—

@ https://ntrs.nasa.gov/search.jsp?R=19920004463 2020-03-17T13:46:05+00:00Z

s/
) ,

/
g 37
ART/Ada Design Project - Phase /
Final Report

N g 92-116"7
(NAata-C2=123%939) ART/A“A G sTuN PROIJELT, nN32-11671

. : rance Cor e)
s nil =2aeoort (Interence © e
e b ' CseL 09>
135 ¢ Jnclas

53/21 00ahadd

Inference Corporation

March 1989

Cooperative Agreement NCC 9-16
Research Activity No. SE.19

NASA Johnson Space Center

Information Systems Directorate
Information Technology Division

©__0O

—_—)

Research Institute for Computing and Information Systems)
University of Houston - Clear Lake ’

T-E-C-H-N-I-C-A-L R-E-P-O-R-T

The
RICIS
Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

ART/Ada Design Project - Phase /
Final Report

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/ISC
through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and
the University of Houston-Clear Lake. The NASA technical monitor for this activity was
Robert T. Savely, of the Software Technology Branch, Information Technology Division,
Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

ART/Ada Design Project - Phase I

Final Report

Subcontract 015
RICIS Research Activity SE. 19
NASA Cooperative Agreement NCC-9-16

March 1989
Inference Corporation

5300 W. Century Blvd.
Los Angeles, CA 90045

Copyright © 1989 Inference Corporation

ART/ADA DESIGN PROJECT - PHASE 1

Table of Contents

. Introduction

. Project Goal

2.1 Conventional Expert System Tools
2.2 Considerations for Ada Environment
2.3 Requirements for Real-Time Embedded Systems

. Current Status

3.1 Overview

3.2 Introduction to ART-IM

3.3 ART-IM Ada Deployment Compiler
3.4 ART/Ada Run-time System

3.5 Deployment in Ada Environment

. Prototype Development Process

4.1 Specification

4.2 Object-Oriented Design
4.3 Implementation

1.4 Reuse

4.5 Testing

4.6 Debugging

4.7 Summary -

. Performance Analysis

5.1 Speed
5.2 Size
5.3 Discussion

6. Related Work
7. Future Work

8.

7.1 Summary

Conclusion

References

L

Detailed Description of ART/Ada Implementation

.1 Deploying an ART-IM application in Ada
[.1.1 Ada Source Code Generated by the Ada Deployment Compiler
[.1.2 ART/Ada User Interface Command Loop
[.1.3 Example Main Programs
.2 Public Packages in ART/Ada
[.2.1 ART
[.2.2 ERROR _HDL _SUB
1.2.3 USER _INTERFACE _SUB
[.3 Ada Call-In and Call-Out Specification for ART/Ada and ART-IM
[.3.1 Interface Types
[.3.2 Scope of Objects
[.3.3 Call-Out from ART to Ada
1.3.4 Call-In from Ada to ART/Ada

"IL Difference between ART-IM 1.5 and ART/Ada 1.0

III. ART/Ada Public Packages

ITL.1 Specification of ART Package
II1.2 Specification of ERROR _HDL _ SUB Package

FINAL REPORT

ARV IR TRV | BRI /I I

—
Q

—_—— = —
S = R

—
&

—_
[R~

oo NN Y e e
e LW OO NS oL U

[
N

-
1

o O MR VR MR P P
N R WO OO O W W~

—
9]

ART/ADA DESIGN PROJECT - PHASE |

1.3 Body of ERROR _ HDL _ SUB Package
I11.4 Separate Procedure ERROR _HDL _ SUB.PROCESS _ ERROR
[11.5 Separate Procedure ERROR _ HDL _ SUB.WARNING
I11.6 Specification of USER _ INTERFACE Package
IV. Benchmark Programs
[V.1 Monkey and Banana
V.2 N-Queens
V. Test Programs
V.1 Sweeptop
V.2 Sweep?

FINAL REPORT

=0

ART /ADA DESIGN PROJECT - PHASE |

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 7-1:

List of Figures

Composite ART-IM Screen

ART-IM Ada Deployment Compiler

Ada Deplovment Process

Spiral Life Cycle of the ART, Ada 1.0 prototype
Propesed Spiral Life Cycle of the ART "Ada 1.5 prototype

FINAL REPORT

-1

Nel

19

ART,ADA DESIGN PROJECT - PHASE I FINAL REPORT

List of Tables

Table 5-1: Speed of ART/Ada in Rules/Second 15
Table 5-2: Size of ART/Ada in KBytes 15

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

1. Introduction

Under subcontract to University of Houston - Clear Lake as part of the Cooperative Agreement between
UHCL and NASA Johnson Space Center, Inference Corporation conducted an Ada-Based Expert System
Building Tool Design Research Project. The goal of the research project was to investigate various issu-s
in the context of the design of an Ada-based expert systems building tool. The research project
attempted to achieve a comprehensive understanding of the potential for embedding expert systems :n

Ada systems, for eventual application in future projects.

This report will describe the current status of the project by introducing an operational prototype.
ART/Ada. It will then explain how the project was conducted analyze the performance of the prototype.

compare it with other related works, and suggest future research directions.

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

2. Project Goal

This chapter identifies the goal of the Ada-Based Expert System Building Tool Design Research Project

This chapter is composed of three sections:

e Conventional Expert System Tools
e Considerations for Ada Environment

» Requirements for the Real-Time Embedded Systems

As the Department of Defense mandate to standardize on Ada as the language for embedded software
systems development begins to be actively enforced, interest from developers of large-scale Ada systems in

making expert systems technology readily available in Ada environments has increased.

Two examples of Ada applications that can benefit from the use of expert systems are monitoring and
control systems and decision support systems. Monitoring and control systems demand real-time
performance, small execution images, tight integration with other applications, and limited demands on
processor resources; decision support systems have somewhat [ess stringent requirements. An example
project which exhibits the need for both of these types of systems is NASA's Space Station Freedom.
Monitoring and control systems that will perform fault detection, isolation and reconfiguration for
various on-board systems are expected to be developed and aeployed on the station either in its initial
operating configuration or as the station evolves; decision support systems that will provide assistance in
activities such as crew-time scheduling and failure mode analysis are also under consideration. These
systems will be expected to run reliably on a standard data processor, currently envisioned as a 1-16
megabyte 386-based workstation. The Station is typical of the large Ada software development projects

that will require expert systems in the 1990’s.

2.1 Conventional Expert System Tools

Inference Corporation developed an expert system tool called Automated Reasoning Tool (ART) which
has been commercially available for several years [8]. ART is written in Lisp and it supports various
reasoning facilities such as rules, frames, truth maintenance, hypothetical reasoning, and object-oriented

programming.

More recently, Inference introduced another expert system tool called ART-IM {Automated Reasoning
Tool for Information Management) which is also commercially available [9]. ART-IM is written in C and
it supports a subset of ART's reasoning facilities; ART-IM Version 1.5 supports forward-chaining rules,

frames, truth maintenance, and basic object-oriented programming.

ART;ADA DESIGN PROJECT - PHASE [FINAL REPORT

Both ART and ART-IM have been successfully used to develop many applications which are in daily use

today.

2.2 Considerations for Ada Environment

This research project permitted Inference to study how to bring the ART and ART-IM features into
Ada environments. Inference’s approach in designing an Ada-based expert system tool is to use an
existing architecture such as ART or ART-IM so that its input language would be identical to that of an

existing tool.

Two approaches to implementing the existing architecture were considered:

1. To implement the whole system in Ada
2. To implement an Ada deployment compiler as part of an existing tool

Since the purpose of the project was to research operational issues such as those discussed below, it was

decided to take approach number 2.

2.3 Requirements for Real-Time Embedded Systems
Laffey et. al. identified potential problems in using conventional expert system tools for real-time

applications(Laffey88b]. Many of these problems are already solved by ART and ART-IM.

ART and ART-IM provide features for embedded environments such as

o They have facilities for handling asynchronous inputs.

e They have a standard call-in and call-out interface for various languages.

e They assign priorities to rules which can be used to focus attention on important events.
e They have interrupt capabilities.

e They can run continuously even if there is no rule to fire.

Among the problems that Laffey et. al. identified, ART and ART-IM do not address the following

problems:

e Guaranteeing response times

e Temporal reasoning capability

Both ART and ART-IM are based on the Rete algorithm [5]. Lalfey et. al. claim that in real-time

applications, the knowledge base changes too rapidly for the Rete algorithm to be optimal {11i. Barachini

ART/ADA DESIGN PROJECT - PHASE 1 FINAL REPORT

et. al. claim that an expert system tool based on the Rete Algorithm can be optimized to better support
real-time expert systems {2|. The reported speed of their system. however, does not seem much faster
than that of other C-based tools such as CLIPS or ART-IM. Some tools specialized in the monitoring and
analysis applications do not use the Rete algorithm; they use a compiled, static knowledge base in which
all variables used in the rules are resolved at compile time '12. '10i. While the speed of these tools seems
faster than that of the Rete-based tools, these tools still cannot guarantee response times. Tlie main
drawback is that they may not be suitable for expert system application areas other than monitoring and
analysis. An alternative approach to the compiled, static knowledge base is an object-oriented
programming {OOP) facility that uses active values. The OOP facility is already implemented in ART.
and it is being considered for ART-IM and ART/Ada.

A temporal reasoning capability refers to a way to invoke a rule at a regular time interval. For
example, the following is a temporally driven rule:
Check the price of IBM stocks every hour.

If the price goes down more than five dollars 1n an hour,
then sell all shares.

The temporal reasoning capability can be directly supported, or it could be implemented as an Ada task
outside of the inference engine. The task should be started during the initialization phase of the expert
system as a demon that wakes up at a certain time interval. A built-in temporal reasoning capability,

therefore, may not be as important as the issue of guaranteed response times.

There are two different levels of real-time requirements: soft real-time and hard real-time 12]. In a
hard real-time system, the correctness of the system depends not only on the result of computation. but
also on the time at which the results are produced. If these strict timing constraints are not met, the
consequence may be disastrous. On the other hand, in a soft real-time system, disastrous consequences do
not result if the dead-line is missed. While most expert system tools try to address the soft real-time issue

today by improving their performance, they do not, yet, address the hard real-time issue.

The current generation embedded processors such as the MIL-STD-1750A have limited addressing
capability of 2 megabytes. Medium size Ada-based expert systems may not fit into this limitation. It is
also known that the size of the Ada-based expert systems is larger than that of C-based counterparts.
While next-generation embedded processors such as the 80386 would alleviate the size problem. it would

still be desirable to study how to optimize the size of the Ada-based inference engine.

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

3. Current Status

This chapter discusses the status of a prototype Ada-based expert system building tool. called ART Ada

Version 1.0.

3.1 Overview

A primary goal of this research phase was to design an expert system tool that allowed applications to

be deployed in Ada environments. In order to achieve this goal, three components were needed:

¢ Existing expert system tool as a baseline
¢ Application generator that generates Ada code

e Ada-based inference engine

After ART and ART-IM were reviewed carefully, ART-IM was selected as a baseline system because C
was much closer to Ada than Lisp. ART/Ada, an Ada-based inference engine, was modeled after that of

ART-IM Version 1.0 which supported forward chaining rules.

ART-IM has a deployment compiler that converts an application into C data structure definitions. An
Ada deployment compiler was designed using the C deployment compiler as a model. The Ada
deployment compiler converts C data structures specific to an application into Ada source code that
would be used to initialize Ada data structures equivalent to the original C data structures. The Ada

deployment compiler is written in C and is part of ART-IM.

3.2 Introduction to ART-IM

ART-IM is a general purpose expert system tool written in C. ART-IM version 1.0 implements a
forward-chaining rule-based inference engine using on the Rete algorithm. It also has a truth

maintenance system, called Logical Dependency.

ART-IM version 1.5 includes a frame system, called Schema system, which i1s fully integrated with the
rule system. It also includes an explanation system, called Justifications. In addition, ART-IM version
1.5 for MS-DOS has a presentation manager style user interface, called Studio, that provides extensive

capabilities for debugging ART-IM applications. An example of a Studio screen is shown in Figure 3-1.

The ART-IM syntax is basically a subset of the ART syntax. An application written in ART, therefore.
can be easily ported to ART-IM.

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

Figure 3-1: Composite ART-IM Screen

'Deternlne if su
(LOQIQAL (QLQSSIF

(IS-A MAMM
(CARRIES-0 .
Run 1mit... NE-LOCOH ECHAN

(ASSERT i -OFFSPRING-F0O
: " I -<kIi- ol

DETERMINE-SOCIA
Current run limit. @ START-CLASSIFY-ANI
Enter new run linit (-1 for @);

F Edit | | Justified | | Salience

Cancel Browse Refresh Activations

Invalid run limit - must he positive integer, or -1 for o,
Press any key to continue

Figure Key:

1 - Menu Bar 5 - Browser Dialog Box (Object-Type)
la - Menu Name Sa - List Box Control
1b - Menu Name Mnemonic 5b - Highlighted List Box Item
1c - Highlighted Menu Name 5c - Vertical Scroll Bar
5d - Scroll Bar Elevator
2 - Interaction Window S5e - Push Button Controls
2a - Display Area 5f - Push Button Mnemonic
2b - Command Area 5g - Highlighted Push Button
3 - Status Line 6 - Browser Dialog Box
(Individual-Object)
4 - Menu 6a - Selectable Text Control
4a - Menu Item (Command) €b - Horizontal Scroll Bar

4b - Menu Item Mnemonic

4c - Menu Item (Extended Command) 7 - Prompting Dialog Box
4d - Highlighted Menu Item 7a - Edit Control

4e - Accelerator Key Designatoer

4f - Menu Separator 8 - Message Box

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

3.3 ART-IM Ada Deployment Compiler

ART-TM Version 1.5 was augmented with an Ada Deployment Compiler to support the ART /Ada run-
time system. As shown in figure 3-2, its input 1s an ART-IM source file. and its output is Ada source
files. At any point after an ART-IM source file is loaded into ART-IM and reset, 1t can be invoked to
generate the Ada source code that will be used to initialize ART internal data structures for the
ART ‘Ada runtime system. The ART-IM program can be run up to any given point before the code

generation takes place.

Since it is part of ART-IM, the Ada deployment compiler is written in C. In addition to generating Ada
source code that represents the knowledge base, it also generates a call-out interface module that can be
used to call user-defined Ada functions. ART-IM provides a powerful call-out specification language that

can be used to call out from ART-IM or from ART/Ada to Ada.

ART-IM

Code
Generater

=T
'r

i g Ada:
. Duploysens
5 Conmpline.

Figure 3-2: ART-IM Ada Deployment Compiler

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

3.4 ART/Ada Run-time System

The ART/Ada run-time system is composed of the following components:
) g P

e Inference engine

e Procedural Interface Package

e Memory management package

e Ada deployment compiler utilities

e User interface package

ART/Ada’s inference engine is based on the Rete algorithm, and supports only forward chaining rules

matching on facts as specified in the ART-EM Version 1.0 syntax.

ART/Ada supports a simplified version of the procedural language of ART-IM. ART/Ada’s procedural
interface can be used either in the rule right-hand side, or directly in user’s Ada programs. The
procedural interface includes data type conversions between the Ada data types and the ART data types,
predicates, operations on ART objects, ART commands, I/O f{unctions, and math functions. ART/Ada’s
/O system supports simple input and output functions. Unlike ART-IM, stream are not supported in
ART/Ada. All streams variables default to either standard output or input. File [/O is not supported in
ART/Ada. ART/Ada's math package provides most mathematical functions except trigonometric

functions.

ART/Ada’s memory management package uses Ada the features new and unchecked _deallocation
to allocate and deallocate memory. In phase II, the advantages and disadvantages of implementing a

memory manager for ART/Ada will be investigated.

The ART/Ada run-time system contains utilities called by the Ada code that ART-IM Ada deployment

compller generates.

ART/Ada has an optional simple command interface that support rudimentary debugging features such

as tracing/untracing rules, facts, activations, printing out facts and agenda, and running the program.

3.5 Deployment in Ada Environment

As shown in Figure 3-3. the following steps are needed to deploy an ART-IM application in Ada:

1. Develop an application in ART-IM using ART-IM's development environment.

2. If necessary, call out to Ada from ART-IM using the standard callout mechanism for both
ART-IM and ART/Ada.

ART/ADA DESIGN PROJECT - PHASE 1

3. Generate Ada code from ART-IM using the Ada deployment compiler.

1.

Compile the generated Ada code.

FINAL REPORT

5. Link 1t with an Ada library of the ART 'Ada runtime system and user’s Ada code if any

<

C 3
ART4M
with Ads rs
Deployment
Complier
<>

- Deploy the Ada executable image on a host computer or on a target system

User

i

b+

e
e

Ada Unker

i

Figure 3-3: Ada Deployment Process

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

4. Prototype Development Process

This chapter discusses how the ART 'Ada Version 1.0 prototype was developed.

4.1 Specification

ART-DM Version 1.0 was used as a functional specification for the ART, Ada Version 1.0 prototype.
Some features in ART-IM 1.0 (e.g. Logical Dependency) that were not essential for the proof of concept

were left out intentionally.

The ART-IM C source code was used as a detailed design specification for the ART Ada run-time
system. The ART-IM internal function definitions and data structures were converted to Ada package
specifications which were compiled by an Ada compiler. The Ada package specification served as a

detailed design specification of ART/Ada.

4.2 Object-Oriented Design

ART/Ada was designed using the object-oriented design (OOD) methodology. The object-oriented
design is an approach to software design in which the system is decomposed into a set of objects. Each

object is mapped to one or more Ada packages. Four different kinds of packages were used in the design:

e Abstract Data Object (ADO)
e Abstract Data Type (ADT)
e Package of subroutines (SUB)
e Package of declarations (DCL)
The Abstract Data Object is a package that contains encapsulated data and operations (expressed as

subprograms) performed upon those data. These data are static and local to that package. They are

known as state data.

The Abstract Data Type is a package that contains abstract types and operations performed on those
abstract types. The operations are expressed as subprograms and the abstract types are declared as the

Ada types.

The package of subroutines is a package of logically related subroutines. There exists no encapsulated

data in this package.

The package of declarations is a package of logically related declarations. These declarations may be

types, constants, or exceptions.

10

-,

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

4.3 Implementation

Once package specifications for the Ada run-time system were laid out, the packages were Jivided
among two programmers to be implemented. Again, the ART-IM C source code was used as a program
design language (PDL). Despite the differences between C and Ada, it was relatively easy to port ¢ code
into Ada. In fact, productivity was as high as 500 to 1000 lines of code a week per person during the

actual coding phase.

Perhaps it is worthwhile to describe the difficulties encountered while porting C to Ada. A lack of
function pointers in Ada made it necessary to write a case statement which contains all the Ada
subprograms that were called either by the system or by the user. This case statement was generated
automatically by the Ada deployment compiler according to the call-out interface specification of system

functions and user-defined functions.

In C, it is legal to treat an arbitrary memory location as a certain data type at run-time through type
casting. For example, four bytes of memory could be used as a long integer or as a pointer depending on
how it is casted. Similarly, a pointer to a data type can be casted to a pointer to another data type.
Another example is bit manipulation operations such as bitwise exclusive OR which is useful in hashing.
Ada does not allow such practices in general. Certainly they are not recommended if they are not
prohibited. Since ART-IM uses many such C features to achjeve the maximum efficiency. 1t was

unavoldable to sacrifice some performance when it was ported to Ada.

4.4 Reuse

In order to reduce the development cost of the ART/Ada prototype, it was decided in the early phase of
the project that the Booch components [4] would be used in the ART/Ada prototype. A linked-list
package, a string package, and other utility packages are used by ART/Ada. The following is the full
list:

e "vcalenut.a* -- package CALENDAR _ UTILITIES

e “vcharuti.a* -- package CHARACTER _ UTILITIES

* "vfixedut.a" -- generic package FIXED _POINT _UTILITIES

* “viloatut.a* -- generic package FLOATING _POINT _ UTILITIES

* "vintegrt.a" -- generic package INTEGER _ UTILITIES

e "vlistsum a" -- generic package LIST _SINGLE _ UNBOUNDED _ MANAGED

* "vstorage.a" -- generic package STORAGE _ MANAGER _ SEQUENTIAL

11

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

e "vstrings.a® -- generic package

STRING _SEQUENTIAL _UNBOUNDED _ MANAGED _ ITERATOR

e “vstringt.a" -- package STRING _ UTILITIES

Some of these packages had to be modified because they failed to compile on a certain comptler. or theiwr
functionality was not what was desired. The modified version of these components were successfully
compiled on Alsys, Verdix, and DEC compilers. The package body of
LIST_SINGLE_UNBOUNDED_.\«LXNAGED did not compile on the Sun Tartan compiler because of a

bug in the compiler. Consequently, the Tartan compiler had to be excluded in the benchmark.

4.5 Testing

It was difficult to unit-test ART/Ada modules which were part of the inference engine kernel because
these modules were highly interdependent. For example, it was impossible to test the join network
module without the pattern network module. For this reason, test programs originally developed for
ART-IM were modified and used to validate ART/Ada functionally as well as to do some unit testing.
This validation and verification method turned out to be very effective. It is analogous to the Ada

compiler validation test suite.

In the future, if an independent third party verification and validation contractor develops a set of test
suites for a particular expert system tool, it would be an effective way to validate an expert system tool
such as ART/Ada. It does not seem feasible to develop a general purpose test suite for several expert
system tools because the input languages are usually very different. [t may be possible to come up with a

set of general requirements for developing such a test suite, though.

4.6 Debugging

In VLSI testing, a "golden device" that has been proven correct in advance 1s used to test chips in

production. Likewise, ART-IM served as “golden software" while testing and debugging ART/Ada.

Many times, a source-level C debugger on a Sun, dbxtool, was used side by side with the Verdix Ada
debugger to track down subtle bugs, which was very effective. While single-stepping through critical code

segments, difficult bugs were easily 1solated.

"

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

4.7 Summary

[t was a great advantage to have a commercial expert system tool. ART-IM. and its socurce code
throughout the development cycle of the ART.Ada prototype. During all phases of prototype
development. it helped programmers greatly. As a result, it allowed high productivity among
programmers and high quality in the prototype. It also reduced the development time greatly. Without
tt, it would have been impossible to develop an operational prototype in such a short time. \With two
programmers working on the project, coding was started in July 1988, and the prototype was fully
operational in December 1988. A modified version of Boehm's spiral model 3! is used to show the

ART/Ada 1.0 prototype life cycle in Figure 4-1.

Installation Desi
(Jan '89) oy O
Verification/Validation
(Dec '88) (Aug '88)

{ - Proof-of-Concept Prototype

Figure 4-1: Spiral Life Cycle of the ART/Ada 1.0 prototype

13

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

5. Performance Analysis

This chapter analyzes the performance of the ART Ada 1.0 prototype.

The following programs were used to benchmark it. [n both programs, 1. O was suppressed so that the

speed measured was not the speed of 170, but that of the ART ‘Ada inference engine.

e Monkey and Banana: It fires 81 rules. and it has 13 facts in the knowledge base after it runs.

e N-Queens (6 Queens): It fires 515 rules, and it has 155 facts in the knowledge base after it
runs.

ART/Ada code was successfully compiled on the following platforms:
« IBM PS/2 Model 70 using the Alsys 286 DOS Ada compiler Version 4.2
e Sun 3/260 using the Verdix Sun Ada compiler Version 5.5K.
e Sun 3/260 using the Alsys Sun Ada compiler Version 4.2 Beta

e VAXstation Il using the DEC Ada compiler Version 1.5

As mentioned earlier, the package body of a Booch component,
LIST _SINGLE _ UNBOUNDED _ MANAGED, did not compile on the Tartan Sun Ada compiler Version

2.0 because of a bug in the compiler. Consequently, the Tartan compiler was excluded in the benchmark.

Ada files were compiled with maximum suppression of error checks and maximum optimization. For

the Verdix Sun Ada compiler, the following command was used:

a.make -S -0 -v main -f *.a

For the Alsys compilers, the following default was used for compilation:

COMPILE (QPTIONS => (CHECKS => STACK),
IMPROVE => (CALLS => INLINED,
REDUCTION => EXTENSIVE)
KEEP => (DEBUG => NO,
COPY => NO))

In addition, the following default was used on the Alsys 286 DOS compiler for linking:

BIND PROGRAM=MAIN, EXECUTION=EXTENDED

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

5.1 Speed

The speed of ART/Ada is measured on the following platforms:

L. Sun 3/260 with 16 MBytes of memory using the Verdix Ada compiler
2. Sun 3260 with 16 MBytes of memory using the Alsys Ada compiler
3. IBM PSy2 Model 70 386 20 MHz with 6 MBytes of memory using the Alsys Ada compiler
The speed is measured in the number of rules per second against a wall-clock time, not a CPU time.

The PS/2 is a single user system. The Sun was connected to the network and was being used as a file

server occasionally, but no other program was running while benchmark programs were running.

Here it should be noted that ART/Ada on a PS/2 uses different table sizes. A direct comparison,

therefore, between the speed of ART/Ada on a Sun ant that on a PS,2 is not possible.

Platform Monkey 6 Queens
Sun/Verdix | 38.2 Rules/Sec | 42.7 Rules/Sec
Sun/Alsys |46.4 Rules/Sec | 62.4 Rules/Sec
PS/2/Alsys | 37 4 Rules/Sec | 49.9 Rules/Sec

Table 5-1: Speed of ART/Ada in Rules/Second

5.2 Size

The size of ART/Ada is measured on the following platforms:

1. Sun 3/260 with 16 MBytes of memory using the Verdix Ada compiler
2. Sun 3/260 with 16 MBytes of memory using the Alsys Ada compiler
Since multiprocessing is not supported in MS-DOS, size of the ART/Ada process could not be measured.

On a Sun workstation, size of the ART/Ada process was measured in KBytes using a Unix command. "ps

aux", after the program finished running and just before it was exited.

Platform Monkey 6 Queens
Sun/Verdix | 968 KBytes | 1232 KBytes

Sun/Alsys | 768 KBytes [944 KBytes

Table 5-2: Size of ART/Ada in KBytes

15

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

5.3 Discussion

The benchmark results reported should be considered as preliminary results because of the foliowing
rPAsONS:
e No effort was made to optimize the performance of the ART Ada prototype due to the time
limitation.
¢ More compilers should be included in the benchmark.

e More hardware platforms should be included in the benchmark.

e Better monitoring tools are necessary. One problem with Ada is that it does not support CPU
time: it only supports wall-clock time. Therefore, the benchmark result is subject to many
variables such as the load on the system, network activities, etc.

The size limitation of current generation embedded processors such as the MIL-STD-1750A is 1
megaword (2 megabytes) within which all software systems including the operating system have to run.
This might be too restrictive for medium size expert systems. New generation embedded processors such
as the 80386 would be adequate for many expert systems developed using an Ada-based expert system
tool such as ART/Ada. The speed of the ART/Ada prototype seems comparable to other tools, especially

C-based tools, although it is slower.‘

It is interesting that both speed and size of ART/Ada vary significantly depending on which Ada
compiler is used. It is known that Ada compilers are not very elficient '6|. As the Ada compiler

technology advances, the ART/Ada performance would be improved.

.
The unoptimized ART/Ada prototype is about 2-3 times slower in execution speed and about 2-3 times larger in process size than
ART-IM.

16

ART/ADA DESIGN PROJECT - PHASE | FINAL REPCRT

6. Related Work

This chapter compares the ART/Ada prototype with other similar systems such as

o CLIPS 'Ada l
e PAMELA 3‘
e FLAC il()]

e L*STAR [12]

CLIPS (C Language Production System) is a C-based forward-chaining rule-based expert system tool
whose syntax is very close to ART and ART-IM. It has been reported that CLIPS is being ported to Ada.
Unlike ART/Ada, the whole system is being reimplemented in Ada. CLIPS does not have a frame
system, a truth maintenance system, and an explanation system. Its only knowledge representation

method 1s a forward-chaining rule system.

It is claimed that PAMELA (PAttern Matching Expert system LAnguage) uses the Rete algorithm
improved with optimizations and extensions that could satisfy the requirements of many real-time
applications. Unlike ART/Ada, PAMELA does not seem to support deployment in Ada environments. It
ts implemented in CHILL(Communication Hlgh Level Language). PAMELA is similar to ART Ada
because it is based on the Rete algorithm. In addition to PAMELA, other optimizations on the Rete

algorithm have been proposed and implemented by Gupta [7] Schor et. al. [14] and Miranker '13].

FLAC (Ford Lisp-Ada Connection) uses a Lisp environment to develop an expert system application,
and generates Ada code to be deployed in Ada environments [10]. Its knowledge base is specified using a
graphical representation similar to that of VLSI design (e.g. OR gates and AND gates), which gets
compiled into a static knowledge base. Because of this compiled. static knowledge base, high performance
of 1500 rules per second on a VAX 11/780 was achieved, perhaps. at the cost of flexibility. It still does

not guarantee response times.

FLAC is similar to ART/Ada because its development environment is not implemented in Ada, but the
Ada deployment is supported. The difference is, however, that FLAC's development environment is based
on Lisp, while ART/Ada uses that of ART-IM which is written in C. The C and Ada development
environments coexist on the same hardware platforms more often than the Lisp and Ada development

environments do. FLAC, for example, uses a special purpose Lisp machine for the front-end, and a VAX

- for the Ada deployment. Both ART-IM and ART/Ada run on the same hardware. Another difference is

that FLAC’s input is graphically oriented while ART/Ada is language-oriented. FLAC's pre-compiled.
static knowledge base imposes restrictions on the reasoning capability which do not exist in the inference

engines based on the Rete algorithm such as ART-IM and ART /Ada.

17

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

L*STAR (Lockheed Satellite Telemetry Analysis in Real time) is designed for real-time monitoring and
analysis expert systems. L*STAR has a built-in feature for temporal reasoning. All data is archived and
time-tagged into a ring buffer. The ring buffer consists of a compressed format which keeps track of the
last time the datum was updated and each time it changed over a user-specified time period. ART Ada
does not support temporal reasoning. It could be implemented, however, using ART Ada’s asynchronous
function capability. An asynchronous function is an Ada procedure that gets invoked between rule

firings. It can be implemented to achieve the same behavior as L*STAR’s temporal reasoning facility.

Unlike ART/Ada and PAMELA, L*STAR is not based on the Rete algorithm. In L*STAR. not all the
rules are continually checked. Some of the rules are triggered by the test clock at regular time intervals.
Other rules are checked only when data changes that is used in one of its [F clauses, or when they are
needed to achieve a goal. Rules are compiled into an intermediate postfix format or optionally into
C. Because all variables are resolved at compile time, multiple variables in a single rule can result in a
combinatoric increase in the number of rules generated. In this sense, it is similar to FLAC. While 1t
achieves the performance of about 1000 rules per second on a VAX 8650, L*STAR still cannot guarantee
response times. Although it seems to work well for the real-time monitoring and analysis applications, it
is unclear whether this -architecture would satisfy the requirements of other expert system application
areas besides the monitoring and analysis applications. L*STAR is written in C, and does not support

deployment in Ada environments.

Tools like FLAC and L*STAR seem to achieve high performance because they have a static knowledge
base in which variables are resolved at the compile time. It might be possible to achieve the same level of
performance if object-oriented programming (OOP) facilities such as active values are used to invoke
actions from objects which represent those variables. When the active value capability is added to ART-
M and ART/Ada, the performance of the OOP methodology could be compared to that of the static

knowledge base.

18

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

7. Future Work

This chapter suggests the future directions for the Ada-Based Expert System Building Tool Design

Research Project.

The current prototype system supports only forward-chaining rules. There are multipte knowledge
representation techniques one or more of which are usually used for a particular application. To support
various application, an expert system tool should support more than one paradigm. It would be useful,
therefore. to enhance the ART/Ada prototype with a frame system. a truth maintenance system. and a
explanation system which exist in ART-IM 1.5. This enhanced prototype will be called ART Ada | 5
ART-IM will be still used as a development environment and as an Ada deployment compiler. A
modified version of Boehm's spiral model (3] is used to show the proposed ART/Ada 1.5 prototype hife

cvcle in Figure 7-1.

Verification/Valldation Detailed Design
(Sep '89) (March '89)

| - Proof-of-Concept Prototype
i - Expanded Prool-of-Concept Prototype

Figure 7-1: Proposed Spiral Life Cycle of the ART/Ada 1.5 prototype

Once the ART Ada 1.5 prototype is completed, significant effort should be dedicated to understand the
operational issues and potential uses of the prototype. This may involve a joint effort with potential
users who use the ART/Ada 1.5 prototype to implement prototype expert systems for the Space Station

Freedom.

19

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

Additional research effort would be necessary to enhance ART /Ada 1.5 to better support the real-time

embedded applications. The following issues need be investigated [urther:

e To meet the soft and hard real-time requirements,
e To support the distributed environments such as parallel processors ‘7.
e To fit into the embedded processors.

It is feasible to reimplement all of ART-IM in Ada including the front-end and the development

environment. The following modules would be required:

e Front-end: a lexer, a parser, a semantic analyzer, a code generator, etc.

e User interface: a graphical debugging tool and debugging-oriented lunctions to browse various
knowledge base objects

e New Ada deployment compiler written in Ada
o Miscellaneous: the Clear and Reset commands, an error handling system, etc.

It would not be easy to reimplement ART-IM’s development environment in Ada because most graphics
packages are written in C. An Ada binding would have to be used to interface ART/Ada with existing
C-based graphics packages. Despite standardization efforts such as X windows, graphics applications are
not very portable today. It might be necessary, therefore, that the multiple graphics packages {e.g. X

Windows and Presentation Manager) be supported. Integration and testing would also require significant

effort.

7.1 Summary

In summary, the following projects are recommended as future projects:

e To implement the ART/Ada 1.5 prototype (compatible with ART-IM 1.5)
e To study the operational issues and potential uses of the ART/Ada 1.5 prototype
o To enhance the current architecture to better support real-time applications

e To implement the whole ART/Ada 1.5 in Ada including the development environment and
integrate it with an existing APSE (Ada Programming Support Environment)

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

8. Conclusion

As shown in the preliminary benchmark results of the operational prototype, this project succeeded in
proving that the conventional expert system tool could be used to deploy its applications in Ada

environments with efficient use of time and space.

Another important goal of this project was to reuse existing software. During the prototype

development, software reuse techniques were practiced at all levels.

e A commercially available software component hbrary, the Booch Components, was used to
implement data structures.

e A commercial software system, ART-IM, was reused for various purposes: as a f{unctional
specification and a detailed design of the ART/Ada run-time system; as a development
environment for ART/Ada applications; and as an Ada deployment compiler.

e The ART-IM test programs were also reused to test the whole Ada deployment process; to
debug the ART-IM Ada deployment compiler and the ART/Ada run-time system.

The reuse practice of the project, especially the reuse of ART-IM, contributed greatly to the high
productivity in coding, testing, and integration and the high quality of the ART/Ada prototype. During
the coding phase, productivity was as high as 1000 lines of code a week per person, and was in average
about 500 lines of code a week per person. Thanks to the ART-IM test programs, it took conly about a
month to fully validate the prototype. Testing and integratidn would have taken much longer if no test

programs had been available. The source listings of the test programs are available in the appendix.

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

References

1. Artificial Intelligence Section, NASA Johnson Space Center. (LIPS Version 4.2 Reference Manual
NASA Johnson Space Center, 1988.

2. Barachini, F., Theuretzbacher, N. The Challenge of Real-time Process Control for Production
Systems. Proceedings of the National Conference on Artificial Intelligence, AAAI 1988,

3. Boehm, B.W. "A Spiral Model of Software Development and Enhancement”. Computer 21. 5 (May
1988).

4. Booch, G. Software Components With Ada. Benjamin/Cummings Publishing, 1987.

5. Forgy, C.L. "RETE: A Fast Algorithm for the Many Pattern / Many Object Pattern Match
Problem" Artifictial Intelligence 19 (1982).

8. Ganapathi, M., Mendal, G.O. "Issues in Ada Compiler Technology". Computer 22, 2 (February
1989).

7. Gupta, A. Parallelism in Production Systems. Pitman Publishing, 1988.
8. Inference Corporation. ART Verston 9.2 Reference Manual. Inference Corporation, 1988.
9. Inference Corporation. ART-IM 1.5 Reference Manual. Inference Corporation, 1988.

10. Jaworski, A., LaVallee, D., Zoch, D. A Lisp-Ada Connection for Expert System Development.
Proceedings of the third Annual Conference on Artificial Intelligence and Ada, 1987.

11. Laffey, T.J., Cox, P.A., Schmidt, J.L., Kao, SM,, Read, J.Y. "Real-Time Knowledge-Based
Systems". Al Magazine 9, 1 (Spring 1988).

12. Laffey, T, S. Weitzenkamp, Read, J., Kao, S., Schmidt, J. Intelligent Real-Time Monitoring.
Proceedings of the National Conference on Artificial Intelligence, AAAI, 1988.

13. Miranker, D.P. TREAT: A Better Match Algorithm for Al Production Systems. Proceedings of the
National Conference on Artificial Intelligence, AAAI, 1987,

14. Schor, M.1,, Daly, T.P., Lee, H.S., Tibbitts, B.R. Advances in Rete Pattern Matching. Proceedings
of the National Conference on Artificial Intelligence, AAAI, 1986.

(&
[&

ART/ADA DESIGN PROJECT - PHASE |

I. Detailed Description of ART/Ada

Implementation

In this chapter, the ART /Ada prototype will be described in greater detail.

I.1 Deploying an ART-IM application in Ada

The following steps are necessary to deploy an ART-IM application in an Ada environment:

L.

Load an application into ART-IM. This can be achieved either through the ART-IM Studio
menus or by entering a command. When the menu is used, select File, Load and an
appropriate filename. When a command is used, enter

(load *<filename>*)

- Reset the application. This can be achieved either through the Studio menus or by entering a

command. When the menu is used, select Run and then Reset. When a command is used,
enter

(reset)

- Generate Ada code for the application. This can be achieved either through the Studio menus

or by entering a command. When the menu is used, select File and then Ada Generate.
When a command is used, enter

(load "buildada.art®) . load call-out definitions
(set-generate-options 1000 25) . set generate options
(generate-ada "<fi{lename-prefix>") ., generate Ada code

The menu command Ada Generate executes the first two commands automatically. The file
buildada.art contains Ada call-out definitions used by ART/Ada internally. If there exists
user's Ada code to be called from ART/Ada, the call-out interface should be defined either in
this file or in a separate file, and loaded into ART-DM. The function, set-generate-options.
sets maximum number of source lines per Ada source file and maximum number of source
lines per Ada subprogram. For example, (set-generate-options 1000 25) set the maximum lines
per file to 1000, and the maximum number of lines per subprogram to 25. These numbers
were found optimal for some Ada compilers. ART-IM will generate multiple files:

¢ funcall.a --- procedure FUNCALL for calling out to Ada
¢ <filename-prefix > a --- specification and body of a package, < filename-prefix >

e <[ilename-prefix>1.a, <filename-prefix>2.a, ... --- separate procedures contained in
the package, <filename-prefix >

e <filename-prefix > .com. -- a command file to compile Ada source files.

4. Compile the Ada source files using an Ada compiler using < [ilename-prefix >.com which

might have to be customized for each compiler. So far, only Alsys compiler has been used on
a PS/2.

FINAL REPORT

ART,ADA DESIGN PROJECT - PHASE [

(1)

program.

6 Link the Ada executable image.

I.1.1 Ada Source Code Generated by the Ada Deployment Compiler

~Run the Ada executable image.

FINAL REPORT

_ Write the main program. A simple command loop may or may not be included in the main

The generated Ada code includes a procedure called INIT which initializes an application in the

ART /Ada knowledge base.

Below is the package specification generated by the Ada Generator for an application, MAB:

package MAB is

procedure INIT;

end MAB;

with GEN_UTIL_ADO, GLOBAL_DCL;

package body MAB 1is

procedure
procedure MAB1
procedure MAB2
procedure MAB3
procedure MAB4
procedure MABS
procedure MABS
procedure INIT
begin
GEN_UTIL_ADO.
MAB1L
MAB2:
MAB3;
MAB4 ;
MABS
MABS6 ;
GEN_UTIL_ADO.
MABO
GEN_UTIL_ADO.
GEN_UTIL_ADO.
end INIT;
end MAB;

MABO -is separate;

is separats;
is separate;
is separate;
is separate;
is separate;
is separate;

is

INIT_INIT;

CROSS_REF ;

CLEANUP;
SYSTEM_INIT;

In addition to generating a package specification for an application, the Ada deployment compiler also

generates the separate procedure body for INTERPRETER _ SUB.FUNCALL. This procedure is the top-

level procedure called by the function call interpreter to call out to Ada subprograms.

These Ada

subprograms consist of those used internally by ART/Ada and those defined by the user. All user-defined

Ada subprograms should be defined in the package USER __SUB.

24

ART/ADA DESIGN PROJECT - PHASE [

FINAL REPORT

[.1.2 ART/Ada User Interface Command Loop

A simple command loop is included in the ART/Ada run-time svstem. [t supports a minimum subset of

the ART-IM command syntax which is necessary for simple tracing and debugging. The following svntax

15 supported:

<arc_cmd>

<command>

<untrace_cmd>
<untrace_arg>
<trace_cmd>
<trace_arg>
<run_cmd>
<agenda cmd>
<facts_cmd>

<exit,_cmd>

(<command>)
<trace_cmd> | <untrace_cmd> | <run_cmd> |
<agenda_cmd> | <facts_cmd> | <exit_cmd>

untrace <untrace_arg>
rules | facts | activations | all
trace <trace_arg>

<untrace_arg> | status

run | run <integer>

agenda

facts

exit

I.1.3 Example Main Programs

Two examples of the ART/Ada main programs are included in this section: one that includes the

command loop, and one that does not. Although the main program should be defined by the user for

each application because the name of the package that contains the application specific procedures varies,

it would be easy to modify the standard one.

The following is an example of the main program that includes the user interface by calling

COMMAND _LOOP:

ART/ADA DESIGN PROJECT - PHASE |

with USER_INTERFACE_SUB, ERROR_HDL_SUB, MAB;
procedure MAIN is
begin
MAB.INIT,
USER_INTERFACE_SUB‘COHMAND_LOGP;
exception
when CONSTRAINT_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR(ERROR_HDL_SUB
w“hen PROGRAM ERRCR =>

ERROR HOL_SUB PROCESS_ERROR (ERROR_HDL_SUB.

when STORAGE ERRCR =>
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB
when TASKING_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB
<hen ERROR HDL_SUB.TIME_ERROR =
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB
when ERROR_HDL_SUB.INTERNAL_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB.
when ERROR_HDL_SUB.RETRACT_ERRCR =
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB.
when ERROR_HDL SUB.INTERPRETER_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR(ERROR_HDL_SUB.
when ERROR_HDL_SUB.USER_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB.
when ERROR_HDL_SUB.USER_DEFINED_ERROR =>
ERROR_HDL_SUB.PROCESS_ERROR (ERROR_HDL_SUB.
end MAIN; -

FINAL REPORT

.CONSTRAINT_ERR).

PROGRAM_ERR) |

.STORAGE_ERR) ;
.TASKING_ERR) ;

.TIME_ERR) ;

INTERNAL_ERR} ;
RETRACT _ERR) ;
INTERPRETER_ERR) ;
USER_ERR) ;

USER_DEFINED ERR),

This main program initializes an expert system application called MAB, and prompts the user for a

command.

procedure.

The USER_INTERFACE package 1s with’ed to gain access to the COMMAND _ LOOP

The following is an example of the main program that is tailored for an embedded application:

26

-

ART/ADA DESIGN PROJECT - PHASE | © FINAL REPCRT

with ART, ERROR_HDL_SUB, MAB;
procedure MAIN (s
begin
MAB.INIT;
ART RUN(-1);
exception
«hen CONSTRAINT ERROR =>
ERROR_HDL_SUB,PROCESS‘ERROR(ERRDR_HDL_SUB.CONSTRAINT_ERR).

when PROGRAM ERAOR =>

ERROR_HDL_SUB PROCESS_ERROR(ERRCR_HDL_SUB.PROGRAM_ERR)
when STORAGE_ZRROR =>

ERROR_HDL_SUB PRGCESS_ERRCR(ERROR_HDL_SUB.STORAGE_ERR) ;
when TASKING ERROR =>

ERROR_HDL_SUB PROCESS_ERROR (ERROR_HDL_SUB.TASKING ERR):
when ERROR_HDL_SUB.TIME_ERROR =>

ERROR_HDL_SUB.PRDCESS_ERROR(ERROR_HDL_SUB‘TIME_ERR);

when ERROR_HDL_SUB.INTERNAL_ERROR =>
ERROR_HDL_SUB,PROCESS_ERROR(ERROR_HDL_SUB.INTERNAL_ERR);

«hen ERROR_HDL_SUB.RETRACT_ERROR =>
ERROR_HDL_SUB.PROCESS_ERRDR(ERROR_HDL_SUB.RETRACT_ERR);

when ERROR_HDL_SUB.INTERPRETER_ERROR =>
ERROH_HDL_SUB4PROCESS_ERROR(ERRDR_HDL_SUB.INTERPRETER_ERR);

when ERROR_HDL_SUB USER _ERROR =>
ERROR_HDL_SUB,PHOCESS_ERROR(ERROR_HDL_SUB.USER_ERR);

when ERROR_HDL_SUB.USER_DEFINED_ERROR =>
ERRDR_HDL_SUBAPROCESS_ERROR(ERROR_HDL_SUB.USER_DEFINED_ERR);

end MAIN;

This main program initializes and runs an expert system application, called MAB. The

USER _ INTERFACE package is not with’ed by the main program.

1.2 Public Packages in ART/Ada

The ART/Ada runtime system is composed of public Ada packages and internal Ada packages. The

following is a list of public packages that can be with’ed and, in some cases, modified by the user:

e ART
« FERROR_HDL _SUB

o USER _INTERFACE _SUB

1.2.1 ART
The package, ART, contains public subprograms to be used to call into ART/Ada from user’'s Ada
program. This package should be with'ed by the user program whenever subprograms in this package are
called. The ART package contains the following:
¢ Data types: Integer _ Type, Natural _ Type, Positive _Type, Float _ Type, ART _ Object

 Type conversions: ART _Symbol, ART _String, ART _ Integer, ART _Float, Ada_Symbol,
Ada _String, Ada_ Integer, Ada _Float

* Predicates: Symbolp, Stringp, Integerp, Floatp, Numberp, Sequencep, Factp

o
-3

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

e Operations: Eq, Equal, Type_of. Gentemp, Length, Position, Member, Nth, Set Nth,
Find _Fact, Fact _Number, Register _ART _Object, Unregister _ ART _ Object,
Make Template, Free Template, Sequence

e ART commands: Assert, Retract. Run, Halt, Get_Async_Fun, Set_Async_Fun.
Get _ Salience _ Threshold, Set _ Salience _ Threshold, Get _Limit _ Default,
Set _Limit _ Default, Get _Print _ Messages, Set Print_ Messages

o [/O Functions: Print, Prinl, Princ, Read

In ART/Ada, all integer numbers are INTEGER _TYPE which is a 32 bit integer, and all float
numbers are FLOAT _ TYPE which is a 64 bit float. ART _Object is a generic data type which could be

one of the following: integer, [loat, string, symbol, fact, or sequence.

Data type conversion functions are provided to convert ART data types to Ada data types or to convert

Ada data types to ART data types.

Predicate functions are similar to Lisp predicates. They return T or NIL depending on the result of the

predicate.

The ART package provides various operations on ART _ Object.

The ART package also includes ART-IM commands such as Run and Halt as well as functions to change

the defaults of ART/Ada.

Simple I/O functions are provided to handle basic input and output. File [/O is not supported.

1.2.2 ERROR _HDL _SUB

The package. ERROR _HDL _SUB, contains subprograms for error handling. It contain two separate
procedures, PROCESS _ERROR and WARNING, that can be modified to customize the behavior of the
error handler. For example, the default behavior is to print the error or warning messages on the screen.
It could be changed, however, to print it on the line printer in an embedded environment. This package
also defines exceptions one of which is USER _ DEFINED _ERROR. It is a generic exception that can be

raised by the user.

1.2.3 USER _INTERFACE _SUB

The package, USER _ INTERFACE _SUB, contains a simple user interface that can be invoked by a
procedure, COMMAND _LOOP. It also include debugging functions such as FACTS, AGENDA, and
TIMED _RUN. It is not necessary to with this package when the presence of the user interface is not

needed (i.e. embedded applications).

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

1.3 Ada Call-In and Call-Out Specification for ART/Ada and
ART-IM

This section describes a portable call-in/call-out interface specification for ART Ada and ART-DM.

I.3.1 Interface Types
The following types may be passed between ART and Ada:

{INTEGER (INTEGER_TYPE) This type is an 32 bit integer in Ada and an integer in ART
(INTEGER _TYPE in ART/Ada and long in ART-IM).

:BOOLEAN (BOOLEAN) In ART, this type is either NIL or non-NIL. In Ada, this type 1s
BOOLEAN which is TRUE or FALSE. When translating from Ada to ART, TRUE
will translate to T.

:FLOAT (FLOAT_TYPE) In Ada, this type is FLOAT _ TYPE which is double precision float.
For ART-IM, this is a C double.

:STRING (STRING) In Ada, this type is represented as a STRING. In ART. this type is
represented as an ART string. ART may or may not copy the string being passed by
this mechanism when passing a string from ART to Ada. Thus, it is an error to
destructively modify a string passed with this mechanism. ART is responsible for
[reeing any space necessary for the string after exiting the current scope. The actual
implementation will be based upon constraints of the underlying architecture. When
transferring a string from Ada to ART, ART will always copy the string, allowing the
Ada programmer to {ree the string at his leisure.

:SYMBOL (STRING) In Ada, this type is represented as a STRING. In ART, this type is a
symbol. Case is preserved when interning an STRING as an ART symbol, just as case
is preserved when passing a string to the Lisp function INTERN.

:ART-OBJECT (ART_OBJECT) This type is any ART type in ART. It is represented as a pointer to a
discriminant record in ART/Ada. For ART-IM, it is an integer type which represents
a C pointer to a C structure art _object. A set of Ada [unctions is provided to operate
on these ART objects from Ada.

1.3.2 Scope of Objects

This section gives a detailed description of the scope of objects communicated from ART to Ada and
objects communicated from Ada to ART. In both cases the prime motivation for scoping is that the
caller should free all objects it allocates, (thus it should not allocate objects which it intends that the

callee free). Additionally, the callee should not destructively modify objects which it did not allocate.

All objects that are not immediate fall under these constraints. For example, strings and art-objects

passed from ART to Ada conform to the following semantics.

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

When an ART_OBJECT or string is passed from ART by call out to an Ada function, the object is
automatically reclaimed when the Ada function returns to ART. At this point. the Ada ART OBJECT
data structure is no longer valid for use in Ada code. [t 1s an error to retain a pointer to an

rutomatically reclaimed ART _OBJECT in Ada once the Ada call has returned.

When an ART_OBJECT or string is returned from ART to Ada. it 1= automatically reclaimed when
control returns to ART from Ada. In those implementations where Ada can start up and call ART as a
subroutine so that a returned value may never be reclaimed. the returned ART OBJECT 1s allocated

permanently and must be freed using a freeing function supplied in Ada.

A function is supplied in Ada that accepts an ART_OBJECT as argument and returns a permanent copy

of that ART_OBJECT. This object must be explicitly {reed when no longer useful.

1.3.3 Call-Out from ART to Ada
The following is a grammar for def-user-fun which should used to call out to Ada from ART:

(def-user-fun <fun-name> {<comment>}
<function-spec>*)

<function-spec> @ :=
:compiler <compiler-name> I
‘returns <return-data-type> !
‘epname <link-editor-symbol> |
‘args (<arg-spec>x*)

<fun-name> ::= <art-symbol>

<comment> <art-string>
<compiler-name> :@:=
:VERDIX-ADA
:DEC-ADA
"ALSYS-ADA

<internal-data-type> @ =
:SYMBOL
:STRING
‘FLOAT
- INTEGER
-BOOLEAN
"ART-0OBJECT

<return-data-type> @ .=
:VOID | <internal-data-type>

<link-editor-symbol> :@:.=
<art-symbol> | <art-string>

30

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

<arg-spec> =
(<name> <internal-data-type> <arg-attribute>*) |
(<internal-data-type> <arg-attribute>=*) |
<internal-data-type>

<name> .= <art-symbol>

<arg-attribute> & =
<convention>
<status>

<convention> .=
"OBJECT-POINTER |
'VALUE-POINTER |
:VALUE

<status> :.:=
<optional>
<rest>

<optional> ::=
‘optional !
(:optional <default>)

<default> ' := art-object

<rest> .= :rest . Must be the last arg

For example, in order to call out to an Ada function, CALC_STD_DEV, using an ART function.
calc-std-dev, define the following in ART-IM before the Ada code is generated:

(def-user-fun calc-std-dev
‘epname "CALC_STD DEV*
rargs ((sx :float) (ssq :float) (n :integer))
‘returns :float
:compiler :alsys-ada)

An Ada package called USER _SUB should be also defined as follows:

31

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

with ART MATH_LIB TEXT_IO,

use ART, TEXT_IO;

package USER_SUB is
type REAL_TYPE is digits 1§
package MY _MATH LIB is new MATH_LIB(REAL_TYPE);
use MY MATH LIB;

function CALC_STD_DEV(SX © FLOAT_TYPE;
SSQ - FLOAT_TYPE,
N . INTEGER_TYPE) return FLOAT TYPE;

end USER_SUB;

package body USER_SUB is

function CALC_STD DEV(SX : FLOAT_TYPE;
SSQ : FLOAT_TYPE;
N INTEGER_TYPE) return FLOAT_TYPE is

SD: FLOAT_TYPE:

begin
SD = (S5Q - ((SX = SX) /FLOAT_TYPE(N))) / FLOAT_TYPE(N - 1);
return FLOAT_TYPE(MY MATH_LIB.SQRT(REAL_TYPE(SD))):

end CALC_STD_DEV:

end USER_SUB;

1.3.4 Call-In from Ada to ART/Ada

The ART package of ART/Ada is the public package for the ART/Ada users to call in from Ada to
ART/Ada. The specification of the ART package will serve as the standard Ada call-in interface

specification.

32

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

II. Difference between ART-IM 1.5 and
ART/Ada 1.0

Among the ART-IM 1.5 features that are missing in ART 'Ada, the following features will bhe
implemented in phase [I:

e Schema System - a frame system
e Logical Dependency - a truth maintenance system
e Justification System - an explanation system

The following features were not implemented during the phase I due to time limitation, but will be

implemented during phase [I.
¢ some string functions
e some [/O functions
e some math functions

e procedural iterators

e asynchronous function

The following features are not planned to be supported in ART/Ada:

e streams

e external data interface functions (e.g. def-external-data, def-map-fun, etc.) which are useful
for building database interfaces.

» Trigonometric functions (e.g. sin, cos, etc) which are not part of standard Ada.

33

ART/ADA DESIGN PROJECT - PHASE |

III. ART/Ada Public Packages

34

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

ITI.1 Specification of ART Package

35

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

-- COPYRIGHT NOTICE

-- 1) COPYRIGHT (C) 1988

-- INFERENCE CORPORATION,

-- 5300 W. Century Blvd.,

-- Los Angeles, California 90045.

-- AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED.

-- 2) Restricted Rights Notice (Short Form) (April 1984)

-- Use, reproduction, or disclosure is
-- subject to restrictions set forth in

-- Government Cooperative Agreement Number NCC-
-- 9-16 between the National Aeronautics and

- Space Administration and the University of

-- Houston-Clear Lake and a subcontract

-- thereunder, Number 015 between the University
-- of Houston-Clear Lake and Inference

-- Corporation.

-- 3) Restricted Rights Notice (ART/Ada)

-- These data constitute Inference

-- Corporation trade secrets and/or information
-- that is commercial or financial and

-- confidential or privileged. They are

-- submitted to the Government under NASA

-- Cooperative Agreement NCC-9-16 with the

-= University of Houston-Clear Lake Research
-- Institute for Computing and Information

-- Systems (RICIS) with the understanding that
-- they will not, without the permission of

-- Inference Corporation, be used or disclosed
-- for other than evaluation purposes.

-- Author: S. Daniel Lee
-- Package: ART

-- Function: This package contailns subprograms for the -user to call into
-~ ART/Ada. This package is the top-level public package which
== contains all the operations on ART/Ada. This package should
== always be with'ed in the user’s program

-- State Variables:
-- None

-- State Variable Initialization:
-- None

-- Change Log:

with STRUCT DCL, ART_DBJECT_SUB, DATABASE SUB, INFER_ENG_SUB, CALLIO_SUB,
ALLOC_SUB. I0_SUB, AGENDA_SUB.

use STRUCT_DCL;

package ART is

-- Public Types for Ada Callout

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

sudbtype INTEGER TYPE is STRUCT_DCL.INTEGER TYPE; -~ For | INTEGER
-- Use BOCLEAN -~ For :BOOLEAN
sudbtype FLOAT_TYPE 1is STRUCT_DCL FLCAT TYPE, -~ For :FLJAT

-~ Use STRING -- For 'STRING
subtype ART_CBJECT :s STRUCT_DCL.ART OBJECT. -- For ART-OBJECT

subtype NATURAL _TYPE is STRUCT_DCL NATURAL_TYPE,
subtype POSITIVE TYPE is STRUCT_DCL .POSITIVE TYPE.

-~ Returns a new, permanent art object reference to the ART object

-~ Teferred to by reference. Reference may be elther a permanent

-- or automatically allocated art_object.

function REGISTER_ART_OBJECT (REFERENCE ART_OBJECT) return ART OBJECT
renames ART_OBJECT_SUB.REGISTER_ART_OBJECT:

-~ Frees the permanent or temporary reference to an art_object;
-- 1t is an error to continue to use an art_object after freeing the
-~ reference to it.
procedure UNREGiSTER_ART_OBJECT(REFERENCE © ART_OBJECT)
renames ART_OBJECT_SUB.UNREGISTER_ART_OBJECT;

-~ Returns TRUE if the two art_objects X and Y are the same object.
-- EQ and EQUAL are equivalent.
function EQ(X: ART_OBJECT;
Y: ART_OBJECT) return BOOLEAN
renames ART_OBJECT SUB.EQ;

-- Returns TRUE if the two art_objects X and Y are the same object.
-~ EQ and EQUAL are equivalent.
function EQUAL(X: ART_OBJECT;
Y: ART_OBJECT) return BOOLEAN
renames ART_OBJECT_SUB EQUAL;

function TYPE QF(0BJ: ART_OBJECT) return ART_OBJECT
renames ART_OBJECT_SUB.TYPE OF;

=~ A_GENTEMP: Creates a new, previously

-~ unused symbol.

function GENTEMP(STR : STRING) return ART OBJECT
renames ART_OBJECT_SUB.GENTEMP:

-- Calls the Ada procedure PROCESS once for each permanent OBJECT
-~ that has been allocated passing each permanent art _object
"~ as the argument to PROCESS in turn. If PROCESS returns FALSE

37

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

-- at any time, then the iteration is terminated at that point.

-- generic

-~ with procedure PROCESS (THE_ITEM : ia ART_QBJECT!
- CONTINUE : out BOOLEAN);
-~ procedure FOR_ALL_PER_ART_OBJECTS;

-- Returns an ART_OBJECT for the symbol resulting from performing a
-- intern cperation on the string str. Case ls presered 1n sur.

function ART_SYMBOL(STR : STRING) return ART_OBJECT
renames ART_OBJECT_SUB.ART_SYMBOL.

-- Returns an ART_OBJECT that represents the string specified.
-- Case is preserved.

function ART_STRING(STR : STRING) return ART_DBJECT
renames ART_OBJECT_SUB.ART_STRING;

function ART_INTEGER(NUM: INTEGER_TYPE) return ART_OBJECT
renames ART_OBJECT_SUB4ART_INTEGER;

function ART_FLOAT(NUM: FLOAT_TYPE) return ART_OBJECT
renames ART_OBJECT_SUB.ART_FLOAT;

function ADA_SYMBOL (SYMBOL: ART_OBJECT) return STRING
renames ART_OBJECT_SUB.ADA_SYMBOL:

function ADA_STRING(STR: ART_OBJECT) return STRING
renames ART_OBJECT_SUB.ADA_STRING,

function ADA_INTEGER(NUM: ART_OBJECT) return INTEGER_TYPE
renames ART_OBJECT_SUB.ADA_INTEGER:

function ADA_FLOAT (NUM: ART_OBJECT) return FLOAT TYPE
renames ART_OBJECT_SUB.ADA_FLOAT;

38

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

functiom SYMBOLP(OBJ: ART_OBJECT) retura BOOLEAN
renames ART_CBJECT_SUB.SYMBOLP;

functiow STRINGP(OBJ: ART_OBJECT) return BOOLEAN
renames ART _OBJECT SUB.STRINGP;

function INTEGERP(CBJ: ART_OBJECT) return BOOLEAN
renames ART_OBJECT_SUB.INTEGERP;

function FLOATP(OBJ: ART_OBJECT) return BOOLEAN
renames ART_CBJECT_SUB.FLOATP;

function NUMBERP(OBJ: ART_OBJECT) return BOOLEAN
renames ART_OBJECT_SUB.NUMBERP;

functiom SEQUENCEP(0BJ: ART OBJECT) return BOOLEAN
renames ART_OBJECT SUB.SEQUENCEP;

function FACTP(COBJ: ART_OBJECT) return BOOLEAN
renames ART_OBJECT_SUB.FACTP;

-=- Returns the fact with fact number n. If no fact has that nymber,
-~ returns NULL.

function FIND FACT(N: INTEGER_TYPE) return ART_OBJECT
renames DATABASE_SUB.FIND_FACT;

function INT_FIND FACT(ID: INTEGER_TYPE) return ART OBJECT
renames DATABASE_SUB.INT_FIND FACT;

function FACT_NUMBER (FACT: ART_OBJECT) return NATURAL TYPE
renames DATABASE_SUB FACT_NUMBER;

-~ FOR_ALL FACTS: [terates over all the facts im the current database, calling a given

39

ART/ADA DESIGN PROJECT - PHASE |

-- procedure once for each fact.

-- generic

-- with procedure PROCESS (THE_ITEM & 1n ART_OBJECT:
-- CONTINUE : out BGOLEAN);
-- procedure FOR_ALL FACTS;

function LENGTH(GBJ: ART_OBJECT) return NATURAL _TYPE
renames ART_OBJECT_SUB.LENGTH;

-- Returns the position of the first occurrence of value in obj.

-- value is not in ob}, returns O

tunction POSITION(VALUE: ART_OBJECT;
0BJ: ART_OBJECT) return NATURAL _TYPE
renames ART_OBJECT_SUBAPOSITION;

function MEMBER(VALUE: ART_OBJECT.
0BJ: ART_OBJECT) return BOCLEAN
renames ART_OBJECT_SUB.MEMBER:

function NTH(OBJ: ART_OBJECT;
INDEX: NATURAL_TYPE) return ART_OBJECT
renames ART_OBJECT_SUB.NTH:

FINAL REPORT

-- Constructs an "empty® fact template and returns a pointer to it as an

-- ART object which may later be asserted. It is an error to assert a

-- template without imserting something iato each of the size slots

-- allocated in it. All templates are permanent. Additionally they should
-- not be freed with unregister_art_object. They should only be freed

-- Wwith free_template

function MAKE TEMPLATE(SIZE: NATURAL_TYPE) return TEMPLATE_TYPE
renames CALLIO_SUB.MAKE_TEMPLATE.

-- This function sets the element of template specified by

—— index toc be value. It is an error to attempt to modify a face

-- not created with MAKE TEMPLATE. The first element of the fact (the
-- relation) is indexed by index 1. The other elements of the fact

-- have indices 2 through the length of tie fact

procedure SET _NTH(TEMPLATE: in out TEMPLATE TYPE,
INDEX: in INTEGER_TYPE.
VALUE: in ART_OBJECT)
renames CALLIO_SUB.SET_NTH;

-- Frees the TEMPLATE TYPE template. It is an error to continue to refer to

10

ART/ADA DESIGN PROJECT - PHASE [

-- template after freeing.
procedure FREE TEMPLATE(TEMPLATE: in out TEMPLATE TYPE)
renames CALLIC SUB.FREE TEMPLATE;

-- Asserts a fact from the contents of template into the ART database
-- Template must be constructed using the functions and macros below
T pricr to asserticn. It is an error to assert a fact with an empty fact
-- slot. A template may be used for any number of assertions.
function ASSERT(TEMPLATE: in TEMPLATE_TYPE) return ART_OBJECT
renames CALLIO SUB ASSERT.

-= This function takes a template and returns a sequence matching the

-- template. The sequence returned will not incorporate or alter the

-- template.

function SEQUENCE(TEMPLATE: in TEMPLATE TYPE) return ART_OBJECT
renames CALLIO SUB.SEQUENCE;

procedure RETRACT(FACT: in out ART_OBJECT)
renames DATABASE SUB RETRACT;

-- Fumction: Runs the inference engine (match-select-act cycle) LIMIT

-- number of times. Continue to rum until the agenda 1is

-- empty, until the HALT is encountered on the rhs of a rule,
-- until a salience threshold 1is reached, or until a breakpoint
-- is triggered.

~- Parameters: LIMIT - Number of inference engine cycles. (Or number of rules
-= allowed to fire.
-- > 0 fire that many rules
- = 0 then No rules fire
-- = -1 then LIMIT := current default limit
-= <= -2 fire until agenda becomes empty
function RUN(RUN_LIMIT: in INTEGER _TYPE) return INTEGER _TYPE
renames INFER_ENG_SUB.RUN;

-~ Returns TRUE if the agenda is empty. Otherwise, FALSE.

function AGENDA_EMPTY P return BOOLEAN
recames AGENDA _SUB.AGENDA_EMPTY P;

-- Function: Complete the execution of all rhs actions of the current
-- rule and halts the inference engine.

procedure HALT
renames INFER_ENG SUB.HALT;

41

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE 1 FINAL REPORT

—- Function: It sets the asynchronous Ada function.
-- The asynchronous function should be defined in the USER_SUB
-- package. ART/Ada will intern this function and assign it
-- a function ID.
procedure SET_ASYNCH_FUN(FUN : STRING)

renames INFER_ENG_SUB.SET_ASYNCH_FUN,

function GET_ASYNCH_FUN return STRING
renames INFER_ENG_SUB.GET_ASYNCH_FUN;

function GET SALIENCE_THRESHOLD return SALIENCE TYPE
renames INFER ENG_SUB.GET_SALIENCE THRESHOLD;

-- Set the minimum salience below which rules may not fire. The constant

-- min_sallence may be used to reset salience to the initial default.

function SET_SALIENCE_THRESHOLD(SALIENCE: in INTEGER_TYPE) return INTEGER TYPE
renames INFER ENG_SUB.SET_SALIENCE THRESHOLD;

—- Returns the default limit on rule firings for run. If the returned value
-- 1is negative, the default is to let ART run indefinitely
function GET_LIMIT_DEFAULT return INTEGER_TYPE

renames INFER_ENG_SUB.GET_LIMIT_DEFAULT:

-- Sets the default limit on rule firings for run. If limit is

-- negative, the default is to let ART run indefinitely.

function SET_LIMIT DEFAULT(LIMIT: in INTEGER_TYPE) return INTEGER TYPE
renames INFER_ENG_SUB.SET_LIMIT_DEFAULT.

-- Returns a boolean that tells whether ART prints informational messages.
-- TRUE means they are printed; FALSE means they are suppressed.
function GET PRINT_MESSAGES return BOCLEAN

renames INFER_ENG_SUB.GET_PRINT_MESSAGES:

-- Controls whether ART prints informational messages. TRUE means

-- to print messages; FALSE to suppress printing of messages.

-- TRUE is the default.

function SET_PRINT_MESSAGES (VALUE: BOOLEAN) return BOOLEAN
renames INFER_ENG_SUB.SET_PRINT_MESSAGES:

-- Convert INTEGER TYPE to BOOLEAN. If 0, then FALSE. TRUE, otherwise.

function INTEGER TO BOOLEAN(STATUS : INTEGER_TYPE) return BOOLEAN
renames CALLIC_SUB. INTEGER_TO_BOOLEAN;

-- Convert BOOLEAN to INTEGER TYPE. If TRUE, then 1. If FALSE, then O

AT/ADA DESIGN PROJECT - PHASE |

function BOOLEAN TO_INTEGER(STATUS : BOCLEAN) return INTEGER_TYPE
renames CALLIO_SUB.BOOLEAN TO INTEGER;

-- Function: [% f
orocedure FREE SEQUENCE(X 1n out ART_JBJECT)
renames ALLOC _SUB FREE SEQUENCE;

g

ees a sequence

-~ Function: Prints the object followed by a CR LF to the standard cutput
-- Standard output is, by default, the screen.

-- Parameters: OBJECT - The cbject to be printed
function PRINT(CBJECT: ART_QOBJECT;
STREAM: ART_OBJECT := null) return ART_OBJECT
renames IO SUB.PRINT;

-~ Function: Prints the ART Object to the standard output.
-- Standard output is, by default, the screen.
-- Puts quotes around the string being printed.

-- Parameters: OBJECT - The ART Object to be printed
function PRIN1(OBJECT: ART_QBJECT;
STREAM: ART_CBJECT := null) return ART_OBJECT
renames [0_SUB.PRINt;

-~ Function: Prints the object to the standard output.
-- Standard output is, by default, the screen.

-- Parameters: OBJECT - The object to be printed
function PRINC(OBJECT: ART_OBJECT,
STREAM: ART_OBJECT := null) return ART_OBJECT
renames 10 _SUB . PRINC;

-=- Function: Prints a CR to the standard output
-- Standard output is, by default, the screen.
procedure TERPRI(STREAM: ART_O0BJECT := null)

renames I0 SUB.TERPRI;

-- Prints out a list of objects to the given stream. The symbol T indicates
-- that a newline should be emitted. The symbol T as the stream argument

-- indicates that stdout should be used as the stream (for compatibility with
-- big Art). Conceptually, the argument list of printout is:

-~ printout(stream &rest args)

-- For now, 1gnore the first arg, STREAM.

function PRINTOUT (STREAM ART _OBJECT:
REST - ART_OBJECT ARRAY PTR_TYPE) return BOOLEAN
renames I0_SUB PRINTOUT;

-- Function: Read from standard output.

13

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [

-- Parameters: OBJECT - The ART_OUBJECT deing read.

function READ INTERFACE(STREAM: ART_OBJECT = null) return ART_OBJECT
renames 10 SUB.READ_INTERFACE,

end ART;

44

FINAL REPORT

RT/ADA DESIGN PROJECT - PHASE [FINAL REPORT

1.2 Specification of ERROR HDL SUB Package

45

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

-~ COPYRIGHT NOGTICE

-- 1) COPYRIGHT (C) 1988

-- INFERENCE CORPORATION,

-- 5300 W. Century Blvd.,

-- Los Angeles, California 90045.

-- AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED

-- 2) Restricted Rights Notice (Short Form) (April 1984)

-- Use, reproduction, or disclosure is
-- subject to restrictions set forth in

-- Government Cooperative Agreement Number NCC-
-- 9-16 between the National Aeronautics and

-- Space Administration and the University of

-- Houston-Clear Lake and a subcontract

-- thereunder, Number 015 between the University
-- of Houston-Clear Lake and Inference

-- Corporation.

-- 3) Restricted Rights Notice (ART/Ada)

-- These data constitute Inference

-- Corporation trade secrets and/or information
-- that is commercial or financial and

- confidential or privileged. They are

-- submitted to the Government under NASA

-- Cooperative Agreement NCC-3-16 with the

-- University of Houston-Clear Lake Research
-- Institute for Computing and Information

- Systems (RICIS) with the understanding that
-- they will not, without the permission of

-- Inference Corporation, be used or disclosed
- for other thanm evaluatlion purposes.

-- Author: Jim Badura
-- Package: ERROR_HDL_SUB

-- Function: This package contains a procedure that performs error
-- recovery for internal ART errors.

-- State Variables: None
-- State Variable Initialization: None
-- Cﬁange Log:

with STRUCT_DCL, CALENDAR;
use STRUCT_DCL;

package ERROR_HDL_SUB is
type ERROR_LOC {s (LHS_LOC, RHS_LOC, TOPLEVEL _LOC. ASYNC_LOC):
type ERROR_TYPE is (CONSTRAINT_ERR.NUHERIC_ERR,PROGRAH_ERR.STORAGE_ERR.
TASKING_ERR, TIME_ERR,
INTERNAL_ERR, RETRACT_ERR, INTERPRETER_ERR,

USER_ERR,
USER_DEFINED_ERR)

16

.T/ADA DESIGN PROJECT - PHASE | FINAL REPORT

TIME_ERROR . exceptlon renames CALENDAR.TIME ERROR;
INTERNAL_ERROR . exception;

RETRACT_ERROR . exception;

INTERPRETER_ERROR : exception; -- Error in the interpreter
USER_ERROR: exception; -— The User can use this exception.

USER _CEFINED ERROR: exception; -~ The User can use this excepzion.

-- Function: This procedure invokes the appropriate Ada routine for
- recovering from the current internal ART error
== This procedure should be separate.

-- Paramevers: ERROR - The current error being handled

-- Function: This procedure stores an error message into a buffer
-- so that the error message could be printed by PROCESS_ERROR later

-- Parameters: MESSAGE - The error message.

- Funcvion: This procedure handles an warning message.
-- This procedure should be separate.

-~ Parameters: MESSAGE - The warning message.

procedure WARNING(MESSAGE: in STRING);

end ERROR_HDL_SUB;

ART/ADA DESIGN PROJECT - PHASE |

[11.3 Body of ERROR HDL SUB Package

48

FINAL REPORT

\RT/ADA DESIGN PROJECT - PHASE | FINAL REPORT

- COPYRIGHT NOTICE

-- 1) C3PYRIGHT (C) 1988

-- INFERENCE CCRPORATION,

-- 5300 W Century Blvd.,

-- Los Angeles, California §0045

-- AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED

-- 2) Restricted Rights Notice (Short Form) (April 1984)

== Use, reprcduction, or disclosure is
-- subject to restrictions set forth in

-- Government Cooperative Agreement Number NCC-
== 9-16 between the National Aeronautics and

-- Space Administration and the University of

-- Houston-Clear Lake and a subcontract

-- thereunder, Number 015 between the University
== of Houston-Clear Lake and Inference

== Corporation.

-- 3) Restricted Rights Notice (ART/Ada)

-- These data constitute Inference

-- Corporation trade secrets and/or information
-- that is commercial or financial and

-= confidential or privileged. They are

- submitted to the Government under NASA

-- Cooperative Agreement NCC-9-16 with the

-- University of Houston-Clear Lake Research
-- Institute for Computing and Information

-- Systems (RICIS) with the understanding that
-- they will not, without the permission of

- Inference Corporation, be used or disclosed
- for other than evaluation purposes.

-- Author: Jim Badura
-- Package: ERROR_HDL_SUB

-- Functlion: This package contains a procedure that performs error
~-= recovery for internal ART errors.

-- State Variables: None
-- State Variable Initialization: None
-- Change Log:

with GLOBAL_DCL;

use GLOBAL_DCL;

package body ERROR_HDL_SUB is
-~ Function: This procedure invokes the appropriate Ada routine for
== recovering from the current internal ART error.

-~ Parameters: ERROR - The current error being handled

procedure PROCESS ERROR(ERROR: in ERROR_TYPE) is separate;

49

-- Function: This procedure SLOTes an error message into a buffer
-- so that the error message could be printed by PROCESS_ERRCR later.

-- Parameters: MESSAGE - The error message

procedure ERROR(MESSAGE. in STRING) is
begin

CHARACTER STRING CCPY(MESSAGE, CUR_USER .ERROR_BUFFER) ,
end ERRCR;

-- Function: This procedure handles the warning message.

-- Parameters: MESSAGE - The warning message.

procedure WARNING(MESSAGE: in STRING) is separate;

end ERROR_HDL_SUB;

50

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

III.4 Separate Procedure
ERROR_HDL SUB.PROCESS _ERROR

31

COPYRIGHT NOTICE
1) COPYRIGHT (C) 1988
INFERENCE CCRPORATION,
5300 W. Century Blvd.,
Los Angeles, California 90045.
AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED

2) Restricted Rights Notice (Short Form) (April 1984)

Use,

reproduction, or disclosure is

subject to restrictions set forth in

Government Cooperative Agreement Number NCC-

9-16 between the National Aeronautics and
Space Administration and the University of
Houston-Clear Lake and a subcontract

thereunder, Number 015 between the University

of Houston-Clear Lake and Inference

Corporation.

3) Restricted Rights Notice (ART/Ada)

These data constitute Inference

Corporation trade secrets and/or information

that is commercial or financial and

confidential or privileged.

They are

submitted to the Government under NASA
Cooperative Agreement NCC-9-16 with the
University of Houston-Clear Lake Research
Institute for Computing and Information

Systems (RICIS) with the understanding that

they will not, without the permission of

Inference Corporation, be used or disclosed

for other than evaluation purposes.

with TEXT_IO;
use TEXT_IOD;

separate (ERROR_HOL_SUB)

procedure PROCESS ERROR(ERROR: in ERROR_TYPE) is
constant STRING

ERR:
vegin

case ERROR 1is

when
=>
when
=>
when
=
when
=>
when
=>
when
=>
when
=>

when
=>

CONSTRAINT_ERR
PUT_LINE(ERR &
NUMERIC_ERR
PUT_LINE(ERR &
PROGRAM_ERR
PUT_LINE(ERR &
STORAGE_ERR
PUT_LINE(ERR &
TASKING_ERR
PUT_LINE(ERR X
TIME_ERR
PUT_LINE(ERR &
INTERNAL_ERR

‘= *;.. ERROR:

*Constraint error®);

*Numeric error®):

"Program error*).

*Storage error?) .

*Tasking error®);

*Time error®);

PUT_LINE(ERR & *Internal ART error: * &

CHARACTER_STRING .SUBSTRING_OF (CUR_USER.ERROR_BUFFER)) .
CHARACTER_STRING.CLEAR(CUR_USER ERROR_BUFFER)

RETRACT_ERR

PUT_LINE(ERR & “Retract error: ° 2

CHARACTER_STRING‘SUBSTRING_OF(CUR_USER.ERROR_BUFFER));

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

when
=>

when
=>

when
=>

CHARACTER_STRING.CLEAR(CUR_USER.ERROR_BUFFER);
INTERPRETER _ERR

PUT_LINE(ERR & °*Interpreter error: * &
CHARACTER_STRING.SUBSTRING_OF(CUR_USER.ERROR‘BUFFER));
CHARACTER_STRING.CLEAR(CUR_USER.ERROR_BUFFER),
USER_ERR

PUT_LINE(ERR & "User error: " g
CHARACTER_STRING.SUBSTRING_DF(CUR_USER.ERROR_BUFFER)),
CHARACTER STRING CLEAR(CUR_USER‘ERRDR_BUFFER);
USER_DEFINED_ERR

PUT_LINE(ERR & “User defined error®);

end case;
end PROCESS_ERROR;

53

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

I11.5 Separate Procedure ERROR _HDL _SUB.WARNING

-- COPYRIGHT NOTICE

-- 1) COPYRIGHT (C) 1988

-- INFERENCE CORPORATION,

-- 5300 W Century Blvd.,

== Lcs Angeles, Californta 90045

-- AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED.

-- 2) Restricted Rights Notice (Short Form) (April 1984)

-- Use, reproduction, or disclosure 1is
--= subject to restricticns set forth in

-- Government Cooperative Agreement Number NCC-
-- 9-16 between the National Aeronautics and

-= Space Administration and the University of

-- Houston-Clear Lake and a subcontract

-- thereunder, Number 015 between the University
-- of Houston-Clear Lake and Inference

== Corporation.

-~ 3) Restricted Rights Notice (ART/Ada)

-- Thess data constitute Inference

-- Corporanlon’trade secrets and/or information
-- that is commercial or financial and

-- confidential or privileged. They are

-- submitted to the Government under NASA

--= Cooperative Agreement NCC-9-16 with the

-- University of Houston-Clear Lake Research
-- Institute for Computing and Information

-- Systems (RICIS) with the understanding that
-- they will not, without the permission of

-- Inference Corporation, be used or disclosed
-- for other than evaluation purposes.

with TEXT_IO:
use TEXT_IO;
separate (ERROR_HDL_SUB)
procedure WARNING(MESSAGE: in STRING) is
vegin

PUT_LINE(*:,. WARNING: * & MESSAGE):
end WARNING;

54

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

1.6 Specification of USER _INTERFACE Package

55

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

-- proprietary Rights of Inference Corporation in the ART(TM) ,
-- ARTLV(TM), ART Studio(TM), ARTIST(TM) and
-~ Viewpoints(TM) programs include the following:

- 1) The ART(R), ART Studio(TM)., ARTIST(TM)

-- and Viewpoints(TM) programs and related data and
-- information are the subject of TRADE SECRETS and
-- COPYRIGHTS licensed from INFERENCE CCRPORATION.
-- The program and related dava and informatlon are
-- provided in confidence and all use, disclosure,
-- copying, or storage except as authorized in the
-- written LICENSE AGREEMENT FROM INFERENCE to the
-- user, is strictly prohibited.

-- 2) COPYRIGHT (C) 1988, 1987, 1986, 1985, 1984 INFERENCE CORPORATION,
-- 5300 W. Century Blvd., Los Angeles, California 90045.
-- AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED.

-- 3) RESTRICTED RIGHTS LEGEND:

-- When the Licensee is the U.S. Government or a duly

-- authorized agency thereof, use, duplication, or disclosure
-- by the U.S. Government 1S subject Lo restrictions as set
-- forth in subivision (b) (3) (ii) of the Rights in

-- Technical Data and Computer Software clause at

-- §2.227-7013, dated November 9, 1984.

-- Author: J. T. Badura
-- Package: USER_INTERFACE_SUB

-- Function: This package contains subprograms that controls the user
-- interface.

-- State Variables: None
-- State Variable Initialization: None

-- Change Log:

with STRUCT_DCL;

use STRUCT DCL;

package USER_INTERFACE_SUB is
-~ Function: This procedure invokes the interactive ART/Ada command loop.
-- This procedure will display the initial banner and repeatly
-- print the ART/Ada prompt for a ART command.
i The command loop should handle watch/unwatch, reset, rum,
-- agenda, facts.

-- FACTS: Prints ocut a list of the current facts
-- to the screen, in sorted order and with a
-~ sum of the total current facts.

-~ AGENDA: Prints out the agenda of the rules
-- that are ready to fire.

ART/ADA DESIGN PROJECT - PHASE I

procedure AGENDA;

-- Timed_run: Calls a timing function to determine the amount of
-- time a run has taken.

procedure TIMED RUN(RUN_LIMIT. INTEGER TYPE):

end USER_INTERFACE SUB;

wn
-~}

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

IV. Benchmark Programs

This appendix includes the following ART-IM programs used to benchmark the ART/Ada prototype:

¢ Monkey and Banana

e N-Queens (6 Queens)

58

ART/ADA DESIGN PROJECT - PHASE |

IV.1 Monkey and Banana

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE I

I

-»- Mode: ART; Base: 10.; Package: ART-USER -=*-

Monkees and Bannanas Sample Problem

This is an extended version of a
rather common AI planning problem.
The point is for the monkee to find
and eat some bannanas.

To execute, merely load, reset and run.

';;!tt!tl!tli’lt‘t‘t'tt‘ttlt

o

chest unlocking rules *

;;tt#‘t‘tttt’tt*t"t!‘tt“‘

(defrule unlock-chest-to-hold-object **
(goal-is-to active holds ?ob})
(object ?chest ? ? ? 7ob] ?)
(not (goal-is-to active unlock ?chest))

=>

(assert {goal-is-to active unlock ?chest)))

(defrule unlock-chest-to-move-object **
(goal-is-to active move ?7obj ?)
(object ?7chest 7 ? ? 7obj 7)
(not (goal-is-to active unlock ?chest))

=>

(assert (goal-is-to active unlock ?chest)))

(defrule hold-chest-to-put-on-floor **
(goal-is-to active unlock ?chest)
(object ?chest ? light ~floor ? ?)
(not (goal-is-to active holds ?chest))

=>

(assert (goal-is-to active holds ?chest)))

(defrule put-chest-on-floor **
(goal-is-to active unlock ?chest)

?f

{ <- (monkey ?place ?on ?chest)

?f2 <- (object ?chest held light held ?contains ?key)

=>

(printout t *Monkey throws * ?chest * off * 7om * onto floor. * t)

(retract ?f1 ?f2)
(assert (monkey ?place ?on blank})

(assert (object ?chest ?place light floor ?contains ?key)))

(defrule get-key-to-unlock **
(goal-is-to active unlock ?obj)
(object ?obj] ?place ? floor ? 7key)
(monkey ? ? ~?key)

(not (goal-is-to active holds ?key))

=>

(assert (goal-is-to active holds ?key)))

(defrule move-to-chest-with-key **
(goal-is-to active unlock ?chest)
(monkey ?mplace ? ?key)
(object ?chest ?cplacek™?mplace 7 floor ? 7key)
(not (goal-is-to active walk-to ?cplace))

=>

(assert (goal-is-to active walk-to ?cplace)))

60

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(defrule unlock-chest-with-key **
7f1 <- (goal-1is-to active unlock 2chest-obj)
7£2 <- (object ?chest-obj ?place ®weight Zon “obj-in ?key)
(monkey ?place ?on ?key)
=>
(printout t *Monkey opens chest #ith * 2key * revealing * 7obj-in %)
(retract 7f1 ?f2)
(assert (object ?chest-ob) ?place ”welght Zon nil Zkey))
(assert (object ”obj-in ?place light “chest-obj ail n1l)))

L L EEEEE AKX AR XA AR RS

...* process hold object =
L EARREN IR TR NN

(defrule use-ladder-to-hold **
(goal-is-to active holds ?obj)
(object ?obj ?place light ceiling ? ?)
(not (geal-1s-to active move ladder ?place))
=>
(assert (goal-is-to active move ladder ?place)))

(defrule cliab-ladder-to-hold **
(goal-is-to active holds ?obj)
(object ?0bj ?place light ceiling ? ?)
(object ladder ?place ? floor ? ?)
(not (goal-is-to active on ladder))
=>

(assert (goal-is-to active on ladder)))

(defrule grab-object-from-ladder **
7f1 <- (goal-is-to active holds ?obj)
712 <- (object %obj ?place light ceiling ?contains ?key)
(object ladder ?place ? ? ? ?)
?f3 <- (monkey ?place ladder blank)
=>
(printout t "Monkey grabs the ° ?0b) t)
(retract ?f1 72 ?£3)
(assert (object ?obj held light held ?contains ?key))
(assert (monkey ?place ladder Zobj)))

(defrule climb-to-hold **
(goal-is-to active holds ?obj)
(object ?obj ”place light Zonk~floor&-ceiling ? ?)
(monkey ?place ~?on ?)
(not (goal-is-to active on ?on))
=>
(assert (goal-is-to active on ?on)))

(defrule walk-to-hold **
(goal-is-to active holds ?obj)
(object 7obj ?place light ~ceiling ? ?)
(monkey ~?place ? ?)
(not (goal-is-to active walk-to ?place))
=>
(assert (goal-is-to active walk-to ?place)))

(defrule drop-to-hold **
(goal-is-to active holds ?0bj)
(object ?obj ?place light floor ? ?)
(monkey ?place ? ~blank)
(not (goal-is-to active holds blank))
=>

(assert (goal-is-to active walk-to ?place)))

61

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(defrule get-on-floor-to-hold **
(goal-1s-to active holds ?obj)
(cbject ?obj ?place light floor ? ?)
{monkey ?place "floor ?)

(not (goal-is-to active on floor))
=>

(assert (goal-is-to active on floor)))

(defruie grab-object **
?f{ <- (goal-is-to active holds ?obj)
7f2 <- (object ?obj ?place light ®om 2contalns ?key)
73 <- {(monkey ?place ?on blank)
=>
(printout t "Monkey grabs the * ?obj t)
(retract ?f1 ?{2 ?{3)
(assert (object ?ob] held light held Zcontains ?key))
(assert (monkey ?place 2on ?0bj)))

';;**k*tt*i‘tltt*ttttt“tt‘#*
;;.% move object to a place *
';;ttt#ttttt‘“#tt‘#tt’tl"t*

(defrule hold-object-to-move **
(goal-is-to active move ?obj ?place)
(object ?obj ~?place light ? ? ?)
(monkey ? ? ~?obj)

(not (goal-is-to active holds 20obj))
=>
(assert (goal-is-to active holds ?obj)))

(defrule move-object-to-place "*
(goal-is-to active move ?obj ?place)
(monkey ~“7place ? ?0bj)

(not (goal-is-to active walk-to ?place))
=>

(assert (goal-is-to active walk-to ?place)))

(defrule drop-object-once-moved *°
?{1 <- (goal-is-to active move ?odj ?place)
7?12 <- (monkey ?place ?on ?0bj)
?£3 <- (object 7obj ? light ? ?contains ?key)
=>
(printout t "Monkey drops the ° ”obj * * 1)
(retract ?f1 ?£2 ?13)
(assert (monkey ?place 7on blank))
(assert (object 7obj ?place light floor ?contains ?key)))

(defrule already-moved-object **
711 <- (goal-is-to active move ?ob) ?place)
(object ?obj ?place ? ? 7 ?)
=>
(retract ?f1))

);‘lttit‘tti.li“‘t‘l#'t“‘

.. .% process walk-to place ¥
‘;,t‘tattttttttttt‘ltttttttl

(defrule already-at-place **
7f1 <- (goal-is-to active walk-to ?place)
(monkey ?place ? ?)
=>
(retract ?f1))

(defrule get-on-floor-to-walk **

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(goal-is-to active walk-to ?place)
(monkey ~?place "floor ?)

(not (goal-is-to active on floor))

=>

{assert (goal-is-to active on floor)))

(defrule walk-holding-nothing **
?fl <- (goal-is-to active walk-to Zplace)
?f2 <- {monkey “?place floor blank)
=>
(printcut t “Monkey walks to " ?place t)
(retract ?f1 2f2)
(assert (monkey ?place floor blank)))

(defrule walk-holding-object **
?f1 <- (goal-1s-%o active walk-to ?place)
?f2 <- (monkey ~7?place floor ?obj&~blank)
=>
(printout t *Monkey walks to * ?place * holding * 7obj t)
(retract 711 712)
(assert (monkey ?place floor %obj)))

(defrule drop-object **
7?11 <- (goal-is-to active holds blank)
?f2 <- (monkey ?place ?on ?obj&"blank)
?f3 <- (object ?obj held light held ?inside ?key)
=>
(printout t *Monkey drops * 2obj t)
(retract ?fi ?f2 ?13)
(assert (object 7obj ?place light ?on ?inside ?key))
{assert (monkey ?place %on bdlank)))

LS EREEE TR AR R AR R RN RN

.. .% process get on object =
A R R e 2 E T Y

(defrule jump-onto-floor **
?f!l <- (goal-is-to active on floor)
?f2 <- (monkey 7at ?onf”floor ?obj)
=>
(printout t *Monkey jumps off * ?on * onto the floor * v
(retract ?f1 ?¢2)
(assert (monkey 2at floor ?obj)))

(defrule walk-to-place-to-climb **
(goal-1s-to active on ?obj)
(object ?obj ?place ? ? ? ?)
(monkey ~?place ? ?)
(not (goal-is-to active walk-to ?place))
=>

(assert (goal-is-to active walk-to ?place)))

(defrule drop-to-climb **
(goal-is-to active on ?obj)
(object 2obj ?place ? ? ? ?)
(monkey ”place ? ~blank)
(not (goal-is-to active holds blank))
=>

(assert (goal-is-to active holds blank)))

(defrule climb-indirectly **
(goal-is-to active on 20bj)
(object ?obj ?place ? ?on ? ?)
(monkey ?place ~?ocn&~?obj blank)

63

ART/;ADA DESIGN PROJECT - PHASE | FINAL REPORT

(not (goal-is-to active on ?on))
=
(assert (goal-is-to active on 7on)))

{defrule climb-directly **
7f1 <- (goal-is-to active on ?ob})
(cbject ?obj ?place ? ?on ? ?)
7f2 <- {monkey ?place ?om blank)
=>
(printout ¢ "Monkey climbs onto * ?7obj t)
(revract ?f1 ?£2)
(assert (monkey ?place 7obj blank)})

(defrule already-on-object "*
7f1 <- (goal-is-to active on ?obj)
(monkey ? ?obj ?)
=>
(retract ?f1))

;;“t#tﬁtttt“*““““*

;.* process eat object x
‘;ltttlttttttttl‘ttttttt

(defrule hold-to-eat **
(goal-is-to active eat ?0b))
(monkey ? ? ~70obj)
(not (goal-is-to active holds ?obj))
=> -

(assert (goal-is-to active holds ?7obj)))

(defrule satisfy-hunger *°
?f1 <- (goal-is-to active eat ?obj)
?f2 <- (monkey ?place ?om ?0bj)
73 <- (object ?0bj ? 7 2 ? ?)
=>
(printout t *Monkey eats the " ?obj *.* t)
(retract ?f1 ?7£2 ?{3)
(assert (monkey ?place ?on blank)))

LI EASERERERANERRKREN

;.* initial-state =
’_tt#t!tﬁti*tttt*#‘

(defrule startup **
(start-fact)
=>
(assert (monkey tS-7 greem-couch blank))
(assert (object green-couch t5-7 heavy floor foo foo))
(assert (object red-couch t2-2 heavy floor foo foo))
(assert (object big-pillow t2-2 light red-couch foo foo))
(assert (object red-chest t2-2 light big-pillow ladder red-key))
(assert (object blue-chest t7-7 light celling bananas blue-key))
(assert (object blue-couch t8-8 heavy floor foo foo))
(assert (object green-chest t8-8 light ceiling blue-key red-key))
(assert (object red-key ti1-3 light floor foo foo))
(assert (goal-ls-to active eat bananas)))

(deffacts start-fact (start-fact))

64

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

IV.2 N-Queens

65

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

;An ART-IM version of NQUEENS.
;Rich Schroeppel October 1988
.Copyright (C) 1988 Inference Corp.

,The problem 15 to place N queens on an NxN chessboard so that no queen
;attacks another. (A queen attacks another if they are on the same rowv,
;column, or diagomal.)

,Example: -Q - -
- - -Q

-_Q_
:To run the demo, load this file into ART. Then reset and run it.

(load *xxx/nqueens.art®)
(resaet)
(run)

;When the program asks °How many rows on the board?®, type 4 and then ENTER.
:To run the program again, just (reset) and (run).

;ART features illustrated in this program:

;Defglobal

;Defrule

.Salience

;A startup rule, with null left-hand-side

;Pattern tests with X:

;Sequence variables, Variable length facts

;Assertv, Retract, Binding a fact variable with <-
;Procedural language:

;Bind, Arithmetic, Absolute value function, Comparisons with = and <
;Sequence functions and predicates: Length$, Nth$, Member$
;Iteration and Conditionals: For, Downto, If, Not
;Input-ODutput: Read, Printout, character strings

;Board size ! 2 3 4 5] 7 8 9
;Number of solutions ! 0 0 2 10 4 40 92 352

. (Solutions that are reflections or rotations of another solution are
;considered distinct.)

.Since there are as many queens as rows of the chessboard, each rov must
;contain exactly one queen. This program generates partial solutions in
,which the first K rows of the board are filled with K non-attacking queens.
;We begin with a blank board. The partial solutions are extended one
.row/queen at a time. When the newly added queen attacks a previous queen,
;the extended partial solution is discarded. Any partial solution that

;has N rows filled im is a true solution, and is printed.

;A partial solution is represented as (SOLUTION ct c2 ... ck). Ct ... ck
;are numbers between 1 and N. Ci is the column of the queen in row 1.

(defglobal ?count = 0) :Count of solutions
(defglobal ?print = NIL) This may be set to NIL to turn off printing.

(defrule ask-user-for-problem=size
Ask the user how big the chessboard is.®
=>
(printout t t "How many rows on the board? *)
(bind ?n (read))
(bind ?n 6) . 6 queens
(assert (problem-size ?n) (solution})

66

ART/ADA DESIGN PROJECT - PHASE |

(bind ?count 0))

(defrule grow-solution
"Extend a partial solution by adding another queen.*®
(problem-size ?n)
(solutton $7x)
=> (1f (< (length$?x) ?1) then
(for 7¢{ from 1 %o ?n do
(1f (not (member$ 1 ?x)) then (assert (solution $°x 21))))))
:The (nov (member$ i °x)) condition checks that no previous queen
.occuples column ?4.

(defrule prune-diagonal-attacks

“This rule kills off solutions in which a newly added queen attacks a
previous queen along a diagonal."®
(declare (salience 20)) High salience to kill bad solutions immediately

?fact <- (solution $?x ?¢)
=> (bind ?xlen (length$?x))

(for ?1 from ?xlen downto 1 do

(1f (= (- (+ ?xlen 1) ?1) (abs (~ ?c (nth$ 2x ?1)))) then
(retract ?fact))))

(defrule print-soluticn
"This rule detects solutions and prints a chessboard showing the position
of the queens.®

(problem-size 7n)
(solution $?x&:(= (length$?x) 2n))
=> (bind ?count (+. Zcount !))
(1f ?print then
(printout t t *Solution * ?count *:* t)
(for ?row from 1 to ?n do
(bind ?qrc (nth$?x ?row))
(for ?column from ! to ?n do

(1f (= ?qrc ?column) then (printout t * Q*) else (printout t * -*)))

(printout t t))))

(defrule print-total
"This rule prints the total number of solutions.®
(declare (salience -20)) ;Walt for solutions to be generated.
=> (printout t t *Total solutions. * ?count t))

67

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

V. Test Programs

This appendix includes the following ART-IM programs used to validate the ART/Ada prototype:

e Sweeptop: Contains about 30 rules that test the rule RHS.

e Sweep?2: Contains about 270 rules that test the pattern/join network.

68

ART;/ADA DESIGN PROJECT - PHASE | FINAL REPORT

V.1 Sweeptop

69

ART/ADA DESIGN PROJECT - PHASE 1 FINAL REPORT

;. This file contains a multitude of simple *top-level® command

.., tests of ART/C. It is intended to be self-diagnostic; at least,
: it should either die horribly or complain if any part of ART/C
;; is broken. BODC

If dridble isn’'t working, or if its behavior has changed
substantially, large parts of this program will blow up.

. AEXXEERAE AR SRR EIEE SRS RE AR REER R R SRR AR E AR R R C AR R R R SRR R Rk
(defrule 1f-test **
=>
(printout t *IF tests..." t)
(if t then t else (printout t *>>>>> IF error 1.°* t))
(it nil then (printout t *>>>>> IF error 2. t)
else t)

ttltttttﬁt‘l#t‘tt‘ti‘i‘*‘!‘#tt'*"ttt"*“#‘#‘!#tt*t#***“‘tt*"t#ti‘t
(defrule bind-test-1 **
=>
(printout t "BIND tests..." t)
(dbind ?7d! foo)
(if (not (equal ?d1 foo))
then (printout t *>>>>> BIND error 1."' t))
)

(defrule bind-test-2 **
=>
(bind ?d1 *foo")
(it (not (equal ?d1 *foo*))
then (printout t *>>>>> BIND error 2.° t))

(defrule bind-test-3 °**
=>
(bind ?7di 12)
(1¢ (not (equal ?d1 12))
then (printout t *>>>>> BIND error 3.° t))

(defrule bdind-test-4 °**
=>
(bind ?d1 12.45)
(1f (not (equal ?di 12.45))
then (printout t *>>>>> BIND error 4.° t})

EXXBARAREAES AR EEEF AT RAEERRR LS ERAEE R ARSI AR S AE KRR R E XSS S X ERSRE XS R R XK
Need a scratch defglobal for later use:
(defglobal ?scratch = "foo*)

(defglobal ?b = *foo"®) ;string
(defglodbal 7c = S58) ;integer
(defglobal ?d = 55.585) ;float
(defglobal 7e = fo0) ;symbol

(defrule defglobal-test-1 **
=>
(printout t "DEFGLOBAL tests.. .* t)
(it (not (equal ?b *foo*))
then (printout t *>>>>> DEFGLOBAL error 1* t))
)

(defrule defglobal-test-2 **

ART/ADA DESIGN PROJECT - PHASE [

=>

(11 (not (equal ?¢ 55))
then (printout t *>>>>> DEFGLOBAL error 2°* t))

(defrule defglobal-test-3 **

=>

{(if (not (equal ?d 55.55))
then (printcut t *>>>>> DEFGLOBAL error 3® t))

(defrule defglobal-test-4 **

=>

(1f (not (equal ?e fo0))
then (printout t *>>>>> DEFGLOBAL error 4* t))

bR 22 2R 22 222222222 R 22 222 2 R 2 R R R R R R RS R R SRR AR R R T 2

(defrule print-test °*"

=>

(printout t "Tests of PRINT »s»xsx® ¢)

(print foo)

(print 12)

(print 12.456) ;float
(print *foo bar®)

(print (equal 1 1))

(print (equal t 2))

(printout t t "Tests of PRINL #xs*s *)

(print 12.456) ;float
(printout t t)

(print foo)

(print 12)

(prini *foo bar®)

(print (equal { 1))

(print (equal 1 2))

(printout t t *tests of PRINC #*xesx * t)
(printout t t)

(princ 12.456) ,float

(printout t t)

(princ foo)

(princ 12

)

(princ *foo bar®)
(princ (equal 1 1))
(princ (equal 1 2))

(printout
(printout
(printout
(printout
(printout
(printout
(printout
(printout
(printout

t
v
t
T
t
t
t
t
t

t *"tests of PRINTOUT sesxsx*)
t)

12.458)
t)

fo0)

12w

*foo bar" t)

(equal 1 1) t)

(equal 1 2))

, complex formatting commands
(printout t t)

(printout t °"tests of TERPRI *wxsx* t)
(printout t t *foo*)

(verpri)

(printout t *bar® t)

.symbol
,integer

.string
)T
JNIL

. Lo separate

;symbol

;integer
;string

T

L NIL

;Lo separate
.float

;Lo separate
;symbol
;integer
;string

T

INIL

,LO separate

;to separate

.to separate tests
,symbol

.integer
.string

T

CNIL

tests

tests

tests

tests

tests

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

R T R el e e L T T T P
(defrule eq-and-test **
=>
(printout t °“EQ and *)
(if (not (eq foo foo))
then (printout t ">>>>> EQ error 1.* t)) ,symbols

(if (not (eq *"foo® "foo"))
then {printout t *>>>>> EQ error 2." t)) .strings

(1f (not (eq 12 12))
then (printout t *>>>>> EQ error 3.° t)) ;integers

(1f (not (eq 12.45 12.450))
then (printout t ">>>>> EQ error 4.° t)) ;floats

sequences and facts will have to be tested through rules.
Not top-level.

;.. There are all kinds of things that could be unequal.
;.0 I'11 test a few Of them. ..

(11 (eq foo foot)
then (printout t *>>>>> EQ error 6." t)) ;symbols

(11 (eq foo "foo®)
then (printout t ®*>>>>> EQ error 7.° t)) :symbol and similar string

(1f (eq "foo* "Foo")
then (printout t *>>>>> EQ error 8.° t)) .strings with capitalization differences

(11 (eq 12 12.0)
then (printout t *>>>>> EQ error 9.° t)) ;integers and = floats

.. EQUAL uses EQ for most tests, but it might be good to
., exercise it anyway.
(printout t *EQUAL tests...® t)

(11 (not (equal foo foo))
then (printout t *>>>>> EQUAL error 1.° t)) ;symbols

(if (not (equal *"foo" *fo0*))
then (printout t *>>>>> EQUAL error 2.° t)) ;strings

(if (not (equal 12 12))
then (printout t *>>>>> EQUAL error 3.° t)) integers

(11 (not (equal 12.45 12.450))
then (printout t °®>>>>> EQUAL error 4.° t)) ;floats

(1t (equal foo foot)
then (printout t °>>>>> EQUAL error 6.° t)) .symbols

(1t {(equal foo "foo®)
then (printout t °>>>>> EQUAL error 7.* t)) :symbcl and similar string

(1t (equal *foo* *Foo")
then (printout t *>>>>> EQUAL error 8." t)) strings with capitalization differences

(1t (equal 12 12.0)
then (printout t ">>>>> EQUAL error 9." t)) :integers and = floats

~1
o

ART/ADA DESIGN PROJECT - PHASE |

P L Rt s T Y YIRS T o

{defrule gentemp-test **
=>
(printout t "GENTEMP tests..

)

How do you test something that is defined as returning something
different every time you call 1v??7?

(1f (or (aot (symbolp (gentemp)))

(equal (gentemp) (gentemp)))

then (printout t ">>>>> GENTEMP error 1." t))

EEREEEREE R AR AR KRR A AR T ERRE X E RN TSR AN TR E SRR AR KRR R AT K

(defrule symbolp-test **
=>

(printout t "SYMBOLP tests..." t)

(1f (a0t (symbolp foo)) ; symbol
then (printout t ®">>>>> SYMBOLP error !.*® t))

(if (symbolp (2) ;integer
then (printout t *>>>>> SYMBOLP error 2.* t))

(if (symbolp 12.4) ;fleoat
then (printout t *>>>>> SYMBOLP error 3.°* t))

(11 (symbolp *foo"; ,string
then (printout t *>>>>> SYMBOLP error 4.% t))

(it (not (symbolp (eq t 1))))T
then (printout t *>>>>> SYMBOLP error 6.* t))

(if (not (symbolp {(eq 1 2))) JNIL

then (printout t *>>>>> SYMBOLP error 7.° t))

R Rt S R R RS Rt a2 R R s R e s 222222 2SS

(defrule stringp-test "*
=>

(printout t *STRINGP tests...® t)

(it (stringp foo) ;symbol
then (printout t *>>>>> STRINGP error 1.* t))

(if (stringp 12) ;integer
then (printout t *>>>>> STRINGP error 2." t))

(it (stringp 12.4) ;float
then (printout t *>>>>> STRINGP error 3.* t))

(1f (not (stringp "foo*)) ;string
then (printout t ">>>>> STRINGP error 4.° t))

(if (stringp (eq t 1)))T
then (printout t *>>>>> STRINGP error 6.° t))

(it (stringp (eq t 2)) JNIL
then (printout t *>>>>> STRINGP error 7.° tv))

R T s E E F T TR T 2

(defrule numberp-test **
=>

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

{printout t °*NUMBERP tests..."® t)

(1t

(numberp foo0)
then (printout t *>>>>> NUMBERP error

(not (numberp 12))
then (printout t ">>>>> NUMBERP error

{not (numberp 12 4))
then (printout t ">>>>> NUMBERP error

(numberp "fco*)
then (printout t ®*>>>>> NUMBERP error

(numberp (eq 1 1))
then {(printout t ">>>>> NUMBERP error

(numberp (eq ! 2))
then (printout t *>>>>> NUMBERP error

EEFEERR RN R R R EEE R AR AR R E R RN R E AR AR R LR AR AP ERR KRR K

(defrule not-test **

=>

(printout t °"NOT tests..."' t)

(if

(it

(it

(it

(if

(it

(not foo)
then (printout t *>>>>> NOT error 1.°*
(not 12)
then (printout t *>>>>> NOT error 2.°

(not 12.4)
then (printout t *>>>>> NOT error 3.

(not *foo*)
then (printout t *>>>>> NQT error 4.°

(not (eq 1 1))
then (printout t *>>>>> NOT error 6.°

(not (not (eq 1 2)})
then (printout t *>>>>> NOT error 7."

ARCIERERRR TR ARAEB RIS EF AR RN AR BRI SR AR RS R R AR R AN E KRN XTI ST

(defrule and-or-test **

=>

(printout t *AND and OR tests.. .* t)

(if

(it

(it

(it

(and t t nil)
then (printout t "AND error 1.%))

(not (and t ¢ t))
then (printout t *AND error 2.%))

{(not (or nil t nil))
then (printout t °*OR error !.*))

(or nil nil nil)
then (printout t “OR error 2.°))

EXEAREEE R AR R AR R EAEEERAE R E AR A ARSI RN AR R AR XA R TR ES AR R AR AR AR NN

(defrule string-append-test **

t))

t))

t))

t))

t))

L))

,symbol
)

.integer
t))

cfloat
v))

.string
L))

;T
t))

;NIL
)

.symbol

.integer

s float

;string

CNIL

FINAL REPORT

-

ART/ADA DESIGN PROJECT - PHASE |

=
(printout t *STRING-APPEND tests. .* t)

{if (not (equal (string-append "a*® *b* *c") ®abdc"))
then (printout t *>>>>> STRING-APPEND error 1. .* t))
)

Fi3i i 2 R T2 s 22 e 2 222 R S R 2 s R S 2R R 2 RS2 222222 R 2 22 R R 2 R R 2 R ROt
(defrule ceiling-test **
=>
(printout % *CEILING tests. * t)

(if (not (equal (ceiling -1000000000.1) -100000GC00))
then (printout t *>>>>> CEILING errer 1 * t))

(1f (not (equal (ceiling 1000000000.1) 1000000001))
then (printout t *>>>>> CEILING error 2." t))

(if (not (equal (ceiling 0) 0))
then (printout t *>>>>> CEILING error 3." t))

(if (not (equal (ceiling -1) -1))
then (printout t *>>>>> CEILING error 4 * t))

(if (not (equal (ceiling 1) 1))
then (printout t *>>>>> CEILING error §.° t))

(it (not (equal {ceiling -t.1) -1))
then (printout t ®">>>>> CEILING error 6.* t))

(if (not (equal (ceiling !.1) 2))
then (printout t *>>>>> CEILING error 7.* t))

KRR KA AR E R AR A R R AR KA R AR R AR A R AR C AR R R KNI RN R R RS
(defrule truncate-test "*
=>
(printout t *TRUNCATE tests. ." t)

(1f (not (equal (truncate -1000000000.1) -1000000000)}
then (printout t *>>>>> TRUNCATE error 1.* t))

(if {(not (equal (truncate 1000000000.1) 1000000000))
then (printout t ®>>>>> TRUNCATE error 2.* t))

(if (not (equal (truncate 0) 0))
then (printout t ®>>>>> TRUNCATE error 3 * t))

(1f (not (equal (truncate -1) -1))
then (printout t *>>>>> TRUNCATE error 4.° t))

(11 (not (equal (truncate 1) 1))
then (printout t *>>>>> TRUNCATE error 5.° t))

(if (not (equal (trumcate -1.1) -1))
then (printout t *>>>>> TRUNCATE error 6.° t))

(if (not (equal (truncate 1.1) 1))
then (printout t *>>>>> TRUNCATE error 7.% t))

I s R R R R RS RS E A RS R 222 R 2 2 2 2 2
(defrule evenp-test **
=
(printout t ®EVENP tests. ." t)

-1
(<1}

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [

(1f (not (evenp 2))
then (printout t

(i1t (not (evenp -2))
then (printout t

{(1f (evenp 1)
then (printout t

(if (evenp -1)
then (printout t

*>>>>> EVENP error 1.

*>>>>> EVENP error 2.

*>>>>> EVENP error 3.

*>>>>> EVENP error 4.

o)

)

*)

')

EEUEEEE RN E SRR IR TR ER SRR B XA IR AR KRGS R RS E R R R SR RN BN AR R KK

(defrule oddp-test **
=>

{printout t *ODDP tests...* t)

(1t (oddp 2)
then (printout t

(if (oddp -2)
then (printout t

(11 (not (oddp 1))
then (printout ¢t

(1 (not (oddp -1))
then (printout t

(defrule rem-test **
=>

“>335>

CDDP error 1.

*>>>>> QDDP error 2.

*>>>>> ODDP error 3.

E>5>>>

ODDP error 4.

(printout t "REM tests..." t)
tests from Steele p. 217

(if (not (= (rem 13 4) 1))
then (printout t *>>>>> REM error 1.

(if (not (= (rem -13 4) -1))
then (printout t *>>>>> REM error 2.

(if (not (= (rem 13 -4) 1))
then (printout t *>>>>> REM error 3.

(1f (not (= (rem -13 -4) -1))
then (printout t *>>>>> REM error 4.

.(if (not (= (rem 13.4 1) 0.4))
then (printout t *>>>>> REM error 5.° t))

;(1f (not (= (rem -13.4 1) -0.4))
then (printout t *>>>>> REM error 6.' t))

)

t))

)

t))

t))

t))

t))

t))

v))

R AR RS L ER S A A R A2t 2 R 2t Rt d iR R i i R e Rt]

,ours is defined for ints only

EEEEEREEAIEENFREIEEERS X BN AR PEE XU REIBESEXRERI X TR R SRR ER SRR R AEREERERT ¥

(defrule mod-test **
=>

(printout t *MOD tests..." t)

tests from Steele, p. 217

(if (not (= (mod 13 4) 1))

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE 1

-

then (printout t ">>>>> MOD error

(1f (not (= (mod -13 4) 3))
then (printocut t *>>>>> MOD error 2.°'

(it {(not (= (mod 13 -4) -3))
then (printout t *>>>>> MOD error 3.°

(if (not (= (mod -13 -4) -1))
then {printout t *>>>>> MOD error 4.°

;i1 (not (= (mod 13.4 1) 0.4))
then (printout t *>>>>> MOD error 5.°

(11 (not (= {(mod -13.4 1) 0.6))
then (printout t *>>>>> MOD error 6.°

EE RIS R SRS L AR R 2 E R 2 2 2 2 A2 S R R 22222l R Rl RS2 RS 2222 R 2 S T

(defrule math-test **
=
(printout t *MATH tests..." t)

t))

t))

t))

t))

t))

;ours is defined for ints only

Testing of library math functions is abbreviated to a single test

for each, mainly to prove that the function is present and is properly

linked with ART/C. There seems no point in trying to carefully
explore for singularities and precision when the functions are
beyond our reach, and will not have the same behavior frcm one site

to another. BDC

(if (not (= (max 3 2 1.5) 3))
then (printout t *>>>>> MATH error 3.°

(if (not (= (min 3 2 1.5) 1.500000))
then (printout t *>>>>> MATH error 4.°

(1t (a0t (= (mod 5 3) 2))
then (printout t ">>>>> MATH error 5.°

(if (not (= (+ 1 1.8) 2.5))
then {printout t ®">>>>> MATH error 6.°

(if (not (= (-1 0.5) 0.5))
then {printout t *>>>>> MATH error 7.°

(it (not (= (* 1 1.5) 1.5))
then (printout t *>>>>> MATH error 8.°

(if (aot (= (/ 1 2.0) 0.5))
then (printout t *>>>>> MATH error 9.°

(it (not (=1 1))
then (printout t *>>>>> MATH error: 20.

;(1f (not (/=1 2))
then (printout t ">>>>> MATH error 21

(1f (not (> 2 1))
then (printout t *>>>>> MATH error 22.

(1t (a0t (< 1 2))
then (printout t *>>>>> MATH error 23.

(it (not (>= 2 1))

)

t))

t))

t))

t))

t))

L))

* o))

L))

)

*)

-1

;broken i{n 392 on VAX

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

then (printout t °*>>>>> MATH error 24 .* t))

(1t (not (<=1 2))
then (printout t *>>>>> MATH error 25.* t))

(it (not (= (abs -1} 1))
then (printout t *>>>>> MATH error 27 * t))

)

B PR s R R R s E S 2 R R R R R R RS R a2 R 222 222222t Rt Rt
(defglobal ?m = &) ;iterative counter
(defglobal ?n = 0) ;accumulator

(defrule while-test **
=>
(printout t "WHILE tests...® t)

{vhile (> ?m 0) do
(bind ?n (+ ?n 1))
(bind ?m (- ?m 1)))

(11 (not (= ?n 5))
then (printout t *>>>>> WHILE error 1.° t))
)

t*t-t#“ttttUt*‘tt"l‘tt‘**t'#tit*.‘ttttt“tt!-;*#ltt'#ttttitﬁﬁi'ltttt
;(defrule progn-test **
J=>
;(printout t "PROGM tests...* t)

; (1t (not
; (equal Bil
. (progn (bind ?m 10)
; (bind ?n 20)
; (=1 2))))
then (printout t *>>>>> PROGN error 1.* t))

; (1t (not (= ?m 10))
then (printout t °>>>>> PROGN error 2.° t))

;{1f (not (= ?n 20))
; then (primtout t *>>>>> PROGN error 3.° t))
)
M EEEXEEAAEE RN ERRERET AR R AE R A KA AR A SRS I RN E R SRR ER R R R
(deffacts init

(fact one two three four five))

(defrule length-test-1
"Bind a sequence to ?x*¢
(tfact $7x)
=>
(printout t °"LENGTHS tests..." t)
(1f (not (= (length$?x)} 5))
then (printout t *>>>>> LENGTH$ error i.* t))

DN AEREA LRSS TE RS EE ISR LRI RN AE R SR IR RN R R RS E BN SRR SR XN AR AR RN E S
(defrule nth-test-1
*Bind a sequence to 7o0°
(tact $70)
=
(printout t *NTHS tests.. ° t)

(if (not (equal (nth$?o0 3) three))

FINAL REPORT

~e—

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

then (printout t °>>>>> NTH§ error 1." t))

T T L T I T T R s E R T T TR T R R L T TR R p gy
(defrule position-test-1

"8ind a sequence to ?o

{fact $70)

=>
{printout t "POSITICN$ tests = * t)
(if {not (= (PGSITICNS four 7o) 4))
then (printcut t *>>>>> PCGSITICNS error {.* t))

KRR E TR AN AN NN RN RN AR AR AN A KA AR KA A KRR R
(defrule member-test-1
“Bind a sequence to ?0"
(fact $70)
=>
(printout t "MEMBER$ tests...* t)

(if (member$ six ?0)
then (printout t *>>>>> MEMBERS$ error !." t))

(if (not (member$ five ?o))
then (printout t *>>>>> MEMBER$ error 2."° t))

ART/ADA DESIGN PROJECT - PHASE |

V.2 Sweep2

80

FINAL REPCRT

(deffacts initial-1

ART /ADA DESIGN PROJECT - PHASE |

-*- Mode: ART,; Base: 10.; Package: ART-USER -=-

10-20-88 AMK added sequences tests.

(test-case sdl-! test-case)
{test-case sdl-2 "a red flag®)
{test-case sdl-3 1)
(vest-case sdl-4 100 321)
(test-case sdl-5)

(test-case sdl-6 green)
(test-case sdl-7 °*green®)
(test-case sdl-8 green green)
(test-case sdl-9)

(test-case sd1-10 green)
(test-case sdl-11 °green*®)
(test-case sdl-12 green green)
{(sd1-13 sd1-13)

(sdl-14 sdl-14 green)

(sd1-15 sdl-15 "green®)
(sd1-16 sdl-16 green green)
(sd1-17 sd1-17)

(sd1-18 sdl1-18 green)

(sdl-19 sdl-19 "green*)
(sd1-20 sd1-20 green green)
(sd1-21 sdl-21 blue red green)
(sd1-22 sdl-22 red)

(sd1-23 red sdl-23)

(sd1-24 sd1-24)

(sd1-25 sd1-25 data sdl1-25)
(sd1-26 blue fun blue)
(sd1-27 blue fun get)

(5d1-28 blue blue blue)
(sd1-29 blue fun *bdlue®)
(sd1-30 red blue green)
(sd1-30 purple blue green)
(sd1-3! red blue green)
(sd1-31 purple blue brown)
(sd1-32 red)

(sd1~33 green)

(sd1-34 red)

(sd1-35 blue)

(sd1-36 green)

(sd1-37 red)
(sd1-38 blue)
(sd1-39 green)

(sd1-40 red)
(sd1-41 blue)
(sd1-42 get)
(sd1-43 green)

(sd1-44 red)
(sd1-45 green)

(sd1-46 red)
(sd1-47 blue)
(sd1-48 green)

(sd1-49 a red)
(sd1-49 b red)
(sd1-50 a red)

"Facts to match the rules in SUITE-RULEl ART®

81

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [

(sd1-50 b green)
(sdl-51 a bdblue)
(sd1-51 b blue)
(sd1-52 a red)
(sd1-52 b red)
(sd1-53 a red)
(sd1-53 b blue)
fsdl-54 a green)
(sdl-54 b green)
(sd1-55 2)
(sd1-56 red)
(sd1-57 2)
(sd1-58 2)

(sd1l-59 "red®)

(sd1-60 2)
(sdl-61 "red*)
(sd1-62 2)
(sdl-63 "red*)

(sdl-64 4)
(sd1-64 9)

(sd1-65 data 6)
(sd1-65 value 9)

(sd1-66 1 4.00 7.00)
(sd1-66 2 5.00 9.00)

(sd1-67 datatl 3)
(sd1-67 data2 5)

(sdl-68 datal 9)
(sd1-68 data2 5)

(sd1-69 datal 4)
(sdl1-69 data2 4)

(sd1-70 datal red)
(sd1-70 data2 5)

(sd1-71 datal *4°)
(sdl1-7! data2 4)

(sd1-72 datal red)
{sd1-72 data2 S)

(sd1-73 datal red)
(sd1-73 data2 5)

(sd1-74)
(sd1-75)
(sd1-76)
(sd1-77)
(sd1-78)
(sdl1-78
(sdl-78
(sd1-79
(sd1-80
(sdl-81

8)

e RN~
o o o
0o o0 n
a Ao o
@® ® ®
Lo e e]
LR X

(sd1-108 10)
(sd1-109 3)

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

)

(deffacts initlal-1-sequences °*Facts to match the rules in SUITE-RULEL ART®

(test-case (sdl-! test-case))
(test-case (sdl-2 *a red flag*))
(test-case (sdl-3 1))

(test-case (sdl-4 (100.321)))
(test-case (sdl-5))

(vest-case (sdl-5 green))
(test-case sd1-7 ("green"))
(test-case (sdl-8 green green))
(test-case sd1-9())

(test-case sd1-10 (green))
(test-case sdl-11 (*greent))
(test-case (sd1-12 green green))

(sd1-13
(sdl-14
(sd1-15
(sd1-16
(sd1-17
(sd1-18
(sd1-19
(sd1-20
(sd1-21
(sd1-22
(sd1-23
(sd1-24
(sd1-25
(sd1-28
(sd1-27
(sd1-28
(sd1-29
(sd1-30
(sd1-30
(sd1-31
(sd1-31
(sd1-32
(sd1-33
(sd1-34
(sd1-35
(sd1-386

(sd1-37
(sd1-38
(sd1-39

(sd1-40
(sdl-41
(sd1-42
(sd1-43

(sd1-44
(sd1-45

(sd1-46
(sd1-47
(sdl-48

(sdl-49
(sdl1-49
(sdl-50
(sd1-50
(sd1-51
(sd1l-51

(sd1-13))

(sdl-14 (green)))
(sd1-15 ("green®)))
(sdl-16 (green green)))
(sdl-17))

(sd1-18 green))

(sd1-19 "green®))
(sd1-20 green (green)))
(sd1-21 ®dlue red green))
(sd1-22 red))

(red sd1-23))

(sd1-24))

(sd1-25 data sd1-25))
(blue fun blue))

(blue fun get))

(blue blue blue))

(blue fun (°blue®)))
(red (blue green)))
(purple (blue green)))
(red blue green))
(purple blue brown))
(red))

(green))

(red))

(blue))

(green))

(red))
(blue))
(green))

(red))
(blye))
(get))
(green))

(red))
(green))

(red))
(blue))
(green))

(a (red)))
(b (red)))
(a (red)))
(b (green)))
(a (blue)))
(b (blue)))

83

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE [

)

(sd1-52 (a (red)))
(sd1-52 (b (red)))
(sd1-53 (a (red)))
(sd1-53 (b (blue)))
(sdl-34 (a (greean)))
(sd1-54 (b (green)))

(sd1-55 (2))
(sdl1-56 (red))
(sd1-57 (2))
(sd1-58 (2))

(sd1-59 (°red®))

(sd1-60 (2))

(sdl-61 (*red®))

(sd1-62 (2))

(sdl-63 (*red*®))

(sd1-84-seq (4))
(sdl-64-seq (9))

(sd1-65 (data 6))

(sd1-65 (value

9

(sdl-66 (1 4.00 7.00))
(sd1-66 (2 5.00 9.00))

(sd1-67 (datal
(sdl-67 (data2

(sd1-68 (datal
(sd1-68 (data2

(sdl1-69 (datal
(sdl1-69 (data2

(sd1-70 (datal
(sd1-70 (data2

(sdl-71 (datval
(sd1-71 (data2

(sdl1-72 (datal
(sd1-72 (data2

(sdl-73 (datal
(sd1-73 (datal

(sd1-74 ())
(sdl-75 ()
(sd1-76 ())
(sd1-77 Q)
(sd1-78))
(sd1-78 (1 S))
(sd1-78 (2 8))
(sd1-79 (a b ¢
(sdl-80 (a b ¢
(sd1-81 (a b ¢

(sd1-108 (10))
(sd1-109 (3))

@)
(8)))

93
(8))

(CDD)
(4)))

red))
5))

-‘.))
4))

red))
5))

red))
5))

34

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(deffacts initial-2 **
(sd1-115 to be foo bar to be)
(sdl-1186 a e 1 o u)
(sd1-117 fluff mug bump bleet lolita)

; o hiking or skiing

(non-working sdl-118)
(weather sdl-118 major-blizzard)

(non-working sdi-119)
(drive sdl1-119 two-wheel)

(non-working sdl1-120)

(weather sdl1-120 major-blizzard)
(drive sd1-120 two-wheel)
(working sd1-120 weekend)

;. wild card

(sd1-121 one one)

(sdl-122 one one one)
(sd1-123 6 5 4 5)

(sdl-124 ar t hur)
(sd1-125 a rose is a rose)
(sdl-126 to be or not to be)
(sdl-127 frank)

(sdl-128 1 2)

(sd1-129 love 1n bloom)
(sd1-130 a rose is a rose)

Str_cat
(sd1-131 "foo")
(sd1-133 first second)
(sd1-134 republicans fox jones nixon williams harvey)
(sd1-134 quakers pallas sanchez stone nixon fregge)
(sdl-135 yellow)
(sd1-135 green)
(sd1-136 yellow)
(sd1-136 green)
(sd1-137 yellow)
(sd1-138 green)
(sd1-139 -12 12}
(sd1-140 t 1)
(sdl-140 { 2)
(sdl-141 1 1)
(sdl-141 1 2)
(sd1-142 cold hot)
(sd1-143 green yallow red blue white)
(sd1-144 brother-of walter daniel)
(sdl-144 child-of walter david)
(sd1-144 sex-of david male)
(sd1-144 child-of walter jane)
(sd1-144 sex-of jane female)
(sd1-145-11st red white blue)
(sd1-145 red)
(sd1-145 white)
(sd1-145 blue)
(sdl-146-seats 8 9 11 14 3)
(sdl-146-names tom carol fred alex)
(sd1-147 donors start fred)
(sd1-147 donors fred john)
(sd1-147 donors john mike)
(sd1-147 donors mike finish)

85

ART/ADA DESIGN PROJECT - PHASE [

(sd1-147 donation fred 7.0)
(sd1-147 donation john 10.0}
(sd1-147 donation mike 0.5)
(sd1-147-sum donors start 0)
(sd1-148 donor-1list fred john mike)
(sd1-148 donation fred 7.0)
(sd1-148 donation john 10.0)
(sd1-148 donaticn mike 0.5)
(sd1-148-sum donors start 0)
(sd1-149 inventory shirt-i1 7.00)
(sd1-149 inventory pants-9 10.00)
(sd1-149 inventory belt-14 2.50)
(sd1-149 current-sum Q)

(sd1-150 inventory shirt-11 7.00)
(sd1-150 inventory pants-9 10.00)
(sd1-150 inventory belt-14 2.50)
(sd1-150 current-count 0)
(sd1-151 quarter 10)

(sd1-151 dime 8)

(sd1-151 nickel 6)

(sd1-15! penny 4)

(sd1-152 quarter 10)

(sd1-152 dime 8)

(sd1-152 nickel 6)

(sd1-152 penny 4)

(sd1-153 yes)

(sd1-153 no)

(sd1-153 unknown)

(sd1-1563 1)

(sd1-154 fco)

(sd1-154 1)

(sd1-154 2)

(sdl-154 3)

(sd1-155 foo)

(sd1-155 1)

(sd1-185 2)

(sdl1-155 3)

(sd1-156 *string*)

(sd1-157 "suring*)

(sd1-158 °*string*)

(sd1-159 yes)

(sd1-159 no)

(sd1-159 unknown)

(sd1-159 1)

(sd1-160 yes)

(sd1-160 no)

(sd1-160 unknown)

(sd1-160 1)

(sd1-161 foo)

(sd1-161 1)

(sd1-161 2)

(sdl-161 3)

(sd1-162 foo)

(sd1-162 1)

(sd1-162 2)

(sd1-162 3)

(sd1-163 "cverflow")

(sdl-164 input "overflow®)

(sd1-164 1ist *yes® *no* "unknown® “overflow® "inference®)
(sd1-165 12345.89)

(patient-name paul)
(patient-name brad)

86

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

(sdl-166
(sdl-166
(sd1-166
(5d1-1686
(sd1-1€8
{sd1-168
(sd1-1686
(sd1-166
(SDL-167
(SCL-167
(SDL-167
(SDL-167
(SDL-167
(SDL-167
(sdl-167
(sdl-167
(sdl-167
(sdl-168
(SDL-168
(SDL-168
(SDL-168
(SDL-168
(SDL-168
(SDL-168
(SDL-169
(SDL-169
(SDL-169
(SDL-169

paul yes)
paul 1.5)
1.5 paul)
yes paul)
think paul said yes)
paul did say 1.5)
1.5 says paul)
yes says paul)
YES FCR PAUL AND BRAD)
YES FOR PAUL BRAD AND BILL)
YES PAUL BRAD)
PAUL YES BRAD)
PAUL BRAD YES)
PAUL BRAD 1.5)
1.5 BRAD PAUL MARK)
BRAD AND PAUL SAY YES)

BRAD SAYS YES AND SO DOES PAUL)

YES FOR PAUL AND NO FOR BRAD AND MARK)
NO says BRAD and YES says PAUL)
NO for BRAD YES for PAUL)

THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS YES)

BRAD MARK ARE NO AND PAUL IS YES TCO)

THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS 1.5)

BRAD {s unknown AND PAUL IS {.5)
NO says SRAD but not PAUL)
NQ for BRAD but not for PAUL)

THE ANSWER FOR BRAD AND MARK IS NO but not PAUL)

BRAD MARK ARE NC but not PAUL)

(sdl-170 paul complains of vertigo and faintness)

(sd1-170 brad has a headache)
(age paul 30)
(age bdbrad 18)

(sd1-172 major-complaint paul drowsiness)

{(sd1-172 recent-head-injury paul no)
(sd1-172 confusion-mild paul yes)
(sd1-172 major-complaint brad confusion)
(sd1-172 major-complaint brad vertigo)
(sd1-173 casel 450 550 3)

(sd1-173 case2 440 560 2)

(sd1-173 case3 440 440 1)

(sd1-174 case! dummy dummy dummy 450 dummy S50 dummy 3)
(sd1-174 case2 foo foo foo 440 foo 560 foo 2)
(sd1-174 case3 bar bar bar 440 bar 440 bar 1)

(sd1-175 pallet §)

(sd1-175 pallet 4)

(sdl-175 options 1000 3000 4000 5024)
(sd1-175 case 3024)

(sd1-175 case 5000)

(sd1-17S case 5024)

(sd1-175 case 4000)

(sdl-176 options 1000 3000 5000)
(sd1-176 case 5000)

(sd1-177 options 1000 3000 4000)
(sd1-177 case 5000)

(sdl-178 1)

(sd1-179 coptions 1000 3000 5000)
(sd1-179 case 5000)

(sd1-180 options 1000 3000 4000)
(sd1-180 case 5000)

(sd1-181 5000)

(sdl-181 6000)

(sd1-182 *est* *pst*)

(sd1-182 *pst® *pst*)

(sd1~182 ®*est* "est*)

37

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(sd1-182 "pst® "est*)
(sd1-183 2)

(sdl-184 2)

(sd1-185 "string®)
(sd1-186 "string")
(sdl-186 *foo*)
(sd1-187 *string*® "foo*)
(sd1-187 “foo" *foo*)
(sd1-188 *foobar")
(sd1-189 2)

(sd1-190 1)

(sd1-190 foo)
(sd1-191 1)

(sdl-191 0.1)
(sdl-191 *foo")
(sdl-191 bar)
(sdl-191 2)

(sd1-191 12345.6789)
(sdl-191 *fee®)
(sd1-191 blee)
(sd1-192 40)

(sd1-192 50)

(sdl-192 60)

(sdl-192 70)

(sd1-192 80)

(sdl1-192 90)

(sd1-192 100D

(deffacts 1initial-2-sequences "°
(sd1-115 ((to be) (foo bar) (to be)))
(sd1-116 (a e 1 0 1))

(sd1-117 (fluff mug bump bleet lolita))
;. go hiking or skiing
(non-working (sdl-118))
(weather (sdl-118 major-blizzard))
(non-working (sdl-119))
{drive (sdl-119 two-wheel))
{(non-working (sdl1-120))
(weather (sd1-120 major-blizzard))
(drive (sd1-120 two-wheel))
(working (sdl-120 weekend))
;. wild card
(sdl-121 (one ome))
(sd1-122 (one one one))
(sd1-123 (6 5 4 5))
(sdl-124 (a T vt hur))
(sd1-125 (a rose is a rose))
(sd1-128 (to be or not to be))
(sd1-127 (frank))
(sd1-128 (1 2))
(sd1-129 (love in bloom))
(sd1-130 (a rose is a rose))

. SCT_C&D
(sd1-131 ("foco*))
(sd1-133 (first second))
(sd1-134 (republicans fox jones nixon williams harvey))
(sd1-134 (quakers pallas sanchez stone nixon fregge))
(sd1-135 (yellow))

(sd1-135 (green))

(sd1-136 (yellow))

(sd1-136 (green))

(sd1-137 (yellow))

88

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(sd1-138 (green))

(sdl-139 (-12 (1))

(sd1-140 (1 1))

(sd1-140 (1 2))

(sdl-t41 (1 1))

(sdl-141 (1 2))

(sd1-142 (cold hot))

(sd1-143 (green yellow red blue white))
(sd1-144 (brother-cf walter daniel))
(sd1-144 (child-of walter david))
(sdl-144 (sex-of david male))
(sd1-144 (child-of walter :ane))
(sdl-144 (sex-of jane female))
(sdl-145-1ist (red white blue))
(sd1-145 (red))

(sd1l-145 (white))

(sd1-145 (blue))

(sdl-146-seats (8 9 11 14 3))
(sdl-146-names (tom carol fred alex))
(sd1-147 (donors start fred))
(sd1-147 (donors fred john))
(sd1-147 (donors john mike))
(sd1-147 (donors mike finish))
(sdl-147 (donation fred 7.0))
(sd1-147 (donation john 10.0))
(sd1-147 (donation mike 0.5))
(sd1-147-sum (donors start 0))
(sd1-148 (donor-list fred johan mike))
(sd1-148 (donation fred 7.0))
(sdl-148 (donation john 10.0))
(sdl1-148 (donation mike 0.5))
(sd1-148-sum (donors start 0))
(sd1-149 (inventory shirt-11 7.00))
(sd1-149 (inventory pants-9 10.00))
(sd1-149 (inventory belt-i14 2.50))
(sd1-149 (current-sum 0))

(sd1-150 ({nventory shirt-i1 7.00))
(sd1-150 (inventory pants-9 10.00))
(sd1-150 (inventory belt-14 2.50))
(sd1-150 (current-count 0))
(sdl-151 (quarter 10))

(sdl-151 (dime 8))

(sdl-151 (nickel 6))

(sd1-151 (penny 4))

(sd1-152 (quarter 10))

(sd1-152 (dime 8))

(sd1-152 (nickel 6))

(sd1-152 (penny 4))

(sd1-153 (yes))

(sd1-153 (no))

(sd1-153 (unknown))

(sd1-153 (1))

(sdl-154 (foo))

(sdl-154 (1))

(sd1-154 (2))

(sdl-154 (3))

(sd1-155 (foo0))

(sdl-155 (1))

(sd1-155 (2))

(sd1-155 (3))

(sd1-156 (*string®))

(sdl-167 ("string*))

(sdl-158 (*string*))

(sd1-159 (yes))

89

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(sd1-159 (no))
(sd1-159 (unknown))
(sd1-159 (1))
(sd1-160 (yes))
(sd1-160 (no))
(sd1-160 (unknown))
(sdl-160 (1))
(sdl-161 (fco0))
(sdl-161 (1))
(sdl-161 (2))
(sdl-161 (3))
(sdl-162 (f00))
(sd1-162 (1))
(sd1-162 (2))
(sd1-162 (3))

(sd1-163 (*overflow®))

(sd1-164 (input "overflow®))

(sd1-164 (list "yes® *no* ®unknown® ®overflow" *inference®))
(sd1-185 (12345.89))

(patient-name {(paul))

(patient-name (brad))

(sd1-166 (paul yes))

(sd1-166 (paul 1.5))

(sd1-166 (1.5 paul))

(sd1-166 (yes psul))

(sd1-166 (I thimk paul sald yes))

(sdl-166 (paul did say 1.5))

(sd1-166 (1.5 says paul))

(5d1-168 (yes says paul))

(SDL-167 (YES FOR PAUL AND BRAD))

(SDL-167 (YES FOR PAUL BRAD AND BILL))

(SDL-167 (YES PAUL BRAD))

(SDL-167 (PAUL YES BRAD))

(SDL-167 (PAUL BRAD YES))

(SDL-187 (PAUL BRAD 1.5))

(sdl-167 (1.5 BRAD PAUL MARK))

(sd1-187 (BRAD AND PAUL SAY YES))

(sd1-167 (BRAD SAYS YES AND SO DOES PAUL))

(sd1-168 (YES FOR PAUL AND NO FOR BRAD AND MARK))
(SDL-168 (NO says BRAD and YES says PAUL))

(SDL-168 (NG for BRAD YES for PAUL))

(SDL-168 (THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS YES))
(SDL-168 (BRAD MARK ARE NO AND PAUL IS YES TOO))
(SDL-168 (THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS 1.5))
(SbL-168 (BRAD is unknown AND PAUL IS 1.5))

(SDL-169 (NO says BRAD but not PAUL))

(SDL-169 (NO for BRAD but not for PAUL))

(SDL-169 (THE ANSWER FOR BRAD AND MARK IS NO but not PAUL))
(SbL-169 (BRAD MARK ARE NO but not PAUL))

(sd1-170 (paul complains of vertigo and faintness))
(sd1-170 (brad has a headache))

(seq-age paul (30))

(seq-age brad (18))

(sd1-172 (major-complaint paul drowsiness))

(sd1-172 (recent-head-injury paul no))

(sd1-172 (confusion-mild paul yes))

(sd1-172 (major-complaint brad confusion))

(sd1-172 (major-complaint brad vertigo))

{sd1-173 (casel 450 550 3))

(sd1-173 (case2 440 560 2))

(s41-173 (case3 440 440 1))

(sd1-174 (casel dummy dummy dummy 450 dummy 550 dummy 3))
(sd1-174 (case2 foo foo foo 440 foo 560 foo 2))

ART/ADA DESIGN PROJECT - PHASE ! FINAL REPORT

(sd1-174 (case3 bar bdar bar 440 bdar 440 bar 1))
(sd1-175 (pallet 5))
(sd1-175 (pallet 4))
(sd1-175 (options 1000 3000 4000 5024))
(sd1-175 (case 3024))
(sd1-175 (case S000))
(sd1-175 (case 5024))
(sd1-175 (case 4000))
{sd1-176 (options 1000 3000 5000))
(sd1-176 {(case 5000))
(sd1-177 (opticns 1000 3000 4000))
(sd1-177 (case 5000))
(sd1-178 (1))
(sd1-179 (options 1000 3000 5000))
(sd1-179 (case 5000))
(sd1-180 (options 1000 3000 4000))
(sd1-180 (case 5000))
(sd1-181 (5000))
(sd1-181 (6000))
(sd1-182 (*est* °"pst®))
(sd1-182 ("pst* *pst*))
(sd1-182 ("est® "est®))
(sd1-182 ("pst* “est*))
(sd1-183 (2))
(sd1-184 (2))
(sd1-185 (*string"))
(sd1-188 ("string®))
(sd1-186 (*foo*))
(sd1-187 ("string* "foo®))
(sd1-187 ("foo* °foo*))
(sd1-188 ("foobar*®))
(sd1-189 (2))
(sd1-190 (1))
(sd1-190 (fo0))
(sdl-191 (1))
(sd1-191 (0.1))
(sd1-191 ("foo*))
(sd1-191 (bdar))
(sdl-191 (2))
(sd1-191 (12345.6789))
(sd1-191 (*fee®))
(sd1-191 (blee))
(sd1-192-seq (40))
(sd1-192-seq (50))
(sd1-192-seq (60))
(sdl-192-seq (70))
(sdl-192-seq (80))
(sd1-192-seq (90))
(sdl-192-seq (100))
)

(defrule print-fail
(declare (salience -100))
(fail ?test-case)

(printout t ¢ *~=~~~ Runtime Error * ?test-case))
(defrule sdl-rule-! *Match a literal symbol °
(or (not (test-case sdl-1 TEST-CASE))
(not (test-case (sdl-i TEST-CASE))))
=>

(assert (fail sdl-1)))

(defrule sdl-rule-2 *Match a literal string*

91

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(or (not (test-case sdl-2 *a red flag"))
(not (test-case (sdl-2 *a red flag®))))
=>
(assert (fail sdl-2)))

(defrule sdl-rule-3 "Match an integer®
{or (not (test-case sdl-3 1))
(not (test-case (sdl-3 1))))
=>
(assert (fail sd1-3)))

{defrule sdl-rule-4 "Don't match a float that is almost equal®
(or (test-case sdl-4 100.3)
(test-case (sdl-4 (100.3))))
=>

(assert (fail sdl-4)))

(defrule sdl-rule-5 *"Don't let ? match nothing'
(or (test-case sdl-5 ?)
(test-case (sdl-5 7)))
=>
(assert (fall sdl-5)))

(defrule sdl-rule-6 "? must match a symbol®
(or (not (test-case sdl-6 7))
(not (test-case (sdl-6 ?))))
=>
(assert (fail sdl-6)))

(defrule sdl-rule-7 *? must match a suring®
(or (not (test-case sdl-7 7))
(not (test-case sdl-7 (?))))
=>
(assert (fail sdl-7)))

(defrule sdl-rule-8 "? must not match TWO symbols*®
(or (test-case sdl-8 ?)
{test-case (sdl1-8 ?)))
=
(assert (fail sdl-8)))

(defrule sdi-rule-9 *$? must match nothing*®
(or (not (test-case sdl-9 $7))
(not (test-case sdl-9 ($7))))
=>

(assert (fall sdl-9)))

(defrule sdl-rule-10 *$? must match a single symbol®
(or, (not (test-case sdl-10 $7))
(not (test-case sdi-10 ($7))))
=>

(assert (fail sdl-10)))

(defrule sdl-rule-11 *$? must match a single string*®
(or (not (test-case sdl-11 $7))
(not (test-case sdl-11 ($?))))
=>

(assert (fail sdl-11)))

(defrule sdl-rule-12 "$? must match two symbols®
(or {not (test-case sdl-12 $7))
(not (test-case (sdl-12 $7?))))
=>
(assert (fail sd1-12)))

92

ART/ADA DESIGN PROJECT - PHASE |

FINAL REPORT

(defrule sdl-rule-13 *? matches symbeol, $? matches nothing*

(or (not (sdl-13 ? $7))
(not (sdl-13 (?) $?)))
=>
(assert (fail sdl-13)))

(defrule sdl-rule-14 "2 and $? each match a single symbol"

{er {not (sdl-14 2 $7))
(not (sdl-14 (7 (37)))))
=>
(assert (fail sdl-14)))

(defrule sdl-rule-15 *? matches symbol. $? matches string*

(or (not (sdl-15 7 $?))
(not (sd1-15 (? ($?)))))
=>
(assert (fail sdl-15)))

(defrule sdl-rule-16 *? matches one symbol; $? matches two symbols®

(or (not (sdl-16 ? $?))
(not (sd1-16 (7 ($7)))))
=>

(assert (fail sdl-16)))

(defrule sdl-rule-17 *$? matches
(er (not (sd1-17 $? ?))
(not (sd1-17 $? (?))))
=> -
(assert (fail sdl-17)))

(defrule sdl-rule-18 *$? matches
(or (not (sdl1-18 $? 7))
(not (sdl-18 ($? ?))))
=>
(assert (fail sdl-18)))

(defrule sdl-rule-19 *$? matches
(or (not (sdl-19 $? 7))
(not (sdl-19 (87 7))))
=>
(assert (fail sd1-19)))

(defrule sdl-rule-20 *$? matches
(or (not (sd1-20 $? ?))
(not (sd1-20 ($? (?)))))
=>
(assert (fail sd1-20)))

(defrule sdl-rule-21 **
(or (not (sd1-21 $?
sd1-21
$?))

(not (sdl-21 ($?
sd1-21
$?7))))

=>
(assert (fail sdl-21)))

(defrule sdl-rule-22 **
(or (not (sdl-22 $?
sdl1-22
$?))
(not (sdl1-22 ($°
sd1-22

nothing. ? matches symbol®

symbol, ? matches symbol®

symbol: ? matches string®

Lwo symbols: ? matches one symbol*

.matches nothing

.matches nothing

93

ART/ADADEHGNPROJECT-PHASE[FINAL REPORT

$7))))
=>

(assert (fail sdl-22)))

(defrule sdl-rule-23 "*
(or (10t (sd1-23 $7? ;matches red
5d41-23
$?))
(not {sdl-23 (%7
5d41-23
$7))))
=>
(assert (fail sd1-23)))

(defrule sdl-rule-24 **
(or (not (sdl-24 $7 ;matches nothing
sdl-24
$7))
(not (sdl-24 (87
sdl-24
$7))))
=>
(assert (fail sdl1-24)))

(defrule sdl-rule-25 °*°*
(or {(not (sdl1-25 $7 ;matches sdl-25 data
sd1-25
$7)3
(not (sd1-25 ($?
sd1-25
$72))))
=>
(assert (fail sd1-25)))

(defrule sdl-rule-26 **
(or (not (sdl1-26 ?x ;matches blue
fun
7x))
(not (sdl1-26 (?x
fun
?x))))
=>
(assert (fail sdl1-26)))

(defrule sdl-rule-27 **
(or (sdl-27 °x ;matches blue
fun
?x)
(sd1-27 (?x ;matches blue
{un
7x)))
=>
(assert {(fail sdl-27)))

(defrule sdl-rule-28 **

(or (sdl-28 °x ;matches blue
fun ;does not match blue
’>x)
(sd1-28 (?x ;matches blue
fun -does not match blue
?x))) ;matches blue

=>
(assert (faill sd1-28)))

94

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(defrule sdl-rule-29 **

(or (sdl-29 ?x ,matches blue
fun
’)x)
(sd1-29 (°x ,matches blue
fun
7x)))) ;matches *blue*

=>

(assert (fall sdl-29)))

(defrule sdl-rule-30 *°*
(sd1-30 red $7x)

(sd1-30 (red (3$7x))) ;matches blue green
(sd1-30 purple $?x) ;matches blue green
(sd1-30 (purple ($7x))) :matches blue green

=>
(assert (success sd1-30))
(assert (success (sd1-30))))

(defrule sdl-rule-30-2 "*
(declare (salience -1)) ;bdc added 02/04/88
(or (not (success sd1-30))
(not (success (sd1-30))))
=>
(assert (fail sd1-30)))

(defrule sdl-rule-31 **
(sdl-31 red $7?x).

(sd1-31 (red $7x)) ;matches blue green
(sd1-31 purple $?x)
(sd1-31 (purple $7x)) .matches blue brown (no match)

=>
(assert (fail sd1-31)))

(defrule sdl-rule-32

(sd1-32 ~“red)

(sd1-32 (“red)) ;matches red (no match)
=>

(assert (fail sdl1-32)))

(defrule sdl-rule-33 **
(or (not (sd1-33 ~red)) ;matches gree
(not (sd1-33 (“red)))) ;matches green
=>
(assert (fail sdl1-33)))

(defrule sdl-rule-34 **
(or (not (sd1-34 rediblue))
(not (sdl-34 (rediblue)))) ;matches red
=>

(assert (faill sdl1-34)))

(defrule sdl-rule-3§ **
{or (not (sdl1-35 redliblue)) .matches blue
(not (sd1-35 (rediblue))))
=>

(assert (fail sdl1-35)))

(defrule sdl-rule-36 **

(s41-36 redi{blue)

(sd1-36 (rediblue)) .matches green (no match)
=>

(assert (fail sdl1-36)))

95

ART/ADA DESIGN PROJECT - PHASE [

(defrule sdl-rule-37 **
(sd1-37 “red&~blue)
(sd1-37 (“red&~dlue))

=>

(assert (fail sd1-37)))

(defrule sdl-rule-38 **
7sd1-38 “red&~dlue)
{sd1-38 (“red&~dblue))

=>
(assert (fail sd1-38)))

(defrule sdl-rule-39 *°"
(or (mot (sdl-39 “red2~blue))
(pot (sd1-39 (“red&~dlue))))
=>
(assert (fail sdl-39)))

(defrule sdl-rule-40 **
(sd1-40 “red&bluelget)
(sd1-40 (“red&bluelget))

=>
(assert (fail sdl-40)))

(defrule sdl-rule-41 **
(or (not (sdl-41 ~“red&bluelget))
(not (sdl-41 (“red&blueiget))))
=
(assert (fail sdl-41)))

(defrule sdl-rule-42 **
(or (pot (sd1-42 “redabluelget))
(not (sd1-42 (“red&blueiget))))
=>
(assert (fail sdl-42)))

(defrule sdl-rule-43 **
(sd1-43 “redablueiget)
(sd1-43 (“redkbluelget))

=>
(assert (fail sdl1-43)))

(defrule sdl-rule-44 **
(sd1-44 ?x2"red)
(sdl-44 (?x&red))

=>
(assert (fail sdl-44)))

(defrule sdl-rule-456 "*
(or (mot (sdl1-45 7?x&°red))
(not (sdl-45 (?x&"red))))
=>

(assert (fail sdl-45)))

(defrule sdl-rule-46 **
(or (not (sdl-46 ?xkred|blue))
(not (sdl-46 (?xkred|blue))))
=>
(assert (fail sdl-46)))

(defrule sdl-rule-47 *°
(or (pot (sdl-47 ?xkred|blue))
(not (sd1-47 (?x&redidlue))))

96

;matches red (no match)

;matches blue (no match)

,matches green

;matches red (mo match)

;matches blue

,matches get

;matches green (no match)

;matches red (no match)

,matches green

,matches red

,matches blue

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

=>
(assert (fail sd1-47)))

(defrule sdl-rule-48 **
(sd1-48 ?xéredibluye) .matches green {(no match)
(sdl-48 (?xa&red|bdlue))

=>
(assert (fall sd1-48)))

(defrule sdl-rule-49 **

(sd1-49 a ?x) .matches red
(sd1-49 (a (?x)))
(sd1-49 b ?x&"red) .matches red (no match)
(sd1-49 (b (?x&red)))
=>

(assert (fail sd1-49)))

(defrule sdl-rule-50 **

(sd1-50 a ?x) .matches red
(sdl-50 (a (7x)))
(sd1-50 b ?x&7red) ;matches green (no match)

(sd1-50 (b (?x&"red)))
=>
(assert (fail sd1-50)))

(defrule sdl-rule-51 *=

(sdl-51 a ?x) ;matches blue
(sd1-51 (a (?x)))
(sd1-51 b ?x&7red) ,matches blue

(sd1-51 (b (?x&7red)))

=>
(assert (success sdl-51))
(assert (success (sdl-51))))

(defrule sdl-rule-51-1 *check on sdl-rule-5{*
(declare (salience -1)) ;added by BDC 02/04
{or (not (success sdl-51))
(not (success (sd1-51))))
=>
(assert (fail sdl1-51)))

(defrule sdl-rule-52 °**

(sd1-52 a ?x) ;matches red
(sd1-52 (a (?x)))
(sd1-52 b ?x&redi|blue) .matched red
(sd1-52 (b (?xkred|blue)))

=>

(assert (success sdl-52))
(assert (success (sd1-52))))

(defrule sdl-rule-52-1 **
(declare (salience -1)) .added by BDC 02/04
(or (not (success sdl1-52))
(not (success (sd1-52))))
=>
(assert (fail sd1-52)))

(defrule sdl-rule-53 **

(sd1-53 a (?x)) ;matches red
(sd1-53 (a ?x))
(sd1-53 b ?xa&rediblue) :matches blue (no match)

(sd1-53 (b (?x&red|blue)))

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

=>
(assert (fatl sd1-53)))

(defrule sdl-rule-54 *°*

(sd1-54 a ?X) ;matches green

(sdl-54 (a (?x)))

(sd1-53 b ?x&red|blue)

(sdl-54 (b (?x&rediblue))) ;matches green (no match)
=>

(assert (fail sdl1-54)))

(defrule sdl-rule-55 **
(or (mot (sdl-55 ?x&:(numberp ?x))) .matches 2
(zot (sdl-56 (?x&:(numberp ?x)))))
=>
(assert (fall sd1-55)))

(defrule sdl-rule-56 **
(or (sdl-56 ?x&:(numberp ?X)) :matches red (no match)
(sd1-56 (?x&:(numberp ?x))))
=>
(assert (fail sdl-56)))

(defrule sdl-rule-57 *°*
(or (sdl-57 ?x&: (numberp ?x)&:(oddp ?x)) ;matches 2 (no match)
(sd1-57 (?xZ:{numberp ?x)&: (ocddp ?7x}))))
=>
(assert (fail sdl1~57)))

(defrule sdl-rule-58 **
(or (sd1-58 ?x&:(stringp ?x)) ;matches 2 (no match)
(sd1-58 (?x&:(stringp ?x))))
=>
(assert (fail sdi-58)))

(defrule sdl-rule-59 **
(or (not (sd1-59 ?x&:(stringp ?x))) ;matches "red*
(not (sdl-59 (?x&:(stringp ?x)))))
=>
(assert (fail sd1-59)))

(defrule sdl-rule-60 "* .
(or (not (sdl-60 =(+ 1 1)}) ;matches 2
(not (sd1-60 (=(+ 1 1)))))
=>
(assert (fail sdl1-60)))

(defrule sdl-rule-61 *°
(or (sdl-61 =(+ 1 1))
(sd1-61 (=(+ 1 1)))) ‘matches °"red® (no match)
=>
(assert (fail sdl-61)))

(defrule sdl-rule-62 **
(or (sdl-62 =(string-append "re" °*d")) ;matches 2 (no match)
(sd1-62 (=(string-appead °re® "d®))))
=>
(assert (fail sd1-62)))

(defrule sdi-rule-63 **
(or (not (sdl-63 =(string-append *re® *d"))) .matches "red®
(not (sd1-63 (=(string-append "re® °d*)))))
=>
(assert (fall sd1-63)))

98

ART/ADA DESIGN PROJECT - PHASE |

(defrule sdl-rule-64 **

(sd1-64 ?7y)

(sdl-64 7x&=(+ 5 ?y){=(- 12 ?y))
=>

(assert (success sd1-64)))

(defrule sdl-rule-64-seq **
(sdl-64-seq (7y))
(sdl-64-seq (?x&=(+ 5 ?y)|=(- 12 ?y)))
=>
(assert (success sdl-64-seq)))

(defrule sdl-rule-64-2 **
(declare (salience -1))
(or (not (success sdl-64))
(not (success sdl-64-seq)))
=>
(assert (fail sdl-64)))

(defrule sdl-rule-65 **
(sd1-65 data ?x)
(sd1-65 (data 7x))
(sd1-65 value ?y)
(sd1-65 (value ?y))
(test (>= (- ?y »x) 3))
=>
(assert (success sdl-65))
(assert (success (sdl-65))))

(defrule sdl-rule-65-2 **
(declare (salience -1))
(or (not (success sdl-65))
(not (success (sdl-65))))
=>

(assert (fail sdl-65)))

(defrule sdl-rule-66 *=
(sd1-66 7a ?x1 ?y1)
(sd1-66 (7a ?x1 ?y1))
(sd1-66 ?b&~?a ?x2 ?y2)
(sdl-66 (?bg~7a ?x2 ?y2))
(test (< 0 (/ (- ?y2 ?y1)
(- ?x2 ?x1))))
=>
(assert (success sdl-66))
(assert (success (sd1-66))))

(defrule sdl-rule-66-2 *»
(declare (salience -1))
(or (not (success sd1-68))
(not (success (sdl-66))))

(assert (fail sdl1-66)))

(defrule sdl-rule-67 *»
(sd1-67 datai ?y)
(sd1-67 (datal (?y)))
(sd1-67 data2 7x&:(> ?x ?y))
(sd1-67 (data2 (?x&: (> 7x ?y))))
=>
(assert (success sdl-67))
(assert (success (sdl1-67))))

99

FINAL REPORT

4 4) 9
4 9 4 9
nil t nil nil
4 4 3 3
. 9 4 9
nil t nil nil
;added by BDC 02/04
.matches &
,matches 9
.Succeeds
.added by BDC 02/04
14070 or 2509090
;14070 or 25090

.Succeeds

.added by BDC 02/04

;matches 3

,matches S

ART/ADA DESIGN PROJECT - PHASE 1 FINAL REPORT

(defrule sdl-rule-67-2 *°
(declare (salience -1)) ;added by BDC 02/04
(or (not (success sd1-67))
(not (success (sd1-67))))
=>
(assert (fail sdl1-67)))

fdefrule sdl-rule-68 **

(sd1-68 datal ?y) ;matches 9
(sd1-68 (datal (?y)))
(sd1-68 data2 ?x&: (> ?x ?y)) .matches S5 (no match)

(sd1-68 (data2 (?x&:(> ?x ?y))))
=>
(assert (fail sdl1-68)))

(defrule sdl-rule-69 **

(sd1-69 datal ?y) ;matches 4
(sd1-69 (datal (?y)))
(sd1-69 data2 ?7x&:(= 7y ?x)) ;matches 4

(sd1-69 (data2 (?x&:(= ?y ?x))))
=>

(assert (success sdl1-69))

(assert (success (sd1-69))))

(defrule sdl-rule-69-2 "*
(declare (sallence -1)) ;added by BDC 02/04
(or (not (success sd1-69))
(not (success (sd1-69})))
=>
(assert (fall sd1-69)))

(defrule sdl-rule-70 **
(sd1-70 datal ?y&:(numberp ?y)) .matches red (no match)
(sd1-70 (datal ?yk:(numberp ?y)))
(sdl-70 data2 7x&:(numberp ?x) & (= ?x ?y)) :matches S
(sdl-70 (data2 ?x&:(numberp ?x) & :(= ?x ?y)))
=>
(assert (fatl sd1-70)))

(defrule sdl-rule-71 **

(sd1-71 datal ?y&:(numberp ?y)) .matches *4° (no match)
(sdl-71 (datal 7y&:(numberp ?y))))
(sd1-71 data2 ?x&:(numberp ?X)&: (= ?y ?x)) .;matches §

(sd1-71 (data2 ?x&:(numberp ?x)X:(= 7y ?x)))
=>
(assert (fail sd1-71)))

(defrule sdl-rule-72 **

(sd1-72 datal ?yk:(numberp ?y)) ;matches red (no match)
(sd1-72 data2 ?x&:(numberp ?x)&:(= 7x ?7)) ;matches 5
(sd1-72 (datal ?7y&:(numberp ?y))) .matches red (no match)

(sd1-72 (data2 ?xk: (numberp ?x)&:(= ?x ?7y)))
=>
(assert (fail sd1-72)))

(defrule sdl-rule-73 **

(sd1-73 datal ?y) ;matches red
(sd1-73 data2 ?x&:(eq ?x ?y)) :matches 5 (no match)
(sd1-73 (datal ?y)) .matches red

(sd1-73 (data2 ?x&:(eq ?x ?y)))
=>

(assert (fail sd1-73)))

(defrule sdl-rule-74 **

100

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(sd1-74) ;matches sdl-74
(sd1-74 ()
=>
(assert (fail sdl-74))
(assert (fail (sdl-74)))) ;asserts fail fact

(defrule sdl-rule-74-2 **

?rempt <- (fail sdl-74) .matches fail fact
?remp2 <- {fail (sd1-74)) ;matches fail fact
=>
(retract 2templ ?temp2)) .retracts fail fact

(defrule sdl-rule-75 **

(sd1-75) ;matches sdl-7§
(sd1-75 ()

=>
(assert (sdl-75 1| =(gentemp))) ;asserts temp facts

(assert (sdl-75 2 =(gentemp)))
(assert (sdl-75 (1 =(gentemp))))
(assert (sd1-75 (2 =(gentemp)))))

(defrule sdl-rule-75-2 **
?templ <- (sd1-75 t ?)
?temp2 <- (sdl-75 (1 7)) .matches temp facts
?temp3 <- (sdl-75 2 7)
?temp4 <- (sdl-75 (2 7))
=>

(retract ?templ ?temp2 ?temp3 ?temp4)) ,retracts temp facts

(defrule sdl-rule-75-3 **
(declare (salience -10))
(or (sdl-75 7 ?) ,matches (sdl1-75) (no match)
(sd1-75 (? ?)))

(assert (fail sd1-75)))

;;(defrule sdl-rule-76 °**

(sd1-76) :matches (sdl-76)
=D

(assert ("sd1-76 temp®))) ;asserts temp fact

, Was (string_assert *sdl-78 temp*)

;(defrule sdl-rule-76-2 **

(declare (salience -1)) ;added by BDC 02/04

(not (*sd1-76 temp*)) :matches temp fact
C=>

(assert (fail sdl-76)))

;(defrule sdl-rule-77 **
(sd1-77) ;matches (sdl-77)
=
(assert (*sdl-77 \"temp*®*))) ;asserts temp fact
. Was (string_assert *sdl1-77 *temp\"")
.;(defrule sdl-rule-77-2 **
(declare (salience -1)) ;added by BDC 02/04
(not (*sdl-77 \"temp**)) ;matches temp fact
=D

(assert (fail sd1-77)))

(defrule sdl-rule-78 **

101

ART/ADA DESIGN PROJECT - PHASE]

(sd1-78)
(sd1-78 O)
(sd1-78 1 7x)
(sd1-78 (1 ?x))
(sd1-78 2 ?y)
(sd1-78 (2 ?y))
=>
{bind ”a (+ ?x ?y))
(assert (sdl-78 3 ?7a)))

{(defrule sdl-rule-78-2 **
(declare (salience -1))
(not (sd1-78 3 13))

=>
(assert (fail sdl1-78)))

(defrule sdl-rule-79 **
(sd1-79 $7?data)
(sd1-79 ($7data))
=>
(assert (sdl-79 length =(length$?data)))
(assert (sd1-79 (length =(length$?data)})))

(defrule sdl-rule-79-2 **
(or (not (sd1-79 length 7))
(not (sdl-79 (length 7))))
=>
(assert (fail sdl-79)))

(defrule sdl-rule-80 **
(sd1-80 $7data)
(sd1-80 ($7data))
=>
(assert (sdl1-80 second =(nth$?data 2)))
(assert (sd1-80 (second =(nth$?data 2)))))

(defrule sdl-rule-80-2 **
(or (not (sd1-80 second b))
(not (sd1-80 (second b))))
=>
(assert (fail sd1-80)))

(defrule sdl-rule-81 **
(sd1-81 $?datal)
(sdl-81 ($7datal))

=>
(bind ?al (position$ b ?datal))
(bind ?a2 (position$ b ?data2))
(assert (temp sd1-81 position ?al))
(assert (temp sdl-81 (position ?a2))))

(defrule sdl-rule-81-2 "*
(or (not (temp sdl-81 position 2))
(not (temp sdl-81 (position 2))))
=>
(assert (fail sdl-81)))

(defrule sdl-rule-t08 **
(sdl-108 7x)
(sd1-108 (?x))

=>

(it (= ?x 10)

FINAL REPCRT

;matches (sdl-78)

;matches 5

,matches 8

;binds ?a to i3
;asserts (sdl1-78 3 13)

;added by BDC 02/04
;matches temp fact from above

;matches abcdef g
;asserts 7

;matches 7 fact f{rom above
;matches a bcde f g
,asserts b

;matches b fact from above

,matches a bcdef g

;binds 7a to 2
;binds ?a to 2

;asserts 2

;matches 2 fact from above

;matches 10

;matches 10

ART/ADA DESIGN PROJECT - PHASE |

then

(assert (success sd1-108))
else

(assert (fail sd1-108))))

(defrule sdl-rule-109 **
(sd1-109 ?y)
{3d1-109 (?y))
=>
(bind ?x ?y)
(while (> ?x 0) do
(assert (sdl-108 while ?x)
(sd1-109 (while ?x)))
(bind ?x (- ?x 1))))

(defrule sdl-rule-109-2 **
(sdl1-109 while 3)
(sd1-109 while 2)
(sd1-109 (while 1))
(sd1-109 (while 3))
(sd1-109 (while 2))
(sd1-109 (while 1))

=>
(assert (success sdl1-109)))

(defrule sdl-rule-109-3 **
(declare (salience -t))
(not (success sdl-109))

=>

(assert (fail sd1-109)))

(defrule sdl-rule-115 **
(sdl-115 $?x foo bar $?x)
(sd1-115 ({$?x) (foo dar) ($7x)))
=>
(assert (success sdl-115)))

(defrule sdl-rule-115-1 **
(declare (salience -10))
(not (success sdl-118))

=>

(assert (fail sdl-118)))

{defrule sdl-rule-116 **
(or (not (sdl-116 $?vowels u))
(not (sd1-116 ($?vowels u))))
=>

(assert (fail sdl-116}))

(defrule sdl-rule-117 **
(sdl-117 $7a $7b)
(sdl-117 ($7a $7b))

=>
(assert (sdl-117-a $7a))
(assert (sdl-117-b $?b))
(assert (sdl-117-a ($7a)))
(assert (sdl-117-b ($7b))))

(defrule sdl-rule-t17-1 **
(sdl-t17-a)
(sd1-117-a fluff)
(sd1-117-a fluff mug)
(sd1-117-a fluff mug dbump)
(sdl-117-a fluff mug bump bleet)

FINAL REPORT

.matches 3
;matches 3

,three facts from previous rule

,three facts from previous rule

.added by BDC 02/05/88

.(sd1-115 to be foo bar to be)
;(sd1-115 to be foo bar to be)

.previous rule

;(sdl-116 a e t o)

;(sd1-117 fluff mug bump bleet lolita)
.(sdl-117 fluff mug bdbump bleet lolita)

.should be six palrs of facts

.should be six pairs of facts

ART/ADA DESIGN PROJECT - PHASE [

(sd1-117-a fluff mug bump bleet lolita)
(sd1-117-b fluff mug bump dleet lolitva)
(sd1-117-b mug bump bleet lolita)
(sd1-117-b bump bleet lolita)

(sd1-117-b bleet lolita)

(sdl-117-b lolita)

(sd1-117-D)

(sdl-117-a ())

(sdl-117-a (fluff))

(sdl-117-a (fluff mug))

(sd1-117-a (fluff mug bdump))

(sd1-117-a (fluff mug bump bleet))
(sd1-117-a (fluff mug dbump bleet lolita))
(sd1-117-b (fluff mug dbump bleet lolita))
(sd1-117-b (mug dbump bleet lolita))
(sdl-117-b (bump bleet lolita))
(sd1-117-b (bleet lolita))

(sd1-117-b (lolita))

(sd1-117-d)

=>

(assert (success sdl-117)))

(defrule sdl

-ryle-117-2 **

(declare (salience -10))
(not (success sdl-117))

=>

(assert (fail sdl-117)))

(defrule sdl

-rule-ski-1 **

(non-working ?date)
(non-working (?date))

(and (not
(not
(not
(not
(not

(not
=>

(Weather ?date hot-and-humid))
(weather ?date major-blizzard))
(traffic ?date massive))
(veather (?date hot-and-humid)))
(weather (?date major-blizzard))
(traffic (?date massive))))

(assert (go-hiking ?date))
(assert (go-hiking (7?date))))

(defrule sdl
(non-worki
(non-worki
(or (not ¢

(not (

(not (

(not (

(not (

(not (
=>

-rule-ski-2 **

ng ?date)

ng (?date))

weather ?date major-blizzard))
drive ?date two-wheel))

working ?date weekend))

weather (?date major-blizzard)))
drive (?date two-wheel)))
working (?date weekend))))

(assert (go-skiing ?date))
(assert (go-skiing (?date))))

(defrule sdl
(or

-rule-118 **

(go-hiking sdl-118)
(not (go-skiing sdl-118))

(go-hiki

ng (sdl-118))

(not (go-skiing (sdl-118))))

=>

(assert (fail sdl1-118)})

)

104

FINAL REPORT

,s1x pairs

.another six pairs

;from previous rule

; (non-working sdl-118) (non-working sdl-119)

; (non-working sdl-118) (non-working sdl-119)
;1o match

;(weather sdl1-118 major-blizzard), no match 1.9

;no match
; (weather sdl-118 major-dlizzard). no match 119
;no match

.no 118, yes 119
,no 118; yes 119

;. (non-working sdl-119)

; (non-working sd1-119)

;no match for 119, yes for 118

;{(drive sdl1-119 two-wheel), nc for 118

.no match for 119, yes for 118
;(drive sdl1-119 two-wheel), no for 118

;no match

;119 yes, 118 yes
;119 yes, 118 yes

,from above rules

ART/ADA DESIGN PROJECT - PHASE [

(defrule sdl-rule-119 **
(or
(rot (go-hiking sd1-119))
(not (go-skiing sdl-119))
(not (go-hiking (sdl-119)))
(not (go-skiing (sdl-119))))
=>
(assert (fail sd1-119)))

(defrule sdl-rule-120 **
(or
(go-hiking sd1-120)
(go-skiing sdl1-120)
(go-hiking (sd1-120))
(go-skiing (sd1-120)))
=>

(assert (fail sdl1-120)))

(defrule sdl-rule-121 **
(sd1-121 $? ?x $7 ?x $?)
(sd1-121 ($? ?x $? ?x $?))

=>
(assert (match sdl-121 ?x)))

(defrule sdl-rule-121-2 **
(declare (salience -1))
(not (match sdl-121 one))

=>
(assert (fail sdl-121)))

(defrule sdl-rule-122 *°*
(sd1-122 $? ?x $? ?x $7)
(sd1-122 ($? ?x 3$? ?x $7))

=>
(assert (match sdl-122 ?x)))

(defrule sdl-rule-122-2 **
(declare (salience -1))
(not (match sdl-122 one))
=>

(assert (fail sd1-122)))

(defrule sdl-rule-123 **
(sd1-123 $7 ?x $? ?x $?)
(sd1-123 (37 ?x $? 7x $7))

=>
(assert (match sd1-123 ?x)))

(defrule sdl-rule-123-2 **
(declare (salience -1))
(not (match sd1-123 §))

=>
(assert (fail sd1-123)))

(defrule sdl-rule-124 °**
(sd1-124 $? ?x $? 7x $7)
(sdl-124 (37 °x $7 7x $?))

=>
(assert (match sdl-124 ?x)))

(defrule sdl-rule-124-2 **
(declare (salience -1))
(not (match sdl-124 1))

=>

105

,frem adove rules

,from abeove ruyles

, (sdl-121
; (sdl-121

,added by

;(sdl-t22
c(sdl-122

;added by

;(sd1-123
;(sd1l-123

;added by

. (sdl-124
. (sdl-124

;added by

one
one

BDC

one
one

BDC

Lo

BDC

BDC

one)
one)

02/05/88

cne one)
one one)

02/05/88

4°5)

4 5)

02/05/88

02/05/88

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

(assert (fail sdl-124)))

(defrule sdl-rule-125 **
(sd1-125 $? ?x $7 ?x $7)
{sd1-125 ($? ?x $7 ?x §7))

=>
(assert (match sdl-125 ?x)))

(defrule sdl-ryle-125-2 **
(declare (salience -1))
(or {not (match sdl-125 a))
{not (match sdl-125 rose)))
>

(assert (fail sdl-125)))

(defrule sdl-rule-126 *°*
(or (not (sdl-126 $7x or not $7x))
{not (sdl-126 ($7?x or not $?x))))
=>

(assert (fail sd1-126)))

(defrule sdl-rule-127-master **
(sd1-127 ? $7x)
(sd1-127 (? $7?x))

=>
(assert (sdl-127-result $?x))
(assert (sdl-127-result ($7x))))

(defrule sdl-rule-127 **
(or (not (sdl-127-result))
(not (sdl-127-result ())))
=
(assert (fail sd1-127)))

(defrule sdl-rule-128-master **
(sd1-128 ? $?x)
(sd1-128 (? $7?x))

=>
(assert (sdl-128-result $7?x))
(assert (sdl-128-result ($7x))))

(defrule sdl-rule-128 **
(declare (salience -1))
(or (not (sdl-128-result 2))
(not (sdl-128-result (2))))
=>

(assert (fail sdl1-128)))

(defrule sdl-rule-129-master **
(sd1-129 ? $?x)
(sd1-129 (? $?x))

=>
(assert (sdl-129-result $7x))
(assert (sdl-129-result ($7x))))

(defrule sdl-rule-129 **
(declare (salience -1))
(or (not (sdl-129-result in bloom))
(not {sdl-129-result (in bloom))))
=>
(assert (fail sd1-129)))

(defrule sdl-rule-130-master **

106

; (sdl-125 a rose is a rose)
;(sdl-125 a rose is a rose)

:should get two asserted facts

,added by BDC 02/05/88

,(sd1-126 to be or not to be)

;(sd1-127 frank)
;(sd1-127 frank)

;should be no fact of this type

; (sd1-128 1 2)
; (sdl-128 t 2)

;added by BDC 02/05/88

;(sd1-129 love in bloom)
;(sd1-129 love in bdloom)

;added by BDC 02/05/88
,from previous rule

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(sd1-130 ? $71) ; (sd1-130 a rose is a rose)

(sd1-130 (? $7x)) ;(sd1-130 a rose is a ross)
=>

(assert (sdl-130-result $?x))

(assert (sdl-130-result ($?x))))

(defrule sdl-rule-130 **
(declare (salience -1)) ,acded by BDC 02/05/88
(or (not (sdl-130-result rose is a rose)) ;{rom previous rule
(not {sdl-130-result (rose is a rose))))
=>

(assert (fail sdl-130)))

(defrule sdl-rule-13t **

(sd1-131 7a) ,*"foo

(sdl1-131 (?a)) . "foo"
=>

(bind ?b (string-append ?a *-dar*))

(assert (sdl-i31-result ?b))

(assert (sdl-131-result (?b))))

(defrule sdl-rule-131-1 **
(declare (sallence -1)) ;added by BDC 02/05/88
(or (not (sdl-13!-result ®foo-bar®))
(not (sdl-131-result (*foc-bar®))))
=>
(assert (fail sdl-131))
(assert (fall (sdl-131))))

(defrule sdl-133-rule **
(sd1-133 ?first ? $?x) ;(sd1-133 first second) $?x binds to nothing
(sd1-133 (?first ? $7x)) ;(sd1-133 first second) $7?x binds to nothing
=>
(bind ?y (string-append ?first *-RESULT*))
(assert (sdl-133-result ?y 3$?x))
(assert (sdl-133-result (?y $7x))))

(defrule sdl-133-rule-1 **
(declare (salience -1)) ;added by BDC 02/05/88
(or (not (sdl-133-result "FIRST-RESULT*®)) ;f{rom previous rule
(not (sdl-133-result (*FIRST-RESULT*))))
=>
(assert (fail sd1-133)))

(defrule sdl-134-rule **

(sd1-134 repubdlicans $? ?x $?) :(sd1-134 republicans fox jones nixon williams harvey)

(sd1-134 quakers $? 7x §?)

(sd1-134 (republicans $? ?x $?)) ;(sd1-134 republicans fox jones nixon williams harvey)

(sd1-134 (quakers $? ?x $7)) ., (sd1-134 quakers pallas sanchez stone nixon fregge)
=>

(assert (sdl-134-result ?x)) ,?x is nixon

(assert (sdl-134-result (?x)))) ;?x 1s nixon

(defrule sd1-134-rule-1 °*°*
(declare (saltence -1)) ;added by BDC 02/05/88
(or (not (sdl-134-result nixon)) ;from previous rule
(not (sdl-134-result (nixon))))
=>
(assert (fail sdl-134)))

(defrule sd1-135-rule **
;. {(sd1-135 yellow) (sd1-135 green)
(sd1-135 ?a &7red & “blue & “green & ~violet & ~orange & “black)
;. (8d1-135 yellow) (sdl1-135 green)

107

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(sd1-135 (?a &7red & ~blue & ~green & “viclet & ~orange & ~“black))
=>

(assert (sdl-135-result ?a)) ;yellow

(assert (sdl-135-result (?a)))) yellow

(defrule sdl-135-rule-t *°*

(sd1-135-result yellow) .from previous rule
(sd1-135-result (yellow)) ,from previous rule
{not (sdl-i135-result green)) .should be no such fact

(not (sdl-135-result (green)))
=2

(assert (success sdl-135)))

(defrule sdl-136-rule-2 **

(declare (salience -10))

(not (success sdl-135)) ;previous rule
=>

(assert (fail sd1-136)))

(defrule sdl-136-rule **"
(sd1-136 7a &red | blue | green | violet | orange | black) ;yellow and green
(sd1-136 (?a &red | blue | green | violet | orange | black)) ;yellow and green
=
(assert (sdl-136-result ?a)) ,one green asserted
(assert (sdl-1368-result (?a)))) .one green asserted

(defrule sdl-136-rule-1 **

(not (sdl-136-result yellow)) ;should not exist
(not (sd1-136-result (yellow)))

(sdl-136-result green) ;should exist
(sdl-136-result (green)) ;should exist

=
(assert (success sd1-136)))

(defrule sd1-136-rule-2 **

(declare (salience -10))

(not (success sd1-136)) ;from previous rule
=>

(assert (fail sd1-136)))

(defrule sdl-137-rule **
(sd1-137 red|blue{greenivioletjorange|dlack)
(sd1-137 (red|blueigreen|violet|orangeiblack))
=
(assert (fail sd1-137)))

(defrule sdl-138-rule **
(or (not (sd1-138 red | blue | green | viclet [orange | black)) ;yellow and green
(not (sd1-138 (red | blue | green | violet | orange | black))))
=>
(assert (fail sdl-138)))

(defrule sdl-139-rule *°
(or (not (sd1-139 ?x =(abs ?x))) =12 12
(not (sdl-139 (?x (=(abs ?x))))))
=
(assert (fail sdl1-139)))

(defrule sdl-140-rule **

(sd1-140 ?xt ?yl) 11 also 12
(sd1-140 ?x2 & ~?x1 ?y2 & ~?y1)
(sd1-140 (?x1 ?yi)) it also 1 2

(sd1-140 (?x2 & ~7x1 ?y2 & ~?y1))
=>

108

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(assert (fall sdl-140)))

(defrule sdl-t141-ruyle °**

(sdl-141 ?x1 ?y1) 1 also 12
(sdl-141 7x2 7y2)
(sdl-141 (?x1 ?y1)) R also 1 2

(sdl-141 (7x2 ?y2))
(test {or {not (= ?x1 ?x2))
(not (= ?y1 ?y2))))
=>
(assert (success sdl-141)))

(defrule sdl-14i-rule-1 **
(declare (salience -10))
(not (success sdl-141))

=
(assert (fail sdl-141)))

(defrule sdl-142-rule **

(sd1-142 ?first ?second) .cold hot

(sd1-142 (?first ?second)) ;cold hot
>

(assert (sdl-142 ?second ?first)) ;hot cold

(assert (sdl1-142 (?second ?first)))) ;hot cold

(defrule sdl-142-rgle-1 **
(declare (salience -1)) .added by BDC 02/05/88
(or (not (sd1-142 hot cold)) .from above rule
(not (sd1-142 (hot cold))))
=>
(assert (fail sdl-142)))

(defrule sdl-143-rgle **
(sd1-143 $7x red $7y) .8reen yellow red blue white
(sd1-143 ($7x red $?y)) .green yellow red blue white
=>
(assert (sd1-143 red $7x $7y))
(assert (sd1-143 (red $7x $?2¥))))

(defrule sd1-143-rule-y
(declare (salience -1)) ;added by BDC 02/05/88
(or (not (sd1-143 red green yellow blue white)) ;from above rule
(not (sdl-143 (red green yellow blue white)))))
=>
(assert (fail sdl-143)))

(defrule sdl-144-rule **

(sd1-144 brother-of ?father ?uncle) ;walter daniel
(sd1-144 child-of ?father ?child) ;walter jane
(sd1-144 sex-of ?child female) .jane female
(sdl-144 (brother-of ?father ?uncle)) .walter daniel
(sd1-144 (child-of ?father ?chilq)) ;walter jane
(sdl-144 (sex-of ?child female)) .jane female
=>

(assert (sdl-144 niece-of 7uncle ?child)) .daniel jane
(assert (sd1-144 uncle-of ?child ?uncle))

(assert (sdl-144 (aniece-of Zuncle ?child))) .daniel jane

(assert (sdl-144 (uncle-of 2child 7uncle)))) ;jane daniel

(defrule sdl-144-rqlg-2 *=

(sd1-144 brother-of ?father ?uncle) .walter daniel
(sd1-144 child-of ?father ?child) .walter david
(sd1-144 sex-of ?child male)

(sd1-144 (brother-of ?father ?uncle)) .walter daniel

109

ART/ADA DESIGN PROJECT - PHASE |

(sdl-144 (child-of ?father 7child))
(sd1-144 (sex-of ?child male))

=>
(assert (sdl-144 nephew-of ?uncle ?¢hild))
(assert (sdl-144 uncle-of ?child ?uncle))
(assert (sdl-144 (nephew-of ?uncle ?child)))
(assert (sdl-144 (uncle-of ?child ?uncle)))’

(defrule sdl-144-rule-3 **
(sd1-144 niece-of daniel jane)
(sd1-144 uncle-of jane daniel)
(sd1-144 nephew-of danilel david)
(sdl-144 uncle-of david daniel)
(sd1-144 (niece-of daniel jane))
(sd1-144 (uncle-of jane daniel))
(sdl-144 (nephew-of daniel david))
(sd1-144 (uncle-of david daniel))
=>
(assert (success sdl-144)))

(defrule sdl-144-Tule-4 **
(declare (salience -10))
(not (success sdl-144))

=>
(assert (fail sdl-144)))

(defrule sdl-rule-145 **
(sd1-145-1ist $?colors)
(sd1-145-11st ($7colors))

=>
(bind ?1 1)

(bind ?7length (length$?colors))
(while (<= ?i ?length) do

cwalter david
;david male

.Walter david
;walter david

;david walter

-all from above rules

:all from above rules

;1f all here assert success

:red white blue
;Ted white blue

.3

(assert (sdl-145-control =(nth$?colors 71))
(sdl-145-control (=(nth$?colors ?1))))

(vind 21 (+ ?1 1)3))

(defrule sdl-rule-145-1 **
(sd1-145-control ?color)
(sd1-145-control (?color))
(or (not (sdl-145 ?color))

(not (sdl-145 (?color))))
=>

(assert (fall sdl-145)))

(defrule sdl-rule-148 **
(sdl-146-seats $7seats)
(sdl-146-names $7names)
(sd1-146-seats ($7seats))
(sd1-146-names ($7names))
=>
(bind 7?1 1)
(bind ?length (min (length$?seats)
(length$?names)))
(while (<= ?1 ?length) do
(assert (sdl-146-assignment
=(nth$?seats ?1)
=(nth$?names 71))
(sd1-146-assignment
(=(nth$ 7seats ?1)
=(nth$ 7names 71))))
(bind 71 (+ ?1 1))))

(defrule sdl-rule-146-1 *°

110

.red or white or blue
.red or white or blue
:if no matching generated fact

;8911 143

8 9 11 14 3
.tom carol fred alex

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

=>

(d

=>

(sdl-148-assignment 8 tom)
(sdl-146-assignment 9 carol)
(sdl-146-assignment 11 fred)
(sdl-146-assignment 14 alex)
(sd1-146-assignment (8 tom))
(sdl-146-assignment (9 carol))
(sdl-146-assignment (11 fred))
(sdl-146-assignment (14 alex))

(assert (success sdl-146)))
efrule sdl-146-rule-2 **
(declare (salience -10))

(not (success sdl-146))

(assert (fail sdl-146)))

(defrule sdl-147 **
?state-fact-1 <- (sdl-147-sum ?list ?donor ?sum-so-far)

?s

=>

(d

=>

(sd1l-147 ?list ?donor ?next-donor & ~finish)

(sd1-147 donation ?next-donor ?contribution)
tate-fact-2 <- (sdl-147-sum (?list ?donor ?sum-so-far))
(sdl-147 (?list ?donor ?next-donor & ~finish))

(sd1-147 (donation ?next-donor ?contribution))

(retract ?state-fact-1 ?state-fact-2)
(assert (sdl-147-sum ?list ?next-donor

=(+ ?sum-so-far ?contribution)))
(assert (sdl1-147-sum (?list ?next-donor

=(+ ?sum-so-far ?contribution)))))

efrule sdl-147-2 **

?state-fact-1 <- (sdl-147-sum ?list ?donor ?sum)
(sd1-147 ?1ist ?donor finish)

?state-fact-2 <- (sdl-147-sum (?1list ?donor ?sum))
(sd1-147 (?1list ?donor finish))

(retract ?state-fact-1 ?state-fact-2)
(assert (sdl-147-final ?list ?sum))
(assert (sdl-147-final (?list ?sum))))

(defrule sdl-147-3 *°

=>

(or (not (sdl-147-final donors 17.5))
(not (sd1-147-final (domors 17.5))))

(assert (fail sdl-147)))

(defrule sdl-rule-148 **

=>

(sd1-148 donor-1list $?donors)
(sd1-148 (donor-list $?donors))

(bind ?length (length$?donors))

(assert (sdl-148 donors start =(nth$?donors 1)))

(assert (sdl1-148 (donors start =(nth$?donors 1))))
(assert (sd1-148 donors =(nth$?donors ?length) finish))
(assert (sd1-148 (donors =(nth$?donors ?length) finish)))
(bind ?i 1)

(while (< ?1 2length) do

(assert (sdl-148 donors =(nth$?donors ?{) =(nth$?donors (+ 21 1)))
(sd1-148 (donors =(nth$?donors ?1) =(nth$?donors (+ 71 1)))))

(bind 2?1 (+ 71 1))))

(defrule sdl-148-1 **

?state-fact-1 <- (sdl-148-sum ?1list ?donor ?sum-so-far)

111

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(sd1-148 ?1ist ?donor ?next-donor & ~finish)

(sd1-148 donation ?next-donor 2centridution)
7state-fact-2 <- (sdl-148-sum (?list ?donor ”sum-so-far))
(sd1-148 (?list ?donor ?next-donor & ~finish))

(sdl-148 (donation ?next-donor 2contribution))

(retract ?state-fact-1 ?state-fact-2)
‘assert (sdl-148-sum ?list ?next-donor

=(+ ?sum-so-far ?contribution)))
(assert (sdl-148-sum (?list ?next-donor

=(+ ?sum-so-far ?contribution)))))

(defrule sdl-148-2 **
?state-fact-1 <- (sdl-148-sum ?list ?donor ?sum)
(sd1-148 ?14ist ?donor finish)
?state-fact-2 <- (sdl-148-sum (?list ?donor ?sum))
(sd1-148 (?list ?donor finish))
=>
(retract ?state-fact-1 ?state-fact-2)
(assert (sdl-148-final ?list ?sum))
(assert (sdl-148-final (?list ?sum))))

(defrule sdl-148-3 **
(declare (salience -1)) ;added by BDC 02/05/88
(or (not (sdl-148-final donors 17.5))
(not (sdl-148-final (donors 17.5))))
=>
(assert (fail sdl1-148)))

(defrule sdl-149 **
(declare (salience 1000))
(sd1-149 inventory ?name ?amount)
(sd1-149 (inventory ?name ?amount))
=>
(assert (sdl-149 add-to-sum ?name ?amount))
(assert (sdl-149 (add-to-sum ?name ?amount))))

(defrule sdl-149-1 **
(declare (salience 1000))
?x <- (sdl1-149 add-to-sum ?name ?amount)
?y <- (sd1-149 current-sum ?sum)
7z <- (sdl-149 (add-to-sum ?name Zamount))
?w <- (5d1-149 (current-sum ?sum))
=>
(retract ?x ?y)
(assert (sdl-149 current-sum =(+ ?sum ?amount)))
(assert (sdl1-149 (current-sum =(+ ?sum ?amount))})))

(defrule sdl-149-2 **
(declare (salience -1)) ;added by BDC 02/05/88
(or (not (sd1-149 current-sum 19.5))
(not (sd1-149 (current-sum 19.5))))
=>
(assert (fail sdl1-149)))

(defrule sdl-150 **
(declare (salience 1000))
(sd1-150 inventory ?name ?amount)
(sd1-150 (inventory ?name ?amount))
=>
(assert (sdl-150 count-item ?name ?amount))
(assert (sdl-150 (count-item ?name 2amount))))

(defrule sdl-150-1 **

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

- (declare (salience 1000))
?7x <- (sdl-150 count-{tem ?name ?amount)
7y <- (sd1-150 current-count ”count)
?z <- (sd1-150 (count-item ?name 7amount))
— ?W <- (sd1-150 (current-count ”count))

(retract ?x ?y ?z ?w)

(assert (sd1-150 current-count =(+ ?count 1)))
(assert (sdl-150 counted ?name ?amount))

(assert (sd1-150 (current-count =(+ ?count 1))))
(assert (sd1-150 (counted ?name ?amount)))

)

(defrule sd1-150-2 «»
(declare (salience 1000))
?x <- (5d1-150 counted ?name ?amount)
- ?z <- (sd41-150 (counted ?name 7amount))
(or (not (sdl-150 inventory ?name ?amount))
(not (sd1-150 (inventory ?name ?amount))))
?y <- (sd1-150 current-count ”count)
?w <- (sd1-150 (current-count ?count))
=>
(retract ?x ?y ?w ?2z)
(assert (sd1-150 current-count =(- ?count 1)))
(assert (sd1-150 (current-count =(- ?count 1))))
)

(defrule sd1-150-8 =+
(declare (salience -1)) ;added by BDC 02/05/88
(or (not (sdl-150 current-count 3))
(not (sd1-150 (current-count 3N
=>

(assert (fail sd1-150)))

(defrule sdl-151
(sd1-151 quarter ?w) .10
(sd1l-151 dime ?x) ;
(sd1-151 nickel ?y) ;6
(sdl-151 penny ?z) 4
(sd1l-151 (quarter °w)) 10
(sd1-151 (dime ?x)) .8
(sd1-151 (nickel ?y)) .8
(sdl-151 (penny ?z))
(rest (> ?w ?x ?y 7z)) 4
=>

(assert (success sdl-151)))

(defrule sdl-151-1 ==
(declare (saltence -10))
-~ (not (success sdl-151))
=>

(assert (fail sdl-151)))

~ (defrule sdl-152 **
(sd1-152 quarter ?w)
(sd1-152 dime ?x)
(sd1-152 nickel ?y)

-— (sd1-152 penny ?z)
(sd1-152 (quarter ?w))
(sd1-152 (dime ?x))
(test (> ?w 7x))

- (sd1-152 (nickel ?y))
(test (> ?x 7y))
(sd1-152 (penny ?z))

113

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(zest (> ?y ?2))
=>
(assert (success sd1-152)))

(defrule sdl1-152-1 o
(deciare {(salience -10))
(not ({success sd1-152))

=>

{assert (fatl sd1-152)))

(defrule sdl-153 **
(sd1-153 ?answer & yes | no | unknown | :{numberp ?answer)) ,yes, no, unknown, !
(sdl-153 (?answer & yes | mo | unknown | :{numberp 2answer))) .yes. no, unknown, !
=>
(assert (sdl-153 matched 7answer))
(assert (sdl1-153 (matched 7answer))))

(defrule sd1-153-1 *°
(sd1-153 matched yes)
(sd1-153 matched no)
(sd1-153 matched unkaown)
(sd1-153 matched 1)
(sd1-153 (matched yes))
(sd1-153 (matched no))
(sd1-153 (matched unknown))
(sd1-153 (matched 1))

=
(assert (success sdl-153)))

(defrule sd1-153-2 **
(declare (salience -10))
(not (success sd1-163))

=>

(assert (fail sd1-153)))

(defrule sdl-154 **

(sdl-154 7timel & :(numberp 7timel))

(sd1-154 ?time2 & : (numberp 7time2) & : (> ?7time2 ?timel))

(sd1-154 (?timel & :(numberp 7timel)))

(sd1-154 (?time2 X (numberp 7¢ime2) & : (> ?time2 ?timel))}
=>

(assert (sdl-154-matched ?timel ?time2))

(assert (sdl-154-matched (?timel 7time2))))

(defrule sd1-154-1 **
(sd1-154-matched 1 2)
(sd1-154-matched 2 3)
(sd1-154-matched 1 3)
(sdl-154-matched (1 2))
(sd1-154-matched (2 3))
(sd1-154-matched (1 3))

=>
(assert (success sd1-154)))

(defrule sdl-164-2 **
(declare (salience -10))
(not (success sdl-154))

=>

(assert (fail sd1-154}))

(defrule sd1-155 **
(sd1-155 ?timel & :(numberp 7timel))
(sd1-155 ?vime2 & :(numberp ?2time2))
(sd1-155 (7timei & :(numberp 7timel)))

114

ART/ADA DESIGN PROJECT - PHASE |

(sd1-155 (?time2 & :(numberp ?time2)))
(test (> ?time2 ?timel))

=>
(assert (sdl1-155 matched “timel ?time2))
(assert (sdl-155 (matched ?timel ?time2))))

{defrule sd1-155-1 **
(sd1-155 matched 1 2)
(sd1-155 matched 2 3)
(sd1-156 matched | 3)
{sd1-155 (matched 1 2))
(sd1-155 (matched 2 3))
(sd1-155 (matched 1 3))

=>
(assert (success sdl-155)))

(defrule sdl-155-2 **
(declare (salience -10))
(not (success sdl-155))

=

(assert (fail sdl-155)))

(defrule sdl-156 **

(or (not (sdl-156 ?x & yes | no | :(numberp ?x) | :(stringp ?x)))
(not (sd1-156 (?x & yes | no | :(numberp ?x) | :(stringp ?x}))))

=>

(assert (fail sdl-156)))
vvvy -
(defrule sd1-157 **

(or (not (sdl-157 ?x & :(stringp ?x) | yes | no | :(numberp 7x)))
(not (sd1-157 (?x & :(stringp ?x) | yes | no | :(numberp ?x)))))

=>
(assert (fail sdl-157)))

(defrule sd1-158 **
(or (not (sdl-158 7?x & :(stringp ?x)))
(not (sdl-158 (?x & :(stringp ?x)))))
=>
(assert (fail sdl1-158)))

(defrule sdl-159 **
(sd1-159 ?answer & yes | no | unknown | :(numberp 2answer))
(sd1-169 (?answer & yes | no | unknown | :(numberp ?answer)))
=>

(assert (sdl-159
(assert (sdl-159

(defrule sdl-159-1

matched ?answer))
(matched ?answer))))

(sd1-159 matched yes)
(sd1-159 matched no)
(sd1-159 matched unknown)
(sd1-159 matched 1)
(sd1-159 (matched yes))
(sd1-159 (matched no))
(sd1-159 (matched unknown))
(sd1-159 (matched 1))

=>
(assert (success sdl-159)))

(defrule sdl-159-2 **
(declare (salience -10))
(not (success sdl-159))

=>
(assert (fail sdl-159)))

115

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(defrule sd1-160 **
(sd1-160 ?answer & :(numberp ?answver) | yes | no | unknown)
(sd1-160 (?answer & :(numberp ?answer) | yes | no | unknown))
=>
(assert (sd1-160 matched ?answer))
(assert (sdl1-160 (matched ?answer))))

(defrule sdl1-160-1 "*
(sd1-160 matched yes)
(sd1-160 matched no)
(sd1-160 matched unknown)
(sd1-160 matched 1)
(sd1-160 (matched yes))
(sd1-160 {(matched no))
(sd1-160 (matched unknown))
(sd1-180 (matched 1))

=>
(assert (success sdl-160)))

(defrule sdl1-160-2 **
(declare (salience -10))
(not (success sdl-160))

=>
(assert (fail sdl-160)))

(defrule sdl-16t **
(sd1-161 ?timeld: (numberp ?timel))
(sd1-161 (?timel&: (numberp ?timel)))
(sd1-161 ?time2&: (numberp 7time2)&: (> ?time2 ?timel))
(sd1-161 (?time2&: (numberp ?time2)&:(> 7time2 ?timel)))
=>
(assert (sdl-161 matched ?timel ?time2)))

(defrule sdl-161-1 *°
(sd1-161 matched ! 2)
(sd1-161 matched 2 3)
(sd1-161 matched 1 3)

=>
(assert (success sdl-161)))

(defrule sdl-161-2 **
(declare (salience -10))
(not (success sdl1-161))

=>

(assert (fail sdl-161)))

(defrule sdl-162 **
(sd1-162 ?timel&: (numberp ?timel))
(sd1-162 (?timelk: (numberp ?timel)))
(sd1-162 ?time2&k: (numberp ?time2))
(sd1-162 (?time2&: (numberp ?time2)))
(test (> 7time2 ?timel))

=>
(assert (sd1-182 matched ?timel ?time2)))

(defrule sdl-162-1 **
(sd1-162 matched 1 2)
(sd1-162 matched 2 3)
(sd1-162 matched 1 3)

=>
(assert (success sdl-162)))

(defrule sdl-162-2 **
(declare (salience -10))

116

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(not (success sdl-162))
=>
(assert (fatl sdl-162)))

(defrule sdl1-163 **
(or {not (sd1-163 ?imput & *yes" | “no* | *unknown® | "overflow® | *inference®))
(not (sdl-163 (?ipput & "yes*® | *no® | *unknown® | ®"overflow® | "inference®))))
=>
(assert (fail sdl-163)))

(defrule sdl-164 **

(sdl-164 input ?input) ;*overflow"

(sd1-164 1ist $?1lisv)

(sd1-164 (input ?input)) ;*overflow®

(sd1l-164 (list $71ist)) ,"yes" *"no® "unknown® *overflow® "inference®

=>
(if (position$?input ?1ist)
then
(assert (success sdl-164))
else
(assert (fail sdl-164))))

(defrule sdl-165 **
(or (not (sdl-165 12345.89)) ,matches literal fact
(not (sdl-165 (12345.89))))
=>
(assert (fail sdl-165)))

(defrule sdi-166 **
(patient-name ?patiemt-1) ,paul brad
(patient-name (?patient-1)) ;paul bdrad
(sd1-166 $7 ?patient-1 $?
?answver &
yes |
no |
unknown |
:(numberp ?answer) $?)
(sdl1-166 $7? ?answer &
yes |
no |
unknown |
:(numberp ?answer) $?
?patient-1 $?)
(sd1-166 ($7 ?patient-1 $7?
7answer X
yes |
no |
unknown |
: (numberp ?answer) $7))
(sd1-166 ($7 7amsver X
yes |
no |
unknows |
:(numberp ?answer) $?
?patient-1 $?))
=>
(assert (sdl-166-matched ?patient-1 ?answer))
(assert (sdl-166-matched (?patient-1 ?answer))))

(defrule sdl-166-1 "*
(sdl-166-matched paul 1.5)
(sdl-186-matched paul yes)
(sd1-166-matched (pauwl 1.5))
(sd1-166-matched (paml yes))

117

ART/ADA DESIGN PROJECT - PHASE |

=

(assert (success sdl-166)))

(defrule sdl-166-2 **
(declare (salience -10))
(not (success sdl-166))

=>

(assert (fail sd1-166)))

(defrule sdl-167 *°*

(patient-name ?patient-t)

(patient-name (?patient-t))

(patient-name ?patient-2 & ~?patient-i)
(patient-name (?patient-2 & “?patient-1))
(or (sd1-167 $?w ?patient-1

(sd1-1867

(sdl-167

(sd1-167

$7x ?patient-2
$?y 7answer &

yes |

no |

unknown |
:(numberp ?answer)
$72)

$7?w 7patient-t
$7x ?answver &

yes |

no |

unknown |
:(numberp ?answer)
$?y 7patient-2
$72)

($7v ?patient-i
$?x ?patient-2
$7y ?answver 2

yes |

no |

unknown |

: (numberp ?answer)
$7z))

($?w ?patient-t
$?x ?answer 2

yes |

no |

unknown |
:(numberp ?answer)
$?y ?patient-2
$72)))

(assert (sdl-167-matched ?patient-1 ?answer))
(assert (sdl-167-matched ?patient-2 ?answer))
(assert (sdl-167-matched (?patient-1 2answer)))
(assert (sdl-167-matched (?patient-2 2answer))))

(defrule sdl-167-1 **
(sd1-187-matched paul 1.5)
(sd1-167-matched paul yes)
(sdl-167-matched brad 1.5)
(sd1-167-matched brad yes)
(sd1-167-matched (paul 1.5))
(sd1-167-matched (paul yes))
(sd1-167-matched (brad 1.5))
(sd1-167-matched (brad yes))

=>

(assert (success sd1-167)))

118

FINAL REPORT

-

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

- (defrule sd1-167-2 =
(declare (salience -10))
(not (success sd1-167))
=>
- (assert (fail sdl-167)))

(defrule sdl-168 **

{patient-name “patient-1)

(patient-name ”patient-2 & “?patlent-1)

(patient-name {(”patient-t))

(patient-name (”patient-2 & ~“patient-1))

(or (sdl1-168 §7v
?answer-1 & yes | no | :{numberp Zanswer-1)
$7w
?patient-1
$7x

unknown

split the fact BEFORE the second answer
7answer-2 & yes | no | (aumberp Zanswer-2) | unknown
$7y
7patient-2
$72)
(sd1-168 $7v
?patient-{
$7w
7answer-1 & yes | no | :{numberp ?answer-1) | unknown

split the fact AFTER the first answer
$7x
?patient-2
$7y
?answer-2 & yes | no | :(numberp ?answer-2)
$?2)
(sd1-168 ($?v
?answer-1 & yes | no | :(numberp ?answer-1) | unknown
$7w
?patient-1
$7x

unknown

split the fact BEFORE the second answar
?ansWer-2 & yes | no | :(numberp ?answer-2)
$7y
?patient-2
$72))
(sd1-168 ($?v
?patient-i
$7w
7answer-1 X yes | no | :(numberp ?answer-1) | unknown

unknown

- .. split the fact AFTER the first answer
$7x
?patient-2
$?y
-~ ?ansver-2 & yes | no | :(numberp ?7answer-2) | unknown
$72)))

(assert (sdl-168-matched ?patient-1 ?answer-1))

— (assert (sdl-168-matched ?patient-2 ?answer-2))
(assert (sdl-168-matched (?patient-1 ?answer-1)))
(assert (sdl-168-matched (?patient-2 ?answer-2))))

— (defrule sdl-168-1 **

(sd1-168-matched paul yes)
(sd1-168-matched paul 1.5)

119

ART/ADA DESIGN PROJECT - PHASE |

(sd1-168-matched brad NO)
(sdl-168-matched brad unknown)
(sd1-168-matched (paul yes))
(sdl-168-matched (paul 1.5))
7sd1-168-matched (brad NO))
(sd1-168-matched (brad unknown))

=>

(assert (success sdl-168)))

(defrule sdl-

168-2 **

(declare (salience -10))
(not (success sdl-168))

=>

(assert (fall sd1-168)))

(defrule sdl-

169-0 **

(declare (salience 100))

?a <- (sdl-

?b <- (sdl-

=>

169 $7before 7answer & yes
| no
$7middle not $?after)
169 ($7?before 2answer & yes
| no
$7?middle not $?after))

(retract 7a ?b)

(it

(equal ?answer yes)
then (assert (sdl-169 $?before 7answer $7?middle no $?after)

(assert (sd1-169 ($?before ?answer $?middle no $7after))))

else (assert (sdl-169 $?before 7answer $?middle yes $7after)

(defrule sdl-

(assert (sdl-169 ($7before ?answer $7middle yes $?after))))))

169 **

(patient-name ?patient-1)

(patient-name 7patient-2 & ~?patient-i)
(patient-name (?patient-i))

(patient-name (?patient-2 & ~?patient-1})
(or (sd1-169 $?v

(sd1-169

(sdl-1869

2answer-1 & yes | no | :{(numberp ?answer-1)
$7w

?patient-t

$7x

; split the fact BEFORE the second answver
7ansver-2 & yes | no | :(numberp 7answer-2)
$7y
?patient-2
$72)
$?v
?patient-1
$7v
7apswer-1 & yes | no | :(numberp 7answer-1)

;. split the fact AFTER the first ansver
$7x

?patient-2

$?y

7answer-2 & yes | no | :(numberp 7answver-2)
$72)

($?v

7answer-1 & yes | no | :(numberp ?7answer-i)
$7w

?patient-1

$7x

120

unknown

unknown

unknown

unknown

unknown

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

.. split the fact BEFORE the second answer
?answer-2 & yes | no | (numberp 7answer-2) | unknown
$?y
?patient-2
$72))
(s41-169 (37v
?patient-|
$7w
“answer-1 & yes | no | :(numberp ?answer-i) | unknown

split the fact AFTER the first answer
$7x
?patient-2
$?y
?answer-2 8 yes | no | :(numberp ?answer-2) | unknown
$?2)))
=>
(assert (sdl-169-matched ?patient-1 ?answer-1))
(assert (sdl-169-matched ?patient-2 ?answer-2))
(assert (sdl-169-matched (?patient-1 ?answer-1)))
(assert (sdl-169-matched (?patient-2 ?answer-2))))

(defrule sdl-169-1 °**
(sd1-169-matched paul yes)
(sdl1-169-matched brad NO)
(sdl-169-matched (paul yes))
(sd1-169-matched (brad NO))

=>
(assert (success sdl-169)))

(defrule sdl-169-2 =
(declare (salience -10))
(not (success sd1-169))

=>
(assert (fail sdl-169)))

(defrule sdl-170 **

(patient-name ?patient)

(patient-name (?patient))

(sd1-170 ?patient COMPLAINS | HAS $?
?complaint & blackout |
faintness |
fatigue |
headache |
vertigo |
anxiety |
confusion |
depression |
drowsiness |
nervousness |
oumbness |
paralysis |
tension |
tingling |
veakness $7)

(sd1-170 (?patient COMPLAINS | HAS $?
?complaint & blackout |
faintness |
fatigue |
headache |
vertigo |
anxiety |
confusion |
depression |

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

drowsiness |
nervousness |
numbness |
paralysis |
tension |
tingling |
weakness $7?))
=>

{assert (sdl-170-complaint ?patient ?complaint))
(assert (sdl-170-complaint (?patient ?complaint))))

(defrule sdl-170-1 **
(sd1-170-complaint paul vertigo)
(sd1-170-complaint paul faintness)
(sd1-170-complaint brad headache)
(sd1-170-complaint (paul vertigo))
(sdl-170-complaint (paul faintness))
(sdl-170-complaint (brad headache))

=>
(assert (success sd1-170)))

(defrule sdl-170-2 **
(declare (salience -10))
(not (success sd1-170))

=>
(assert (fail sdl-170)))

(defrule sdl-171 **

(patient-name ?patient)

(age ?patient ?age & “unknown

& (>= ?age 21))
(patient-name (?patient))
(seq-age ?patient (?age & “unknown
& :(>= 7age 21)))

=

(assert (sdl-171 ®patient yes))

(assert (sdl-17t1 (?patient yes)})))

(defrule sdl-171-2 "*
(patient-name ?patient)
(age ?patient 7age & “unknown
& (< ?age 21))
(patient-name (?patient))
(seq-age ?patient (?age & “unknown
& (< 7age 21)))
=>
(assert (sdl-171 ?patient no))
(assert (sd1-171 (?patient no))))

(defrule sdl-171-3 **
(sd1-171 paul yes)
(sd1-171 brad no)
(sdl-171 (paul yes))
(sd1-171 (brad nro))

=>
(assert (success sdl-171)))

(defrule sdl-171-4 **
(declare (salience -10))
(not (success sdl-171))

=>
(assert (fail sdl-171)))

(defrule sdl-172-2 **

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE] FINAL REPORT

(patient-name ?patient)
(patient-name (?patient))
(sd1-172 major-complaint ?patient

?reason &
drowsiness | ,one of these complaints
confusion)

(sd1-172 recent-head-injury ”patient no) .no recent head injury

(sd1-172 confusion-wild ?patient yes)
(sd1-172 (major-complaint ?patient

“reascn &
drowsiness | ;one of these complaints
confusion))
(sd1-172 (recent-head-injury ?patient no)) ;no recent head injury
(sd1-172 {(confusiom-mild ?patient yes)) ;mild symptom

(or (not (sdl-172 major-complaint ?patient
“confusion 2
“drowvsiness))
(not (sdl-172 (major-complaint ?patient
“confusion &
“drowsiness)))) ;no other complaints

=>
(assert (sdl-172 recommendation ?patient waiting room))
(assert (sdl-172 (recommendation ?patient waiting room))))

(defrule sdl1-172-3 **
(sd1-172 recommendation paul waiting room)
(sd1-172 (recommendation paul walting room))
(or (not (sdl-172 recommendation brad walting room))
(not (sdl1-172 (recommendation brad waiting room))))
=>
(assert (success sdl-172)))

(defrule sdl-172-4 *°*
(declare (salience -10))
(not (success sdl1-172))

=>
(assert (fail sdl1-172)))

(defrule sd1-173 **

(sd1-173 ?casel ?al ?b1 ?cl)

(sd1-173 ("fasel ?al ?b1 7c1))

(sd1-173 ?case2 & “casel & “foo & “bar
?a2 & :(not (symbolp 7a2)) & :(numberp 7a2) & :(< ?a2 ”al)
b2 & (not (symbolp ?7b2)) & :(numberp ?b2) (> ?b2 ?bl)
?c2 & (not (symbolp ?c¢2)) & :(numberp ?c2) & :(< ?c2 ?cl))

(sd1-173 (?case2 & ~casel & “foo & “bar
7a2 & (not (symbolp ?a2)) R :(numberp 2?a2) & :(< ?a2 ?7al)
?b2 & :(not (symbolp ?b2)) & :(numberp ?b2) “(> ?b2 ?b1)
?¢2 & :(not (symbolp ?c2)) & :(numberp ?c2) & (< ?c2 ?c1)))

-~

=>
(assert (sdl-173-matched ?casel ?case2))
(assert (sdl-173-matched (?casel ?case2))))

(defrule sd1-173-3 **
(sdl-173-matched casel case?)
(sdl-173-matched (casel case2))
(or (not (sdl-173-matched ~“casel ~case2))
(not (sdl-173-matched (“casel ~“case2))))
=>
(assert (success sdl-173)))

(defrule sd1-173-4 **
(declare (salience -10))

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(not (success sdl-173))
=>
(assert (fail sdl-173)))

(defrule sdl-174 **

(sd1-174 ?casel ? ? ? ?al ? ?bl ? ?c1)

(sdl1-174 (Pcasel ? ? ? 2al ? ?bi ? ?c¢1))

(sd1-174 ?case? & “casel & "foo & ~bar ? ? 7
?a2 & (not (symbolp ?a2)) & :(numberp ?a2) & :(< ?a2 7al) ?
?%2 & :{not (symbolp ?b2)) & :(numberp ?b2) (> ?v2 ?v1) 7
7¢2 & .(not (symbolp ?¢2)) & :(numberp ?c2) & :(< ?¢c2 ?cl))

(sd1-174 (?case2 & “casel & “foo & “bar ? ? 7
?a2 & :(not {symbolp ?a2)) & :(numberp ?a2) & :(< 7a2 ?7al) ?
?b2 & :(not (symbolp ?b2)) & :(numberp ?b2) (> ?p2 7b1) ?
?c2 & :(not (symbolp 7c2)) & :(numberp ?¢2) & :(< ?¢2 ?ci)))

[4

~

=>
(assert (sdl-174-matched ?casel ?case?2))
(assert (sdl-174-matched (?casel ?case?2))))

(defrule sdl-174-3 **
(sdl-174-matched casel case?2)
(sdl-174-matched (casel case2))
(or (not (sdl-174-matched ~casel ~“case2))
(not (sdl-174-matched (“casel ~case?2))))
=>
(assert (success sdl-174)))

(defrule sdl-174-4 "*
(declare (salience -10))
(not (success sdl-174))

=>
(assert (fail sdl1-174)))

(defrule sdl-175 **
(sd1-175 pallet ?pallet)
(sdl-175 options $?options)
(sd1-175 (pallet ?pallet))
(sd1-175 (options $?options))
(sd1-175 case ?ASB
& (= (/ (- ?ASB (mod ?asb 1000)) 1000) ?PALLET)
& (= 0 (POSITIONS ?asb ?0PTIONS))) . if not a member
(sd1-175 (case 7ASB
& (= (/ (- 7ASB (mod ?asb 1000)) 1000) ?PALLET)
& (= 0 (POSITION$?asb ?CPTIONS)))) . if not a member
=>
(assert (sdl-175-matched ?asb))
(assert (sdl-175-matched (?asb))))

(defrule sdl1-175-3 **
(sdl-175-matched ~5000)
(sdl1-176~-matched (~5000))

=>
(assert (fail sd1-175)))

(defrule sdl-176 **
(sd1-176 options $?options)
(sd1-176 (options $?options))
(sd1-176 case ?asb
& :(not (= (position$?asbd ?options) 0)))
(sd1-176 (case ?asb
& :(not (= (position$ 7asb ?options) 0))))
=>
(assert (sdl-176-matched ?asb))
(assert (sdl-176-matched (?asb))))

124

ART/ADA DESIGN PROJECT - PHASE |

(defrule sd1-176-3 **
(sd1-176-matched ~5000)
(sdl-176-matched (~5000))

=>
(assert (fail sd1-176)))

(defrule sdl-177 **
{sd1-177 options $?options)
(sd1-177 (options $?options))
(sdl-.77 case 2ASB
& (= 0 (POSITIONS ?asb ?0PTIONS)))
(sd1-177 (case 7?ASB
2 (= 0 (POSITION$?asd ?GPTIONS))))
=
(assert (sdl-177-matched ?asb))
(assert (sdl-177-matched (?asd))))

(defrule sd1-177-3 **
(sdl-177-matched ~5000)
(sd1-177-matched (7577°2))

=>
(assert (fail sd1-177)))

(defrule sdl-178 **
(or (not (sdl-178 ?a
& :(not (symbolp ?a))))
(not (sdl-178 (?a
& :(not (symbolp ?2))))))
=>
(assert (fail sdl-178)))

(defrule sdl-179 **

(sd1-179 options $?options)

(sd1-179 case ?ASB)

(sd1-179 (options $7options))

(sdl-179 (case ?ASB))

(test (not (= O (POSITION$?asb ?QPTIONS))))
=>

(assert (sdl-179-matched 7asb))

(assert (sdl-179-matched (?asb)})))

(defrule sdl-179-3 **
(sd1-179-matched ~5000)
{sd1-179-matched (~5000))

=>
(assert (fail sdl1-179)))

(defrule sdl1-180 **

(sd1-180 options $?options)

(sd1-180 case ?ASB)

(sd1-180 (optioms $7options))

(sd1-180 (case ?ASB))

(test (= (POSITIONS ?asb ?0PTIONS) 0))
=>

(assert (sdl-180-matched ?asb))

(assert (sdl-180-matched (?asb))))

(defrule sdl1-180-3 "*
(sd1-180-matched ~5000)
(sdl-180-matched (~5000))

=>

(assert (fail sd1-180)))

(defrule sdl-181 **

FINAL REPORT

ART/ADA DESIGN PROJECT - PHASE |

(sd1-181 5000)
(sd1-181 (5000))
(or (not (sdl-181 ~5000))
(not (sdl-181 (~5000))))
=>
{assert {fail sdl-181)))

{defrule sdl1-182 **
{declare (salience 100))
(sdl1-182 7est & ~"pst® ?pst & ~*estt)
(sd1-182 (?est & ~"pst® ?pst & ~"est"))
=>
(assert (sdl-182-matched 7est ?pst))
(assert (sdl-182-matched (%est 7pst))))

(defrule sd1-182-1 **
(or
(sd1-182-matched *pst® *pst*)
(sd1-182-matched "est® “est*)
(sd1-182-matched *pst® "est®)
(sd1-182-matched (*pst* *pst*))
(sd1-182-matched ("est® "est"))
(sd1l-182-matched (*pst® *est*))
(not (sd1-182-matched "est® "pst*))
{not (sdl-182-matched ("est® *pst®))))
=>

(assert (fall sd1-182)))

(defrule sdl1-183 **
(sd1-183 ~=(+ 1 1))
(sd1-183 ("=(+ 1 1)))

=>
(assert (fail sd1-183)))

(defrule sd1-184 **
(sdl-184 ~2)
(sdl-184 (~2))

=>

(assert (fail sd1-184)))

(defrule sdl1-185 **
(sd1-185 ~*string*)
(sd1-185 (“*string®))

=>

(assert (fail sdl-185)))

(defrule sdl-186 **
(declare (salience 100))
(sd1-188 7string & ~°string®)
(sdl-186 (?string & ~*string*))

=>
(assert (sdl-186-matched ?string))
(assert (sdl-186-matched (?string))))

(defrule sdl-188-1 **
{or
(sd1-186-matched *string*)
(sdl-186-matched (*string®))
(not (sd1-186-matched *foo*))
(not (sdl-186-matched (*foo0"))))
=>

(assert (fail sdl-186)))

(defrule sd1-187 **

FINAL REPORT

ART,ADA DESIGN PROJECT - PHASE | FINAL REPORT

(declare (salience 100))

(sd1-187 7stringl & ~*string® ?strizg2 & ~*string®)

(sd1-187 (?stringl & ~°string* ?string2 & ~“string*))
=>

{assert {(sdl-187-matched ?stringl ?string2))

(assert (sdl-187-matched (?stringl ?string2))))

{defrule sdi-187-1 "*
{or
(sd1-187-matched *string® *foo")
(sdl-187-matched ("string® *foo®)})
(not (sdl-187-matched *foo® *foo'))
(not (sdl-187-matched (*foo® *fo0'))))
=>
(assert (fail sdl-187)))

(defrule sdl-188 **
(sdl-188 ~=(string-append “"foo* "bar*))
(sdl-188 (~=(string-append *foo" *dar")))
=>
(assert (fail sd1-188)))

(defrule sdl-189 **
(sdl-189 7a & “=(+ 1 1))
(sd1-189 (7a & ~=(+ 1 1)))
=>

(assert (fail sd1-189)))

(defrule sdl-190 **
(sd1-190 ?a & :{(not (sumberp ?a)))
(sd1-190 (?a & :(not (mumberp ?a))))
=>
(assert (sdl-190-matched ?a))
(assert (sdl-190-matched (?a))))

(defrule sd1-190-1 **
(or
(sd1-180-matched 1)
(sd1-190-matched (1))
(not (sd1-190-matched fo0))
(not (sdl-190-matched (foo))))
=>
(assert (fail sd1-190)))

(defrule sdl-191 **
(sdl-191 "1 & 0.1 & ~*foo" & “bar & "2 & ~12345.6789 & ""fee* & "blee)
(sd1-191 ("1 & “0.1 & ~*foo" & ~bar & "2 & T12345 6789 & ""fee' & “blee))
=>

(assert (fail sd1-191)))

(defrule sdl1-192 **
(sd1-192 ?char-num & :(or (<= 97 ?char-num 102)
(<= 85 ?char-num 70)
(<= 48 ?char-num 57)))
(sd1-192-seq (?char-num & :(or (<= 97 ?char-num 102)
(<= 85 ?char-num 70)
(<= 48 ?char-num 57))))
=>
(assert (sdl-192-matched ?char-num))
(assert (sdl-192-matched (?char-num))))

(defrule sdl-192-1 **
(or
(sdl-192-matched 40)

ART/ADA DESIGN PROJECT - PHASE | FINAL REPORT

(not (sdl-192-matched 50))
(sd1-192-matched 690)
(not (sdl-192-matched 70))
(sdl1-192-matched 80)
(sdl-192-matched 90)
(not (sdl1-192-matched 100))
(sdl-192-matched (40))
{(not (sdl-192-matched (50)))
(sdl-192-matched (60))
(not {sdl-192-matched (70)))
(sd1-192-matched (80))
(sd1-192-matched (90))
(not (sdl-192-matched (100))))
=>
(assert (fail sdl-192)))

t‘tttttt*tt!!*ti’ttttt**ttt!#*‘tttt‘tt‘t‘tt#*tt*ttt##“t‘l*ttltttttt#t
, BDC additions to the rule base follow...

(defrule bdc-200-1
Does HALT work?
(declare (salience -1000))

(pripntout t t "TEST IS OVER® t)
(hale))

(defrule bdc-200-2
(declare (salience -1001))

(assert (fail bdc-200)))

(deffacts bdc-201
(bdc-201 a b c 4 e))

(deffacts bdc-201-sequences
(bdc-201 (a b c d e)))

(defrule ddc-201-1 =**
(bde-201 $?data)
(bdc-201 (37data)) ;matches a bcde f g
=>
(1f (not (member$ b ?data))
then (assert (fail bddc-201a)))
(1f (member$ z ?data)
then (assert (fail bdc-201ib))))

128

