increased density capability. These enhancements since the original
construction amount to $27.7 million. The total replacement cost is estimated to be

approximately $76.0 million.

DescriDtion

The TDT, as shown in figure 2, is a closed-loop wind tunnel. Continuous flow

can be provided by a 30,000 horsepower motor which drives a 47-fiberglass blade,

single-stage compressor. Total wind-tunnel volume is 1 x 106 ft3 with approximately

25 percent being contained in the plenum/test section which can be isolated with two

large valves, a gate valve upstream, and a butterfly valve downstream. The cross-

section view, figure 3, shows the 16 x 16 ft test section with the adjacent control room.

Close proximity of the control room to the model is necessary to provide constant
visual observation of the model, since aeroelastic testing is of a high-risk nature.

Although the control room is physically within the plenum, it remains an atmospheric
environment at all times. Figure 3 also shows "by-pass valve" which represents four

36-inch pipes, each with a fast operating valve connecting the plenum to the back leg

of the tunnel. Operation of these valves during a wind-tunnel test rapidly reduces the

test section dynamic pressure and Mach number to help prevent model failure due to
aeroelastic instabilities.

Four primary model-support Systems are used in the TDT wind tunnel. The

model-support systems are a sidewall turntable mount (used primarily for semi-span

aircraft models), a centerline sting mount, a free-flying cable mount, and a floor
turntable mount. The sidewall and sting mounts provide the capability of remote

angle-of-attack adjustment with "wind on" conditions. The floor mount may also be

rotated remotely.
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Capabilities

The Mach number range of the TDT is zero to 1.2. The highest Mach number

and dynamic pressure combinations are only attainable in heavy gas. The heavy gas
(R-12) test medium is a very critical aspect to the successful operation of the TDT.

Since R-12 is approximately four times denser than air, it allows for easier scaling of
the mass-density ratio, which may not otherwise be attainable. It is desirable for the

ratio of the distributed mass of the vehicle to the mass of the surrounding flight

medium, or mass-density ratio, to be the same for the model and the actual vehicle for

developmental flutter clearance testing. Heavy gas provides the capability of testing

heavier models which are easier to construct and build. This was the primary

justification for the 50 percent operating-density increase in the mid 1980's. Other

advantages of an R-12 test medium include lower scaled-model frequencies, higher

Reynolds number, and lower drive motor horsepower requirements.

Heavy Gas System

The heavy gas test medium, R-12, is delivered in bulk quantities and stored at

the TDT in the liquid state. Storage capacity is approximately 187 tons. The wind

tunnel capacity is 147 tons when fully charged in the gaseous state. The gaseous

state is attained through vaporization. When a test is completed or access to the

model is desired for a configuration change, the R-12 gas is pumped from the wind

tunnel and passed through a reclamation system to convert it back to a liquid for

storage and subsequent pressure of 600 psi. The gas leaving this point is a 78/22

percent air/R-12 mixture. It is passed through a secondary recovery stage which is a

three level +40, -40, and -80°F refrigeration system. Although the system is

approximately 98 percent efficient, based on processing 5000 tons annually, the total

loss of R-12 is significant. Other losses are from leaks at flanges, valves and valve

stems, and compressor shaft seals. R-12 is also trapped in pockets in the plenum/test

section area which cannot effectively be removed.

Recognizing the environmental responsibilities associated with R-12 and the
need to be in concert with the Montreal Protocol, a number of activities were initiated in

1989 to reduce the loss of R-12. A study which was finalized as a preliminary

engineering report was completed. Restrictions were imposed on the use of R-12 as a

test medium thereby limiting tests to those related to national security and having high

priority. These restrictions and associated uncertainties have reduced the schedule

backlog for tunnel usage.

Heavy_ Gas System Modifications

A Construction of Facility (CofF) project was immediately approved to modify the

heavy gas reclamation system. Project design is underway. Basically the existing

refrigeration system will be replaced with a low temperature condenser (LTC) system

which will use LN2 as the coolant, thereby providing temperatures to -200°F. Leaks

will be reduced by modifying flanges, replacing valves, and installing a scavenging

system to capture gasses where leaks are probable. Pockets that trap heavy gas will
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be filled with foamglass or will have ports installed to provide drainage. Adequate
instrumentation will also permit an improvement in operating procedures. Normally a
CofF project of this magnitude requires 2 to 4 years to be approved. This project is
unique since it will have been approved and design completed in less than one year
from concept. Moreover, construction is expected to be completed in late 1991; an
additional year. The estimated project cost is $6.5 million.

_;g.mmarv

Although environmental concerns were the original project justification,

economic factors have since become an important consideration. An excise tax, which

will reach $4.00 per pound before the turn of the century was applied to R-12 in 1990.

The project goal is to reduce the heavy gas losses in the TDT to less than one ton per

year.

The TDT has operated in the heavy gas mode for three decades; moreover, a

successful completion of modifications to the heavy gas reclamation system should

provide another three decades of heavy gas operation with the TDT continuing to be

the lead facility in the area of aeroelastic research.
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