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ABSTRACT

The research work described in the final report has been done for NASA

under Grant NAG-5-265during the period August 1982 to May 1990. The purpose

of the grant was to investigate microwave remote sensing models of vegetated

terrain. The basic problem is to determine canopy characteristics such as

biomass, canopy height and the moisture of the underlying soil. The report

describes a discrete scatter model which has been employed to model

backscatter in the active (radar) case and to model brightness temperature in

the passive (radiometric) case. The acquisition of ground truth data is

discussed, as well as the comparison of theory and experiment. The overall

conclusion of the work has been that the discrete scatter model in conjunction

with efficient scatter algorithms and the distorted Born approximation is a

most appropriate methodology to use for modeling purposes in the microwave

region.
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I. INTRODUCTION

The observation of the earth's terrain from space can provide valuable

information about the terrain's vegetation cover and underlying soil

characteristics. Active and passive sensors, such as radars and radiometers,

receive radiation from vegetation subelements. These signals can be used to

infer properties of the vegetation and the ground lying below it. To utilize

this information, the received radiation must be directly related to the

vegetation canopy structure. The discrete scatterer methodology provides a

modeling technique which supplies the necessary relationship in the microwave

frequency regime. When employing this modeling method, vegetation subelements

are replaced by discrete lossy dielectric scatterers with prescribed

orientation statistics. Analysis of this model yields the desired connection

between backscattered signals and the vegetation biophysical parameters.

The goal of the modeling effort is to remotely sense vegetation type, to

determine crop growth stage and to find plant and ground moisture levels.

This information can then be used as input data for agricultural, forestry and

global circulation models. Although optical and infrared measurement methods

yield valuable remote sensing information, microwave sensing in the L and C

band region of the frequency spectrum is particularly desirable for the

determination of canopy architectural characteristics. It is here that the

wavelength is comparable to the canopy subelement sizes. The resulting

resonant interaction leads to backscattered data which are highly dependent on

plant shape and orientation.

The work under this grant is described in the following section, Section

II. Section II has five subsections which discuss the individual projects that

were performed. In subsection A the discrete modeling of a soybean canopy is

described. Leaves and stems are replaced by lossy dielectric discs and

rods.The distorted Born approximation is then employed to compute the

backscattering coefficients. Finally, the forward model just discussed is



used as the basis for an inversion procedure to find the leaf inclination

angle distribution from the backscattering coefficient variation as a function

of angle. In section B more careful ground truth measurementsof soybean

plants are considered. As a result of these measurements, the model used in A

is generalized to include variations in leaf shape (leaves modeled as

elliptical discs) leaf area and non-uniform azimuthal angular leaf

distribution.

In the following two subsections the application of the discrete theory

the passive problem is discussed. The Peak relationship is used to derive

brightness temperature from the knowledge of the bistatic scattering

coefficient and the physical temperature of the terrain. Comparison of the

theory with experimental results is also considered. In subsection D an

efficient method for computing cross sections is presented. This is

particularly useful for the passive problem. There average values of cross

sections are needed over the complete scattering hemisphere.

A high frequency model for a leaf canopy is described in subsection E.

At high frequencies the main difficulty is computing the average cross

sections since the scattering patterns vary so rapidly. To avoid this problem

the average integral are asymptotically evaluated. Application of these

asymptotic cross sections to the distorted Born or transport calculations o[

backscattering coefficient is made.

Finally, in Section III a list of publications and papers which have been

presented at meetings is given.

II. REVIEWOFGRANTPROGRESS

This section represents the main body of the report where progres_ ,,"

active and passive modeling of terrain covered by vegetation is discussed_ A_

described above, the section is subdivided in topic areas A-F.



A. SOYBEAN CANOPY MODELING AND INVERSION

Simple plant canopies such as soybeans can be modeled by replacing the

plant's leaves and stems by dielectric disks and rods respectively as is shown

in Fig. i. The relative dielectric constant used for the discs and rods is

the equivalent dielectric constant of the plant material. The use of this

equivalent dielectric neglects scattering effects caused by internal

variations within the plant. This is small however, because of the long

wavelength involved.

Scattering amplitudes have been computed for both the disc and stem

elements. The resulting formulas for the scattering amplitudes are

particularly simple because they take advantage of the small ratio of

thickness to radius in the case of the discs and radius to length in the case

of the rods. The simple formulation is particularly important since the

results must be averaged over both inclination and size distributions.

Backscattering from the modeled plant canopy has been treated by two

techniques: the distorted Born approximation and the transport theory. The

two methods are equivalent when the albedo of the scatterers is small and no

coherent (planar) boundaries are present. It has been shown for the case of a

flat ground that the transport theory neglects certain coherent interference

terms which are taken into account by the distorted Born approximation. It

should be noted that this effect is a low frequency (L-band) phenomenon

because at higher frequencies the surface appears rougher, and as a result,

coherence effects disappear. Since the distorted Born method is applicable in

the L-band frequency regime, since it contains the interference terms and

since it is relatively simple in formulation as compared to vector transport

theory, it has been used almost exclusively, to calculate the backscattering

coefficients.

Application of the distorted Born theory to the modeling of crops such as

soybeans has yielded interesting results. Fig. 2 shows some of these results
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for a frequency of 1.5 GHz. The figure is a plot of a versus angle of
w

incidence. An examination of the figure shows that for vertical-like

polarized returns the leaves are dominant at low angles and the stems are most

important at large angles of incidence. This is not surprising since the

electric field is aligned with most stems at large angles of incidence.

The model whose results are shown in Fig. 2 consists of leaves having

radii of 2.5, 3.5 and 5.0 cm. Each of these leaf types has a density of

333/m 2. The stems are all taken to be 20 cm long and with a density of

lO00/m 3. The leaf and stem size characteristics were obtained by the

principal investigator who made on-site measurements at Beltsville.

Although Fig. 2 just shows the vertical-vertical backscattering

coefficient, simple expressions were obtained for the horizontal-horizontal

case as well as the cross polarized returns. These appear to be valid for

frequencies below 4 GHz as long as the correct dielectric constants for the

discs and rods are used. The de-Loor formula has been used for the

calculation of disc and stem dielectric constants however, at lower frequency

(= 1-2 GHz) a conductive contribution should be included.

The final step in any remote sensing problem is the inversion process.

Attention has been focused on the relationship between the backscattering

2

coefficient a and the joint probability density of disc radii and
hh

inclination angles. The expression derived by the distorted Born

approximation has been used. An examination shows that it is nonlinear in

nature. The relationship has been linearized in the 1-2 GHz region where the

skin depth is large. The linearized expression (a Born approximation) is a

Fredholm integral equation of the first kind. Inversion problems of this type

are usually ill-conditioned and must be regularized.

To simplify the inversion procedure further, it has been assumed that the

radii and inclination angle densities are independent. If it is assumed that

the density of one variable is known, then the other can be found through the

6



integral equation with the knowledge of the backscattering coefficient for

various angles of incidence. Such an inversion is shown in Fig. 3. Here the

leaves have fixed radius of 4 cm. The inclination angles density is shownby

the solid line in Fig. 3. The combinedjoint density is then used to generate
0

a for various angles of incidence. The calculated values of the
hh

backscattering coefficient are corrupted by noise and a Phillips-Twomey

inversion algorithm is used to compute the inclination angle density at

certain discrete points. The results, which are quite good, are shown by

small circles, squares and stars in Fig. 3.

B. SOYBEAN GROUND TRUTH

The work on this portion of the grant has focused on understanding plant

architecture and related model development. Ground truth data for a soybean

canopy has been obtained. Results of the analysis of this data have been

used to test existing modeling methodology to determine if it was adequate

To perform this test, the existing circular disc model has been generalized to

account for elliptic discs. In addition, the more general problem of

scatterers have a non-uniform azimuth distribution has been completed.

The ground truth data for soybeans was obtained in early August, 1985 at

the Agricultural Research Center in Beltsville, Maryland. There soybean leaf

and stem parameters were measured at three individual places in the same plo_

At two locations leaf height, orientation (inclination and azimuth) and

thickness were measured. Individual leaf shapes were drawn on graph paper

Stem and stalk lengths and thicknesses were recorded.

The soybean ground truth data was subsequently analyzed. Histograms hav_.

been computed for leaf height, area, inclination, angle, azimuth angle, lu

addition, leaf densities for leaf length and width were constructed so th_1'

parameters for elliptical leaves could be derived. As a representativ,.

example, the soybean leaf area density is shown in Figure 4. The area da_ ,

7
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SOYBEAN LEAF AREA DENSITY
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Soybean Leaf Area Density Measured at BeltsvLl_e,

MD, August, 1985.



was measured from the graph paper tracing of the leaves. A total of 242

leaves were measured and a histogram with 8 equally spaced bins was employed.

The results of the histogram were then curve fitted by a cubic spline.

The length and width measurements of the leaves verified the obvious fact

that soybeans do not have circular leaves. To test the effect of the

non-circularity on the backscattering coefficients, the backscatterer from a

layer of elliptical discs was computed. The results show that the

non-circular shape of the leaf has little effect at i GHz for all

polarizations. At 3 GHz the results are different. Although the shape does

not affect the like polarized waves, the cross polarized returns are shape

dependent as is shown in Figure 5. This is not surprising since it is usually

the cross polarized signals that respond to changes in shape.

Preliminary analysis of the data has shown that the soybean leaves are

not, in general, uniformly distributed in the azimuthal coordinate. This is

because the leaves tend to point out into the space between the rows. To

treat this case the discrete scatter model was analyzed for the nonuniform

azimuthal case. The analysis is complicated by the coupling of H and V

pQlarizations at the level of the mean. A compact expression for the

backscattering coefficients was obtained, however, by employing matrices and

Kronecker products.

The results of computation for this generalized model show little effect

for like polarized waves but a strong effect on cross polarized returns. In

addition to these results, the reflected mean field shows a symmetric

distribution is represented by A=O while the asymmetric case has A=I. The dip

in the horizontal reflected field is due to the coupling of horizontal and

vertical components in the medium.

C. BRIGHTNESS TEMPERATURE OF CANOPY (BT)

The discrete scattering method has been applied to the calculation of

I0
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brightness temperatures from vegetation canopies. The Peak relationship has

been employed where by the results for the active problem, that is the

bistatic scattering coefficient, can be used directly to obtain both the

horizontal and vertical brightness temperatures of the canopy. The passive

model developed, which is for leaf canopies only, has a simple structure but

contains a four dimensional integral. Presently, methods for efficiently

evaluating this integral have been investigated.

As reported previously, a passive model has been developed to compute

horizontal and vertical brightness temperatures from a soybean canopy at L

band. The soybeans have been replaced by circular discs having a prescribed

radii and inclination angle distributions. The leaves are assumed to be

uniformly distributed in the azimuthal coordinate. The calculation of the

brightness temperatures required computing integrals over the two scattering

angles, the two orientation angles and the radius distribution. By use of a

low frequency expansion the numerically intensive calculation was speeded up

considerably.

To verify the theory, radiometer and ground truth data was taken in the

summer of 1987 at Beltsville, Maryland. At the time of the measurements,

orientation angles and the areas of a substantial number of soybean leaves

were measured. From these measurements inclination angles and radius

distributions were developed. Furthermore, the density of leaves were

determined, as well as the dielectric constant of the leaves and the.

underlying soil. Thus all model parameters thought to be of importance wer_

measured. Measurements of brightness temperatures were made for both dry and

wet soils.

Comparison of the theory and the experiment are shown in the t_o

accompanying figures (Figs. 6 and 7) for the horizontally polarized case. Th_

curve labeled TB is the experimental data. The TB is the theoretical bar_-
exp o

surface values without vegetation, TB is the brightness temperature takiT_
sp

12
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the attenuating effect of the layer into account and TB and TB show the
sd sddr

effect of adding scattering effects into the calculation. One graph is for

dry ground and the other for wet. An examination of the curves, shows that in

both cases the match between experiment and theory is quite good, however the

dry soil case is better.

For the vertically polarized case subsurface mechanisms are being

investigated to try and explain the observed effect. Early in the

investigation it was noticed that the main difference between the Fresnel

predicted values and the experimental values occurred at the Brewster angle.

Since at this angle the wave couples strongly into the ground, it was thought

that some inhomogeneity such as a layer was disturbing this coupling

mechanism. To test this hypothesis, the problem of a ground with a vertically

stratified layer was analyzed. It was found that layer with with as little as

15% change in dielectric could cause substantial changes in the vertical

brightness temperature at the Brewster angle without effecting the horizontal

brightness temperature markedly. Further studies of this effect are being

made.

D. PULSE PROPAGATION

During the past several years, radar ranging techniques have come into

increased use. They provide a method for isolating backscatter from

individual layers of the canopy. Other investigators have developed

algorithms which relate backscatter to attenuation and scattering in the

canopy. Their derivation is based on the water cloud mode. We have rederived

these results and generalized them by using the distorted Born approximation.

The improved algorithms, which have been obtained, relate radar backscatter to

the average scatterer characteristics. The formulas incorporate polarization

effects as well as the interference effect between the ground and the

vegetation. The results are for a finite incident beam with a given

15



polarization. The incident beamhas a specified pulse shape. The theoretical

results give the backscattered pulse as a function of time. The final

algorithm contains explicitly the effects of the direct, direct-reflected and

the reflected contributions to the scattering.

E. EFFICIENTCOMPUTATIONOFCROSSSECTIONS

Discrete microwave modeling of vegetation, via the single or multiple

scattering methods, involves the computation of the average phase function for

each scattering type used in the model. The calculation, which involves

averaging the phase function over all scatterer orientations and sizes, is

usually computationally intensive. This calculation has been made more

efficient by employing either low frequency or high frequency expansion

techniques. The efficient method have been developed for both discs and

cylinders. These techniques have been used in a passive model of a soybean

canopy and in an orchard. Both models required averaging over many element

types (different size leaves and branches) and thus are computational

intensive.

As mentioned above the efficient cross section methods were used in a

passive L band model of a soybean canopy. The model was based on the Peake

formula to relate scattering coefficient of the soybean layer to its

brightness temperature. The model results are presently being comparedwith

experimental results obtained at Beltsville, MDin the summerof 1987 using a

1.4 GHzradiometer. To facilitate the comparison of theory and measurement.

ground truth data consisting of leaf azimuth and inclination angles, leaf

area, leaf thickness and leaf dielectric constant have been measured. The use

of this data in the theory resulted in the need to perform a five-dimensional

integral over leaf radii, orientation and scattering angles. The efficient

calculation of scattering cross sections made such a calculation possible in

reasonable CPUtimes.

16



F. X-BANDCANOPYMODEL

In the past the GWUradar vegetation model has been applicable for both L

and C band frequencies. Over the past year the model has been extended to the

X band frequency range. The development of this model has been a two step

process. First, the average characteristics of scatterers must be found at X

band and then their backscattering characteristic as an ensemble must be

computed. Computation of the average bistatic scattering cross section of a

leaf, branch or trunk becomesincreasingly difficult as the wavelength becomes

small compared to the size of the object. Basically, the scattering pattern

of an individual scatterer oscillates more and more as the wavelength

decreases. Computing the average overall the scatterer orientations takes an

increasing amount of computer time. To bypass this difficulty, the average

integrals over the scattering cross section have been asymptotically

evaluated. This greatly reduced the computation time and, in addition, the

resulting average scattering cross section can now be interpreted in terms of

geometric-optic constructs.

At L and C bands the distorted Born approximation is used to compute the

radar backscattering cross section from the scattering characteristics o[

individual scatterers. This approximation basically assumes that multiple

scattering is not important. At X band frequencies, this approximation is t_o

longer true and a multiple scattering approach must be used. The vector

transport approach has been used to compute backscatter from forests at X

band frequencies. The transport equations used have been modified to accouf_

for individual scatterers. At high frequencies or small wavelengths the

average bistatic scattering cross section has a large peak in the forward

scattering direction. This is introduced in the vector transport equations as

a separate delta function contribution. If the equations are not iterated

new "high frequency" distorted Born approximation is developed which is val!,!

17



in the X band frequency domain, The method has been applied to leaves and is

presently being applied to finite size dielectric cylinders.

18
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