
/

A R TIA da D esign Project - Ph ase $

Final Report

P_A;_ I Finll #,,_;)nrL ([rtf_'r_.zrlcq COrrJ.)
CSCL

Inference Corporation

March 1989

Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

NASA Johnson Space Center

Information Systems Directorate

Information Technology Division

© ©

)

Research Institute for Computing and Information Systems
University of Houston - C/ear Lake

T.E.C.H.N./.C.A .L R.E.P.O.R.T

https://ntrs.nasa.gov/search.jsp?R=19920004463 2020-03-17T13:46:05+00:00Z

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Cleax
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.

i

A R T/A da D esign Proje c t - Ph ase I
Final Report

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

ART/Ada Design Project- Phase I

Final Report

Subcontract 015

RICIS Research Activity SE.19

NASA Cooperative Agreement NCC-9-16

March 1989

Inference Corporation

5300 W. Century Blvd.

Los Angeles, CA 90045

Copyright (_) 1989 Inference Corporation

._RT/...kDA DESIGN PROJECT - PHASE i FINAL REPORT

Table of Contents

1. Introduction

2. Project Goal

2.1 Conventional Expert System Tools

2.2 Considerations for Ada Environment

2.3 Requirements for Real-Time Embedded Systems

3. Current Status

3.1 Overview

3.2 Introduction to ,M_T-_I

3.3 A_RT-[M Ada Deployment Compiler

3.4 A_RT/Ada Run-time System

3.5 Deployment in Ada Environment

4. Prototype Development Process

-t. 1 Specification

4.2 Object-Oriented Design

4.3 Implementation

4.4 Reuse

4.5 Testing

4.6 Debugging

4.7 Summary

5. Performance Analysis

5.1 Speed

5.2 Size

5.3 Discussion

8. Related Work

7. Future Work

7.1 Summary

8. Conclusion

References

I. Detailed Description of ART/Ada Implementation

1.1 Deploying an ,&RT-IM application in Ada

I.l.l Ada Source Code Generated by the Ada Deployment Compiler

I 1.:2 ,_T,;Ada User Interface Command Loop

[. 1.3 Example Main Programs

1.2 Public Packages in A_RT/Ada

1.2.1 ART

I.'2.2 ERROR HDL SUB

I. 2.3 USER_ INTERFACE_ SUB

1.3 Ada Call-ln and Call-Out Specification for A_RT/Ada and :LRT-I_I

1.31 Interface Types

I32 Scope of Objects

1.3.3 Call-Out from A_RT to Ada

1.3.4 Call-ln from Ada to ART/Ada

• II. Difference between ART-IM 1.S and ART/Ada 1.0

III. ART/Ada Public Packages

lll.t Specification of ._RT Package

III.2 Specification of ERROR HDL_SUq3 Package

1

2

2

3

5

5

5

7

10

tO

t0

It

ll

12

12

13

14

15

15

15

17

19

20

21

22

23

23

2t

25

25

27

27

28

28

29

29

29

30

32

33

34

35

15

,-kRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

III.3 Body of ERROR_HI)L_SUB Package

Ilia Separate Procedure ERROR _ HDL _ SUB.PROCESS _ ERROR

III.5 Separate Procedure ERROR_HDL_ SUB.WA_RNING

III.6 Specification of USER_ INTERFACE Package

IV. Benchmark Programs

IV.1 .XJonkey and Banana

[V2 N-Queens

V. Test Programs

V. 1 Sweeptop

V.2 Sweep2

48

5[

5t

55

58

59

55

68

69

8O

-- ART 'ADA DESIGN PROJECT - PHASE I FIN._L REPORT

Figure 3-I:

Figure 3-2:

Figure 3-3:

Figure 4-1:

F}gure 7-I:

List of Figures

Composite A.RT-_I Screen

ART-IM Ada Deployment, Compiler

Ada Deployment, Process

Spiral Life Cycle of the A.RTj Ada 1.0 prototype

Propose, t :qpiral Life Cycle of the ART %.da 1.5 prototype

6

7

9

L3

19

iii

ART/ADADESIGNPROJECT-PHASE[FIN._LREPORT

List of Tables

Table 5-1:

Table 5-2:

Speed of ART/'Ada in Rules/Second

Size of A_RT/Ada in KBytes

15

1.5

Y

iY

ART/ADA DESIGN PROJECT. PHASE I FIN,M. REP_)RT

1. Introduction

Under subcontract to University of Houston - Clear Lake as part of the Cooperative Agreement betwcon

UHCL and NASA. Johnson Space Center, Inference Corporation conducted an Ada-Ba.sed Expert 5_t,,m

Building Tool Design Research Project The goalof the research project was to mvestigate',arioLls L_s,i,'s

in the context of the design of an Ada-b_ed expert systems building tool The c,-sear,-h pr_.,je,t

attempted to achieve a comprehensive understanding of the potential for embedding expert .,?'stems '.n

Ada systems, for eventual application in future projects.

This report will describe the current status of t.he project by introducing an operational prototype.

ART/Ada. It will then explain how the project was conducted analyze the performance of the prototype.

compare it with other related works, and suggest future research directions.

,a.RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

2. Project Goal

This chapter dentifies the goal of the Ada-Based Expert System Building Tool Design Research ProJect

This chapter is composed of three sections:

• Conventional Expert System Tools

• Considerations for Ada Environment

• Requirements for the Real-Time Embedded Systems

.-ks the Department of Defense mandate to standardize on Ada as the language for embedded software

systems development begins to be actively enforced, interest from developers of large-scale Ada systems in

making expert systems technology readily available in Ada environments has increased.

Two examples of Ada applications that can benefit from the use of expert systems are monitoring and

control systems and decision support systems. Monitoring and control systems demand real-time

performance, small execution images, tight integration with other applications, and Limited demands on

processor resources; decision support systems have somewhat less stringent requirements. An example

project which exhibits the need for both of these types of systems is NASA's Space Station Freedom

Monitoring and control systems that will perform fault detection, isolation and reconfiguration for

various on-board systems are expected to be developed and deployed on the station either in its initial

operating configuration or as the station evolves; decision support systems that will provide assistance in

activities such as crew-time scheduling and failure mode analysis are also under consideration. These

systems will be expected to run reliably on a standard data processor, currently envisioned as a 1-16

megabyte 386-based workstation. The Station is typical of the large Ada software development projects

that will require expert systems in the 1990's.

2.1 Conventional Expert System Tools

Inference Corporation developed an expert system tool called Automated Reasoning Tool (._RT) which

has been commercially available for several years i8t. ART is written in Lisp and it supports various

reasoning facilities such as rules, frames, truth maintenance, hypothetical reasoning, and object-oriented

programming.

.",lore recently, Inference introduced another expert system tool called A.RT-IM (Automated Reasoning

Tool for Information Management) which is also commercially available [9]. ,MRT-EVI is written in C and

it supports a subset of ART's reasoning facilities; ART-I'M Version 1.5 supports forward-chaining rules,

frames, truth maintenance, and basic object-oriented programming.

__ ART:ADADESIGNPROJECT- PHASEI FINALREPORT

Both,-MR.TandART-IMhavebeensuccessfullyusedto developmanyapplicationswhicharein dailyuse

today.

2.2 Considerations for Ada Environment

This research project permitted Inference to study how to bring the ART and .k_RT-_I featuros into

Ada environments, lnference's approach in designing an Ada-based expert system tool is to ,_se an

existing architecture such as ART or ART-hi so that its input language would be identical to that of an

existing tool.

Two approaches to implementing the existing architecture were considered:

1. To implement the whole system in Ada

2. To implement an Ada deployment compiler as part of an existing tool

Since the purpose of the project was to research operational issues such as those discussed below, it was

decided to take approach number 2.

2.3 Requirements for Real-Time Embedded Systems

Laffey et. al. identified potential problems in using conventional expert system tools for real-time

applications[Laffey88b 1. Many of these problems are already solved by ART and ART-LM.

A-RT and A.RT-I_,I provide features for embedded environments such as

• They have facilities for handling asynchronous inputs.

• They have a standard call-in and call-out interface for various languages.

• They assign priorities to rules which can be used to focus attention on important, events

• They have interrupt capabilities.

• They can run continuously even if there is no rule to fire.

Among the problems that Laffey et. al. identified, ART and ART-IM do not address the following

problems:

• Guaranteeing response times

• Temporal reasoning capability

Both ART and ART-IM are based on the Rete algorithm [5}. Laffey et. al. claim that in real-time

applications, the knowledge base changes too rapidly for the Rete algorithm to be optimal i lli. Barachini

..._RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT --

et. al. claim that an expert system tool based on the Rete .adgorithm can be optimized to better support

real-time expert systems [2!. The reported speed of their system, however, does not seem much faster

than that of other C-based tools such as CLIPS or.MRT-_I. Some tools specialized in the monitor;ng and

analysis applications do not use the Rete algorithm; they use a compiled, static knowledge base in which

all variables used in the rules are resolved at compile time'l_ I i10!. While the speed of these tools seems

faster than that of the Rete-based tools, these tools still cannot guarantee response times The main

drawback is that they may not be suitable rot expert system application areas other than monitoring and

analysis. An alternative approach to the compiled, static knowledge base is an obJect-oriented

programming (OOP) facility that uses active values. The OOP facility is already implemented in ART.

and it is being considered for ,_:_.T-IM and Ad_T/Ada.

A. temporal reasoning capability refers to a way to invoke a rule at a regular time interval. For

example, the following is a temporally driven rule:

Check the price of IBM stocks every hour.
If the price goes down more than five dollars In an hour,
then sell all shares.

The temporal reasoning capability can be directly supported, or it could be implemented as an Ada task

outside of the inference engine. The task should be started during the in,_mlization phase of the expert

system as a demon that wakes up at a certain time interval. A built-in temporal reasoning capability,

therefore, may not be as important as the issue of guaranteed response times.

There are two different levels of real-time requirements: soft real-time and hard real-tzme 112]. In a

hard real-time system, the correctness of the system depends not only on the result of computation, but

also on the time at which the results are produced. If these strict timing constraints are not met, the

consequence may be disastrous. On the other hand, in a soft real-time system, disastrous consequences do

not result, if the dead-line is missed. While most, expert system tools try to address the soft real-time issue

today by improving their performance, they do not, yet, address the hard real-time issue.

The current generation embedded processors such as the MIL-STD-1750A have limited addressing

capability of 2 megabytes. Medium size Ada-based expert systems may not fit into this limitation. It, is

also known that the size of the Ada-based expert systems is larger than that of C-based counterparts.

While next-generation embedded processors such as the 80386 would alleviate the size problem, it would

still be desirable to study how to optimize the size of the Ada-based inference engine.

m

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

3. Current Status

This chapter discusses the status of a prototype Ada-based expert system butlding tool, c,_lled .4J?T A,bt

Version 1.0.

3.1 Overview

A primary goal of this research phase was to design an expert system tool that allowed applications ro

be deployed in Ada environments. In order to achieve this goal, three components were needed:

• Existing expert system tool as a baseline

• Application generator that generates Ada code

• Aria-based inference engine

,4A'ter .MRT and ART-IM were reviewed carefully, ,_RT-IM was selected as a baseline system because C

was much clo_er to Ada than Lisp. ART/Ada, an Aria-based inference engine, was modeled after that of

,_T-IM Version 1.0 which supported forward chaining rules.

ART-IM has a deployment compiler that converts an application into C data structure definitions An

Ada deployment compiler was designed using the C deployment compiler as a model. The Ada

deployment compiler converts C data structures specific to an application into Ada source code that

would be used to initialize Ada data structures equivalent to the original C data structures. The Ada

deployment compiler is written in C and is part of A,RT-IM.

3.2 Introduction to ART-IM

A_RT-h-M is a general purpose expert system tool written in C. ART-IM version 1.0 implements :_

forward-chaining rule-based inference engine using on the Rete algorithm. It also has a truth

maintenance system, called Logical Dependency

ART-IM version 1.5 includes a frame system, called Schema system, which is fully integrated with the

rule system. It also includes an explanation system, called Justifications. In addition, ART-hi version

1.5 for MS-DOS has a presentation manager style user interface, called Studio, that provides extensive

capabilities for debugging ART-IM applications. An example of a Studio screen is shown in Figure 3-t

The ART-IM syntax is basically a subset of the ,42_.T syntax. An application written in ,_RT. therefore.

can he easily ported to ,_d:_.T-INl.

ABT/ADA DESIGN PROJECT - PHASE [FINAL REPORT --

Figure 3=1: Composite ART-IM Screen

la lb

I
I c 4a 4f 4c 4e

4

'l)etemine i(
(LOGIC_L(

qRRIES-OFFSPBI

2

Cueeent _n li.it: .
Ente_ ne. _n li.it (-1 fo_ e):

D i I

ERI_

NI_L

j'Edit I [Justified Salience

Refresh Activations

5b

5d

Sf

5e

2b 2a 7 7a

I - Menu Bar

la - Menu Name

Ib - Menu Name Mnemonic

Ic - Highlighted Menu Name

2 - In_eractlon Window

2a - Display Area

2b - Command Area

Figure Key:

5 - Browser Dialog Box (Object-Type)

5a - List Box Control

5b - Hlghllghted Llst Box Item
5c - Vertical Scroll Bar

5d - Scroll Bar Elevator

5e - Push Button Controls

5f - Push Button Mnemonic

5g - Highlighted Push Button

3 - Status Llne 6 - Browser Dialog Box

(Indlvldual-Ob]ect)

4 - Menu 6a - Selectable Text Control

4a - Menu Item (Command) 6b - Horizontal Scroll Bar

4b - Menu Item Mnemonic

4c - Menu Item (Extended Command) 7 - Prompting Dialog Box

4d - Hlghllghted Menu Item 7a - Edlt Control

4e - Accelerator Key Designator

4f - Menu Separator 8 - Message Box

__ ._RT,'ADA DESIGN PROJECT - PHASE [FINAL REPORT

3.3 ART-IM Ada Deployment Compiler

ART-15,I Version 1.5 was augmented with an Ada Deployment Compiler to support the ART/Ada run-

time system. .ks shown in figure 3-2, its input is an .M:{T-LN1 source file, and its output is Ada source

files At any point after an A_RT-LM source file is loaded into ART-IM and reset, tt can be invoked to

generate the .\da source code that will be used to initialize ._!RT internal data structures for the

.-kRT%da runtime system. The A_RT-IM program can be run up to any given point before the code

generation takes place.

Since it is part of ART-I'M, the Ada deployment compiler is written in C In addition to generatingAda

source code that represents the knowledge base, it also generates a call-out interface module that can be

used to call user-defined Ada functions. .ad_.T-IM provides a powerful call-out specification language that

,:an be used to call out from _M_.T-_I or from ART/Ada to Ada.

ART-IM

!--r/=1

I=1

Figure 3-2: ,4aRT-IM Ada Deployment Compiler

ART/ADA DESIGN PROJECT - PHASE I FINALREPORT ""

3.4 ART/Ada Run-time System

The ART/Ada run-time system is composed of the following components:

• Inference engine

• Procedural Interface Package

• Memory management package

• Ada deployment compiler utilities

• User interface package

ART/Ada's inference engine is based on the Rete algorithm, and supports only forward chaining rules

matching on facts as specified in the ART-LM Version 1.0 syntax.

ART/Ada supports a simplified version of the procedural language of ART-I]VI. ART/Ada's procedural

interface can be used either in the rule righv-hand side, or directly in user's Ada programs. The

procedural interface includes data type conversions between the Ada data types and the ART data types,

predicates, operations on-ART objects, ART commands, I/O functions, and math functions. ,_RT/Ada's

I/O system supports simple input and output functions. Unlike ART-INI, stream are not supported in

ART/Ada. All streams variables default to either standard output or input. File I/O is not supported in

AART/Ada. ,MRT/Ada's math package provides most mathematical functions except trigonometric

functions.

ART/Ada's memory management package uses Ada the features new and unchecked deallocation

to allocate and deallocate memory. In phase II, the advantages and disadvantages of implementing a

memory manager for ,_RT/Ada will be investigated.

Tile A_RT/Ada run-time system contains utilities called by the Ada code that ART-I_.i Ada deployment

compiler generates.

A_RT/Ada has an optional simple command interface that support rudimentary debugging features such

as tracing/untraeing rules, facts, activations, printing out facts and agenda, and running the program

3.5 Deployment in Ada Environment

.-ks shown in Figure 3-3. the following steps are needed to deploy an ART-IM application in Ada:

I Develop an application in ART-IM using ART-I'M's development environment.

2. If necessary, call out to Ada from A.RT-[M using the standard callout mechanism for both

,_RT-IN1 and ART/Ada.

ART/ADA DESIGN PROJECT . PHASE 1 FINAL REPORT

a. Generate Ada code from A.RT-IiM using the Ada deployment compiler.

t. Compile the generated A.da code.

3. Link it with an .-\da library of the ,_d:{T Ada runtime system and user's Ada code if any'

6. Deploy the .kda executable _mage on a host computer or on a target system

t

Figure 3-3: Ada Deployment Process

ART/ADADESIGNPROJECT-PHASEI FINALREPORT

4. Prototype Development Process

This chapter discusses how the ,_RT 'Ada Version I0 prototype was developed.

4.1 Specification

ART-[M Version 1.0 was used as a functional specification for the .MR.T, Ada Version 1.0 prototype.

Some features in ART-_I [.0 (e.g. Logical Dependency) that were not, essential for the proof of concept

were left. out intentionally.

The A.RT-_I C source code was used as a detailed design specification for the ART/Ada run-time

system. The ART-INI internal function definitions and data structures were converted to Ada package

specifications which were compiled by an Ada compiler. The Ada package specification served as a

detailed design specification of ART/Aria.

4.2 Object-Oriented Design

ART/Ada was designed using the object-oriented design (OOD) methodology, The object-oriented

design is an approach to software design in which the system is decomposed into a set of objects. Each

object is mapped to one or more Ada packages. Four different kinds of packages were used in the desLgn:

• Abstract Data Object (ADO)

• Abstract Data Type {ADT)

• Package of subroutines (SUB)

• Package of declarations {DCL)

The Abstract Data Object is a package that contains encapsulated data and operations {expressed as

subprograms) performed upon those data. These data are static and local to that package They are

known as state data.

The Abstract Data Type is a package that contains abstract types and operations performed on those

abstract types. The operations are expressed as subprograms and the abstract types are declared as the

Ada types

The package of subroutines is a package of logically related subrout, ines. There exists no encapsulated

data in thts package.

The package of declarations is a package of logically related declarations. These declarations may be

types, constants, or exceptions.

10

ART/ADA DESIGN PROJECT - PI-b_SE [FINAL REPORT

4.3 Implementation

Once package specifications for the Ada run-time system were laid out, the packages were ,iivi,ie,t

among two programmers to be implemented. Again, the ,-MRT-INI C source code was used as a program

design language (PDL). Despite the differences between C and Ada, it was relatively easy to port C code

into Ada, In fact, productivity was as high as 500 to t000 lines of code a week per person dur_r_g the

actual coding phase.

Perhaps it is worthwhile to describe the difficulties encountered while porting C to Ada. ..\ lack of

function pointers in Ada made it necessary to write a case statement which contains all the Ada

subprograms that were called either by the system or by the user. This case statement was generated

automatically by the Ada deployment compiler according to the call-out interface specification of system

functions and user-defined functions.

In C, it is legal to treat an arbitrary memory [oration as a certain data type at run-time through type

casting. For example, four bytes of memory could be used as a long integer or as a pointer depending on

how it is casted. Similarly, a pointer to a data type can be casted to a pointer to another data type.

Another example is bit manipulation operations such as bitwise exclusive OR which is useful in hashing.

Ada does not allow such practices in general. Certainly they are not recommended if they are not

prohibited. Since ART-IM uses many such C features to achieve the maximum efficiency, it was

unavoidable to sacrifice some performance when it was ported to Ada.

4.4 Reuse

In order to reduce the development cost of the .&RT/Ada prototype, it was decided in the early phase of

the project that the Booch componentsi4! would be used in the ART/Ada prototype. A linked-list

package, a string package, and other utility packages are used by ,4A_.T./Ada. The following is the full

list:

• "vcalenut.a" -- package CALENDAR_ UTILITIES

• "vcharuti.a" -- package CHARACTER _ UTILITIES

• "vfixedut.a" -- generic package FDCED POINT_UTILITIES

• "vfloatut.a" -- generic package FLOATING_ POINT UTILITIES

• "vintegrt.a" -- generic package INTEGER_UTILITIES

• "vlistsum.a" -- generic package LIST _ SINGLE_ UNBOUNDED _ MANAGED

• "vstorage.a generic package STORAGE_NLANA(;ER SEQUENTbkL

11

)dR.T/ADA DESIGN PROJECT- PHASE I FINAL REPORT _,

• "vstrings,a* -- generic package

STRING_ SEQUENTIAL_ UNBOUNDED _ NL_NAG ED _ [TERATOR

• "vstringt.a" -- package STRING_ UTILITIES

Some of these packages had to be modified because they failed to compile on a certain compiler, or their

functionality wm not what was desired. The modified version of these components were successfully

compiled on ?dsys, Verdix, and DEC compilers. The package body ,_f"

LIST SINGLE_UNBOUNDED_MANAGED did not compile on the Sun Tartan compiler because of a

bug in the compiler. Consequently, the Tartan compiler had to be excluded in the benchmark.

4.5 Testing

It was difficult to unit-test ART/Ada modules which were part of the inference engine kernel because

these modules were highly interdependent. For example, it was impossible to test the join network

module without the pattern network module. For this reason, test programs originally developed for

._RT-kM were modified and used to validate ART/Ada functionally as well as to do some unit testing.

This validation and verification method turned out to be very effective. It is analogous to the Ada

compiler validation test suite.

In the future, if an independent third party verification and validation contractor develops a set of test

suites for a particular expert system toot, it would be an effective way to validate an expert system tool

such as A_RT/Ada. It does not seem feasible to develop a general purpose test suite for several expert

system tools because the input languages are usually very different. It may be possible to come up with a

set of general requirements for developing such a test suite, though.

4.6 Debugging

In "v-LSI testing, a "golden device" that has been proven correct in advance is used to test chips in

production. Likewise, ART-IM served as "golden software" while testing and debugging .%RT/Ada.

Many times, a source-level C debugger on a Sun, dbxtool, was used side by side with the Verdix Ada

debugger to track down subtle bugs, which was very effective. While single-stepping through critical code

segments, difficult bugs were easily isolated.

12

._aRT/ADA DES|GN PROJECT - PHASE I FINAL REPORT

4.7 Summary

It was a great advantage to have a commercial expert, system tool, AJRT-FNI. and its so_lrce code

throughout the development cycle of the ART/'Ada prototype. During' all ph_es of prototype

development, it helped programmers greatly. .-ks _ result, it allowed _igh pro(tuctivity among

programmers and high quality in the prototype. It also reduced the development time greatly Without

it, it would have been impossible to develop an operational prototype in such a short tmle. \Vith two

programmers working on the project, coding w_ started in July 1988, and the prototype was fully

operational in December 1988. A modified version of Boehm's spiral model 13! is _Jsed to show the

,_RT/'Ada 1.0 prototype life cycle in Figure 4-1.

InmllMion
(Jan '99)

Prellmlrmry Deellln
(July '011)

j. _ooe-d.conc_

Figure 4-1: Spiral Life Cycle of the AI_.T/Ada 1.0 prototype

13

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT w--

5. Performance Analysis

This chapter analyzes the performance of the ART Ada 1.0 prototype.

The following programs were used to benchmark it. [n both programs, I O was suppressed.so that tho

speed measured wa.s not the speed of I./O, but that of the .&RT/Ada inference engine.

• Monkey and Banana: It fires 81 rules, and it has la facts in the knowledge base after it runs.

• N-Queens (8 Queens): It fires 515 rules, and it has 155 facts in the knowledge base after it

runs.

ART/Ada code was successfully compiled on the following platforms:

• IBM PS/2 Model 70 using the Alsys 286 DOS Ada compiler Version 4.2

• Sun 3/260 using the Verdix Sun Ada compiler Version 5.5K.

• Sun 3/260 using the Alsys Sun Ada compiler Version 4.2 Beta

• VAXstation II using the DEC Ada compiler Version 1.5

As mentioned earlier, the package body of a Booth component,

LIST SINGLE UN'BOUNDED MANAGED, did not compile on the Tartan Sun Adacompiler Version

:?.0 because of a bug in the compiler. Consequently, the Tartan compiler was excluded in the benchmark.

Ada files were compiled with maximum suppression of error checks and maximum optimization. For

the Verdix Sun Ada compiler, the following command was used:

a.make -S -0 -v main -f *._

For the Alsys compilers, the following default was used for compilation:

COMPILE (OPTIONS :> (CHECKS => STACK).
IMPROVE :> (CALLS :> INLINF.D.

REDUCTION =, EXTENSIVE)

KEEP :> (DEBUG :> NO,
COPY :> NO)):

In addition, the following default was used on the Alsys 288 DOS compiler for linking:

BIND PROGRAM:MAIN. EXECUTION:EXTENDED

14

__. .-LRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

5.1 Speed

The speed of .&.RT/Ada is measured on the following platforms:

l..Sun 3(260 with t6 MBytes of memory' using the Verdix Ada compiler

2. Sun 3_260 with 16 M'Bytes of memory using the Alsys Ada compiler

3. IBM PS/2 Model 70 386 20 MHz with 6 ,MBytes of memory using the .-klsys Ada compiler

The speed Is measured in the number of rules per second against a wall-clock time, not a CPU time

The PS/2 is a single user system. The Sun was connected to the network and was being used ,as a file

server occasionally, but no other program was running while benchmark programs were running.

Here it should be noted that, AS_.T/Ada on a PS/2 uses different table sizes. A direct comparison.

therefore, between the speed of ART/Ada on a Sun ant that on a PS/'2 is not possible.

Platform Monkey 6 Queens

Sun/Verdix 38.2 Rules/See 42.7 Rules/See

Sun/Alsys 46.4 Rules/See 82.4 Rules/See

PS/2/Alsys a7.4 Rules,'Sec 49.9 Rules/See

Table 5-1: Speed of ART/Ada in Rules/Second

5.2 Size

The size of ART/'Ada is measured on the following platforms:

1. Sun 3/260 with 16 MBytes of memory using the Verdix Ada compiler

2. Sun 3/280 with 16 MBytes of memory using the Alsys Ada compiler

Since multiprocessing is not supported in MS-DOS, size of the ART/Ada process could not be measured

On a Sun workstation, size of the ART/Ada process was measured in l,LBytes using a Unix command. "ps

aux", after the program finished running and just before it was exited.

Platform Monkey 6 Queens

Sun/Verdix 968 KBytes 1232 KBytes

Sun/Alsys 788 KBytes 944 KBytes

Table 5-2: Size of ,MRT/Ada in KBytes

15

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

5.3 Discussion

The benchmark results reported should be considered a.s preliminary results because of the foilowin_

reasons:

• No effort w_ made to optimize the performance of the A_RT/A.da prototype due to the time

limitation

• .More comptlers should be included in the benchmark.

• More hardware platforms should be included in the benchmark.

• Better monitoring tools are necessary. One problem with Ada is that it does not support CPU

time; it only supports wall-clock time. Therefore, the benchmark result is subject to many

variables such as the load on the system, network activities, etc.

The size limitation of current generation embedded processors such as the MIL-STD-I750A is l

megaword {2 megabytes) within which all software systems including the operating system have to run.

This might be too restrictive for medium size expert systems. New generation embedded processors such

as the 80386 would be adequate for many expert systems developed using an Ada-ba.sed expert system

tool such a.s AJ:_.T/Ada. The speed of the ART/Ada prototype seems comparable to other tools, especially

C-based tools, although it is slower.*

It is interesting that both speed and size of ART/Ada vary significantly depending on which Ada

compiler is used. It is known that Ada compilers are not very efficient 16]. ,-_s the A.da compiler

technology advances, the ,_.T/Ada performance would be improved.

"The unopUmized ART/Ada prototypeisabout2-3timesslowerinexecutionspeedand about2-3timeslargerin processs_ze_an

ART-IM.

16

--. ART/:._DA DESIGN PROJECT - PHASE I FINAL REPORT

6. Related Work

This chapter compares the .-MIRT/Ada prototype with other similar systems such as

• CLIPS'Aria !1;

• PA_\IELA 12)

• FLAC il0]

• L'STAR [12]

CLIPS (C Language Production System) is a C-based forward-chaining rule-based expert system tool

whose syntax is very close to ART and ART-_I. It has been reported that CLIPS is being ported to Ada.

Unlike ART/Ada, the whole system is being reimplemented in Ada. CLIPS does not have a frame

system, a truth maintenance system, and an explanation system. Its only knowledge representation

method is a forward-chaining rule system.

It is claimed that PAMELA (PAttern Matching Expert system LAnguage) uses the Rete algorithm

improved with optimiza_tions and extensions that could satisfy the requirements of many real-time

applications. Unlike ART/Ada, PAMELA does not seem to support deployment in Ada environments. It

is implemented in CHILL(Communication High Level Language). PA2MELA is similar to ART A, ta

because it is based on the Rete algorithm. In addition to P,_MELA, other optimizauons on the Rete

algorithm have been proposed and implemented by Gupta [7] Schor et. al. [14} and Miranker !13!.

FLAC (Ford Lisp-Ada Connection) uses a Lisp environment to develop an expert, system application.

and generates Ada code to be deployed in Ada environments [10]. [ts knowledge base is specified using a

graphical representation similar to that of VLSI design (e.g. OR gates and AaND gates}, which gets

compiled into astatic knowledge base. Because of this compiled, static knowledge base, high performance

of 1500 rules per second on aVA.X 11/780 was achieved, perhaps, at the cost of flexibility'. It still does

not guarantee response times.

FLAC is similar to ART/Ada because its development environment is not implemented in Ada, but the

Ada deployment is supported. The difference is, however, that FLAC's development environment is based

on Lisp, while ART/Ada uses that of ART-LM which is written in C. The C and Ada development

environments coexist on the same hardware platforms more often than the Lisp and Ada development

environments do. FLAC, for example, uses a special purpose Lisp machine for the front-end, and a V.%*

for the Ada deployment. Both ART-I'M and ART/Ada run on the same hardware. Another difference is

that FLAC's input is graphically oriented while ART/Ada is language-oriented. FLAC's pre-compiled.

static knowledge base imposes restrictions on the reasoning capability which do not exist in the inference

engines based on the Rete algorithm such as ART-IM and ART/Ada.

17

-kRT/ADADESIGNPROJECT-PHASE[FINALREPORT -

L'STAR(LockheedSatelliteTelemetryAnalysisin Realtime)is designedfor real-timemonitoringand

analysisexpertsystems.L*STA_Rhasa built-infeaturefor temporalreasoning.All dataisarchivedan,.t
time-taggedintoa ringbuffer. Theringbufferconsistsof acompressedformatwhichkeepstrackof the
lasttimethedatumwasupdatedandeachtimeit changedovera user-specifiedtimeperiod_A.RT_Ada

doesnotsupporttemporalreasoning.It couldbeimplemented,however,usingART Ada'sa.synchronous
functioncapability. .-kna_ynchronousfunctionis an Ada procedurethat getsinvokedbetweenrule

firings. It canbeimplementedto achievethesamebehaviorasL'STAR'stemporalreasoningfacility

UnlikeART/AdaandPAMELA,L'STARisnot basedon theRetealgorithm.In L'STAR,notall the
rulesarecontinuallychecked.Someof therulesaretriggeredby thetestclockat regulartimeintervals

Otherrulesarechecked only when data changes that is used in one of its IF clauses, or when they are

needed to achieve a goal. Rules are compiled into an intermediate postfix format or optionally into

C. Because all variables are resolved at compile time, multiple variables in a single rule can result in a

combinatoric increase in the number of rules generated. In this sense, it is similar to FLAC While it

achieves the performance of about 1000 rules per second on a VAX 8850, L*STA.R still cannot guarantee

response times..although it seems to work well for the real-time monitoring and analysis applications, it

is unclear whether this-architecture would satisfy the requirements of other expert system application

areas besides the monitoring and analysis applications. L'STAR is written in C, and does not support

deployment in Ada environments.

Tools like FLAC and L'STAR seem to achieve high performance because they have a static knowledge

base in which variables are resolved at the compile time. It might be possible to achieve the same level of

performance if object-oriented programming (OOP) facilities such a.s active values are used to invoke

actions from objects which represent those variables. When the active value capability is added to .MRT-

hl and ,MRT/Ada, the performance of the OOP methodology could be compared to that of the static

knowledge base.

18

__ ,M_.T/ADA DESIGN PROJECT - PHASE I FINAL REPORT

7. Future Work

This chapter suggests the future directions for the Ada-Based Expert System Building Tool Design

Research Project.

The current prototype _vstem supports only forward-chaining rules. There are multiple knowledge

representation techniques one or more of which are usually used for a particular application. To support

various application, an expert system tool should support more than one paradigm. It would be useful,

therefore, to enhance the ,MRT/Ada prototype with a frame system, a truth maintenance system, and a

explanation system which exist in ART-LN[1.5. This enhanced prototype will be called ,MR.T,Ada !, 5

A_RT-INI will be still used as a development environment and as an Ada deployment compiler. A

modified version of Boehm's spiral model {3! is used to show the proposed A.RT/A, da 1.5 prototype life

cycle in Figure 7-1.

VortflcatloctNailldatlon

(Sop 'N)

I - I:1'od-dC,On_lX I_ototy_

n. F.x_ _of__

Fisure 7-1: Proposed Spiral Life Cycle of the ART/Ada t.5 prototype

Once the ART,'Ada 15 prototype is completed, significant effort should be dedicated to understand the

operational issues and potential uses of the prototype. This may involve a joint effort with potential

users who use the A-R,T/Ada 1.5 prototype to implement prototype expert systems for the Space Statton

Freedom.

19

M:_.T/ADA DESIGN PROJECT - PHASE, [FINAL REPORT

Additional research effort would be necessary to enhance .-YRT/Ada 1.5 to better support the real-time

embedded applications. The following issues need be investigated further:

• To meet the soft and hard real-time requirements,

• To support the distributed environments such as parallel processors :7'.

• To fit into the embedded processors.

It is feasible to reimplement all of AJRT-INI in Ada including the front-end and the development

environment. The following modules would be required:

• Front-end: a lexer, a parser, a semantic analyzer, a code generator, etc.

• User interface: a graphical debugging tool and debugging-oriented functions to browse various

knowledge base objects

• New Ada deployment compiler written in Ada

• Miscellaneous: the Clear and Reset commands, an error handling system, etc.

It would not be easy to reimplement ART-h-'VI's development environment, in Ada because most graphics

packages are written in C. An Ada binding would have to be used to interface .adRT/Ada with existing

C-based graphics packages. Despite standardization efforts such as X windows, graphics applications are

not very portable today. It might be necessary, therefore, that the multiple graphics packages (e g. X

Windows and Presentation Manager) be supported. Integration and testing would also require significant

effort.

7.1 Summary

In summary, the following projects are recommended as future projects:

• To implement the .ad_T/Ada 1.5 prototype (compatible with ART-IM 15)

• To study the operational issues and potential uses of the ART/'Ada t.5 prototype

• To enhance the current architecture to better support real-time applications

• To implement the whole ART/Ada 1.5 in Ada including the development environment and

integrate it with an existing APSE (Ada Programming Support Environment)

2O

ART/M)A DESIGN PROJECT - PHASEI FLN.M.REPORT

8. Conclusion

..ks shown in the preliminary benchmark results of the operational prototype, this project succeeded in

proving that the conventional expert system tool could be used to deploy its applications in .\da

environments with efficient use of time and space.

Another important goal of this project was to reuse existing software. During the prototype

development, software reuse techniques were practiced at all levels.

• A commercially available software component library, the Booch Components, was used to

implement data structures.

• A commercial software system, ,_RT-L'-M, was reused for various purposes: as a functional

specification and a detailed design of the ART/Ada run-time system; as a development

environment for ART/'Ada applications; and as an Ada deployment compiler.

• The A.RT-LM test programs were also reused to test the whole Ada deployment process; to

debug the ,,MR,T-IM Ada deployment compiler and the ART/Ada run-time system.

The reuse practice of the project, especially the reuse of ,_R.T-LM, contributed greatly to the high

productivity in coding, testing, and integration and the high quality of the .ad_.T/Ada prototype. During

the coding phase, productivity was as high as I000 lines of code a week per person, and was in average

about 500 lines of code a week per person. Thanks to the ,ad_.T-IM test programs, it took only about a

month to fully validate the prototype. Testing and integration would have taken much longer if no test

programs had been available. The source listings of the test programs are available in the appendix.

21

ART/ADADESIGNPROJECT- PFL-kSE[F'INALREPORT

References

t. Artificial Intelligence Section, NASA Johnson Space Center. CLIPS Version 4.2 Reference .\[anual

NASA lohnson Space Center, 1988.

2. Barachini, F, Theuretzbacher, N. The Challenge of Real-time Process Control for Production

Systems Proceedings of the National Conference on Artificial Intelligence, ?u-L4I, t988.

3. Boehm, B.W. "A Spiral ,Model of Software Development and Enhancement" Computer 21. 5 (May

1.988).

4, Booch, G. Software Components _4,_'th Ada. Benjamin/Cummings Publishing, 1987.

5. Forgy, C.L. "RETE: A Fast Algorithm for the Many Pattern / Many Object Pattern Match

Problem" Artificial Intelligence 19 (1982).

8. Ganapathi, M., Mendal, G.O. "Issues in Ada Compiler Technology". Computer 2o, 2 (February

1989).

7. Gupta, A. Parallelism in Production Systems. Pitman Publishing, 1988.

8. Inference Corporation. ART Version 8.2 Reference 1_Ianual. Inference Corporation, 1988.

9. Inference Corporation. A.RT-IM 1.5 Reference Manual. Inference Corporation, 1988.

10. Jaworski, A., LaVallee, D., Zoch, D. A Lisp-Ada Connection for Expert System Development.

Proceedings of the third Annual Conference on Artificial Intelligence and Ada, 1987.

11. Laffey, T.J., Cox, P.A., Schmidt, J.L., Kao, SM., Read, J.Y. "Real-Time Knowledge-Based

Systems"..4J Magazine 9, I (Spring 1988).

12. Laffey, T, S. Weitzenkamp, Read, J., Kao, S., Schmidt, Ji Intelligent Real-Time Monitoring

Proceedings of the National Conference on Artificial Intelligence, AAAI, t988.

13. Miranker, D.P. TREAT: A Better Match Algorithm for AI Production Systems. Proceedings of the

National Conference on Artificial Intelligence, AAAI, 1987

14. Schor, M.I., Daly, T.P., Lee, H.S., Tibbitts, B.R. Advances in Rete Pattern Matching. Proceedings

of the National Conference on Artificial Intelligence, AAAI, 1986.

OO
.w

__ ART,ADA DESIGN PROJECT - PHASE I FINAL REPORT

I. Detailed Description of ART/Ada

Implementation

In this chapter, the ART %kda prototype will be described in greater detail.

1.1 Deploying an ART-IM application in Ada

The following steps are necessary to deploy an ART-I_ application in an Ada environment:

t. Load an application into ART-IM. This can be achieved either through the ART-LM Studio

menus or by entering a command. When the menu is used, select File, Load and an

appropriate filename. When a command is used, enter

(load "<filename>')

2. Reset tile application. This can be achieved either through the Studio menus or by entering a

command. When the menu is used, select Run and then Reset. When a command is used,

enter

(reset)

3. Generate Ada code for the application. This can be achieved either through the Studio menus

or by entering a command. When the menu is used, select File and then Ada Generate.

When a command is used, enter

(load "bulldada.art')

(set-generate-optlons tO00 25)

(generate-ada "<filename-preflx>')

; load call-out definitions

; set generate options

• generate Ads code

The menu command Ada Generate executes the first two commands automatically. The file

buildada.art contains Ada call-out definitions used by ART/Ada internally. If there exists

user's Ada code to be called from ART/Ada, the call-out interface should be defined either in

this file or in a separate file, and loaded into ART-IM. The function, set-generate-options,

sets maximum number of source lines per Ada source file and maximum number of source

fines per Ada subprogram. For example, (set-generate-options 1000 25) set the maximum lines

per file to 1000, and the maximum number of lines per subprogram to 25. These numbers

were found optimal for some Ada compilers.._T-IM will generate multiple files:

• funcall.a --- procedure FUNCALL for calling out to Ada

• < filename-prefix >.a --- specification and body of a package, < filename-prefix >

• < filename-prefix > l.a, < filename-prefix > 2.a, ... --- separate procedures contained in

the package, < filename-prefix >

• < filename-prefix>.com.-- a command file to compile Ada source files.

4. Compile the Ada source files using an Ada compiler using <filename-prefix>.com which

might have to be customized for each compiler. So far, only Alsys compiler has been used on

a PS/2.

23

._JIT_ADA DESIGN PROJECT - PHASE I FINAL REPORT --

.5. Write the main program. A simple command loop may or may not be included in the main

program.

6 Link the Ada executable image.

7 Run the Ada executable image.

1.1.1 Ada Source Code Generated by the Ada Deploymemt Compiler

The generated Ada code includes a procedure called INIT which initializes an application

,M_.T/Ada knowledge base.

m the

Below is the package specification generated by the Ada Generator for an application, ._LA.B:

package KA8 Is

procedure INIT;

end MAS;

wlth GEN_UTIL_ADO, GLOBAL_DCL;

p_ckage body _tAB tS

procedure MABO _s separate;

procedure MABI is separate:

procedure MAB2 is separate;

procedure MAB3 is separate;

procedure MAB4 is separate;

procedure MAB5 is separate

procedure MAB6 is separate;

procedure INIT is

begin

GEN_UTIL_ADO.INIT_INIT;

MASt;

M.AB2:

HAB3;

MAB4;

HAB5;

MAB6;

GEN_UTIL_ADO.CROSS_REF;

MABO;

GEN UTIL ADO,CLEANUP;

GEN_UTIL_AD0.SYSTEM_INIT;

end INIT;

end HAB:

In addition to generating a package specification for an application, the Ada deployment compiler also

generates the separate procedure body for INTERPRETER_SUBFUNCALL. This procedure is the top-

level procedure called by the function call interpreter to call out to Ada subprograms. These Ada

subprograms consist of those used internally by ART/Ada and those defined by the user. All user-defined

Ada subprograms should be defined in the package USER SUB.

24

,GRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

1.1.2 ART/Ada User Interface Command Loop

A simple command loop is included in the.ad_T'Adarun-timesystem It supports a minimum subset of

the A.RT-L-M command syntax which is necessary for simple tracing and debugging The following syntax

is supported:

<art cmd>

<command>

<untrace cmd>

<untrace_arg>

<trace cmd>

<trace_arg>

<run cmd>

<agendu_cmd>

<facts cmd>

<exit cmd>

•= (<command>)

= <trace cmd> 1 <untrace cmd>

<agenda_cmd> I <facts_cmd>

= untrace <untrace__rg>

"= rules I facts i activations I

= trace <trace_arg>

= <untrace_arg> I status

= run J run <integer>

= agenda

'= facts

= exit

I <run cmd>

J <exit cmd>

all

1.1.3 Example Main Programs

Two examples of the ART/Ada main programs are included in this section: one that includes the

command loop, and one that, does not. ,Although the main program should be defined by the user for

each application because the name of the package that contains the application specific procedures vanes,

it would be easy to modify the standard one.

The t'ollowing is an example of the main program that includes the user interface by calling

COMN£-XND LOOP:

25

ART/ADA DESIGN PROJECT - PHASE [FIN&L REPORT

with USER INTERFACE SUB, ERROR HDL SUB, MAB;

procedure MAIN is

begin

MAB.INIT;

USeR INTERFACE SUB.COMMAND LOOP;

exception

when CONSTRAINT ERROR =>

ERROR_HDL_SUB.PROCESS_ERROR(ERROR_HDL_SUB.CONSTRAINT_ERR).

when PROGRAM ERROR =>

ERROR H_L SUB PROCESS_ERROR(ERROR_HDL_SUB,PROGRAM_ERR)_

when STORAGE ERROR =>

ERROR HDL SUB.PROCESS_ERROR(ERROR_HDL_SUB.STORAGE_ERR)

when TASKING ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR_HDL_SUB.TASKING_ERR)

when ERROR HDL SUB.TIME-ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR HDL SUB.TIME_ERR);

when ERROR HDL SUB.INTERNAL ERROR =>

ERROR HD[SUm. PROCESS ERROR(ERROR HDL SUB.INTERNAL_ERR);

when ERROR HDL SUB.RETRACT ERROR =>

ERROR HD[SUB.PROCESS ERROR(ERROR HDL SUB.RETRACT_ERR)

when ERROR_HDL_SUB.INTERPRETER_ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR HDL SUB.INTERPRETER_ERR);

when ERROR HDL SUB.USER ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR HDL SUB.USER ERR);

'when ERROR HDL SUB.USER DEFINED ERROR =>

ERROR HDL SUB.PROCESS-ERROR(EI_ROR HDL SUB,USER DEFINED ERR);

end MAIN;

This main program initializes an expert system application called SLAB, and prompts the user for a

command. The USER INTERFACE package is with'ed to gain access t,o the COI%tXIAND_LOOP

procedure,

The following is an example of the main program that is tailored for an embedded application:

_8

,_T/ADA DESIGN PROJECT - PHASE I " FINAL REPORT

wlth ART, ERROR HDL_SUB, MAB;

procedure ,MAIN Is

begin

MAB.INIT;

ART RUN(-1)

exception

'.'hen CONSTRAINT ERROR =>

ERROR HDL SUB PROCESS ERROR(ERROR HDL SUB.CONSTRAINT ERR)

'_hen PROGRAM ERROR =>

ERROR HDL SUB PROCESS_ERROR(ERROR_HDL SUB.PROGRAM ERR)
when STORAGE ERROR =>

ERROR HDL SUB PROCESS ERROR(ERROR HDL SUB.STORAGE ERR);

when TASKING ERROR =>

ERROR HDL SUB PROCESS ERROR(ERROR HDL SUB.TASKING ERR);

when ERROR HDL SUB.TIME ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR HDL SUB.TIME_ERR);
when ERROR HDL SUB.IN'rEI_NAL ERROR =>

ERROR HDL SUB.PROCESS ERROR(ERROR HDL SUB.II_TERNAL ERR);

when ERROR HDL SUB.RETRACT ERROR =>

ERROR HD[SUB.PROCESS_ERROR(ERROR HDL SUB.RETRACT ERR);

when ERROR HDL SUB.INTERPRETER ERROR =>

ERROR HD[SUB.PROCESS_ERROR{_RROR HDL SUB.INTERPRETER_ERR);
when ERROR HDL SUB.USER ERROR =>

ERROR HD[SUB.PROCESS_ERROR(ERROR_HDL_SUB.USER_ERR);

when ERROR HDL SUB.USER DEFINED ERROR =>

ERROR HDL SUB.PROCESS:ERROR(F._ROR_HDL_SUB.USER_DEFINED_ERR);
end MAIN;

This main program initializes and runs an expert system application,

USER INTERFACE package is not with'ed by the main program.

called N'tad3, The

1.2 Public Packages in ART/Ada

The ART/Ada runtime system is composed of public Ada packages and internal Ada packages.

following is a list of public packages that can be with'ed and, in some cases, modified by the user:

• ART

• ERROR HDL SUB

• USER_ INTERFACE SUB

The

1.2.1 ART

The package, ART, contains public subprograms to be used to call into ART/Ada from user's Ada

program. This package should be with'ed by the user program whenever subprograms in this package are

called. The ART package contains the following:

• Data types: Integer Type, Natural_ Type, Positive_Type, Float_Type, ART_Object

• Type conversions: ART_Symbol, ART_String, ART_Integer, ART_Float, Ada_Symbol,
Ada_String, Ada_lnteger, Ada Float

• Predicates: Symbolp, Stringp, lntegerp, Floatp, Numberp, Sequencep, Faetp

27

ART/ADA DESIGN PROJECT - PHASE I FIN&L REPORT --

Operations: Eq, Equal, Type of. Gentemp, Length, Position, Member, Nth, Set Nth,

Find_Fact, FactNumber, Register .-tRT_ Object, Unregister_ ?uRT_ O bjec t,

Make Template, Free_Template,_equence

._RT commands: A.ssert, Retract. Run, Halt, Get_Async_Fun, Set_A.sync_Fun,

Get Salience_Threshold, Set_Salience Threshold, Get Limit_Default.

Set_ Limit _ Default, Get_ Print_ Messages, Set_ Print_ Messages

[/;O Functions: Print, Prinl, Princ, Read

In ART/Ada, all integer numbers are INTEGER TYPE which is a 32 bit integer, and all float

numbers are FLOAT TYPE which isa64 bit float. ART Object is ageneric data type which could be

one of the following: integer, float, string, symbol, fact, or sequence.

Data type conversion functions are provided to convert A.RT data types to Ada data types or to convert

Ada data types to ART data types.

Predicate functions are similar to Lisp predicates. They return T or NIL depending on the result of the

predicate.

The ART package provides various operations on ART_Object.

The ,_RT package also includes A.RT-IM commands such a.s Run and Halt as well as functions to change

the defaults of ART/Ada.

Simple I/O functions are provided to handle basic input and output. File I/O is not supported.

1.2.2 ERROR HDL SUB

The package, ERROR_HI)LSUB, contains subprograms for error handling. It contain two separate

procedures, PROCESSERROR and WARNING, that can be modified to customize the behavior of the

error handler. For example, the default behavior is to print the error or warning messages on the screen.

It could be changed, however, to print, it on the line printer in an embedded environment. This package

also defines exceptions one of which is USER DEFINED ERROR. It isageneric exception that can be

raised by the user.

1.2.3 USER_ INTERFACE _ SUB

The package, USER_INTERFACE_SUB, contains a simple user interface that can be invoked by a

procedure, COM'MAND_LOOP. It also include debugging functions such as FACTS, AGENDA. and

T_tED_RUN. It is not necessary to with this package when the presence of the user interface is not

needed (i.e. embedded applications}.

28

ART/ADADESIGNPROJECT.PFL_.SEI FINALREPORT

1.3 Ada Call-In and Call-Out Specification for ART/Ada and
ART-IM

This section describes a portable call-in[ca -out interface specification for ART Ada and .&RT-INI.

1.3.1 Interface Types

The following types may be passed between ,ART and Ada:

:INTEGER (INTEGER_TYPE) This type is an 32 bit integer in Ada and an integer in ART

(INTEGER_TYPE in ART/Aria and long in ,ART-IM).

:BOOLEAN (BOOLEAN) In ,ART, this type is either NIL or non-NIL. In Ada, this type _s
BOOLE,-MN which is TRUE or FALSE. When translating from Ada to ,ART, TRUE
will translate to T.

:FLOAT (FLOAT_TYPE) In Ada, this type is FLOAT_
For ART-IM, this is a C double.

TYPE which is double precision float

:STRING (STRING) In Ada, this type is represented as a STRING. In .ART, this type is

represented as an ,ART string. ART may or may not copy the string being passed by
this mechanism when passing a string from .ART to Ada. Thus, it is an error to

destructively modify a string passed with this mechanism. ,ART is responsible for

freeing any space necessary for the string after exiting the current scope The actual

implementation will be based upon constraints of the underlying architecture When

transferring a string from Ada to .ART, ,ART will always copy the string, allowing the
Ada programmer to free the string at his leisure.

:SYMBOL (STRING) In Ada, this type is represented as a STRING. In .aRT, this type is a

symbol. Case is preserved when interning an STRING as an .ART symbol, just as case

is preserved when passing a string to the Lisp function INTERN.

:ART-OBJECT (ART_OBJECT) This type is any ,ART type in ,ART. It is represented as a pointer to a

discriminant record in ,ART/Aria. For .ART-IM, it is an integer type which represents

aC pointer toaCstructure art object. Aset of Ada functions is provided to operate
on these ,ART objects from Ada.

1.3.2 Scope of Objects

This section gives a detailed description of the scope of objects communicated from .ART to Ada and

objects communicated from Ada to ART. In both cases the prime motivation for scoping is that the

caller should free all objects it allocates, (thus it should not allocate objects which it intends that the

callee free). Additionally, the calleeshould not destructively modify objects which it did not allocate.

All objects that are not immediate fall under these constraints. For example, strings and art-objects

passed from ,ART to Ada conform to the following semantics.

29

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

When an ART_0BJECT or string is passed from ,ART by call out to an Ada function, the object is

automatically reclaimed when the Ada function returns to ,MAT. .%.t this point, the Ada ART OBJECT

data structure is no longer valid for use in Ada code. [t is an error to retain a pointer to an

:_utomatically reclaimed ART OBJECT inAdaonce the A.da call has returned.

When an ART_0BJECT or string is returned from ,ART to .-\da. it is automatically reclaimed when

control returns to ART from Ada. In those implementations where Ada can start up and call .MaT as a

subroutine so that a returned value may never be reclaimed, the returned ART OBJECT is allocated

permanently and must be freed using a freeing function supplied in Ada.

A function is supplied in Ada that accepts an ART 0BJECT as argument and returns a permanent copy"

of that ART_0BJECT. This object must be explicitly freed when no longer useful

1.3.3 Call-Out _omART to Ada

Thefollowingis a grammar _r de,user-fun which should used to calloutto AdafromART:

(def-user-fun <fun-name> {<comment>)

<functlon-spec>*)

<functlon-spec> ::=

:compiler <compller-name> I

:returns <return-data-type> I

:epname <llnk-edltor-symbol> I

:args (<arg-spec>*)

<fun-name> '= <art-symbol>

<comment> '= <art-strlng>

<compller-name> =

VERDIX-ADA

DEC-ADA

ALSYS-ADA

<internal-data-type> ::=

:SYMBOL

:STRING

:FLOAT

:INTEGER

:BOOLEAN

:ART-OBJECT

<return-data-type> :=

VOID I <internal-data-type>

<link-editor-symbol> :=

<art-symbol> I <art-strlng>

30

ART/,_DA DESIGN PROJECT - PHASE I FIN.ad_ REPf_RT

<arg-spec> ::=

(<name> <internal-data-type> <arM-attribute>*)

(<internal-data-type> <arg-attribute>*) I

<internal-data-type>

<name> .= <art-symbol>

<arg-attribute> ::

<convention>

<Status>

<convention> :::

:OBJECT-POINTER

:VALUE-POINTER

:VALUE

<status> :=

<optional>

<rest>

<optional> '=

optional I

(optional <default>)

<default> ''= art-object

<rest> '= "rest • Must be the last arg

For example, in order to call out to an Ada function, CALC_STD_DEV, using an ART function.

calc-std-dev, define the [ollowinginART-_ before the Ada codeis generated:

(def-user-fun calc-std-dev

epname "CALC STD DEV"

•args ((sx floatY (ssq float) (n •integer))

returns 'float

compiler :alsys-ada)

An Ada package called USER SUB should be also defined as follows:

31

,_R.T/ADA DESIGN PROJECT - PHASE [FINAL REPORT ._

with ART, HATH_LIB. TED(T_I 0,

use ART.TEXT_IO ;

package uSER SUB is

type REAL TYPE is dlglts 15:

pactage MY_M_TH_LIB is new MATH_LIB(REAL_TYPE);

use MY MATH LIB;

f,Jnction CALC STD DEV(SX FLOAT TYPE;

SSQ FLOAT_TYPE

N INTEGER TYPE) return FLOAT TYPE;

end USER SUB;

package body USER_SUB Is

function CALC STD DEV(SX : FLOAT TYPE;

SSQ FLOAT TYPE;

N INTEGER TYPE) return FLOAT TYPE is

SD: FLOAT TYPE:

begln

SD := (SSQ - ((SX * SX) /FLOAT TYPE(N))) / FLOAT TYPE(N - I);

return FLOAT TYPE(HY MATH LIB.SQRT(KEAL_TYPE(SD)));

end CALC STD DEV;

end USER SUB;

1.3.4 Call-In from Ada to ART/Ada

The AStT package of ART/Ada is the public package for the ART/Ada users to call in from Ada to

ART/Ada. The specification of the .ART package will serve as the standard Ada call-in interface

specification.

32

__ ._RT/ADA DESIGN PROJECT . PHASE I FINAL REPORT

II. Difference between ART-IM 1.5 and

ART/Ada 1.0

.Among the ART-LM 1.5 features that are missing in ,_RT:'Ada, the following features will be

implemented in phaze [I:

• Schema System - a frame system

• Logical Dependency - a truth maintenance system

• Justification System - an explanation system

The following features were not implemented during the phase I due to time limitation, but will be

implemented during phase II.

• some string functions

• some I/O functions

• some math functions

• procedural iterators

• asynchronous function

The following features are not planned to be supported in ART/Ada:

• streams

• external data interface functions (e.g. def-external-data, clef-map-fun, etc.) which are useful

for building database interfaces.

• Trigonometric functions (e.g. sin, cos, etc) which are not part of standard Ada.

33

._RT/ADA DESIGN PROJECT - PHASE I FIN:_, REP¢3RT

HI. ART/Ada Public Packages

34

-- .-kRT/ADADESIGNPROJECT- PHASE[FIX._LREPC_RT

III.1 Specification of ART Package

35

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT --

COPYRIGHT NOTICE

I) COPYRIGHT (C) 1988

INFERENCE CORPORATION,

5300 W. Century Blvd.,

Los Angeles, California 90045

AN UNPUBLISHED WORK - - ALL RIGHTS RESERVE/).

2) Restr±cted Rights Notice (Short Form) (April Ig84)

Use, reproduction, or dlsclosure is

sublect to restrlctions set forth in

Government Cooperative Agreement Number NCC-

g-16 between the National Aeronautics and

Space Administration and the University of

Houston-Clear LaMe and a subcontract

thereunder, Number 015 between the University

of Houston-Clear Lake and Inference

Corpora:ion.

3) Restricted Rights Notice (ART/Ada)

These data constitute Inference

Corporation trade secrets and/or information

that is commercial or financial and

confidential or privileged. They are

submitted to the Government under NASA

Cooperative Agreemen_ Ncc-g-16 with the

University of Hous_on-Clear Lake Research

Institute for Computing and Information

Systems (RICIS) with _he understanding th&t

they will not, without the permission of

Inference Corporation, be used or disclosed

for other than evRlua_lon purposes.

-- Author: S. Daniel Lee

-- Package: ART

-- Function: This packa4_e contains subprograms for the user to c_ll into

-- ART/Ada. This package is the top-level public package which

-- contains all the operations on ART/Ada. This p_ckage should

-- always be with'ed in the user's program

-- S_a_e Variables:

-- None

-- State V_rlable Inltlallzatlon:

-- None

-- Change Log:

..

with STRUCT_DCL, ART_OBJECT_SUB. DATABASE_SUB, INFER_ENG_SUB. CALLI0 SUB,

ALLDC SUB. 10 SUB, AGENDA SUB,

use STRUCT DCL;

package ART is

-- Public Types for Ada Callout

3B

-- ART/ADA DESIGN PROJECT - PHASE [FINrLL REPORT

subtype INTEGERTYPE

-- Use BOCLEAN

subtype FLOAT_TYPE

-- Use STRING

subtype ART OBJECT

is STRUCT DCL INTEGER TYPE;

is STRUCT DCL FLOAT TYPE;

:s STRUCT DCL.ART OBJECT;

-- For :INTEGER

-- For :BOOLEAN

-- For :FLOAT

-- For :STRING

-- For ART-OBJECT

subtype NA_JRAL_TYPE is STRUCT DCL NATURAL TYPE;

subtype POSITIVE_IYPE is STRUCT_DCL.POSITIVE_TYPE;

-- Operations on ART objects
...

-- Returns a new, permanent art_object reference to the ART oblect

-- referred to by reference. Reference may be either a permanent

-- or automatically allocated art_object.

...

function REGISTER ART OBJECT(REFERENCE : ART OBJECT) return ART OBJECT

renames ART OBJECT SUB.REGISTER ART OBJECT;

-- Frees the permanent or temporary reference to an art_object;

-- it is an error to continue to use an art_object after freeing the

-- reference to it.

..

procedure UNREGISTER_ART_OBJECT(REFERENCE : ART_OBJECT)

renames ART OBJECT SUB.UNREGISTER ART OBJECT;

-- Returns TRUE if the two art_objects X and Y are the same object.

-- EQ and EQUAL are equivalent.

...

function EQ(X: ART OBJECT;

Y: ART OBJECT) return BOOLEAN

renames ART OBJECT SUB EQ;

-- Returns TRUE if the two art_objects X and Y are the same object,

-- EQ and EQUAL are equivalent.
...

function EQUAL(X: ART OBJECT;

Y: ART OBJECT) return BOOLEAN

renames ART OBJECT SUB EQUAL;

-- Returns the type of sn object, as a symbol
...

function TYPE OF(OBJ: ART OBJECT) return ART OBJECT

renames ART OBJECT SUB.TYPE OF;

-- A_GENTEMP: Creates a new, previously

-- unused symbol.
...

function GENTEMP(STR : STRING) return ART OBJECT

renames ART OBJECT SUB,GENTEMP;

-- Calls the Ads procedure PROCESS once for each permanent OBJECT

-- that has been allocated passing each permanent srt_obJect

-- as the argument to PROCESS in turn. If PROCESS returns FALSE

37

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT _-

-- at any time, t_en the iteration Is terminated at that point.
..

-- generic

-- with procedure PROCESS (THE_ITEM " in ART_0BJECT;

-- CONTINUE out BOOLEAN)

-- procedure FOR_ALL PER ART OBJECTS

-- Returns an ART OBJECT for the symbol resulting from performing a

-- :ntern operat:on on the string sir, Case is presered In sir

...

function ART SYMBOL(STR : STRING) return ART OBJECT

renames ART OBJECT SUB.ART SYMBOL;

-- Returns an ART OBJECT that represents the string specified.

-- Case is preserved.

...

function ART STRING(STR : STRING) return ART OBJECT

renames ART_OBJECT_SUB.ART_STRING;

-- Returns an ART OBJECT that represents t_e number speclfled.
...

function ART_INTEGER(NUM: INTEGER_TYPE) return ART OBJECT

renames ART_0BJECT_SUB.ART_INTEGER;

-- Returns an ART OBJECT that represents the number specified.
...

function ART FLOAT(NUM: FLOAT TYPE) return ART OBJECT

renames ART_OBJECT_SUB.ARTIFLOAT;

-- Returns a STRING that is the print name of the symbol.

...

function ADA SYMBOL(SYMBOL: ART OBJECT) return STRING

renames ART OBJECT SUB.ADA SYMBOL;

-- Returns a STRING that represents the ART_0BJECT specified.
...

function ADA STRING(STR: ART OBJECT) return STRING

renames ART_OBJECT_SUB.ADA_STRING;

-- Returns the number represented by the ART_0BJECT specified.

...

function ADA INTEGER(NUM: ART OBJECT) return INTEGER TYPE

renzmes ART_OBJECTSUB.ADA_INTEGER;

-- Returns the number represeuted b F the ART_OBJECT specified.
...

function ADA FLOAT(NUM: ART OBJECT) return FLOAT TYPE

renames ART OBJECT SUB.ADA FLOAT;

-- Predicates

...

38

_ ART ADA DESIGN PROJECT - PHASE I FINAL REP,_RT

functiom SYMBOLP(0BJ: ART OBJECT) return BOOLEAII

renames ART OBJECT SUB.SYMBOLP

-- Returns TRUE if the ART OBJECT, 0BJ, is a string, otherv:se FALSE

...

functioo STRINGP(0BJ: ART OBJECT) return BOOLF,AN

renames ART OBJECT SUB STRINGP

-- Returns TRUE if the ART_OBJECT, OBJ, is _n iateger, otherwise FALSE

...

functiom INTEGERP(OBJ_ ART OBJECT) return BOOLEAN

renames ART OBJECT SUB.INTEGERP;

-- Returns TRUE if the ART OBJECT, OBJ. is a float, otherwise FALSE.
...

functiom FLOATP(0BJ: ART OBJECT) return BOOLEAN

renames ART CBJECT SUB.FLOATF;

-- Returns TRUE if t_e ART OBJECT, OBJ. is • number, otherwise FALSE.

...

functioB NUMBERP(OBJ: ART OBJECT) return BOOLEAN

renames ART OBJECT SUB,NUMBERP;

-- Returns TRUE if the ART_OBJECT. OBJ, is a sequence, otherwise FALSE
...

functloa SEQUENCEP(OBJ: ART OBJECT) return BOOLEAN

renames ART OBJECT SUB.SEQUENCEP;

-- Returns TRUE if the ART OBJECT. OBJ, is a fa_ct, otherwise FALSE.

...

functloB FACTP(GBJ; ART OBJECT) return BOOLEAN

ren_es ART OBJECT SUB.FACTP;

-- Fact and Sequence Manipulation
...

-- Returns the fact with fact number n. If no [act has that number,

-- returns NULL.
...

function FIND FACT(N: INTEGER TYPE) return ART OBJECT

renames DATABASE SUB.FIND FACT;

-- INT FIND FACT: Finds a fact based on • ID, amd returns NIL instead of NULL.

..

function INT FIND FACT(ID: INTEGER TYPE) return ART OBJECT

renames DATABASE SUB.INT_FIND_FACT;

-- Returns the !act number of fact.

...

function FACT NUMBER(FACT: ART OBJECT) return NATURAL TYPE

renames DATABASE SUB FACT NUMBER;

-- FOR ALL FACTS: Iterates over all the facts Is the current dat&base, calling a glven

39

ART" kDA DESIGN PROJECT - PHA$'E I FINAL REPORT --

-- procedure once for each fact,

...

-- generic

-- wlth procedure PI_CESS (THE_ITEM In ART OBJECT;

-- CONTINUE out B00ZEAN);

-- procedure FOR_ALL_FACTS;

-- Returns length of obj.
...

function LLNGTH(OBJ: ART OBJECT) return NATURAL TYPE

renames ART OBJECT SUB.LENGTH;

-- Returns the position of the first occurrence of value in ohJ, If

-- value is not in oh|. returns 0

..

function POSITION(VALI_E: ART_0BJECT;

0BJ: ART OBJECT) return NATURAL TYPE

renames ART OBJECT SUB.POSITION;

-- Returns TRUE if vzlue is in ob], and FALSE o%herwlse.

..

function MEMBER(VALUE: ART OBJECT;

0BJ: ART OBJECT) return BOOLEAN

renames ART OBJECT SLrB.HEMBER;

-- Returns the nth element of obj.
...

function NTH(OBJ: ART OBJECT:

INDEX; NATURAL TYPE) return ART OBJECT

renames ART OBJECT SUB.NTH;

-- Fact and Sequence Creation
...

-- Constructs an 'empty" fact template znd returns a pointer to it as zn

-- ART object which may later be asserted. [_ is an error to assert a

-- template without inserting something into each of the size slots

-- allocated in it. All templates are permanent. Additionally they should

-- not be freed with unreglster_art_ob_ect. They should only be freed

-- with free_template
..

function MAKE TEMPLATE(SIZE: NATURAL TYPE) re_urn TEMPLATE TYPE

renames CA[LIO_SUB,__TEMPLATE;-

-- Thls function sees ¢_e element of template specified by

-- Index to be value. I_ is an error to attempt to modify a fact

-- not crea_ed with MAKE TEMPLATE. The first element of the fact (the

-- rel_tlon) is indexed by index I. The other elements of the fact

-- have indices 2 through the length of the fact
..

procedure SET NTH(TEMFLATE: in out TEMPLATE_TYPE;

INDEX: in INTEGER TYPE;

VALUE: in ART OBJECT)

renames CALLIO SUB.SET NTH;

-- Frees the TEMPLATE TYPE templ;te, It ls an error to continue to refer to

4O

.M:tT/ADA DESIGN PROJECT - PHASE I FINAL REFC_RT

-- template _fter freeing.
..

procedure FREE TEMPLATE(T_MPLATE: in out T&HPLATE TYPE)

renames CALLIO SUB.FREE TEMPLATE;

............................... - ...

-- Asserts a fact from the contents of template into the ART database

-- Template _ust be constructed uslng the functions and macros below

-- prior to assertion. It Is an error to assert z fact with an empty fact

-- slot A template may be used for any number of assertions.

...

function ASSERT(TEMPLATE: in TEMPLATE TYPE) return ART OBJECT

renames CALLI0 SUB.ASSERT;

-- This functlon takes • template and returns a sequence matching the

-- template. The sequence returned wlll not incorporate or alter the

-- template.

func_£on SEQUENCE(T_/_PLATE: in TEMPLATE TYPE) return ART OBJECT

re_ames CALLI0 SUB,SEQUENCE;

-- ART Control

...

-- Retracts fact from the ART database

...

procedure RETRACT(FACT: in out ART OBJECT)

renames DATABASE SUB RETRACT;

-- Fuuctlon: Runs the inference engine (match-select-act cycle) LIMIT

-- number of times. Continue to run until the _genda is

-- empty, until the HALT is encountered on the rhs of _ rule,

-- until a s_lience threshold is reached, or until • breakpoint

-- is triggered.

-- Parameters: LIMIT - Number of inference engine cycles. (Or ,umber of rules

-- allowed to flre.

-- > 0 fire that many rules

-- = 0 then No rules flre

-- = -I then LIMIT :: current default limit

-- <= -2 fire until agenda becomes empty
..

function RUN(RUN LIMIT: in INTEGER TYPE) return INTEGER TYPE

renames INFER ENG SUB.RUN;

-- Returns TRUE If the agenda is empty. Otherwlse, FALSE.

..

functlon AGENDA EMPTY P return BOOLEAN

renames AGENDA SUB.AGENDA _PTY P;

..

-- Function: Complete the execution of all rhs actions of the current

-- rule and h_its the inference engine.

..

procedure HALT

renames INFER ENG SUB,HALT:

._W.T.,'.-kDA DESIGN PROJECT - PHASE I FINAL REPORT "

-- Function: Zt sets _he &sTnchronous Ada function.

-- The asynchronous function should be defined in the USER SUB

-- package. ART/Ada will intern this function and assign _t

-- a function ID.

..

procedure SET ASYNCH_FUN(FUN : SIRING)

renames INFER ENG_SUB.SET_ASYNCH_FUN;

-- ?unct_on It returns the name of the asynchronous Ada function

..

function GET ASYNCH FUN return STRING

renames INFER ENG SUB.GET ASYNCH FUN;

-- Returns the minimum salience below which rules may not flre_

...

function GET SALIENCE THRESHOLD return SALIENCE TYPE

renames INFER ENG SUB.GET SALIENCE THRESHOLD;

-- Set the minimum salience below which rules may not fire, The constant

-- min salience may be used to reset salience to the initial default.
..

function SET SALIENCE THRESHOLD(SALIENCE: in INTEGER TYPE) return INTEGER TYPE

renames INFER ENG_SUB,SET_SALIENCE_THRESHOLD;

-- Re%urns the default llmit on rule firings for run, If the returned value

-- is negztlve, the default is to let ART run indefinitely

..

function GET LIMIT DEFAULT return INTEGER TYPE

renames INFER FJ_G SUB.GET LIMIT DEFAULT;

-- Sets the default limit on rule firings for run. If limit is

-- negative, the default is to let ART run indefinitely.
...

function SET LIMIT DEFAULT(LIMIT: in INTEGER TYPE) return INTEGER TYPE

renames INFER ENG SUB.SET_LIMIT_DEFAULT,

-- Returns a boolean that tells whether ART prints informational messzges.

-- TRUE means they are printed; FALSE means they sre suppressed,

..

function GET PRINT MESSAGES return BOOLEAN

renames INFER E/_G SUB.GET PRINT MESSAGES;

-- Controls whether ART prints Informational messages. TRUE means

-- to print messages; FALSE to suppress printing of messages.
-- TRUE is the default.

..

function SET PRINT MESSAGES CVALUE: BOOLEAN) return BOOLEAN

renames INFER ENG SUB.SET PRINT MESSAGES;

-- Convert INTEGER TYPE to BOOLEAN. If 0, then FALSE• TRUE, otherwise.

..

function INTEGER TO BOOLEAN(STATUS : INTEGER TYPE) return BOOLEAN

renames CALLIO_SUBINTEGER_TO_BOOLEAN;

-- Convert BOOLEAN to INTEGER TYPE. If TRUE, then I. If FALSE. then 0

42

,(T,'ADA DESIGN PROJECT - PHASE I FINAL REPORT

function BOOLEAN TO INTEGER(STATUS BOCLEAN) return INTEGER TYPE

renames CALLIO SUB,BOOLEAN TO INTEGER;

-- Function: It frees a sequence

...

procedure FREE SEQUENCE(X in out ART OBJECT)

renames ALLCC_SUB FREE_SEQUENCE;

-- Function: Prints the oblect followed by a CR LF to the standard output

-- Standard output is, by default, the screen

-- Parameters OBJECT - The object to be printed

...

function PRINT(0BJECT ART OBJECT;

STREAM: ART OBJECT :: null) return ART OBJECT

renames IO SUB.PRINT;

-- Function: Prints the ART Object to the standard output.

-- Standard output is, by default, the screen.

-- Puts quotes around the string being printed.

-- Parameters: OBJECT - The ART Object to be printed

...

function PRINI(OBJECT: ART_0BJECT;

STREAM: ART OBJECT := null) return ART OBJECT

renames IO_SUB.PRINI;

-- Function: Prints the oblect to the standard output.

-- Standard output is, by default, the screen.

-- Parameters: OBJECT - The object to be printed

...

function PRINC(OBJECT: ART_OBJECT;

STREAM: ART OBJECT :: null) return ART OBJECT

renames IO SUBPRINC;

-- Function: Prints a CR to the standard output

-- Standard output is, by default, the screen

...

procedure TERPRI(STREAM: ART OBJECT = null)

renames IO SUB.TERPRI;

-- Prints out a llst of oblects to the given stream, The symbol T indicates

-- that a newllne should be emitted. The symbol T as the stream argument

-- Indlc&tes that stdout should be used as the stream (for compatibility with

-- big Art). Conceptually, the argument llst of printout is:

-- prlntout(stream _rest args)

-- For now. ignore the first arg, STREAM.

...

function PRINTOUT{STREAM ART OBJECT;

REST ART OBJECT ARRAY PTR TYPE) return BOOLEAN

renames IO_SUB PRINTOUT;

-- Function: Read from standard output.

43

ART/ADA DESIGN PROJECT - PHASE l FINAL REPORT ,.,-

-- PRrameters OBJECT - The ART_0BJECT being re_d.

...

function READ INTERFACE(STREAM: ART OBJECT _= null) return ART OBJECT

renames 10 SUB.READ INTERFACE,

end ART;

44

RT/ADA DESIGN PROJECT - PHASE I FINAL REP_)RT

III.2 Specification of ERROR_HDL_SUB Package

45

ART/AI)A DESIGN PROJECT - PHASE [FINAL REP_RT --

CflPYR [GHT NOT [CE

I) COPYRIGHT (C) 1988

INFERENCE CORPORATION,

5300 W. Century Blvd.,

Los Angeles, Callfornla 90045.

AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED

2) Restricted Rights Notlce (Short Form) (April 1984)

Use, reproduction, or disclosure is

sub]ec% to res%rictions set forth in

Government Cooperative Agreement Number NCC-

9-t6 between _he National Aeronautics and

Sp_ce Admlmlstratlon and the University of

Houston-Clear LaMe _nd • subcontract

thereunder, Nnmber 015 between the University

of Houston-Clear Lake and Inference

Corporation.

3) Restricted Rights Notice (ART/Ada)

These data constitute Inference

Corporation trade secrets and/or information

that is commercial or financial and

confidential or privileged. They _re

submitted to the Government under NASA

Cooperatlve Agreement NCC-g-t6 wlth the

University of Houston-Clear L&ke Research

Institute for Computing _nd Informatlon

Systems (RICIS) with the understanding that

they will not, without the permission of

Inference Corporation, be used or disclosed

for other than evaluatlon purposes

-- Author: Jim B_dura

-- Package: ERROR HDL SUB

-- Function: This package contains a procedure that performs error

-- recover T for internal ART errors.

-- State V_rlzbles: None

-- State Varlable InlMaliza_lon: None

-- Change Log:

...

with STRUCT_DCL, CALEMDAR;

use STRUCT DCL;

package ERROR HDL SUB iS

type ERROR_LOC is (LHS_LOC, RHS_LOC, TOPLEVEL_LOC. ASYNC_LOC);

type ERROR_TYPE is (CONSTRAINT_ERR,NUMERIC_ERR.PROGRAMERR,STORAGE_ERR,

TASKING ERR, TIME ERR,

INTERNAL ERR, RETRACT ERR. INTERPRETER ERR,

USER_ERR.
USER DEFINED ERR);

46

_ ,F/ADA DESIGN PROJECT - PHASE I FINAL REPORT

TIME ERROR exception renames CALENDAR.TIME ERROR;

INTERNAL ERROR exception;

RETRACT _/_ROR exception;

INTERPRETER_ERROR exception; -- Error in the Interpreter

USER ERROR: exception; -- The User can use this exceptlon.

USER DEFINED_ERROR: exception; -- The User can use this exception

-- Function This procedure invokes the appropriate Ada routlne for

-- recovering from the current intern_l ART error

-- Thls procedure should be separate

-- Parameters: ERROR - The current error being handled

...

procedure PROCESS ERROR(ERROR: in ERROR TYPE);

-- Function: This procedure stores an error message into a buffer

-- so that the error message could be printed by PROCESS ERROR later

-- Parameters: MESSAGE - The error message.

...

procedure ERROR(MESSAGE: In STRING);

-- Function: This procedure handles an warning message,

-- Thi{ procedure should be separate,

-- Parameters: MESSAGE - The warning message.

...

procedure WARNING(MESSAGE: in STRING);

end ERROR_HDL_SUB;

,_RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT "-"

III.3 Body of ERROR_HDL_ SUB Package

48

_RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

COPYRIGHT NOTICE

I) C3PYRIGHT (C) 1988

INFERENCE CCRPORATION,

5300 W Century Blvd.,

Los Angeles, California g0045

AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED

2) Restrlcted Rights Notice (Short Form) (April 19B4)

Use, reproduction, or dlsclosure is

subject to restrictlons set forth in

Government Cooperative Agreement Number NCC-

9-16 between the Natlon_i Aeron_utlcs and

Space Administration and the University of

Houston-Clear Lake and a subcontract

thereunder, Number 015 between the University

of Houston-Clear Lake _nd Inference

Corporation.

3) Restricted Rights Notice (ART/Ada)

These data constitute Inference

Corporation trade secrets and/or information

that Is commercial oF financial and

confidential or privileged, They are

submitted to the Government under NASA

Cooperative Agreement NCC-g-IB with the

University of Houston-Clear Lake Research

Instltute for Computing and Information

Systems (RICIS) with the underst_ndlng that

they will not, without the permission of

Inference Corporation, be used or dlsclosed

for other than evaluation purposes.

-- Author: Jim Badura

-- P_c_age: ERROR HDL SUB

-- Function: This p_ck_ge contains • procedure that performs error

-- recovery for intern_l ART errors.

-- StRte Varlables: None

-- State V_rlable Initi_llz_ion: None

-- Change Log:

...

wlth GLOBAL_DCL;

use GLOBAL DCL;

p_ckage body ERROR HDL SUB is

...

-- Function: Thls procedure invokes the appropriate Ada routine for

-- recovering from the current Internal ART error.

-- P_rameters: ERROR - The current error being handled

...

procedure PROCESS ERROR(ERROR: in ERROR TYPE) is separate;

49

ART/ADA DES[GN PROJECT - PHASE I FIN._L REPORT "--

-- Function This procedure stores an error message into a buffer

-- SO that the error message could be printed by PROCESS ERROR later.

-- Parameters MESSAGE - The error message

...

procedure ERROR(MESSAGE in STRING) _s

begin

CHARACTER STRING CCPY(MESSAGE, CUR USER ERROR_BUFFER)

end ERROR_

...

-- Function: Thls procedure handles the warning message.

-- F_rameters: MESSAGE - The warning message.

...

procedure WARNING(MESSAGE: in STRING) is separate;

end ERROR HDL SUB;

50

ART ADA DESIGN PRO3ECT - PHASE I
FINAL REPORT

III.4 Separate Procedure

ERROR_ HDL_ SUB.PROCESS ERROR

51

ART/ADA DESIGN PROJECT - PHASE I FIN,_L REPORT _-_

COPYRIGHT NOTICE

I) COPYRIGHT (C) 1988

INFERENCE CORPORATION,

5300 W. Century Blvd.,

Los Angeles, California 90045.

AN UNPUBLISHED WORK - - ALL RIGHTS R£SERVED

2) Restricted Rights Notice (Short Form) (April 1984)

Use, reproduction, or disclosure is

sublect to restrictions set forth in

Government Cooperative Agreement Number NCC-

9-16 between the Nztlonal Aeronautics and

Space Administration and the University of

Houston-Clear Lake _nd a subcontract

thereunder, Number 015 between the University

of Houston-Clear LaMe and Inference

Corporation.

3) Restricted Rights Notice (ART/Ada)

These d_ta constitute Inference

Corporatlo_ trade secrets and/or informatlon

that is commercial or financial and

confidentl_l or privileged. They are

submitted to the Government under NASA

Coopermtive Agreement NCC-9-16 with the

University of Houston-Clear Lake Research

Institute for Computing _nd Information

Systems (RICIS) with the understandlng that

they will not, wlthout the permission of

Inference Corporation, be used or dlsclosed

for other than evaluation purposes,

with TEXT IO;

use TEXT IO;

separate _ERROR HDL SUB)

procedure PROCESS ERROR(ERROR: in ERROR TYPE) is

ERR: constant STRING := ";;; ERROR: "

begin

case ERROR is

when CONSTRAINT ERR

=> PUT LiNE(F-RR & "Constraint error');

when NUNF_IC ERR

=> PUT LI_(F.RR I "Numeric error');

when PROGRAM ERR

=> PUT_LI_(ERR = "Program error');

when STORAGE ERR

=> PUT_LIME(ERR _ "Storage error');

when TASKING ERR

:> PUT_LI_(ERR _ "Tasklng error*);

when TIME

=> PUT _INE(ERR • "Time error');

when INTERNAL ERR

=> PUT LINE(ERR _ "Internal ART error: "

CHARACTER_STRING.SUBSTRING_OF(CUR_USER.ERROR BUFFER))

CHARACTER STRING.CLEAR(CUR_USER,ERROR_BUFFER);

when RETRACT ERR

=> PUT LI_(ERR Z "Retract error: •

CHARACTER STRING.SUBSTRING_OF(CUR_USER.ERRORBUFFER))

52

ART/ADA DESIGN PROJECT - PHASE I FIN,_L REPORT

CHARACTER_STRING. CLEAR (CUR_USER. ERRORBUFFER) ;

when INTERPRETER ERR

:> PUT_LINE(ERR _ "Interpre%er error: " Jt

cHARACTER STRING.$UBSTRING OF(CUR USER, ERROR BUFFER))

CHARACTER_STRING. CLEAR (CUR USER. ERROR BUFFER) ,

when USER ERR

=> PUT LINE(ERR _ "User error "

CHARACTER_STRING SUBSTRING 3F(CUR USER. ERROR BUFFER))

CHARACTER STRING CLEAR(CUR USER ERROR BUFFER) •

when USER DEFINED ERR

:> PUT [.'NE(ERR-_ "User defined error')

end c_se;

end PROCESS ERROR;

53

ART/,_DA DESIGN PROJECT - PHASE [FINAL REPORT ""

III.5 Separate Procedure ERROR_HDL_SUB.WARNING

COPYRIGHT NOTICE

i) COPYRIGHT (C) 1988

INFERENCE CORPORATION,

5300 W Century Blvd.,

Los Angeles. California 90045

AN UNPUBLISHED WORK - - ALL RIGHTS RESERVE/),

2) Restricted Rights Notice (Short Form) (April 1984)

Use, reproduction, or disclosure is

subject to restrictions set forth In

Government Cooperative Agreement Number NCC-

9-16 between the National Aeronautics and

Space Administration and the University of

Houston-Clear LaMe and a subcontract

thereunder. Number 015 between the University

of Houston-Clear Lake and Inference

Corpora%ion.

3) Restricted Rights Notice (ART/Ada)

These data constitute Inference

Corporation trade secrets and/or information

that is commercial or financial and

confldential or privileged. They are

submitted to the Government under NASA

Cooperative Agreement Ncc-g-16 with the

University of Houston-Clear Lake Research

Institute for Computing and Information

Systems (RICIS) with the understanding that

they will not, without the permission of

rnference Corporation, be used or disclosed

for other than evaluation purposes.

with TEXT I0:

use TEXT I0;

separate _ERROR HDL SUB)

procedure WARNING(MESSAGE: in STRING) is

begin

PUT LINE(';;: WARMING_ " a MESSAGE);

end WARNING;

54

ART/ADA DESIGN PROJECT, PHASE I FI,_.'.-kLREP,SRT

IH.6 Specification of USER_INTERFACE Package

55

rhRT/'.,_DA DESIGN PROJECT - PHASE I FINAL REPORT ._

--

Proprietary Rights of Inference Corporation in the ART(TM),

ARTLV(TM), ART Studlo(TH), ARTIST(TM) and

Viewpoints(TM) programs include the following:

I) The ART(R), ART Studlo(TM). ARTIST(TM)

and Vlewpoints(TM) programs and related data and

information are the subject of TRADE SECRETS and

CSPYRIGHTS licensed from INFERENCE CCRPORATIGN.

The program and related data and information are

provlded tn confidence and all use, disclosure,

copying, or storage except as authorized in the

written LICENSE AGREEMENT FROH INFERENCE to the

user, is strictly prohibited.

2) COPYRIGHT (C) 1988, IgB7, 1986, 1985, tg84 INFERENCE CORPORATION,

5300 W, Century Blvd . Los Angeles, California 90045.

AN UNPUBLISHED WORK - - ALL RIGHTS RESERVED.

3) RESTRICTED RIGHTS LEGEND:

When the Licensee is the U.S, Government or a duly

authorized agency thereof, use, duplication, or disclosure

by the U.S. Government is subject to restrictlons as set

forth In subivlslon (b) (3) (Ii) of the Rights in

Technical Data and Computer Software clause at

52.227-7013, dated November 9, 1984.

-- Author: J. T. Badura

-- Package: USER_INTERFACE_SUB

-- Function: This package contains subprograms that controls the user

-- interface.

-- State Variables: None

-- State Variable Initialization: None

-- Change Log:

..

with STRUCT DCL;

use STRUCT DCL;

package USER_INTERFACE_SUB is
..

-- Function: This procedure invokes the interactive ART/Ada command loop.

-- Thls procedure will display the initial banner and repeatly

-- print the ART/Ada prompt for a ART command.

-- The command loop should handle watch/unwatch, reset, run,

-- agenda, facts.

...

procedure COMMAND LOOP;

-- FACTS: Prints out a list of the current facts

-- to the screen, In sorted order and with a

-- sum of the total current f_c%s.

...

procedure FACTS;

-- AGENDA: Prints out the agenda of the rules

-- that are ready to fire.
...

56

ART, ADA DESIGN PROJECT - PHASE I FINAL REPORT

57

ART/,._DA DESIGN PROJECT - PHASE I FINAL REPORT --

IV. Benchmark Programs

This appendix includes the following ART-LM programs used to benchmark the ._RT Ada prototype:

• ,Monkey and Banana

• N-Queens (6 Queens)

58

_ ARTj._)A DESIGN PROJECT -PHASE I FINAL REPORT

IV.1 Monkey and Banana

59

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT --

;;; -,- Mode: ART; Base: I0,; P$ckage: ART-USER -,-

==

_;; Monkees _nd Bannanas Sample Problem

; This is an extended version of a

rather common AI planning problem.

The point is for the monkee to find

_nd eat some b_nnanas.

To execute, merely load. reset _nd run.

===

• ;* chest unlocking rules *

(defrule unlock-chest-to-hold-object ""

(go_l-ls-to _ctlve holds ?obJ)

(object ?chest ? ? ? ?obJ ?)

(not (go_l-is-to actlve unlock ?chest))

=>

(assert (goal-is-to _ctlve unlock ?chest)))

(defrule unlock-chest-to-move-object ""

(goal-ls-to actlve move ?obJ ?)

(object ?chest ? ? ? ?obJ ?)

(not (go_l-is-to active unlock ?chest))

=>

(assert (go_l-is-to _ctlve unlock ?chest)))

(defrule hold-chest-to-put-on-floor '"

(goal-is-to active unlock ?chest)

(object ?chest ? light "floor ? 7)

(not (goal-is-to active holds ?chest))

=>

(_ssert (go_l-ls-to active holds ?chest)))

(defrule put-chest-on-floor ""

(goal-ls-to active unlock ?chest)

?fl <- (monkey ?place ?on ?chest)

?f2 <- (object ?chest held light held ?contains ?key)

=>

- (printout t "Monkey throws " ?chest " off " ?on " onto floor " t)

(retract ?fl ?f2)

(assert (monkey ?pl_ce Ton blank))

(_ssert (object ?chest ?pl&ce light floor ?contains ?key)))

(defrule get-key-to-unlock ""

(goal-_s-to active unlock ?obJ)

(object ?obJ ?pl_ce ? floor ? ?key)

(monkey ? ? -?key)

(not (go_l-ls-to active holds ?key))

=>

(_ssert (goal-ls-to active holds ?key)))

(defrule move-to-chest-with-key *"

(goal-is-to actZve unlock ?chest)

(monkey ?mpl_ce ? ?key)

(object ?chest ?cplacel-?mplace _ floor ? ?key)

(not (goal-is-to _ctlve w_ik-to ?cpl_ce))

:>

(_ssert (goal-is-to _ctlve w_ik-to ?cpl_ce)))

60

-- ._d_T/ADA DESIGN PROJECT - PHASE I FIN._L REPORT

defrule unlock-chest-wlth-key ""

fl <- (goal-ls-to active unloc _chest-obJ)

?f2 <- (object =chest-oh] ?place °weight ?on °obj-ln _key)

(monkey ?place ?on ?key)

z>

(printout t "Monkey opens chest with ' Okey = revealing ° ?obJ-in t)
(retract ?fl ?f2)

(assert <object ?chest-ob] ?place ='#eight Ton nil ?key))

(assert (object ?obj-ln _place light _chest-ob] nll nil)))

;, process bold object •

(defrule use-ladder-to-hold "'

(goal-is-to active holds ?ob_)

(object ?ob_ ?place light cetllng ? 7)

(not (goal-ls-to active move ladder ?place))

=>

(assert (goal-is-to active move ladder ?place)))

(defrule cllmb-ladder-to-hold '"

(goal-ls-to active holds ?ob])

(oblect ?oh] ?place light ceiling ? 9)

(object ladder ?place ? floor ? 9)

(not (goal-ls-to active on ladder))

=>

(assert (goal-is-to active on ladder)))

(defrule grab-object-from-ladder ''

?fl <- (goal-is-to active holds ?ob])

?f2 <- (oblect ?ob_ ?place light ceiling ?contalns ?key)

(object ladder ?place ? ? ? 9)

?f3 <- (moBkey ?place ladder blank)

=>

(printout _ "Monkey grabs the • ?ob] t)

(retract ?fl ?f2 ?f3)

(assert (object ?ob I held light held ?contains _key))

(assert (monkey ?place ladder ?ob])))

(defrule climb-to-hold ''

(goal-ls-to active holds ?ob])

(object ?obJ _place light ?on_-floor_'ce_llng ? 7)

(monkey ?place -Ton 9)

(not (goal-ls-to active on ?on))

=>

(assert (go_l-is-to active on ?on)))

(defrule walk-to-bold ""

(goal-ls-to active holds ?ob 3)

(object ?obj ?place light -ceiling ? _)

(monkey -?place ? ?)

(no_ (goal-ls-to active walk-to ?place))
=>

(assert (go_l-ls-to active walk-to _place)))

(defrule drop-to-hold ""

(goal-ls-to actlve holds ?ob])

(oblect _ob_ ?place light floor ? 9)

(monkey ?place ? -blank)

(not (goal-ls-to actlve holds blank))

=>

(assert (goal-ls-to active walk-to ?place)))

61

.kRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT --

(defrule get-on-floor-to-bold '"

(goal-is-to active holds ?ob])

(oblect ?ob] ?place light floor ? ?)

(monkey ?place "floor 7)

{not {goal-ls-to actlve on floor))

:>

(_ssert (goal-is-to active on floor)))

(defrule grab-object ""

f <- (goal-!s-to actlve holds ?obj)

?f2 <- (object ?ob] ?pl_ce light _on ?contains ?key)

?f3 <- (monkey ?place ?on blank)

=>

; (printout t "Monkey grabs the " ?ob] t)

(retract ?fl ?f2 ?f3)

(_ssert (object ?obJ held light held ?contains ?key))

{assert (monkey ?place ?on ?ob_)))

;;, move object to a place *

(defrule hold-ob]ect-_o-move ""

(goal-is-to active move ?ob] ?place)

(object ?oh] "?place light ? ? 7)

<monkey ? ? "?ob_)

(not (goal-ls-to actlve holds ?ob_))

=>

(assert (go_l-is-to actlve holds ?obj)))

(defrule move-object-to-place '"

(go_l-ls-to active move ?ob] ?place)

(monkey "?pl_ce ? ?obJ)

_ot _oal-ls-to active walk-to ?place))

=>

(assert (Koal-ls-to actlve walk-to ?place)))

(defrule drop-object-once-moved ""

?fl <- (_oal-is-to active move ?ob] ?place)

?f2 <- (monkey ?place ?on ?ob])

?f3 <- (object ?ob] ? li_ht ? ?contains ?key)

=>

(printout t "Monkey drops the • ?ob_ " " t)

(retract _fl ?f2 ?f3)

(assert {monkey _place ?on blank))

{assert (object ?ob_ ?place light floor ?contains _key)))

(defrule already-moved-object ""

?fl <- (goal-ls-to active move ?obJ ?place)

(obiect ?obJ ?place ? ? ? 7)

=>

(retract ?fl))

;, process w_ik-to place •

(defrule already-at-place "*

_fl <- (_oai-Zs-to active walk-to _place)

(monkey ?place ? 7)

=>

(retract ?fl))

(defrule get-on-floor-to-w_Ik ""

62

-- ART/ADA DESIGN PROJECT - PI-DkSE [FINAL REPORT

(goal-ls-to _ctlve w_ik-to ?place)

(monkey "_place "floor ?)

(not (goal-is-to actlve on floor))

=>

(assert (goal-ls-to active on floor)))

(defrule walk-holdlng-nothlng "'

9fl <- (goal-ls-to active walk-to _place)

?f2 <- [monkey -_place floor blank)

=>

(printout t "Monkey walks to " ?place t)

(retract ?fl ?f2)

(assert (monkey _place floor blank)))

(defrule walk-holding-object '"

_fl <- (goal-is-to active walk-to ?place)

_f2 <- (monkey "?place floor ?obj,-blank)

=>

(printout t "Monkey walks to • ?place • holding • _obJ t)

(retract ?fl _f2)

(assert (monkey ?place floor 9obJ)))

(defrule drop-object '"

_fl <- (goal-ls-to active holds blank)

9f2 <- (monkey ?place ?on ?obl_'bl_nk)

_f3 <- (object rob] held light held ?inside ?key)
:>

(prlntout t 'Monkey drops • _obJ t)

(retract 9fl 7f2 ?f3)

(assert (object ?obJ ?pl_ce light ?on ?inside ?keT))

(assert (monkey _place Yon blank)))

;, process get on object •

(defrule jump-onto-floor ".

?fl <- (goal-is-to active on floor)

?f2 <- (monkey ?at ?on,'floor ?obJ)

:>

(printout t "Monkey Jumps off • ?on ' onto the floor • t)

(retract ?fl 9f2)

(assert (monkey rat floor ?obJ)))

defrule walk-to-place-to-cllmb ".

(goal-_s-to active on ?obJ)

(object ?obJ ?place ? ? ? 7)

(monkey -?place ? _)

(not (goal-ls-to actlve w_ik-to ?place))
=>

(_ssert (goal-ls-to active walk-to ?pl_ce)))

(defr_le drop-to-cllmb ""

(goal-ls-to active on ?obJ)

(object _ob_ ?place ? ? ? _)

(monkey ?piece ? "bl_nk)

(not (go_l-ls-to active holds bl_nk))

=>

(assert (goal-is-to active holds blank)))

(defrule cllmb-indlrectly ".

(goal-ls-to _ctlve on ?obJ)

(object _obJ _place ? _on ? 7)

(monkey _place -_on_'PobJ blank)

63

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(not (goal-ls-to active on ?on))

=>

(assert (goal-ls-to active on ?on)))

(defrule cllmb-directly '"

_I <- (goal-_s-to active on ?ob])

(object _ob I ?place ? ?on ? ?)

_f2 <- _mon_ey _place _on blank)

=>

(prlntou_ _ 'Monkey climbs onto " eob] %)

(retract _fl ?f2)

(assert (monkey ?place ?oh] blank)))

(defrule already-ou-obJect ''

_fl <- (goal-ls-to active on ?oh])

(monkey _ ?ob] ?)

=>

(retract _fl))

* process eat object *

(defrule bold-to-eat ""

(goal-ls-%o active eat _ob])

(monkey ? ? -?obJ)

(not (goal-is-to active holds ?obJ))

:>

(assert (goal-is-to active holds ?ob])))

(defrule satlsfy-hanger ""

fl <- (goal-ls-to active ea ?obJ)

_f2 <- (monkey ?place ?on ?obJ)

?f3 <- (obiect ?obJ ? ? ? ? ?)

:>

(printout t "Monkey eats the " ?obJ '." t)

(retract ?fl ?f2 ?f3)

(assert (monkey ?place ?on blank)))

;;,, inltlzl-state *

(defrule startup ""

(start-fact)

=>

_assert

(assert

(_ssert

(assert

(assert

(assert

(assert

(assert

(asser_

(assert

(monkey t5-7 green-couch blank))

(object green-couch t5-7 heavy floor foo foo))

(object red-couch t2-2 heavy floor foo foo))

(object blg-pillow t2-2 light red-couch foo foo))

(object red-chest t2-2 light big-pillow ladder red-key))

(object blue-chest t7-7 light ceiling bananas blue-key))

(object blue-couch t8-8 heavy floor foo foo))

(ob}ect green-chest t8-8 light ceiling blue-key red-key))

(object red-key tl-3 light floor foo foo))

(goal-is-to active eat bananms)))

deffzcts start-fact (start-fact))

64

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

IV.2 N-Queens

65

MRT/ADA DESIGN PROJECT - PHASE l FINAL REP_>RT --

;An ART-IM version of NQUEENS,

;Rich Schroeppel October 1988

;Copyright (C) 1988 Inference Corp.

;The problem is to place N queens on an NxN chessboard so that no queen

_attacks another. (A queen attacks another if they are on the same row.

_column, or diagonal.)

,Example - Q - -

• _ - - -

• _ - _ -

:To run the demo, load this file into ART. Then reset and run it.

• (load "rxx/nqueens.art')

• (reset)

; (run)

;When the progr_a asks "How many rows on the board?', type 4 and then ENTER.

;To run the program again, lust (reset) and (run).

;ART features illustrated in thls progrsa:

;Defglobal

;Defrule

;Salience

;A startup rule, with null left-hand-slde

;Pattern tests with _:

;Sequence variables, Variable length facts

;Assert, Retract, Binding a fact variable with <-

;Procedural language:

;Bind. Arithmetic, Absolute value function, Comparisons with = and <

;Sequence functions and predicates: LengthS, Nth$, Members

Iteration and Conditionals: For, Downto, If, Not

;Input-Output: Read, Printout, character strings

Board slze I 2 3 4 5 6 7 8 9

;Number of solutions I 0 0 2 I0 4 40 92 352

(Solutions that are reflections or rotations of another solution are

;considered distinct.)

Since there are as many queens as rows of the chessboard, each row must

contain exactly one queen. This pro_rram generates partial solutions In

;which the first K rows of the board _re filled with K non-attacking queens,

;We begin with a blank bo&rd. The p_rtlal solutions are extended one

;row/queen at a tlme. When the newly added queen attacks a previous queen,

;the extended p&rtl&l solution is dlscarded. Any partlal solution that

_has N rows filled in is a true solution, and is printed.

;A partial solution is represented _s (SOLUTION cl c2 . c_). C1 ... ck

;are numbers between I and N. CI is the column of the queen in row i.

(defglobal ?count = O) ;Count of solutions

(defglobal ?print = NIL);Thls may be set to NIL to turn off printing•

(defrule ask-user-for-problem=slze

'Ask the user how blg the chessboard is.'

=>

; (printout t t "How many rows on the board?

; (bind ?n (read))

(bind ?n 6) , 8 queens

(assert (problem-slze ?n) (solution))

.)

66

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(blud ?count 0))

(defrule grow-solutlon

•Extend a partial solution by adding _nother queen."

(prob!em-slze ?n)

(solution $?x)

=> (if (< (lengths ?x) ?n) then

(for ?I from 1 to _n do

(if (not (members ?i ?x)) then (_ssert (solution $?x ?i))))))

_The Cnot (members ?i _x)) condition checks that no previous queen

.occupies column ?i.

Cdefrule prune-dlagonal-attacks

"This rule kills off solutions in which a newly added queen attacks

previous queen along a diagonal."

(decl_re (salience 20)) _Hlgh s_llence to kill bad solutions immedi_tel 7

?fact <- (solution $?x ?c)

=> (bind ?xlen (lengths ?x))

(for 71 from ?xlen downto I do

(if (= (- (+ ?xlen I) ?i) (abs (- _c (nth$?x ?i)))) then

(retract ?f_ct))))

(defrule prlnt-solutlon

•This rule detects solutions _nd prints a chessboard showing the position

of the queens.'

(problem-slze ?n)

(solution $?x_:(= (lengths ?x) _n))

=> (bind ?count (+.?count I))

(if ?print then

(prln_out t t "Solution • ?count 'i" t)

(for ?row from 1 to ?n do

(blnd ?qrc (nth$?x ?row))

(for ?column from I to ?n do

(If (= ?qrc ?column) then (printout t ' _') else (printout t " -')))

(printout t t))))

(defrule prlnt-total

•This rule prints the total number of solutions."

(declare (s_iience -20)) _W_it for solutions to be generated.

=> (printout t t 'Tot_l solutions: • _count t))

67

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

V. Test Programs

This appendix includes the following **klRT-_'I programs used to validate the ART/Ada prototype:

• Sweeptop: Contains about 30 rules that test the rule RHS.

• Sweep2: Contains about, 270 rules that test the pattern;join network.

68

-- ._:_.T ADA DESIGN PROJECT - PI-L_SE I FIN._L REPORT

V. 1 Sweeptop

89

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT --

;;; This file contains a multitude of simple "top-level' command

;;, tests of ART/C. It is intended to be self-dlagnostlc; at least,

:;; it should either die horribly or complain if any part of ART/C

;;; is broken. BDC

If dribble isn't working, or if its behavior has changed

substantially, large parts of this program will blow up.

(defrule if-test ""

(printout _ "IF tests..." t)

(if t then t else (printout t ">>>>> IF error 1." t))

(if nil then (printout t ">>>>> IF error 2." t)

else t)

)

(defrule bind-test-I "r"

=>

(printout t "BIND tests..." t)

(bind ?dl foo)

(if (not (equal ?dl foo))

then (printout t ">>>>> BIND error I.' t))

)

(defrule blnd-test-2 ""

=>

(bind ?dl "foo')

(if (not (equal ?dl "foo'))

then (printout t ">>>>> BIND error 2 ' t))

)

(defrule bind-test-3 ""

=>

(bind ?di 12)

(if (not (equal ?di 12))

then (printout t ">>>>> BIND error 3." t))

)

(defrule bind-test-4 ""

=>

(bind ?dl 12.45)

(if (not (equal ?dl 12.45))

then (printout t ">>>>> BIND error 4." t))

)

;; Need a scratch defglobal for later use:

(defglobal ?scratch = "foo')

(defglobal ?b = "fOo')

(defglobal ?c = 55)

(defglobal ?d = 55.55)

(defglobal ?e = foo)

;string

;integer

;float

;symbol

(defrule defglobal-test-I '"

=>

(printout t "DEFGLOBAL tests..." t)

(if (not (equal ?b "foo'))

then (printout t '>>>>> DEFGLOBAL error _* t))

)

(defrule defglobal-test-2 ""

7O

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

=>

(£f (not (equal ?c 55))

then (printout _ ">>>>> DF.FGLOBAL error 2" t))

(defrule defglobal-test-3 ''

=>

(if (not (equal ?d 55 55))

then (pr!ntcut t '>>>>> DEFGLOBAL error 3" t))

)

(defrule defglobal-test-4 "'

=>

(if (not (equal ?e foo))

then (printout t ">>>>> DEFGLOBAL error 4" t))

)

(defrule prlnt-test ""

=>

(printout t "Tests of PRINT *,,,=" t)

(print foo)

(print 12)

(print 12.458)

(print 'foo bar")

(print (equal i I))

(print (equal I 2))

;float

(prlntout t t 'Tests of PRINt =,,,, • t)

(prinl 12.456)

(prlntout _ _)

(prlnl foo)

(prlnl 12)

(prlnl "foo bar")

(prlnl (equal I i))

(prlnl (equal I 2))

float

(printout t % "tests of PRINC *-,,, • t)

(prlntout t _)

(prlnc 12.458)

(printout t t)

(prlnc foo)

(princ 12)

(print 'foo bar")

(prtnc (equal t I))

(print (equal i 2))

_float

;symbol

;integer

;strlng

;T

_NIL

to separate tests

symbol

integer

.strlng

;T

;NIL

;to separate tests

symbol

integer

string

T

NIL

(printout t _ "tests of PRINTOUT *=**," t)

(printout t t)

(prlntout _ 12.458)

(prln_ou_ _ _)

(prlntou_ _ foo)

(printout _ 12 _)

(printout t "foo bar" t)

(prlntout t (equ_l I I) t)

(printout t (equal 1 2))

;to separate tests

.float

;to separate tests

;symbol

ilnteger

;strlng

;T

;NIL

i; complex form_ttlng commands

(printout t t)

(printout t 'tests of TERPRI *,**," t)

(printout t t "foo')

(terprl)

(printout t "bar" t)

;tO separate tests

:to separate tests

71

AflT/ADA DESIGN PROJECT - PHASE [FINAL REPORT --

,o,

(defrule eq-and-test ""

=>

(printout t "EQ and ')

(if (not (eq foo foo))

then (printout t ">>>>> EQ error i " t)) ,symbols

(if (not (eq 'foo' "foo'))

then (printout t ">>>>> EQ error 2_' t)) ;strings

(if (not (eq 12 12))

then (printout t ">>>>> EQ error 3." t)) ;integers

(if (not (eq 12.45 12.450))

then (printout t ">>>>> EQ error 4." t)) ;floats

;;; sequences and facts wlll have to be tested through rules•

;;; Not top-level.

;:; There are all kinds of things that could be unequal.

;;; I'Ii test a few of them.

(if (eq foo foot)

then (printout t ">>>>> EQ error 6." t)) ;symbols

(if (eq foo "foo')

then (prlntont t ">>>>> EQ error 7.' t)) symbol and simllar string

(if (eq "foo" "Foo')

then (printout t ">>>>> EQ error 8." t)) strings with c_pitalizatlon differences

(if (eq 12 12.0)

then (printout t ">>>>> EQ error 9." t)) integers and = floRts

;; EQUAL uses EQ for most tests, hut it might be good to

;; exercise it anyway.

(printout t "EQUAL tests..." t)

(If (not (equal foo foo))

then (printout t ">>>>> EQUAL error i." t)) ;symbols

(if (not (equal "foo" "foo'))

then (printout t *>>>>> EQUAL error 2." t)) ;strlngs

(if (not

then

(if (nit
then

(equal 12 12))

(prln_out t ">>>>> EQUAL error 3.' t)) ;integers

(equal 12.45 12.450))

(prlntont t ">>>>> EQUAL error 4." t)) ;floats

(if (equal foo foot)

then (printout t ">>>>> EQUAL error S." t)) ;symbols

(if (equal foo "foo')

then (printout t ">>>>> EQUAL error 7_" t)) :symbol and similar string

(if (equal 'foo" 'Foo')

then (printout t ">>>>> EQUAL error 8." t)) ;strlngs with capitalization differences

(if (equal 12 12.0)

then (printout t ">>>>> EQUAL error 9." t)) :integers and = floats

7o

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(defrule gentemp-test ""

=>

(printout t "GENTEMP tests...' t)

. How do _ou test something that is defined as returning something

• different every tlme you c_ll It?? _

(if (or (not (s)r_bo[p (gentemp)))

(equ_l (gentemp) (gentemp)))

then (printout t ">>>>> G_NTEMP error i " t))

)

(defrule s_mbolp-test "°

=>

(printout t 'SYMBOLP tests..." t)

(if (not (symbolp foo)) ;symbol

then (printout t ">>>>> SYMBOLP error I," t))

(If (symbolp t2) ;integer

then (prlnsout t ">>>>> SYMBOLP error 2," t))

(if (symbolp 12.4) ifloat

then (printout t °>>>>> SYHBOLP error 3." t))

(if (symbolp "foo') ;string

then (printout t '>>>>> SYMBOLP error 4." t))

(if (not (symbolp (eq I t))) ,T

then (printout t '>>>>> SYMBOLP error 6," t))

(if (not (symbolp (eq i 2))) ;NIL

then (printout t '>>>>> SYMBOLP error 7." t))

(defrule stringp-test ''

=>

(printout t "STRINGP tests.. " t)

(if (strin_ foo) _symbol

then (printout t '>>>>> STRINGP error I." t))

(if (strin_p 12) _integer

then (printout t '>>>>> STRINGP error 2," t))

(if (strln_ 12.4) _float

then (printout t ">>>>> STRINGP error 3" t))

(if (not (string]) "foo')) ;string

then (printout t '>>>>> STRINGP error 4." t))

(if (strin&9_ (eq t i)) ;T

then (printout t '>>>>> STRINGP error 8." t))

(if (strlngp (eq I 2)) ;NIL

then (printout t ">>>>> STRINGP error 7 • t))

defrule nusberpmtest ''

z>

73

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT --

(printout t "NI_BERP tests..." t)

(if (numberp foo) ;s_mbol

then (printout t ">>>>> NUHBERP error i," t))

(if (not (numberp 12)) :integer

then (printout t '>>>>> NUHBERP error 2 " t))

(if (not (numberp 12 4)) :float

then (printout t '>>>>> NL_BERP error 3.' t))

(if (numberp "foo') :string

then (printout t ">>>>> NUHBERP error 4. ° t))

(if (numherp (eq I I)) :T

then (printout t ">>>>> NUMBERP error 6,* t))

(if

)

(numberp (eq t 2)) ;NIL

then (printout t ">>>>> NLq_ERP error 7. ° t))

,,o

(defrule not-test ""

=>

(printout t "NOT tests...' t)

(if (not foo) ;symbol

then (printout t ">>>>> NOT error I," t))

(if (not 12) ;integer

then (printout t ">>>>> NOT error 2." t))

(if (not 12.4) ;float

then (printout t *>>>>> NOT error 3.' t))

(if (not "foo') ;string

then (printout t '>>>>> NOT error 4." t))

(if (not (eq i I)) ;T

then (printout t ">>>>> NOT error 6." t))

(if (not (not (eq i 2)))

then (printout t ">>>>> NOT error 7." t))

)

;NIL

(defrule _nd-or-test ""

=>

(printout t *AND _nd OR tests..." t)

(if (and t g nil)

then (printout t "AND error t.'))

(if (not (and t _ t))

then (printout t "AND error 2.'))

(if (not (or nll t nil))

then (printout t "OR error _.'))

(if (or nll nll nil)

then (printout t "OR error 2.'))

)

(defrule strlng-append-test ""

74

-_ ._RT/ADA DESEGN PROJECT - PHASE I FINAL REPORT

=>

(printout t "STRING-APPEND tests. " _)

(if (not (equal (strlng-append 'a* "b' "c') 'abe'))

then (printout t '>>>>> STRING-APPEND error " t))

)

(defrule ceiling-test "*

:>

(prlntou% t "CEILING tests " t)

(if (not (equal (ceiling -lO0000OO00.1) -1000000000))

then (printout t '>>>>> CEILING error I ' _)

(if (not (equal (ceiling 1000000000 I) I00000000i))

then (printout t '>>>>> CEILING error 2." t)

(if (not (equal (ceiling O) 0))

then (printout t '>>>>> CEILING error 3 ' t)

(if (not (equal (ceiling -i) -1))

then (printout t '>>>>> CEILING error 4" t)

(if (not (equal (ceiling _) I))

then (printout t ">>>>> CEILING error 5.' t)

(if (not (equal (ceiling -_.l) -i))

then (printout t ">>>>> CEILING error 6 • t)

(if (not (equal (ceiling _.i) 2))

then (printout t ">>>>> CEILING error 7 ' t)

)

(defrule truncate-tes_ ""

=>

(printout t 'TRUNCATE tests..' t)

(if (not (equal (truncate -I000000000.I) -lO00000000))

then (printout t '>>>>> TRUNCATE error i " t))

(if (not (equal (truncate I000000000 I) tO00000000))

then (printout t ">>>>> TRUNCATE error 2 ' t))

(if (not (equal (truncat_ O) 0))

then (printout t ">>>>> TRUNCATE error 3 ' t))

(if (not (equal (truncate -I) -I))

then (printout t ">>>>> TRUNCATE error 4 " t))

(if (no% (equal (truncate I) i))

then (printout t '>>>>> TRUNCATE error 5." t))

(if (not (equal (truncate -I.i) -I))

then (printout t ">>>>> TRUNCATE error 6." t))

(if (not (equal (truncate I.I) i))

then (printout t ">>>>> TRUNCATE error 7 " t))

)

(defrule evenp-test ""

(printout t "EVENP tests " t)

ART/ADA DESIGN PROJECT - PHASE I FINAJ., REPORT --

(if (not (evenp 2))

then (printout t =>>>>> EVENP error i.' t))

(if (not (evenp -2))

then (prlntout t ">>>>> EVENP error 2.' t))

if (evenp i)

then (printout t ">>>>> EVENP error 3." t))

if (evenp -i)

then (printout t ">>>>> EVENP error 4,' t))

(defrule oddp-test ""

=>

(prlntout t "9DDP tests..." t)

(if (oddp 2)

then (printout t ">>>>> ODDP error I." t))

(if (oddp -2)

then (printout t ">>>>> 0DDP error 2." t))

(if (not (oddp i))

then (printout t ">>>>> ODDP error 3." t))

(if (not (oddp -I))

then (prlntout t ">>>>> ODDP error 4." t))

)

(defrule rem-test ""

=>

(printout t "REH tests..." t)

; tests from Steele p. 217

(if (not (= (rem 13 4) t))

then (printout t ">>>>> REM error I." t))

(if (not (= (rem -13 4) -I))

then (printout t ">>>>> REM error 2," t))

(if (not (= (rem 13 -4) I))

then (printout t '>>>>> REM error 3." t))

(if (not (= (rem -13 -4) -I))

then (printout t *>>>>> REH error 4." t))

,(if (not (= (rem 13,4 I) 0.4))

; then (printout t ">>>>> REM error 5." t))

;(If (no_ (= (rem -13.4 I) -0.4))

; then (printout _ '>>>>> REM error S.' t))

)

;ours is defined for Ints only

(defrule mod-test ""

=>

(printout t "HOD tests,..' t)

; tests from Steele. p. 217

(if (not (: (mod 13 4) I))

76

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

then (printout t '>>>>> MOD error I. ° t))

(if Cno_ (: (mod -13 4) 3))

then (printout t '>>>>> MOD error 2 ' t))

(if (not (: (mod 13 -4) -3))

then (prlntout t ">>>>> HOD error 3 ' t))

(if (_0% _= C_Od -[3 -4) -I))

then Cpr:ntout t '>>>>> HOD error 4.' t))

;(if Cnot

; %hen

;Cif (not

; then

)

(= (mod 13.4 l) 0 4))

(printout t ">>>>> HOD error 5." t))

C= (mod -13.4 t) 0,5))

Cprintou% t ">>>>> HOD error 6." t))

;ours :s defined for ints only

Cdefrule math-test ""

=>

(printout t "MATH tests..." t)

;; Testing of library math functions is zbbrevlated to z single test

;; for ezch, mainly %0 prove that %he function is present and is properly

;; linked with ART/C. There seems no point in trying to carefully

;; explore for singularities and precision when the functions are

;; beyond our reach, and will not hawe the same behavior from one slte

;; to another. BDC

Cif Cnot' (= Cmax 3 2 t.5) 3))

then (printout t '>>>>> MATH error 3." t))

(if (not (= Cmin 3 2 1.5) 1.500000))

then Cprintout' t '>>>>> MATH error 4." t))

Cif (not (: (mod 5 3) 2))

then (printout t ">>>>> HATH error 5' t))

(if (not' (= (+ 1 i 5) 2.5))

then (printout t ">>>>> MATH error 6.' t))

(if Cnot' (= C- t o.5) o.5))

then (printout t '>>>>> MATH error 7.' t))

(if Cnot (= (* I 1.5) 1.5))

then (printout t ">>>>> HATH error 8' t))

(if (not (= (/ i 2.0) 0.5))

then (printout, t ">>>>> MATH error 9." t))

(if (not' (: i i))

then (printout t' ">>>>> MATH error20." t))

(_f (not (/= I 2))

then (printout t ">>>>> MATH error 21." t)) ;broHen in 392 on VAX

if (not (> 2 l))

then (printout t ">>>>> MATH error 22 " t))

Clf (not (< I 2))

then Cprintout t ">>>>> MATH error 23." t))

(if (not (>= 2 I))

77

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT -

then (prlntmut t *>>>>> HATH error 24" t))

(if (not (<= I 2))

then (printout t '>>>>> HATH error 25 ' t))

(if (not (= (abs -i) i))

then (printout t '>>>>> HATH error 27 • t))

)

(defglobal ?m : 5) Iteratlve counter

(defglobal ?n : O) ;accumulator

(defrule while-test "°

=>

(printout t "WHILE tests,,." t)

(while (> ?m 0) do

(bind ?n (÷ ?n i))

(bind ?m (- 7m I)))

(if (not (= ?n 5))

then (printout t ">>>>> WHILE error I." t))

)

;(defrule prod-test ""

_=>

;(printout t "PROG_ tests..." t)

;(if (not

; (equal nll

; (pro_ (bind ?m i0)

; (bind ?n 20)

; (: _ 2))))

; then (printout t ">>>>> PROGN error I." t))

;(if (not (= ?m tO))

; then (printout t ">>>>> PROGN error 2." t))

;(if (not (: ?n 20))

; then (printout t '>>>>> PROGN error 3." t))

;)

(de f f_cts inlt

(fact one two three fo_r five))

(defrule length-test-I

•Bind • sequence to ?x"

(fact $?x)

=>

(printout t "LENGTHS tests...' t)

(if (no_ (= (lengths ?x) S))

then (print_)ut t °>>>>> LENGTHS error I,* t))

)

(defrule nth-test-I

•Bind • sequence to ?o"

(fact $?o)

=)

(printout t "NTH$ tests.." t)

(if (not (equal (nth$?o 3) three))

78

ART/,M)ADESIGNPROJECT-PHASE[FINALREP(3RT

then (printout t ">>>>> NTH$ error I ' t))

)

(defrule posltlon-test-t

• gind a sequence to ?o"

(fact $?o)

=>

Cpr1_tout t 'POSITIONS tests " t)

(if (not (: (PCSITICN$ four ?o) 4))

then (printcut t ">>>>> POSITICN$ error I " t))

)

(defrule member-test-1

"BZnd • sequence to ?o"

(tact $?o)

=>

(printout t 'MEMBERS tests.. " t)

(if (members six ?o)

then (printout t ">>>>> MEMBERS error I." t))

(if (not (members five ?o))

then (printout t ">>>>> MEMBERS error 2." t))

79

ART,'ADA DESIGN PROJECT - PHASE I FIN.-_L REPORT

V.2 Sweep2

8O

--_ ART,,' .-_DA DESIGN PROJECT - PliSSE I FINKL REPORT

;;; -*- Mode: ART; Base: i0.; Package ART-USER -*-

i0-20-88 AM]< added sequences tests.

(deffac%s in

(test-case

<test-case

_%est-case

%est-c_se

test-case

test-case

test-case

%est-c_se

%est-case

test-case

test-case

%es%-case

sdl-13

(sdl-14

(sdl-_5

(sdl-18

(sdl-17

(sdl-18

(sdl-19

(sdl-20

(sdl-21

(sdl-22

(sdl-23

(sdl-24

(sdl-25

(sdl-26

(sdl-27

(sdl-28

(sdl-29

(sdl-30

(sdl-30

(sdl-3l

(sdl-31

(sdl-32

(sdl-33

(sdl-34

(sdl-35

(sdl-36

(sdl-37

(sdl-38

(sdl-39

(sdl-40

(sdl-4!

(sdl-42

(sdl-43

(sdl-44

(sdl-45

(sdl-46

(sdl-47

(sdl-48

(sdl-49

(sdl-49

(sdl-50

itial-t "Facts %o match the rules in SUITE-RULE1 ART"

sdl-i test-case)

sdl-2 °a red flag')

sdl-3 I)

sd!-4 lO0 32!)

sdl-5)

sdl-6 green)

sdl-7 "green')

sdl-8 green green)

sdi-9)

sdl-lO green)

sdl-ll "green')

sdl-12 green green)

sdl-13)

sdl-14 green)

sdl-t5 'green")

sdl-16 green green)

sdl-17)

sdl-18 green)

sdl-19 'green')

sdl-20 green green)

sdl-2l blue red green)

sdl-22 red)

red sdl-23)

sdl-24)

sdl-25 da%a sdl-25)

blue fun blue)

blue fun ge%)

blue blue blue)

blue fun "blue')

red blue green)

purple blue green)

red blue green)

purple blue brown)

red)

green)

red)

blue)

green)

red)

blue)

green)

red)

blue)

geC)

green)

red)

green)

red)

blue)

green)

a red)

b red)

a red)

81

ART/,.._DA DESIGN PROJECT - PHASE [FINAL REPORT

(sdl-SO b green)

(sdl-51 • blue)

(sdl-51 b blue)

(sdl-$2 • red)

(sdl-52 b red)

(sdl-53 & red)

(sdi-53 b blue)

(sdl-54 a green)

(sdi-54 b green)

(sdl-55 2)

(sdl-56 red)

(sdl-57 2)

(sdl-58 2)

(sdl-59 "red")

(sdl-60 2)

(sdl-61 "red')

(sdl-52 2)

(sdl-B3 "red')

(sdl-64 4)

(sdl-64 9)

(sdl-65 d_t& 6)

(sdl-65 value 9)

(sdl-66 1 4.00 7.00)

(sdl-66 2 $,00 9.00)

(sdl-67 datal 3)

(sdl-67 d_ta2 5)

(sdl-68 datml 9)

(sdl-68 data2 5)

(sdl-69 datal 4)

(sdl-69 datm2 4)

(sdl-70 datal red)

sdl-70 dat_2 5)

sdl-71 datat "4")

sdl-71 d_ta2 4)

sdl-72 datal red)

sdl-72 data2 5)

(s_1-73 d_t&l red)

(sdl-73 d_ta2 5)

(sdl-74)

(sdl-75)

(sdl-76)

(sdl-77)

(sdl-78)

(sdi-78 t 5)

(sdl-78 2 8)

(sdl-79 a b c d e f g)

(sdl-80 • b c d e f g)

(sdl-81 • b c d e f g)

(sdl-108 10)

(sdl-109 3)

82

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(deffacts inltlal-l-sequences 'Facts to match the rules in SUITE-RULEI.ABT"

(test-case (sdl-i test-case))

(test-case (sdl-2 °a red flag'))

(test-c_se (sdl-3 I))

(test-case (sdl-4 (100 321)))

(test-case (sdl~5))

(test-case (sdl-6 green))

(test-case gdl-7 ("gree.'))

(test-case (sdl-8 green green))

(test-case sdl-g())

(test-case sdl-10 (green))

(test-ca.se sdl-ll ('_'een'))

(test-case (sdl-12 green green))

(sdl-13 (sdl-13))

(sdl-14 (sdl-14 (green)))

(sdl-15 (sdl-15 ('green')))

(sdl-16 (sdl-16 (green green)))

(sdl-17 (sdl-17))

(sdl-18 (sdl-18 green))

(sdl-19 (sdl-19 "green'))

(sdl-20 (sdl-20 green (green)))

(sdl-21 (sdl-21 blue red green))

(sdl-22 (sdl-22 red))

(sdl-23 (red sdl-23))

(sdl-24 (sdl-24))

(sdl-25 (sdl-25 _ata sdl-25))

(sdl-28 (blue fun blue))

(sdl-27 (blue fun get))

(sdl-28 (blue blue blue))

(sdl-29 (blue fun ('blue')))

(sdl-30 (red (blue green)))

(sdl-30 (purple (blue green)))

(sdl-31 (red blue _Tees))

(sdl-3! (purple blue brows))

(sdl-32 (red))

(sdl-33 (green))

(sdl-34 (red))

(sdl-35 (blue))

(sdl-36 (green))

(sdl-37 (red))

(sdl-38 (blue))

(sdl-39 (green))

(sdl-40 (red))

(sdl-41 (blue))

(sdl-42 (get))

(sdl-43 (green))

(sdl-44 (red))

(sdl-4S (green))

(sdl-46 (red))

(sdl-47 (blue))

(sdl-48 (green))

(sdl-49 (a (red)))

(sdl-49 (b (red)))

(sdl-50 (a (red)))

(sdl-50 (b (green)))

(sdl-51 (a (blue)))

(sdl-51 (b (blue)))

83

._RT/ADA DESIGN PROJECT - PHASE I FI._'AL REPORT

(sdl-s2 (a (red)))

(sdl-52 (b (red)))

(sdl-53 (a (red)))

(sdl-53 (b (blue)))

(,sdl-54 (a (greeQ)))

(sdi-54 (b (greel)))

<sdl-5S (2))

Csdl-56 (red))

(sdl-57 (2))

(sdl-58 (2))

(sdl-59 ('red'))

(sdl-60 (2))

(sdl-61 ('red'))

(sdl-62 (2))

(sdl-63 ('red"))

(sdl-54-seq (4))

(sdl-64-seq (9))

(sdl-65 (data 6))

(sdl-65 (value 9))

(sdl-66 (t 4.00 7.00))

(sdl-66 (2 5.00 0.00))

(sdl-67 (data! C3)))

(sdl-67 (data2 (S)))

(sdl-68 (datat (9)))

(sdl-68 (data2 (5)))

(sdl-69 (datal (4)))

(sdl-69 (data2 (4)))

(sdl-70 (daCal red))

(sdl-70 (data2 5))

(sdl-71 (da_al "4"))

(sdl-71 (data2 4)]

(sdl-72 (datal red))

(sdl-72 (da_a2 5))

(sdl-73 (datal red))

(sdl-73 (da_a2 5))

(sdl-74 ())

(sdl-75 O)

(sdl-76 O)

(sdl-77 ())

(sdl-78 ())

(sdl-78 (1 5))

(sdi-78 (2 8))

(sdl-79 (a b c d e f g))

(sdl-80 (a b c d • f g))

(sdl-8_ (a b c d e f g))

(sdl-t08 (tO))

(sdl-lOg (3))

84

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(deflects Initial-2 ''

(sdl-115 to be foo bar to be)

(sdl-11B a e i 0 U)

(sdi-117 fluff mug bump bleet lol!ta)

.; go hiking or skllng

(non-workzng sdl-118)

(weather sdi-!18 malor-blizzard)

(non-worklng sdl-119)

(drive sdl-119 two-wheel)

(non-worklng sdl-120)

(weather sdl-120 major-blizzard)

(drive sdl-120 two-wheel)

(wor_ing sd1-120 weekend)

;; wild card

(sdi-121 one one)

(sdl-122 one one one)

(sdl-123 B 5 4 5)

(sdl-124 a r t h U r)

(sdl-125 a rose is _ rose)

(sdi-128 to be or not to be)

(sdi-127 frank)

(sdl-128 I 2)

(sdi-129 love In bloom)

(sdl-130 a rose is a rose)

;; sir cat

(sdl-131 'foo')

(sdi-133 first second)

(sdi-134 republicans fox]ones nixon willis_s harvey)

(sdi-134 quakers pallas sancbez stone nixon fregge)

(sdi-135 yellow)

(sdi-135 green)

(sdi-136 yellow)

(sdi-136 green)

(sdi-137 yellow)

(sdi-138 green)

(sdI-139 -12 12)

(sdl-140 I I)

(sdl-140 I 2)

(sdl-t41 1 I)

(sdl-141 1 2)

(sdl-142 cold hot)

(sdl-143 green yellow red blue white)

(sdi-144 brother-of walter daniel)

(sdl-144 child-of walter d&vld)

(sdl-144 sex-of d_vid male)

(sdi-144 child-of walter Jane)

(sdi-144 sex-of Jane female)

(sdl-145-11st red white blue)

(sdi-145 red)

(sdi-145 white)

(sdl-[45 blue)

(sdl-146-seats 8 9 Ii 14 3)

(sdl-146-names tom carol fred alex)

(sdi-147 donors start fred)

(sdl-147 donors fred John)

(sdi-147 donors john mike)

(sdl-[47 donors mlke finish)

85

.kRT/ADA DESIGN PROJECT- PHASE [FINAL REPORT --

(sdl-147 donation fred 7.0)

(sdi-147 donation John lO.O)

(sdl-147 donation mike 0.5)

(sdl-147~sum donors start O)

(sdl-148 donor-llst fred john mike)

(sdl-148 donation fred 7.0)

(sdi-148 donation john I0.0)

(sdl-148 donation mike 0.5)

Csdl-148-sum donors start O)

(sdi-149 inventory shlrt-11 7.00)

(sdi-149 inventory p_nts-9 I0.00)

(sdl-149 inventory belt-14 2.50)

(sdi-149 current-sum O)

(sdl-150 inventory shirt-ll 7.00)

<sdl-150 inventory p&n_s-9 I0.00)

(sdl-150 inventory belt-14 2.50)

(sdl-t50 current-count O)

(sdl-151 quarter 10)

(sdl-151 dime 8)

(sdl-151 nickel 8)

(sdl-151 penny 4)

(sdl-152 quarter I0)

(sdl-152 dime 8)

(sdl-152 nickel 8)

(sdl-i52 penny 4)

(sdi-153 yes)

(sdl-153 no)

(sdl-t53 unknown)

(sdi-153 l)

(sdl-154 foo)

(sdl-154 I)

(sdl-154 2)

(sdl-154 3)

(sdl-155 foo)

(sdi-155 I)

(sdl-155 2)

(sdi-155 3)

(sdi-156 'string')

(sdi-157 'string')

(sdi-158 "string')

(sdl-159 yes)

_sdi-159 no)

(sdi-159 unknown)

(sdI-159 I)

(sdl-160 yes)

(sdl-150 no)

(sdi-150 unknown)

(sdl-160 I)

(sdl-t6! foo)

(sdl-161 I)

(sdl-16t 2)

(sdl-16t 3)

(sdl-t62 foo)

(sdi-162 l)

(sd1-162 2)

(sd1-162 3)

(sdl-163

(sdi-164

(sdi-164

(sdi-155

"overflow')

Inpu_ 'overflow')

list "yes" 'no" "unknown" "overflow" "inference')

12345.89)

(patient-n_me paul)

(p_tient-n_me br_d)

86

ART/ADA DES[GN PROJECT - PHASE I FINAL REPORT

(sdi-166

(sdl-t56

(sdi-166

(sdl-156

(sdl-166

(sdl-166

(sdl-_66

Csdl-166

(SDL-167

(SDL-167

(SDL-167

(SDL-167

(SDL-167

(SDL-167

(sdl-t57

(sdi-167

(sdl-167

(sdl-168

SDL-168

SDL-168

SDL-I68

SDL-168

SDL-168

SDL-168

SDL-169

SDL-169

SDL-169

SDL-169

(sdl-170

paul yes)

paul IS)

t,5 paul)

yes paul)

I thlnk paul sald yes)

paul did say 1.5)

1.5 says paul)

yes says paul)

YES FOR PAUL AND BRAD)

YES F0R PAUL BRAD AND BILL)

YES PAUL BRAD)

PAUL YES BRAD)

PAUL BRAD YES)

PAUL BRAD 1.5)

15 BRAD PAUL MARK)

BRAD AND PAUL SAY YES)

BRAD SAYS YES AND SO DOES PAUL)

YES FOR PAUL AND NO FOR BRAD AND MARK)

NO says BRAD and YES says PAUL)

NO for BRAD YES for PAUL)

THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS YES)

BRAD MARK ARE NO AND PAUL IS YES TOOt

THE ANSWER FOR BRAD AND MARK IS NO and PAUL IS I 5)

BRAD is unknown AND PAUL IS [.5)

NO says BRAD but no% PAUL)

NO for BRAD but not for PAUL)

THE ANSWER FOR BRAD AND MARK IS NO but no% PAUL)

BRAD MARK ARE NO but not PAUL)

paul complains of vertigo and falntness)

(sdl-170 brad has a headache)

(age paul 30)

Cage brad 18)

(sdi-172 major-complaint paul drowsiness)

(sdl-172 recent-head-injury paul no)

(sdl-172 confuslon-mtld paul yes)

(sdl-172 major-complaint brad confusion)

(sdl-172 malor-complalnt brad vertigo)

(sdl-173 c_sel 450 550 3)

(sdl-173 c_se2 440 560 2)

(sdl-173 case3 440 440 1)

(sdi-174 czset dummy dummy dummy 450 dummy 550 dummy 3)

(sdl-174 c_se2 foo foo foo 440 foo 560 foo 2)

(sdl-t74 c_se3 bar bar b_r 440 bar 440 bar i)

(sdl-175 pallet 5)

(sdl-I75 pallet 4)

sdl-175 options I000 3000 4000 5024)

sdl-175 c_ss 3024)

sdl-175 case 50007

sd!-lY5 c_se S024)

sdl-175 case 4000)

sdl-17B options _000 3000 50007

sdl-178 case 5000)

sdl-177 options 1000 3000 4000)

sdl-177 case 5000)

sdl-178 I)

sdl-179 options 1000 3000 5000)

sdl-179 case SO00)

sdl-180 options 1000 3000 4000)

sdl-tBO c_se 5000)

sdl-18l 5000)

sdl-181 6000)

sdI-182 "es%" "psi °)

sdl-I82 "psi' 'psi')

sdl~182 "est" 'es%')

87

ART/ADA DES[GN PROJECT - PHASE I FINAL REPORT

(sdl-182 "psi" 'est')

(sdl-183 2)

(sdl-184 2)

(sdl-185 'string')

(sdl-188 "string')

(sdl-!86 "foo')

(sdl-187 "string" 'foo')

(sdl-187 'foo' "foo °)

(sdi-188 'foobar')

(sdl-189 2)

(sdl-190 l)

(sdl-lgo foo)

(sdl-191 i)

(sdl-191 0.I)

(sdl-19t "foo')

(sdl-19t bar)

(sdl-19t 2)

(sdl-[91 12245.6789)

(sdl-t9t "fee')

(sdl-191 blee)

(sdl-t92 40)

(sdl-192 50)

(sdl-t92 80)

(sdl-t92 70)

(sdl-tg2 80)

(sdl-lg2 gO)

(sdl-t92 tOO)

(deffacts inltlal-2-sequences ""

(sdl-tl5 ((to be) (foo bar) (to be)))

(sdl-lt8 (a @ i o u))

(sdl-117 (fluff mug bump bleet lollta))

;; go hiking or sklln_

(non-worklng (sdl-118))

(wea%her (sdl-t18 ma]or-bllzzard))

(non-worklng (sdl-ll9))

(drive (sdl-ttg two-wheel))

(non-working (sdl-t20))

(weather (sdl-120 ma]or-bllzzard))

(drive (sdl-120 two-wheel))

(working (sdl-t20 weekend))

;;wlld card

(sdl-12t (one one))

(sdl-122 (one one one))

(sdl-123 (8 5 4 5))

(sdl-t24 (a r t _ u r))

(sdl-t25 (a rose tsa rose))

(sdl-t2S (to be or not to bl))

(sdl-t27 (frank))

(sdl-t28 (I 2))

(sdl-12g (love in bloom))

(sdl-t30 (a rose is a rose))

;_ sir c&t

(sdl-13t ('foo'))

(sdl-133

(sdl-t34

(sdl-t34

(sdl-i35

(sdl-i35

(sdl-136

(sdl-138

(sdl-137

(first second))

(republicans fox jones nixon williams harvey))

(quakers pallas sancnez stone nixon fregge))

(yellow))

(green))

(yellow))

(green))

(yellow))

88

-- ART/ADA DESIGN PROJECT - PHASE I FIN.A/. REPORT

(sdl-138 (green))

(sdl-139 (-12 (12)))

(sdl-140 (1 I))

(sd1-14o (1 2))

(sdl-t4t (t !))

(sd!-[4t (1 2))

(sdl-142 (cold hot))

(sdl-143 (green yellow red blue white))

(sd!-144 (brother-of w_iter d_nlel))

(sd!-144 (child-of w_Iter d_vld))

(sdl-144 (sex-of d_vld m_le))

(sdl-144 (child-of walter jane))

(sdl-144 (sex-of jane female))

(sdl-145-1ist (red white blue))

(sdl-145 (red))

(sdl-145 (white))

(sdl-145 (blue))

(sdl-146-seats (8 9 II 14 3))

(sdl-146-names (tom carol fred alex))

(sdi-147 (donors start fred))

(sdl-147 (donors fred John))

(sdl-14? (donors john mike))

(sdi-147 (donors mike finish))

(sdl-147 (donation fred 7.0))

(sdl-147 (donation John IO 0))

(sdl-[47 (donation mike 0.5))

(sdl-147-sum (donors start 0))

(sdl-148 (donor-llst fred iohn mike))

(sdl-148 (donation fred 7.0))

(sdl-148 (donation john I0 0))

(sdl-148 (donation mike 0_5))

(sdl-148-sum (donors start 0))

(sdl-149 (inventory shlrt-ll 7.00))

-- (sdl-149 (inventory pants-9 IO.O0))

(sdl-149 (inventory belt-14 2.50))

(sdl-149 (current-sum 0))

(sdl-150 (inventory shlrt-[I 7.00))

-- (sdl-150 (inventory pants-9 I0.00))

(sdl-150 (inventory belt-14 2.50))

(sdl-150 (current-count 0))

(sdi-151 (quarter iO))

(sdl-15I (dlme 8))

(sdl-ISI (nickel 8))

(sdl-151 (penny 4))

(sdl-152 (quarter I0))

-- (sdl-152 (dlme 8))

(sdl-I$2 (nickel 6))

(sdi-152 (penny 4))

(sdl-153 (yes))

.-_ (sdl-153 (no))

(sdl-t53 (unknown))

(sdl-t53 (1))

(sdl-154 (foo))

-- (sdl-I54 (1))

(sdl-154 (2))

(sdl-IS4 (3))

(sdl-155 (foo))

(sdl-155 (I))

(sd1-155 (2))

(sdi-155 (3))

(sdl-156 ('string'))

. (sd1-157 ("string'))

(sdl-158 ('string'))

(sdl-159 (yes))

89

ART/ADA DESIGN PROJECt - PHASE [FINAL REPORT z

(sdl-15g (no))

(sdl-159 (unknown))

(sdl-159 (I))

sdl-tTO (yes))

sdl-150 (no))

sdl-160 (unkno_m))

sdl-150 (I))

sdl-:St (foo))

sdl-tSl (t))

sdl-tSt (2))

sdl-tSt (3))

sdl-t52 (foo))

sdi-152 (1))

sdi-152 (2))

sdi-162 (3))

(sdl-163 ('overflow'))

(sdi-154 (input "overflow'))

(sdi-184 (list "yes" 'no" "unknown" "overflow" "inference'))

(sdl-155 (I234B.89))

(pa_lent-n&me (paul))

(patient-name (brad))

(sdl-166 (paul yes))

(sdi-166

(sdl-166

(sdi-166

(sdi-166

(sdl-t66

(sdl-166

(sdl-t66

(SDL-167

(SDL-167

($DL-167

(SDL-167

(SDL-167

(SDL-IB7

(sdl-IB7

(sdl-167

(sdi-167

(sd1-168

(SDL-168

(SDL-I68

(SDL-168

(SDL-168

(SDL-168

(SDL-168

(SDL-169

(SDL-16g

(SDL-16g

(SDL-16g

(sdl-170

(sdl-I70

(seq-age

(seq-age

(sdi-172

(sdi-172

(sdi-172

(sdi-172

(sdi-172

(sdi-173

(sdl-173

(sdi-173

(sdl-174

(sdl-174

(paul 1.5))

(1.5 paul))

(yes p,ul))

(I thi=k paul said yes))

(paul did say 1.5))

(1.5 says paul))

(yes says p_ut))

(YES FOR PAUL AND BRAD))

(YES FOR PAUL BRAD AND BILL))

(YES PAUL BRAD))

(PAbl. YES BRAD))

(PADIL BRAD YES))

(PAUL BRAD t.5))

(t.5 BRAD PAUL MARK))

(BRAD AND PAUL SAY YES))

(BRAD SAYS YES AND SO DOES PAUL))

(YES FOR PAUL AND NO FOR BRAD AND MARK))

(NO says BRAD and YES says PAUL))

(NO for BRAD YES for PAUL))

(TI_ ANSWER FOR BRAD AND MARK IS NO and PAUL IS YES))

(BRAD MARK ARE NO AND PAUL IS YES TOO))

(TI_E ANSWER FOR BRAD AND MARK IS NO and PAUL IS I 5))

(BRAD is unknown AND PAUL IS 1.5))

(NO says BRAD but not PAUL))

(NO (or BRAD but not for PAUL))

(THE ANSWER FOR BRAD AND MARK IS NO but no_ PAUL))

(BRAD MARK ARE NO but not PAUL))

(paul complains of vertigo and faintness))

(brad k_s a headache))

paul (30))

brad (18))

(major-complaint paul drowsiness))

(recent-head-injury paul no))

(conf_slon-mild paul yes))

(maJor-complaln_ brad confusion))

(maJor-comptain_ brad vertigo))

(caseI 450 550 3))

(case2 440 560 2))

(case3 440 440 I))

(easel dummy dummy dummy 450 dummy 550 dummy 3))

(¢_se2 foo foo foo 440 foo 550 foo 2))

9O

,a,RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(sdl-174 (case3 b_r bar b_r 440 bar 440 b_r i))

(sdl-tT5 (p_L1et 5))

(sdi-175 (p_11et 4))

(sdl-L75 (options _000 3000 4000 5024))

(sdl-175 (case 3024))

(sdl-175 (c_se 5000))

(sdi-175 (case 5024))

(sdl-I75 (c_se 4000))

(sdl-I76 (options I000 3000 5000))

(sdl-176 <case 5000))

(sdl-177 (optlons 1000 3000 4000))

(sdl-[77 (case 5000))

(sdl-178 (i))

(sdl-179 (options I000 3000 5000))

(sdl-179 (case 5000))

(sdl-180 (options i000 3000 4000))

(sdl-180 (case 5000))

(sdl-181 (5000))

(sdl-I8t (5000))

(sdi-182 ('est' "pst'))

(sdi-182 ('pst' "pst'))

(sd1-182 ('est" 'est'))

(sdl-182 ('psi' 'est'))

(sdl-tS.3 (2))

(sdl-184 C2))

(sdl-t85 ('str_ng'))

(sdi-186 ('string'))

(sdi-186 ('too'))

(sdi-187 ('string" "foo'))

(sdi-187 ('foo' "foo'))

(sdl-t88 ('foob_r'))

(sdl-i89 (2))

(sdl-190 (I))

(sdl-190 (foo))

(sdl-191 (I))

(sdl-191 (0.1))

(sdl-191 ('foo'))

(sdl-191 (b_r))

(sdi-191 (2))

(sdI-191 (12345.6789))

(sdi-19% ('fee'))

(sdi-191 (blee))

(sfll-_g2-seq (40))

(sdl-i92-seq (50))

(sdl-t92-seq (60))

(sdl-192-seq (70))

(sdl-t92-seq (80))

(sdl-192-seq (90))

(sdl-192-seq (100))

(defrule prin_-fall

(declare (salience -I00))

(fall ?test-c_se)

z>

(printout t t " Runtlme Error • ?test-case))

(defrule sdl-rule-1 "Hatch a llteral symbol •

(or (no_ (test-case sdl-I TEST-CASE))

(not (test-case (sdl-[TEST-CASE))))

=>

(_ssert (fall sdl-l)))

(defrule sdl-rule-2 "Match R literal string"

91

:kRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(or (not (test-case sdl-2 "a red flag'))

(not (test-case (sdl-2 "a red flag'))))

=>

(assert (fall sdl-2)))

(defrule sdl-rulQ-3 'Match an integer'

(or (not (test°case sdl-3 I))

(not (test-c_se (sdl-3 t))))

=>

(assert _fail sdl-3)_)

(defrule sdl-rule-4 'Don't match a float that is almost equal'

(or (test-case sdl-4 100.3)

(test-case (sdl-4 (100.3))))

=>

(assert (fall sdl-4)))

(defrule sdl-rule-5 "Don't let ? match nothing'

(or (test-case sdl-5 ?)

(test-case (sdl-5 ?)))

=>

(assert (f_il sdl-5)))

(defrule sdl-rule-6 "? must match a symbol"

(or (not (test-case sdl-6 ?))

(not (test-case (sdl-6 ?))))

=>

(assert (fall sdl-6)))

(defrule sdl-rule-7 '? must match & string"

(or (not (test-case sdl-7 ?))

(not (test-case sdl-7 (?))))

=>

(assert (fall sdl-7)))

(defrule sdl-rule-8 '? must not match TWO symDols"

(or (test-case sdl-8 ?)

(test-case (sdl-8 T)))

=>

(assert (fall sdl-8)))

(defrule sdl-rule-9 "$? must match nothing"

(or (not (test-case sdl-9 ST))

(not (test-case sdl-9 ($?))))

z>

(assert (fall sdl-9)))

(defrule sdl-rule-lO "$? must m&tch a single symbol'

(or,(not (test-case sdl-10 ST))

(not (test-case sdl-10 ($?))))

=>

(assert (fall sdl-lO)))

(defrule sdl-rule-tt "$? must match a single string'

(or (not (test-case sdl-ll ST))

(not (test-case sdl-il (ST))))

=)

(assert (f_ll sdl-[1)))

(defrule sdl-rule-12 "ST must match two symbols"

(oF (not (test-case sdl-12 $?))

(not (test-case (sdl-12 $?))))

=>

(assert (fall sdl-12)))

9°

-- ,.tRT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(defrule sdl-rule-13 "_ matches symbol. $? matches nothlng'

(or (not (sdl-13 ? $?))

(not (sdl-13 (?) $?)))

z>

(assert (fall sdl-_3)))

(defrule sdl-rule-14 '? and $? each match a slngle symbol"

(OF _nOt (sdl-14 ? $?))

(not (sdl-14 (7 ($_)))))

(assert (fa_l sdl-_4)))

(defr_le sdl-rule-15 '_ matches symbol; ST matches strlng"

(or (not (sdl-15 _ $?))

(not (sdl-15 (? ($?)))))

=>

(_ssert (fall sdl-15)))

(defrule sdl-rule-16 "? matches one symbol; $? matches two symbols"

(or (not (sdl-16 ? ST))

(not (sdl-16 (? ($?)))))

:>

(assert (fall sdl-IB)))

(defrule sdl-rule-t7 '$? matches nothing; ? matches symbol'

(or (not (sdl-17 $? ?))

(not (sdl-17 $? (?))))

=>

(assert (fall sdl-17)))

(defrule sdl-rule-18 "$? matches symbol; ? m_tches symbol"

(or (rot (sdl-18 $? 7))

(not (sdl-18 ($? ?))))

=>

(assert (fall sdl-18)))

(defrule sdl-rule-19 "$? matches symbol; ? matches strln_"

(or (not (sdl-i9 $? _))

(not (sdt-t9 ($? ?))))

=>

(assert (fall sdl-19)))

(defrule sdl-rule-20 "$? m_tches two symbols; ? m_tches one symbol"

(or (not (sdl-20 $7 ?))

(rot (s¢i-20 ($? (?)))))

=>

(_ssert (f_il sdl-20)))

(defPule sdl-rule-21 ""

(or (no_ (sdl-2; $? matches nothing

sdl-21

$?))

(not (sdl-21 ($?

sdl-21

$?))))

=>

(assert (f_11 sdl-21)))

(defrule sdl-rule-22 "°

(or (not (sdl-22 $? matches nothlng

sdl-22

$?))

(not (sdl-22 ($?

sdl-22

93

._RT/ADA DESIGN PROJECT - PFL_SE I FINAL REPORT -"

=>

$?))))

(assert (f_ll sdl-22)))

(defrule sdl-rule-23 ""

(or (not (sdl-23 $?

sdl-23

$7))

(not (sdl-23 ($?

sdl-23

$_))))

_->

(_sser_ (f_ll sdl-23)))

(defrule sdl-ruie-24 "*

(or (not (sdl-24 $?

sdi-24

$?))

_not (sdl-24 ($?

sdl-24

$7))))

=>

(assert (f_il sdl-24)))

(defr_le sdl-rule-25 '"

(or (not (sdl-25 $?

sdl-25

$?)3

(not (sdl-25 ($?

sdl-25

$?))))

=>

(_ssert (f_11 sdi-25)))

(defrule sdl-rule-2B ""

(or (not (sdl-26 ?x

fun

_x))

(not (sdl-26 (_x

fun

_x))))

=>

(_ssert (f_11 sdl-26)))

(defrule sdl-rule-27 ""

(or (sdl-27 Ox

fun

($di-27 (?x

fun

?x)))

=>

(assert Cfall s41-27)))

(defrule sdl-rule-28 ""

(or (sdl-28 _x

fun

(sdl-28 (?x

fun

_x)))

=>

(_sser_ (fall sdl-28)))

94

;matches red

matches nothing

m_tches sdl-2S d_ta

;matches blue

;m_tches blue

:matches blue

;matches blue

;does not match blue

;matches blue

;does not match blue

;m_tches blue

.M_.T/',M)A DES[GN PROJECT - PHASE I FIN,M, REPORT

(defrule sdl-rule-29 ''

(or (sdl-29 ?x

fun

(sdi-29 (_X

fun

<?x))))

:>

(assert (fail sdl-29)))

(defrule sdl-rule-30 ''

(sdl-30 red $?x)

(sdl-30 (red ($?x)))

(sdl-30 purple $?x)

(sdl-30 (purple ($?x)))

:>

(assert (success sdl-30))

(assert (success (sdl-30))))

;matches blue green

(defrule sdl-rule-30-2 ""

(declare (salience -t))

(or (not (success sdl-30))

(not (success (sdl-30))))

=>

(asset% (fall sdl-30)))

(defrule sdl-rule-31 ""

(sdl-3t red $?x)-

(sdl-31 (red $?x))

(sdl-31 purple $?x)

(sdl-31 (purple $?x))

=>

(assert (fall sdl-3I)))

(defrule sdl-rule-32 "'

(sdl-32 "red)

(sdl-32 ('red))

=>

(asset% (fall sdl-32)))

(defrule sdl-rule-33 ""

(or (not (sdl-33 -red))

(not (sdl-33 (-red))))

=>

(asset% (fall sdl-33)))

(defrule sdl-rule-34 '"

(or (not (sdl-34 redlblue))

(not (sdl-34 (redlblue))))

=>

(assert (fall sdl-34)))

;matches blue

;matches blue green

:matches blue green

;bdc added 02/04/88

;matches blue green

;ma_ches blue brown (no match)

ma%ches red (no m_tch)

.matches &_ree

matches _reen

m_tches red

(defrule sdl-rule-35 ""

(or (not (sdl-35 redlblue))

(not (sdl-35 (redlblue))))

=>

(asser_ (fall sdl-35)))

(defrule sdl-rule-36 ""

(sdl-36 redlblue)

(sdl-38 (redlblue))

=>

(assert (fall sdl-38)))

;matches blue

;matches green (no match)

95

ART/ADA DESIGN PROJECT - PHASE [FIN,_L REPORT

(defrule sdl-rule-37 '"

(sdl-37 "red_'blue)

(sdl-37 (-red_-blue))

Z>

(assert (fall sdl-37)))

(defrule sdl-rule-38 "'

(sdl-38 -redl'blue)

(sdl-38 (-redl-blue))

=>

{assert (fall sdl-38)))

(defrule sdl-rule-3g '"

(or (not (sdl-39 "red_'blue))

(not (sdl-39 ('red_'blue))))

=>

(assert (fail sdl-39)))

(defrule sdl-rule-40 '"

(sdl-40 -red_blueJget)

(sdl-40 ('red,blue{get))

=>

(assert (fail sdl-40)))

,matches red (no match)

matches blue (no match)

;matches green

;matches red (no match)

(defrule sdl-rule-41 ""

(or (not (sdl-41 -red_bluelget))

(not (sdl-41 ('red_hluelget))))

=>

(asslrt (fail sdl-41)))

(defrule sdl-rule-42 ""

(or (not (sdl-42 "red_bluelget))

(not (sdl-42 ('red_bluelget))))

=>

(assert (fall sdl-42)))

(defrule sdl-rule-43 ""

(sdl-43 -redZbluetget)

(sdl-43 ('red_blueJget))

=>

(assert (fall sdl-43)))

(defrule sdl-rule-44 ""

(sdl-44 ?x_-red)

(sdl-44 (?xJ'red))

=>

(assort (fall sdl-44)))

(defrule sdl-rule-48 ""

(or (not (sdl-45 ?x_'red))

(not (sdl-45 (?x_'red))))

=>

(assert (f_11 sdl-45)))

(defrule sdl-rule-46 ""

(or (not (sdl-48 ?_Jtredlblue))

(not (sdl-46 (?x_redlblue))))

=>

(assort (fall sdl-46)))

(defrule sdl-rule-47 ""

(or (not (sdl-47 _x_redlblue))

(not (sdl-47 (?x_redlblue))))

;matches blue

.matches get

;matches green (no match)

;matches red (no match)

matches green

matches red

matches blue

96

.-_RT/ADA DESIGN PROJECT - PHASE ! FINAL REPORT

=>

(assert (fall sdl-47)))

(defrule sdl-r_[e-48 "'

(sdl-48 ?x_redfblue)

(sdl-48 (?x_redlblue))

=)

(assert (fall sdl-48)))

(defrule sdl-rule-49 ""

(sdl-49 & _x)

(sdl-49 (& (?x)))

(sdi-49 b ?x_-red)

(sdl-49 (b (?xa-red)))

=>

(assert (fall sdl-49)))

(defrule sdl-r_le-50 ""

(sdl-50 a ?x)

(sdl-50 (a (?x)))

(sdl-50 b ?x_-red)

(sdl-50 (b (?x_'red)))

=>

(assert (fail sdl-50)))

(defrule sdl-r_le-51 ""

(sdl-St a ?x)

(sdl-St (a (?x)))

(sdl-51 b ?x_-red)

(sdl-51 (b (?xa-red)))

=>

(assert (success sdl-51))

(_ssert (success (sdl-51))))

(defrule sdl-rule-51-1 'check on sdl-rule-51"

(declare (salience -I))

(or (not (success sdl-5l))

(not (success (sdl-51))))

=>

(assert (fail sdl-51)))

(defrule sdl-rule-52 ""

(sdl-52 a ?x)

(sdl-52 (& (_x)))

(sdl-52 b ?x£redlblue)

(sdl-52 (b (?x_redlblue)))

=)

(assert (success sdl-52))

(assert (success (sdl-52))))

(defrule sdl-r_le-52-1 ""

(declare (salience -l))

(or (not (success sdl-52))

(not (success (sdl-52))))

=>

(assert (fall sdl-52)))

(defrule sdl-rule-53 ''

(sdl-53 a (?x))

(sdl-53 (a ?x))

(sdl-53 b ?x_redlblue)

(sdl-53 (b (?x_redlblue)))

,matches green (no match)

.matches red

m_tches red (no m_tch)

;matches red

;matches green (no match)

•matches blue

,m_tcbes blue

;added by BDC 02/04

;m_¢ches red

.matched red

;added b7 BDC 02/04

;m_Dches red

;m_tches blue (no match)

97

ART/ADA DES[GN PROJECT - PHASE ! FINAL REPORT ""

=>

(assert. (fall sdl-53)))

(defrule $dl-rule-54 '"

(s_i-54 a ?x)

Csdl-54 (a (?x)))

(s_i-53 b ?x_redlblue)

(s_l-S4 (b (_x_redlblue)))

=>

(assert (Jail sdl~54)))

matches green

;matches green (no match)

(defrule sdl-r_le-5S '"

(or (not (sdl-55 ?xR:(numberp ?x)))

(not (sdl-55 (?x_:(numberp ?x)))))

=>

(assert, (fall sdl-55)))

matches 2

(defrule $dl-rule-56 ""

(or (sdl-56 ?x_:(numberp _x))

(sdl-56 (?x_:(numberp ?x))))

=>

(asserT, (fall sdl-56)))

•m_tches red (no m_tch)

(defrule sdl-rule-57 ""

(or (sdl-57 ?x_:(numberp ?x)_:(oddp ?x))

(sdl-57 (?x_:(numberp ?x)_:(oddp ?x))))

=>

(assert (f_il sdl_57)))

;matches 2 (no match)

(defrule sdl-rule-58 ""

(or (sdl-58 ?x_:(stringp ?x))

(sdl-58 (?x_:(s_rtngp ?x))))

=>

(assert (fall sdl-58)))

;m_tches 2 (no m_tch)

(defrule sdl-rule-59 ""

(or (not (sdl-59 ?x_:(strlngp ?x)))

(not (sdl-59 (?x_:(strlngp ?x)))))

=>

(_sser¢ (faLl sdl-59)))

;matches "red"

(defrule sdl-rule-60 ""

(or (no_ (sdl-60 =(+ I I)))

(not (sdl-SO (=(+ t i)))))

=>

(_sser¢ (f_tl sdl-60)))

; m_,ches 2

(defrule sdl-rule-6l ""

(or (sdl-61 =(+ I I))

(sal-61(=(+ I I))))
=>

(_sser_ (tall sdl-61)))

;m_tches "red" (no match)

(defrule sdl-rule-62 ""

(or (sdl-62 =(scrlng-_ppend "re" "d'))

(sdl-62 (=(strtng-_ppend "re" "4"))))

=>

(asserL (f_ll sdl-62)))

;ma_ches 2 (no m_ccb)

(defrule sdl-rule-63 '"

(or (not (sdl-63 =(strlng-append "re" 'd'))) ;m_tches "red"

(no_ (sdl-63 (:(strlng-_ppend "re" "d')))))

=>

(_sser_ (fall sdl-63)))

98

-- ,&RT/ADA DESIGN PROJECT - PHASE i FINAL REPORT

(defrule sdl-rule-64 "'

(sdl-64 ?y)

(sdl-64 ?x_=-(+ 5 ?y) l=(- 12 ?y))

=>

(assert (success sdl-64)))

(defrule sdl-rule-64-seq ""

(sdl-_4-seq (_y))

(sdl-64-seq (?x_=(* 5 =y) r=(- 12 _y)))

:>

(assert (success sdl-64-seq)))

(defrule sdl-rule-64-2 "'

(declare (salience -I))

(or (not (success sdl-64))

(not (success sdl-64-seq)))

=>

(assert (fall sdl-64)))

4 4 9 9

4 9 4 9

nil t .rill .nil

4 4 9

4 9 4

nil t nil n_il

;added by BDC 02104

(defrule sdl-rule-65 ""

(sdl-65 data ?x)

(sdl-65 (data ?x))

(sdl-65 value ?y)

(sdl-65 (value ?y))

(test (>= (- ?y ?X) 3))

=>

(assert (success sdl-65))

(assert (success (sdl-65))

(defrule sdl-rule-65-2 ""

(declare (salience -I))

(or (not (success sdl-65))

(not (success (sdl-65)

=>

(assert (fail sdl-65)))

))

(defrule sdl-rule-66 '"

(sdl-66 ?a ?xl ?yi)

(sdl-65 (?a ?xl ?yl))

(sdl-56 ?b_'_a ?x2 ?y2)

(sdl-66 (?b_'?a ?X2 ?y2))

(test (< 0 (I (- _y2 ?yl)

(- ?x2 ?xl)))

=>

(assert (success sdl-66))

(assert (success (sdl-66))))

(defrule sdl-rule-66-2 ""

(declare (salience -1))

(or (not (success sdl-68))

(not (success (sdl-66))))

(assert (fall sdl-66)))

(defrule sdl-rule-67 '"

(sdl-67 datal _y)

(sdl-6? (da_al (?y)))

(sdl-67 dat_2 ?x_:(> ?x ?y))

(sdl-67 (data2 (?X@:(> _X _y))))
=>

(assert (success sdl-67))

(assert (success (sdl-67))))

,matches 5

matches 9

;succeeds

.added by BDC 02/04

,l 40 70 cr

I 4.070 or

succeeds

,added by BDC 02/04

25.090

25.090

99

._RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT "--

(defrule sdi-r_le-67-2 ''

(declare (salience -1)1

(or (not (success sd1-57)7

(not (success (sdl-67))))

2>

(assert (fall sdl-67)))

;added by BDC 02/04

(defrule sdl-r_le-68 ""

(sdl-68 datal _y)

(sdl-58 (datai (_y)))

(sdl-68 data2 ?xi:(> _x ?y))

(sdl-68 (data2 (?ll;(> ?x ?y))))

=>

(assert (fall sdl-68)))

;matches 9

;matches 5 (no match)

(defrule sdl-rule-69 ""

(sdl-69 datal ?y)

(sdl-69 (datal (?y)))

(sdl-69 data2 ?x_:(= _y ?x))

(sdl-59 (data2 (?x&:(= ?y ?x))))

=>

(assert (success sdi-69))

(assert (success (sdl-69))))

(defrule sdl-rule-69-2 ""

(declare (salience -17)

(or (not (success sdl-69))

(not (success (sdl-69))))

=>

(assert (fall sdl-69)))

added by BDC 02104

(defrule sdl-rule-70 ""

(sdl-70 datal ?y_:(numberp ?Y))

(sdl-70 (datal ?yZ:(numberp ?y)))

(sdl-70 data2 ?xl:(numberp ?x) _ :(= ?x ?y))

(sdl-70 (data2 ?x_:(numherp ?x) • :(= ?x ?yT))

=>

(assert (fall sdl-707))

;matches red (no match)

;matches 5

(defrule sdl-rule-71 '"

(sdl-71 datat ?y_:(numberp ?y))

(sdl-71 (datal ?ya:(numberp ?y)))

(sdl-7i data2 ?x_:(numberp ?x)_:(= ?y ?x))

(sdl-71 (data2 _x2:(numberp ?x)a:(= ?y Vx)))

=>

(assert (fall sdl-71)))

;matches "4" (no match)

;matches 5

(defrule sdl-rule-72 *"

(sdl-72 datal ?ya:(numberp ?y))

(sdl-72 data2 ?x_:(numberp ?x)_:(= ?x ?y))

(sdl-72 (datal ?y_:(numberp ?y)))

(sdl-72 (data2 ?xi:(numberp ?x)a:(= ?x ?y)))

=>

(assert (fall sdl-72)))

;matches red (no match)

;matches 5

:matches red (no match)

(defrule sdl-rule-73 ""

(sdl-73 datat ?y)

(sdl-73 data2 ?x_:(eq ?x ?y))

(sdl-73 (datal ?y))

(sdl-73 (data2 ?x_:(eq ?x ?y)))

=>

(_ssert (fall sdi-737))

;matches red

;matches 5 (no match)

;matches red

(defrule sdl-rule-74 ""

lO0

,_T/ADA DESIGN PROJECT - PHASE I F[NAL REPORT

(sdl-74)

(sdi-74 ())

=>

(assert (fall sdl-74))

(assert (fall (sdl-74))))

(defrule sdl-rule-74-2 ""

°templ <- (fall sdl-74)

_temp2 <- (fail (sdl-74))

=>

(retract _templ ?temp2))

(defrule sdl-rule-75 ""

(sdl-75)

(sdl-75

=>

(assert

(assert

(assert

<assert

())

(sdl-75 i =(gentemp)))

(sdl-75 2 =(_entemp)))

(sdi-75 (I =(gentemp))))

(sdl-75 (2 =(gentemp)))))

(defrule sdl-rule-75-2 ""

_tempt <- (sdl-75 i ?)

?temp2 <- (sdl-75 (I ?))

?temp3 <- (sdl-75 2 ?)

?temp4 <- (sdl-75 (2 7))

=>

(retract ?templ ?temp2 ?temp3 ?temp4))

(defrule sdl-rule-75-3 ""

(declare (saltence -10))

(or (sdl-75 ? ?)

(sdl-75 (? 9)))

=>

(assert (:_il sdl-75)))

(defrule sdl-rule-76 '"

(sdl-78)

=>

(assert ('sdl-76 temp')))

Was (strlngassert "sdl-78 temp')

(defrule sdl-rule-76-2 '"

(declare (salience -i))

(not ('sdl-76 temp'))

(assert (f_tl sdl-76)))

(defrule sdl-rule-77 ""

(sdl-77)

=>

(_ssert ('sdi-77 \'temp\'')))

Was (strlng_assert "sdl-77 \'temp\")

; (defrule sdl-rule-77-2 ""

(declare (salience -I))

; (not ('sdl-77 \'temp\''))

;;=>

;; (assert (fall sdl-77)))

(defrule sdl-rule-78 ""

;matches fail fact

;matches fail fact

retracts fail fact

;matches sdl-75

;asserts temp f_cts

;ma_c_es temp f_cts

;retracts temp f_cts

;m_tches (sdl-75) (no m_tch)

:matches (sdl-76)

;asserts temp fact

;added by BDC 02/04

;matches _emp fact

;matches (sdl-77)

;_sser_s temp f_c_

;added by BDC 02/04

;matches temp fact

101

,-kRT/KDA DESIGN PROJECT - PHASE I FINAL REPORT

(sdi-78)

(sdl-78 ())

(sdl-78 I ?x)

(sdl-78 (i ?x))

(sdl-78 2 ?_)

(sdl-78 (2 ?y))

_->

(bind _a (+ ?x ?y))

(assert (sdl-78 3 ?a)))

(defrule sdl-rule-78-2 ""

(declare (salience -I))

(not (sdl-78 3 13))

=>

(assert (fall sdl-78)))

(defrule sdl-rule-79 ="

(sdl-79 $?dat&)

(sdl-79 ($?data))

=>

(assert (sdl-79 length =(lengths ?data)))

(assert (sdl-79 (length =(length$?data)))))

;matches (sdl-78)

_matches 5

,matches 8

_binds _a to 13

;asserts (sdl-78 3 13)

added by BDC 02/04

matches temp fact from above

;matches a b c d e f g

;asserts 7

(defrule sdl-rule-79-2 ""

(or (not (sdl-79 length 7))

(not (sdl-79 (length 7))))

=>

(assert (fall sdl-79)))

(defrule sdl-rule-80 "'

(sdl-80 $?data)

(sdl-80 ($?data))

=>

(assert (sdl-80 second :(nth$?data 2)))

(assert (sdl-80 (second =(nth$?d&ta 2)))))

(defrule sdl-rule-80-2 ""

(or (not (sdl-80 second b))

(not (sdl-80 (second b))))

=>

(assert (fall sdl-80)))

(defrule sdl-rule-8% ""

(sdl-81 $?datal)

(Sdl-8! ($?data2))

=>

(bind ?al (positions b ?d&t&l))

(bind ?a2 (positions b ?data2))

(assert (temp sdl-81 posltlon ?al))

(assert (reap sdl-81 (position ?a2))))

(defrule sdl-rule-81-2 ""

(or (not (temp sdl-81 posltlon 2))

(no_ (temp sdl-81 (position 2))))

=>

(assert (fall sdl-81)))

(defrule sdl-rule-108 '"

(sdl-108 ?x)

(sdl-108 (?z))

=>

(if (: ?x Io)

;matches 7 fact from above

;matches a b c d e f g

;asserts b

matches b fact from above

matches a b c d e f g

binds ?a to 2

binds ?a to 2

;asserts 2

matches 2 tact from above

;matches I0

;matches 10

102

- ,LRT , ADA DESIGN PROJECT - PI.{ASE I FINAL REPORT

then

(assert (success sdl-108))

else

(assert (fail sdl-108))))

(defrule sdl-rule-109 ""

(sdl-i09 ?y)

(sdl-109 (?y))

=>

(bind _x _y)

(while (> ?x O) do

(assert (sdl-109 while ?x)

(sdl-109 (while ?x)))

(bind ?x (- TI I))))

(defrule sdl-rule-109-2 '"

(sdl-109 while 3)

(sdl-lOg while 2)

(sdl-t09 (while I))

(sdl-109 (while 3))

(sdl-t09 (while 2))

(sdl-tO9 (whlle I))

=>

(assert (success sdl-109)))

(defrule sdl-rule-109-3 '"

(declare (sallemce -17)

(not (success s_l-lOg))

=>

(assert (fall sdl-[09)))

(defrule sdl-rule-[15 ""

(sdl-1_5 $?x foo bar $?x)

(sdl-ll5 (($?x) (foo bar) ($?x)))

=>

(assert (success sdl-lI5)))

(defrule sdl-rule-ltS-I ""

(declare (salience -I0))

(not (success sdl-115))

=>

(assert (fall sdl-llS)))

(defrule sdl-rule-ll8 ""

(or (not (sdl-116 $?_owels u))

(not (sdl-ll6 (P.vowels u))))

=>

(assert (fall sdl-ll6)))

(defrule sdl-rule-ll7 ""

(sdl-117 $?a $?b)

(sdi-117 ($?a $?b))

=>

(assert (sdl-llT-a _.a))

(assert (sdl-llT-b _.b))

(assert (sdl-llT-a ($?a)))

(assert (sdl-llT-b ($?b))))

(defrule sdl-rule-|17-| '"

(sdl-117-a)

(sdl-llT-a fluff)

(sdl-ll7-a fluff mu K)

(sdl-117-a fluff mug bump)

(sdl-ll7-a fluff mu_ bump bleet)

.matches 3

;matches 3

;three facts from previous rule

;three facts from previous rule

;added by BDC 02/05/88

;(sdi-115 to be foo bar to be)

• Csdl-tlS to be foo bar to be)

.previous rule

(sdl-118 a e i o u)

;(sdi-117 fluff mug bump bleet lolita)

;(sdl-ll7 fluff mug bump bleet lolit_)

;should be six palrs of facts

.should be slx pairs of facts

103

.&RT/ADA DESIGN PROJECT - PFLA.SE I FINAL REPORT "_

(sdl-117-a

(sdl-L:7-b

(sdl-117-b

(sdl-117-b

(sdl-117-b

(sdl-llT-b

(sdl-llT-b)

Csdl-Ll7-a

(sdl-£17-a

(sdl-[17-a

(sdl-LlT-a

(sdl-117-a

(sdl-117-a

(sdl-117-b

(sdl-117-b

(sdl-i17-b

(sdl-ll7-b

(sdl-117-b

(sdl-117-b

=>

fluff mug bump bleet lolita)

fluff mug bump bleet lollta)

mug bump bleet lolita)

bump bleet lolit&)

bleet lollta)

lollta)

())

(fluff))

(fluff mug))

(fluff mug bump))

(fluff mug bump bleet))

(fluff mug bump bleet lollta))

(fluff mug bump bleet lollta))

(mug bump bleet lolita))

(bump bleet lollta))

(bleet lollta))

(lolita))

())

(assert (success sdl-ll7)))

(defrule sdl-rule-117-2 ""

(declare (salience -I0))

(not (success sdl-117))

=>

(_ssert (fall sdi-117)))

(de frule sdl-rule-skl-i ""

(non-working ?date)

(non-working (?d&te))

(_nd (not (weather ?date hot-and-humld))

(not (weather ?date m&jor-bllzzard))

(not (traffic ?date massive))

(not (we&ther (?date hot-and-humld)))

(not (weather (_date major-bllzzard)))

(not (traffic (?date massive))))

(assert (go-hlklng _date))

(assert (go-hiking (_date))))

(defrule sdl-rule-skl-2 ""

(non-working ?date)

(non-worklng (?date))

(or (not (weather ?date maJor-bllzzard))

(not (drive ?date two-wbeel))

(not (worklng ?date weekend))

(not (weather (?date major-bllzzard)))

(not (drive (?date two-wheel)))

(not (working (?date weekend))))

=>

(assert (go-skllng ?date))

(assert (go-skllng (?date))))

(defrule sdl-rule-118 ""

(or

(go-blklng sdl-118)

(not (go-skling sdl-llS))

(go-blklng (sdi-118))

(not (go-skllng (sOl-ll8))))

=>

(assert (fail sdl-ll8)))

;slx pairs

;another six pairs

;from prevlou_ rule

;(non-working sdi-118) (non-worklng sdl-119)

:(non-worklng sdl-118) (non-worklng sdl-119)

;no match

;(weather sdl-ll8 ma]or-bllzzar_), no m_tch 1_9

;no match

;(weather sdi-118 ma]or-bllzzard), no match 119

:no match

;no 118; yes 119

;no t18: yes 119

;(non-worklng sdl-llg)

;(non-worklng sdl-llg)

;no match for 11g. yes for 118

i(drlve sdl-119 two-wheel), no for _18

:no match for 119, yes for 118

:(drive sdl-11g two-wheel), no for 118

;no match

11g yes, t18 yes

119 yes 118 yes

from above rules

104

- ,_q.T/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(defrule sdl-rule-ll9 '"

(or

(not (go-blklng sdl-ll9))

(not (go-skllng sdl-ll�))

(not (go-bl_ing (sdl-ll�)))

(not (go-skilng (sdl-l[9))))

(assert <fail sdl-ll9)))

{defrule sdl-rule-120 ''

(or

(go-hlking sdl-120)

(go-skllng sdl-120)

(go-hlklng (sdl-120))

(go-skllng (sdl-120)))

(assert (fail sdl-120)))

(defrule sdl-rule-121 '"

(sdl-121 $7 _x $? ?x $?)

(sdl-121 ($? ?x $? ?x $?))

=>

(assert (match sd1-121 ?x)))

(defrule sdl-rule-121-2 ""

(declare (sallence -i))

<not (match sdl-121 one))

=>

(assert (fall sdl-121)))

(defrule sdl-rule-122 ""

(sdl-122 $? ?x $? ?x $?)

(sdi-122 ($? ?x $? ?x $?))

=>

(assert (match sdl-122 ?x)))

(defrule sdl-rule-122-2 ""

(declare (salience -I))

(not (match sdI-122 one))

=>

(assert (fail sdl-122)))

(defrule sdl-rule-123 ""

(sdl-123 ST ?x ST ?x $?)

(sdl-123 ($? _x ST ?x ST))

=>

(assert (match sdl-123 ?I)))

(defrule sdl-rule-123-2 ""

(declare (salience -i))

(not (match sdl-123 5))

=>

(assert (fall sdl-128)))

(defrule sdl-rule-124 ""

(sdl-124 $? ?x $7 ?x $?)

(sdl-124 ($? ?x $? ?X ST))

=>

(assert (match sdl-[24 ?x)))

(defrule sdl-rule-124-2 ""

(declare (sallence -I))

(not (match sdl-124 r))

:>

105

,from _bove rules

:from above rules

(sdl-121 one one)

(sdl-121 one one)

added by BDC 02/05/88

(sdl-122 one one one)

.(sdi-122 one one one)

added by BDC 02/05/88

;(sdl-123 6 5 4 5)

(sdl-123 8 5 4 5)

added by BDC 02/05/88

(sdl-124 a r t h u r)

• (sdl-124 a r t h u r)

added by BDC 02/05/88

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT ,7

(assert (fall sdl-124)))

(defrule sdl-rule-125 "'

(sdl-t25 $? ?x $? _x $?)

(sdl-125 ($? ?x $? ?x $?))

:>

(assert (match sdi-125 _x)))

(defrule sd!-rule-12S-2 ""

(declare (salience -t))

(or (not (match sdl-125 a))

(not (match sdi-125 rose)))

:>

(assert (fail sdi-125)))

(sdl-125 a rose is a rose)

(sdl-125 a rose is a rose)

should get two asserted facts

added by BDC 02/05t88

(defrule sdl-rule-126 '"

(or (not (sdi-126 $?x or not $?x))

(not (sdi-126 ($_x or not $?x))))

=>

(assert (fail sdi-126)))

(defrule sdl-rule-127-master ""

(sdl-127 ? $?x)

(sdi-127 (? $?x))

=>

(assert (sdl-127-result $?x))

(assert (sdl-127-result ($?x))))

(defrule sdl-rule-127 ""

(or (not (sdl-127-result))

(not (sdl-127-result ())))

(assert (fall sdl-127)))

(defrule sdl-rule-128-master ""

(sdl-128 ? $?x)

(sdl-128 (? $?x))

=>

(assert (sdl-128-result $?x))

(assert (sdl-128-result ($?x))))

(defrule sdl-rule-128 ""

(declare (salience -_))

(or (not (sdl-128-result 2))

(not (sdl-t28-result (2))))

:>

(assert (fall sdl-128)))

(defrule sdl-rule-t29-ma$¢er ""

(sdI-129 ? $?x)

(sdI-129 (? $?x))

=>

(assert (sdl-129-result $?z))

(assert (sdl-129-result ($?I))))

(defrule sdl-rule-129 ""

(declare (salience -I))

(or (not (sdl-129-result %n bloom))

(not (sdl-129-result (in bloom))))

=>

(assert (fall sdi-129)))

(defrule sdl-rule-130-master ""

I06

(sdi-126 to be or not to be)

(sdl-127 franX)

(sdl-127 frank)

;should be no fact of th%s type

;(sdi-128 I 2)

;(sdl-128 I 2)

;added by BDC 02/05/88

;(sdl-129 loTe in bloom)

;(sdi-129 loTe in bloom)

;added by BDC 02/05/88

;from previous rule

- ART IADA DESIGN PROJECT - PHASE I FINAl, REPORT

(sdl-[30 ? $?x)

(sdl-130 (? $?x))

=>

(assert (sdl-130-result $?x))

(assert (sdl-130-result ($?x))))

(defrule sdl-rule-[30 "'

(!ecl_re (sallence -[))

(OF (not (sdl-130-result Pose Is a Pose))

(not (sdl-130-result (Pose is • Pose))))

=>

(_ssert (fall sdl-130)))

(defrule sdl-rule-131 ""

(sdl-[31 ?a)

(sdl-131 (?a))

=>

(bind _b (strlng-append ?a '-bar'))

(assert (sdl-131-result 9b))

(assert (sdl-131-result (?b))))

(defrule sdl-rule-131-1 '"

(declare (salience -I))

(or (not (sdl-131-result "foe-bar'))

(not (sdl-t31-result ('foe-bar'))))

=>

(assert (fall sdl-131))

(assert (fall (sdl-131))))

(defrule sdl-133-rule ''

(sdl-133 ?first ? $?x)

(sdl-t33 (?first ? $?x))

=>

(bind ?y (strlng-append ?first "-RESULT'))

(assert (sdl-t33-result ?y $?x))

(assert (sdl-133-result (?y $?x))))

(defrule sdl-133-rule-I ""

(declare (sallence -I))

(or (not (sdl-133-result "FIRST-RESULT'))

(not (sdl-133-result ('FIRST-RESULT'))))

=>

(assert (fall sdl-133)))

(defrule sdl-134-rule ''

(sdl-134 republicans $? ?x $?)

(sdl-134 quakers $? _x $?)

(sdl-134 (republicans $? ?x $?))

(sdi-134 (quakers $? ?x $?))

=>

(asser_ (sdl-134-result ?x))

(asser_ (sdl-134-result (?x))))

(defrule sdl-134-rule-1 ""

(declare (salience -I))

(or (not (sdl-i34-result nlxon))

(not (sdl-134-result (nixon))))

=>

(assert (fail sdl-134)))

(sdl-130 a rose is a rose)

(sd!-[30 a Pose is a Pose)

_dded by BDC 02/05/88

;from previous rule

"foe

;'foe"

;added by BDC 02/05/88

;(sdi-133 flrs_ second) $?x binds to nothing

;(sdi-133 firs% second) $?x binds to nothlng

added by BDC 02/05/88

;from prevzous rule

;(sdl-134 republicans fox Jones nlxon williams harvey)

;(sdl-134 republicans fox]ones nlxon williams harvey)

;(sdl-134 quakers pallas sanchez stone nlxon fregge)

;?x is nlxon

;?x is nlxon

;added by BDC 02/05/88

;from previous rule

(defrule sdl-135-rule "'

;;(sdi-135 yellow) (sdi-135 green)

(sdl-135 ?_ _-red _ -blue i -green • "violet • -orange _ "black)

;;(sdl-135 yellow) (sdl-135 green)

107

ART/ADA DESIGN PROJECT - PHASE [FiN._L REPORT v

_->

(sdl-135 (?a S-red R -blue i -_Teen _ "violet i "orange _ "black))

(assert (sdl-135-result ?a)) yellow

(assert (sdl-135-result (?a)))) _yellow

(defrule sdl-135-rule-1 ""

(sdl-135-result yellow)

(sdl-135-result (yellow))

(not (sdl-t35-result green))

(not (sdl-135-result (green)))

=>

(assert (success sdi-135)))

from previous rule

from previous rule

should be no such fact

(defrule sdl-135-rule-2 *"

(declare (salience -10))

(not (success sdi-135))

=>

(assert (fall sdl-135)))

previous rule

(defrule sdl-IS6-rule ""

(sdi-136 ?a ATed I blue I _reen I violet I orange) black) ;yellow and _'een

(sdl-136 (?& _red [blue [green I violet I orange I blacM)) ;yellow and greed

:>

(assert (sdl-136-result ?a)) ;one green asserted

(assert (sdl-136-result (?a)))) ;one green _serted

(defrule sdl-138-rule-1 ""

(not (sdl-IS6-r_ult yellow))

(not (sdl-IS6-result (yellow)))

(sdl-IS6-result _reen)

(sdl-iSB-resul_ (green))

=>

(asser_ (success sdl-136)))

should not exlst

should exls_

;should exist

(defrule sdl-i36-rule-2 ''

(declare (s_llence -10))

(not (success sd1-136))

=>

(assert (fall sdl-t36)))

;from previous rule

(defrule sdl-137-rule ""

(sdi-137 redlbluelgreenlvloletlorange{black)

(sdi-137 (redlbluelgreenlvloletlorangelblack))

=>

(asser_ (fall sdl-137)))

(defrule sdl-138-rule ""

(or (no_ (sdl-138 red I blue I green I violet I orange I black))

(not (sdi-138 (red I blue I green I violet I orange I black))))

=>

(assert (fall sd1-138)))

:yellow and green

(defrule sdl-139-rule ""

(or (noC (sdi-139 ?x =(_bs ?x)))

(not (sdl-139 (?x (=(abs ?x))))))

=>

(assert (fall sdi-139)))

-12 12

(defrule sdl-140-rule ""

(sdl-140 ?xl ?yl)

(sdl-140 ?x2 _ "?xl ?y2 Z "?yl)

(sdl-140 (?xl ?yl))

(sdl-140 (?x2 • "?x_ ?y2 _ "?yl))

=>

i I also I 2

;1 I also I 2

108

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(assert (fail sdl-140)))

(defrule sdl-14t-rule ""

(sdl-[41 ?KI ?yl)

(sdl-[41 ?x2 ?y2)

(sdl-141 (?xl _yi))

(sdl-_41 (?x2 ?y2))

(test (or (not (= ?xl ?x2))

[not (: _yt ?y2))))

:>

(assert (success sdl-141)))

(defrule sdl-141-rule-I ""

(declare (salience -I0))

(not (success sdl-141))

:>

(assert (fall sdl-141)))

(defrule sdl-142-rlle ""

(sdl-142 ?first ?second)

(sdl-t42 (?first ?second))

=>

(assert (sdl-142 ?second ?first))

(assert (sdl-142 (?second ?flrst))))

;cold hot

;cold hot

;hot cold

;hot cold

(defrule sdl-142-rule-I ""

(declare (salience -t))

(or (not (sdi-142 hot cold))

(no% (sdl-142 (hot cold))))

=>

(assert (fall sdl-142)))

;added by BDC 02/05/88

;from above rule

(defrule sdl-143-rule ""

(sdl-t43 $?x red $?y)

(sdl-143 ($?x red $77))

=>

(assert (sdl-143 red $?z STy))

(assert (sdl-t43 (red $?x STy))))

;green yellow red blue white

;green yellow red blue white

(defrule sdl-143-rule-1 '"

(declare (salience -I)) ;added by BDC 02/05/88

(or (not (sdl-143 red _"een yellow blue white)) ;from above rule

(not (sdl-143 (red green yellow blue white))))

=>

(assert (fall sdl-143)))

(defrule sdl-144-rule ""

(sdl-144 brother-of ?father ?uncle)

(sdl-144

(sdl-144

(sdl-144

(sdl-144

(sdl-144

r>

(assert

(assert

(assert

(assert

chlld-of ?father ?child)

sex-of ?child female)

(brother-of ?father ?uncle))

(child-of ?father ?child))

(sex-of ?child female))

(sdl-144 nlece-of ?uncle _child))

(sdl-144 uncle-of ?child ?uncle))

(sdl-t44 (nlece-of ?uncle ?child)))

(sdl-144 (uncle-of ?child ?uncle))))

;walter daniel

;waiter jane

;lane female

;walter daniel

;walter jane

;jane female

;daniel Jane

;daniel jane

;lane daniel

(defrule sdl-144-rule-2 ''

(sdl-t44 brother-of ?father ?uncle)

(sdl-144 child-of ?father ?child)

(sdl-144 sex-of ?child male)

(sdl-144 (brother-of ?father ?uncle))

;walter daniel

;walter david

.walter daniel

109

ART/ADADESIGNPROJECT- PHASEI FINALREPORT _"

=>

(sdl-t44 (child-of ?father ?child))

(sdi-144 (sex-of ?child male))

(assert

(assert

(assert

(assert

(sdl-144 nephew-of ?uncle ?child))

(sdl-_44 u_cle-of ?child ?uncle))

(sdI-244 (nephew-of ?uncle ?child)))

(sdl-144 (uncle-of ?child ?uncle))))

;walter david

;d_vld male

,walter davld

;walter david

_davld walser

(defrule sdl-144-rule-3 ""

(sdi-144 niece-of daniel jane)

(sdi-244

(sdi-244

(sdi-244

(sdl-t44

(sdl-144

(sdi-244

(sdl-144

=>

(assert

uncle-of Jane daniel)

nephew-of daniel david)

uncle-of david daniel)

(niece-of daniel Jane))

(uncle-of Jane daniel))

(nephew-of daniel david))

(u_cle-of david daniel))

(success sdi-244)))

;all from above rules

;all from above rules

;if all here assert success

(defrule sdl-144-rule-4 "'

(declare (salience -I0))

(not (success sdl-144))

=>

(_ssert (fall sdi-244)))

(defrule sdl-rule-245 ""

(sdl-145-11st $?colors)

(sdl-145-11st ($?colors))

=>

;red white blue

;red white blue

(bind ?I 2)

(bind ?length (lengths ?colors)) ;3

(while (<: ?i ?length) do

(assert (sdl-t45-control =(nth$?colors ?i))

(sdl-145-control (=(nabs ?colors ?i))))

(bind ?i (* 71 i)))9

(defrule sdl-rule-145-1 ""

(sdl-245-control ?color)

(sdl-145-control (?color))

(or (not (sdl-14S ?color))

(not (sdl-t45 (?color))))

2>

(assert (fall sdl-145)))

_red or white or blue

_red or white or blue

;if no matchlng generated fact

(defrule sdl-rule-146 ""

(sdl-t46-seats $?seats)

(sdl-146-nameS $?n_es)

(sdl-246-se&ts ($?se&ts))

(sdl-t46-n_mes ($?n_mes))

=>

(bind ?l 2)

(bind ?length (mln (lengths ?se&tS)

(lengths ?names)))

(while (<= ?1 ?length) do

(assert (sdl-146°assl_ment

=(nth$?seats ?I)

=(nabs ?names ?i))

(sdl-146-asslgnment

(:(nabs ?seats ?i)

:(nabs ?.ames ?l))))

(bind *I (* ?l 2))))

;8 9 11 14 3

;8 9 ;.2 24 3

;tom carol fred alex

(defrule sdl-rule-t46-2 ""

ll0

v A.RT/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(sdl-146-_sslgmmen_ 8 tom)

(sdl-146-asslgnmen_ 9 carol)

(sdl-146-asslgnmen_ 11 fred)

(sdl-146-asslg_men_ 14 alex)

(sdl-146-asslg_ment (8 tom))

(sdl-146-asslgnment (9 carol))

(sdl-146-assignment (ii fred))

(sdl-146-assig_ment (14 alex))

=>

(assert (success sdl-[46)))

(defrule sdl-146-rule-2 ""

(declare (salience -I0))

(not (success sdl-14B))

z>

(_ssert (f_ll sdi-145)))

(defrule sdi-147 "'

?state-fact-i <- (sdl-147-sum ?llst _donor ?sum-so-far)

(sdl-147 911st ?donor ?next-donor _ "finish)

(sdl-147 donation ?next-donor ?contribution)

?state-fact-2 <- (sdl-147-sum (?llst _donor 9sum-so-far))

(sdi-147 (?list ?donor ?next-donor Z "finish))

(sdl-i47 (donation ?next-donor ?contribution))

:>

(retract ?state-fact-1 ?state-fact-2)

(assert (sdl-147-sum ?llst ?next-donor

=(+ ?sum-so-far ?contribution)))

(assert (sdl-147-sum (?list ?next-donor

=(* ?sum-so-far 9contributlon))))

(defrule sdi-147-2 ""

?state-f_ct-I <- (sdl-147-sum ?list ?donor ?sum)

(sdl-147 ?llst ?donor finish)

?state-f_ct-2 <- (sdl-_47-sum (?llst ?donor ?sum))

(sdl-147 (?llst ?donor finish))

=>

(retract ?st_te-fact-I ?state-f_ct-2)

(assert (sdl-147-fln_l ?llst ?sum))

(_ssert (sdl-147-flnal (?llst ?sum))))

(defrule sdi-147-3 ""

(or (not (sdl-147-fln&l donors 17.5))

(not (sdl-147-flnal (donors 17.5))))

=>

(assert (fall sdi-147)))

(defrule sdl-rule-t48 ""

(sdl-i48 donor-list $?donors)

(sdi-148 (donor-lls_ $?do_ors))

_->

(blnd ?length (lengths ?donors))

(asser_ (sdi-148 donors s_ar_ =(nth$?donors I)))

(_ssert (sdl-148 (donors start =(nth$?donors I))))

(assert (sdi-148 donors =(nth$?donors ?length) finish))

(assert (sdl-148 (donors =(.th$?donors ?length) flnlsh)))

(bind 9i I)

(while (< ?i ?lenKth) do

(assert (sdI-148 donors =(nth$ 9donors ?i) =(nth$?donors (+ 91 i)))

(sdi-148 (donors :(nth$?donors _i) :(nth$?donors (+ 91 I)))))

(bind ?I (+ ?i I))))

(defrule sdi-148-i '"

?state-fact-I <- (sdl-148-sum ?list ?donor 9sum-so-far)

111

ART/ADA DES[GN PROJECT - PHASE I FINAL REPORT

(sdl-148 ?llst ?donor ?next-donor _ -flnish)

(sdl-148 donation ?next-donor _contrlbution)

?state-fact-2 <- (sdl-148-sum (?list ?donor ?sum-so-far))

(sdl-148 (?llst ?donor ?next-donor E "finish))

(sdl-148 (donatlon ?next-donor _contributlon))

=>

(retract ?state-fact-i ?state-f_ct-2)

(_ssert (sdl-148-sum ?list ?next-donor

=<+ ?sum-so-far ?contrlbutlon)))

(assert (sdl-148-sum (_list ?next-donor

=(+ ?sum-so-far _contrlbutlon)))))

(defrule sdi-148-2 '"

?state-fact-i <- (sdl-148-sum ?llst ?donor Osum)

(sdl-148 ?llst ?donor finish)

?state-fact-2 <- (sdl-148-sum (?llst ?donor ?sum))

(sdl-148 (?llst ?donor finish))

=>

(retract ?state-fact-i ?st&re-fact-2)

(assert (sdl-148-flnal ?list ?sum))

(_ssert (sdl-148-flnal (?llst _sum))))

(defrule sdi-148-3 ""

(declare (salience -I))

(or (not (sdl-148-flnal donors 17.5))

(not (sdl-148-flnal (donors 17 5)7))

=>

(_ssert (fall sdi-148)))

;added by BDC 02/05/88

(defrule sdl-149 '"

(decltre (s_llence 1000))

(sdl-14g inventory ?name ?amount)

(sdl-14g (inventory ?name ?amount))

=>

(assert (sdi-149 add-to-sum ?name ?amount))

(assert (sdi-149 (add-to-sum ?name ?amount))))

(defrule sdl-149-1 ""

(declare (salience 1000))

?x <- (sdi-149 add-to-sum ?name ?amount)

_y <- (sdi-149 current-sum ?sum)

_z <- (sdi-149 (add-to-sum ?name _mount))

?w <- (sdl-t49 (current-sum ?sum))

=>

(retract ?x ?y)

(assert (sdl-14g current-sum =(+ ?sum ?amount)))

(_ssert (sdl-14g (current-sum =(+ ?sum ?_mount)))))

(defrule sdl-14g-2 ""

(declare (salience -I))

(or (not (sdi-149 current-sum 19.5))

(not (sdi-149 (current-sum 19,5))))

=>

(_ssert (fa%l sdi-149)))

• dded by BDC 02/05/88

(defrule sdl-150 ""

(declare (salience I000))

(sdl-150 inventory ?name ?amount)

(sdl-150 (inventory ?name ?amount))

=>

(assert (sdl-150 count-ltem ?name ?amount))

(assert (sdl-150 (count-ltem ?name ?amount))))

(defrule sdl-150-1 ""

I12

ART/ADA DESIGN PROJECT - PHASE I FIN,_d. REPORT

(declare (sallence 1000))

?x <- (sdl-150 count-ltem ?name ?amount}

?y <- (sdl-150 current-count ?count)

?z <- (sdl-150 (count-ltem ?name ?amount))

?w <- (sdl-150 (current-count ?count))

=>

(retract ?x ?y ?z ?w)

_assert (sdl-t50 current-count =(* ?count I)))

(assert (sdl-150 counted ?name ?amount))

(assert (sdl-150 (current-count =(+ ?count I))))

(assert (sdl-150 (counted ?name ?amount)))

)

(defrule sdl-150-2 ""

(declare (salience 1000))

?x <- (sdl-150 counted ?n_me ?amount)

?z <- (sdl-150 (counted ?name ?amount))

(or (not _sdl-150 inventory ?name ?_mount))

(not (sdl-150 (inventory ?name ?_mount))))

?y <- (sdl-150 current-count ?count)

?w <- (sdl-lSO (current-count ?count))

=>

(retract ?x ?y ?w ?z)

(assert (sdl-t50 current-count =(- ?count t)))

(assert (sdl-[50 (current-count =(- ?couRt I))))

)

(defrule sdl-tSO-xB ""

(declare (s_lience -t))

(or (not (sdl-150 current-count 3))

(nat (sdl-tSO (current-count 3))))

=>

(_ssert (_ll sdl-tSO)))

;added by BDC 02/05/88

(defrule sdl-t5t

(sdi-£51 quarter ?w)

(sdl-t51 dime ?x)

(sdl-151 nickel ?y)

(sdl-%51 penny ?z)

(sdl-151 (quarter ?w))

(sdl-151 (dime ?x))

(sdl-151 (nickel ?y))

(sdl-_51 (penny ?z))

(test (> ?w ?x ?y ?z))

(assert (success sdl-t5%)))

;Io

:8

,6

;4

.8

;6

;to

;4

(delrule sd1-%51-i ""

(declare (s_llence -10))

(not (success sdl-tSt))

=>

(assert (fall s_i-151)))

(defrule sdi-152 ""

Csdl-152 quzrter ?w)

(sdl-152 dime ?x)

(sdl-t52 nickel ?y)

(sdl-152 penny ?z)

(sdl-IS2 (quarter ?w))

(sdl-I5_ (di_e ?x))

(test (> ?w ?x))

(sdl-152 (nlc_el _y))

(tes_ (> ?x ?y))

(sdl-_52 (penny ?z))

113

.-kRT;,_dDA DESIGN PROJECT • PHASE I FINAL REPORT

->

(test (> ?Y ?z))

<assert (success sd1-152)))

<defrule sdl-I52-1 ''

(declare (salience -tO))

(not (success sdl-152))

=>

<_sser_ (fall sdl-i52)))

(defrule sdl-153 ""

(sdl-153 ?answer _ yes I no J unknown I :(numberp ?answer)) ,yes. no. unknown.

(sdl-153 (?answer • yes I no] unMnown I :(numberp ?answer))) ;yes, no. unknown,

(assert (sdl-153 matched ?answer))

(asser_ (sdl-153 (matched ?answer))))

(defrule sdl-153-1 '"

(sdl-153 matched yes)

(sdl-I53 matched no)

(sdl-I53 matched unknown) ...

(sdl-153 matched l)

(sdi-153 (m_tched yes))

(sdi-153 (m&tched no))

(sdl-i53 (matched unknown))

(sdl-_53 (m&tched I))

=>

(assert (success'sdl-153)))

(defrule sdi-153-2 ''

(decl_re (salience -i0))

(not (success sdl-lS3))

=>

{assert (fa£1 sdl-153)))

(defrule sdi-154 '"

(sdl-154 ?tlmel • :(numberp ?_Imsl))

(sdl-154 Vtlme2 _ :(numberp ?tlme2) _ :(> ?time2 ?tlmel))

(sdl-154 (?_imel _ :(numberp ?tlmel)))

(sdl-154 (?time2 _ :(_umberp ?_ime2) _ :(> ?_ime2 ?_imel)))

=>

(assert (sdl-154-_atched ?tlmel ?tlme2))

(asser_ (sdl-154-_&_ched (?tlsel ?_ime2))))

(defrule sdi-154-1 ""

(sdl-154-m_tcbed I 2)

(sdl-i54-m_cbed 2 3)

(sdl-154-ma_ched 1 3)

(sdl-154-s&_ched (I 2))

(sdl-IS4-matc_ed (2 3))

(sdl-lS4-ma_ched (1 3))

=>

(_ssert (success sdl-154)))

(defrule sdi-154-2 "=

(decl_re (s_llence -I0))

(not (success sdl-IS4))

(assert (fall sdl-154)))

(defrule sdl-15S "*

(sdl-155 _tlmel _ :(numberp ?_lm_l))

(sdl-IS5 ?tlme2 _ :(numberp ?time2))

(sdl-155 (?tlmel • :(numberp ?timel)))

114

ART/ADADESIGNPROJECT - PHASE 1 FINAL REPORT

(sdl-155 (?time2 I :(nusberp ?time2)))

(test (> _time2 ?tlme_))

=>

(assert (sd1-155 matched *timer ?t!me2))

(assert (sdl-155 (m_tched ?tlmel _tlme2))))

(defruke sdl-155-1 ""

(sdl-[55 matched I 2)

(sdl-155 m_tched 2 3)

(sdi-155 matched _ 3)

(sdl-155 (matched i 2))

(sdi-155 (matched 2 3))

(sdl-155 (m_tched I 3))

=>

(assert (success sdl-L55)))

(defrule sdi-155-2 ""

(declare (salience -I0))

(not (success sdl-155))

=>

(assert (fall sdi-155)))

(defrule sdl-156 ""

(or (not (sdi-156 ?x • yes L no I :(numberp ?x)

(not (sdl-156 (?x _ yes I no I :(numberp ?x)

=>

(assert (fall sdI-158)))

vvvv

(defrule sdl-157 ""

(or (no_ (sdl-157 ?x _ :(strlngp ?x) } yes I no I

(not (sdl-157 (?x • :(string]) *x) I yes I no I

=>

(assert (f_il sdl-157)))

(stringp ?x)))

• (s_rlngp ?x)))))

:(numberp ?x)))

:(numberp ?x)))))

(defrule sdl-I58 "'

(or (not (sdI-158 ?x • :(strln_ ?x)))

(not (sdI-158 (?x • :(strlngp ?x)))))

=>

(assert (fall sdl-158)))

(defrule sdl-159 ""

(sdl-159 ?_nswer • yes I no I unknown I :(numberp Vanswer))

(sdl-t59 (?_nswer _ yes I no I unMnown I :(numberp ?_nswer)))

=>

(assert (sdi-159 m_tched ?answar))

(assert (sdi-159 (ma_cbed ?answer))))

(defrule sdi-159-I ""

(sdl-159 mztched yes)

(sdl-159 matched no)

(sdi-159 m_tched unknow1_)

(sdi-159 m&tched 1)

(sd1-159 (matched yes))

(sd1-159 (matched no))

(sdi-159 (m_tched unknown))

(sdl-159 (matched i))

(assert (success sdl-I59)))

(defrule sdl-ISg-2 ''

(declare (sallence -i0))

(not (success sdl-159))

=)

(assert (fall sdl-159)))

115

ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(defrule sdl-160 ""

(sdl-160 ?answer a :(numberp _answer) I yes I no I unknown)

(sdl-160 (?answer _ :(nu=berp ?answer) I yes] no I unknown))

=>

(assert (sdl-160 matched ?answer))

(assert (sdl-160 (matched ?answer))))

(defrule sdl-160-1 '"

(sdl-160 matched yes)

(sdl-160 matched no)

(sdl-160 matched unknown)

(sdl-160 matched I)

(sdl-160 (matched yes))

(sdl-160 (matched no))

(sdl-160 (matched unknown))

(sdl-180 (matched I))

=>

(assert (success sdl-iBO)))

(defrule sdl-160-2 "'

(declare (s_lience -I0))

(nO% (success sdl-I60))

=>

(assert (fall sdl-t60)))

(defrule sdl-t61 ''

(sdl-I61 _tlme1_:(numberp ?tlmel))

(sdl-161 (?tlmel_:(numberp ?timel)))

(sdl-IBl ?time21:(numberp ?%ime2)&:(> ?tlme2 ?%imel))

(sdl-lSl (?tlme2_:(numberp ?tlme2)_:(> ?time2 ?tlmel)))

=>

(assert (sdl-161 matched ?tlmel ?tlme2)))

(defrule sdl-tBt-1 '"

(sdl-lSl matched i 2)

(sdi-161 matched 2 3)

(sdi-161 matched t 3)

=>

(assert (success sdl-161)))

(defrule sdl-t61-2 ""

(declare (salience -tO))

(not (success sdl-161))

=>

(assert (fail sdl-IBl)))

(defrule sdl-lS2 "=

(sdI-162 ?timela:(numberp ?tlmet))

(sdI-162 (?tlmela:(numberp ?tlmel)))

(sdl-162 ?tlme2_:(numberp ?tlme2))

(sdl-l_2 (?tlme2a:(numberp ?time2)))

(_est (> ?time2 ?tlmel))

=>

(assert (sdi-162 matched ?_lmet ?tlme2)))

(defrule sdi-162-i ""

(sdl-162 matched t 2)

(sdl-t62 matched 2 3)

(sd1-162 matched t 3)

=>

(assert (success sdl-162)))

(defrule sdi-162-2 ''

(declare (salience -lO))

It6

-- ART/ADADESIGNPROJECT-PHASEI FIN,ZLREPORT

_->
(not (success sdl-162))

(_ssert (fall sdl-162)))

(defrule sdl-183 ""

(or _not (sdl-163 ?Inpu_ _ 'yes" I

(not (sdl-163 (?Inpu_ _ "yes"

=>

(assert (fail sdl-163)))

"no" I "unknown' I

['no" I "_nknown=

'overflow" I "inference'))

I "overflow' ! 'inference'))))

(defrule sdl-164 "'

(sdi-164 input ?input)

(sdl-lS4 llst $?llst)

(sdl-i84 (input ?Input))

(sd1-164 (list $?IIs%))

=>

(if (posltlon$?input ?list)

then

(assert (success sdl-164))

else

(assert (fall sdl-164))))

;'overflow'

;'overflow"

,'yes" 'no" 'unknown" "overflow" 'inference"

(defrule sdi-185 "'

(or (not (sdi-185 12345.89))

(not (sdl-i65 (12345.89))))

=>

(assert (fall sdl-165)))

;matches literal fact

(defrule sdl-166 ""

(patient-name ?patient-l)

(patient-name (?patlent-l))

(sdl-IBS $? ?patlent-1 $?

?answer

yes I

no l

unknown I

:(number_ ?answer) $?)

(sd1-166 $T ?answer

yes I
no I

unknov= I

:(numberp ?answer) $?

?patleat-i $?)

(sdl-i68 ($? _patlent-I $?

_answer

yes I

no I

unknow. I

:(numberp Tanswer) $?))

(sdi-166 (ST Taasver

yes I

no I

unknow= I

:(numberp Tanswer) ST

_patlest-1 ST))

=>

(assert (sdl-166-mabched ?patlent-1 ?answer))

(Rssert (sdl-lS6-ma_ched (?patlent-I ?answer))))

(defrule sdi-166-i ""

(sdl-i66-matched paul 1.5)

(sdl-IBB-matched paul yes)

(sdl-186-matched (p_BI I 5))

(sdl-18B-m_tched (p&ul yes))

117

ART/ADADESIGNPROJECT-PHASEI FIN:tLREPORT

=>

(assert (success sdl-166)))

(defrule sd1-166-2 °"

(declare (salience -10))

(not (success sdl-t66))

=>

(assert (fall sdl-_66)))

(defrule sdl-I87 "'

(patlent-name ?patlent-l)

(patient-name (?pa_lent-l))

(patlent-name ?patlent-2 & -_patlent-1)

(patlent-name (?patlent-2 _ "?patlent-l))

(or (sdl-167 $?w ?patlen_-I

$?x ?pztlent-2

$?y ?answer

yes I

no I

unknown I

:(numberp ?answer)

$?z)

(sd1-167 $?w ?patien_-1
$?x ?answer

yes I

no I

unknown I

:(num_erp ?answer)

$?y ?patient-2

$?z)

(sdi-167 ($?w ?patlent-1

$?x ?patient-2

$?y ?answer

yes I

no I

unknown I

:(numberp ?answer)

$?z))

(sdl-167 ($?w ?patlent-I

$?x ?answer

yes I

no I

unknown I

:(numberp ?answer)

$?y ?patient-2

$?z)))

=>

(asser_ (sdl-167-ma_ched ?patient-! ?answer))

(asser_ (sdl-167-ma_ched ?patient-2 ?answer))

(asser_ (sdl-167-ma_ched (?pa_len_-I ?answer)))

(zsser_ (sdl-167-ma_ched (?patient-2 ?_nswer))))

(defrule sdl-167-1 ""

(sdl-167-ma_ched paul 1.5)

(sdl-167-matched paul yes)

(sdl-167-m&_ched brad 1.5)

(sdl-167-matched brad yes)

(sdl-167-matched (paul 1.5))

(sdl-167-ma_ched (paul yes))

(sdl-167-ma_ched (brad 1.5))

(sdl-167-matched (br_d yes))
=>

(zssert (success sd1-167)))

118

-- ,_.RT,,,'ADA DESIGN PROJECT - PHASE [FINAL REPORT

(defrule sdl-lS7-2 "'

(declare (salience -10))

(not (success sdl-lST))

=>

(assert (fail sdl-I67)))

(defrule sd1-168 ''

(patient-name _patient-l)

(patient-name _oattent-2 • -_patient-l)

(patient-name <_?_tzent-l))

Cpattent-name {_patlent-2 • -*patient-!))

<or (s_i-168 $?v

9answer-I • yes I no I i(numberp ?answer-l)

$?w

9pat£ent-1

$?x

(sdl-i68

;; split the fact BEFORE the second answer

_answer-2 • yes I no I :(numberp ?answer-2)

STy

?patient-2

$?z)

$?v

_patkent-t

$_w

?answer-t _ yes I no I :(numberp 7answer-i)

(sdi-168

;; split the fac% AFTER the first answer

$?x

?patient-2

$?y

_answer-2 _ yes I no I :(numberp ?answer-2)

$_z)

<$?v

?answer-i • yes I no I :(numberp ?answer-l)

$?w

?patient-i

$?x

(sdi-168

;; split the fact BEFORE the second answer

_answer-2 • yes I no [:(numberp ?answer-2)

$97

?patlent-2

$?z))

_patient-!

$?w

?answer-1 • yes I no I :(numberp _answer-I

;; spllt the fact AFTER the first answer

$?z

?p_tien%-2

$?y

?answer-2 • yes I no I :(numberp ?answer-2)

$?z)))

(assert (sdl-168-matched ?patlen_-I _answer-l))

<assert (sdl-I68-matcbed ?patient-2 Vanswer-2))

<assert (sdl-168-matched <gpatlent-I 9answer-i)))

(assert (sdl-lSS-matched (gpatlent-2 ?_nswer-2))))

(defrule sdi-168-1 II

(sdl-158-matched paul yes)

{sd1-168-matched paul 15)

unknown

unknown

unknown

unknown

unknown

unknown

unknown

unknown

119

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT ,.-

(sdl-168-matched brad NO)

(sdl-168-matched brad unknown)

(sdl-158-matched (paul yes))

(sdl-IB8-matched (paul 1.5))

(sdl-168-matched (brad NO))

(sdl-188-matched (brad unknown))

=>

(assert (success sdl-IBS)))

(defruie sdi-168-2 "'

(declare (salience -i0))

(not (success sdi-168))

=>

(assert (fall sdl-188)))

(defrule sdi-169-0 "=

(declare (salience 100))

?a <- (sdl 16g STbefore ?answer _ yes

I no

$?mlddle not $?after)

?b <o (sdl-t69 ($?before ?_nswer _ yes

I no

$?middle not $?after))

=>

(retract ?a ?b)

(if

(equal ?answer yes)

then (assert (sdi-169 $?before ?answer $?mlddle no $?after)

(assert (sdl-169 ($?before ?answer $?middle no $?afCer))))

else (assert (sdl-t69 $?before ?answer $?mlddle yes $?after)

(assert (sdl-189 ($?before ?answer $?mlddle yes $?after))))))

(defrule sdi-tB9 ""

(patlent-name ?p=tlent-l)

(patient-nsae ?patlent-2 • "?patlent-t)

(patient-name (?patlent-l))

(patient-name (?patlento2 I "?patlent-l))

(or (sdl-189 $?V

?answer-t • yes I no I :(numberp ?_nswer-t)

$?w

?patient-1

$9x

u n known

(sdl-IB9

;; split the f_ct BEFORE the second answer

_answer-2 • yes I no I :(numberp ?answer-2)

$?y

?pstlen_-2

$?z)

$?v

?pa_lent-t

$?w

?answer-I • yes] no I :(numberp ?answer-l)

unknown

unknown

(sdl-t89

;; split the fact AFTER the first answer

$?z

?patlent-2

$?y

?answer-2 • yes I no I

$?z)

($?v

?answer-I • yes I no [

$?w

?patlent-1

$?x

(numberp ?answer-2)

(numberp ?answer-l)

unknown

unknown

120

-- ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(sdl-169

;; split the fact BEFORE the second answer

?answer-2 • yes I no 1_numberp _answer-2)

$?y

_patient-2

$?z))

($?v

_patlent-I

_answer-I _ yes I no I :(numberp ?_nswer-i)

:; split the fact AFTER the first answer
$?z

_patient-2

$?y

?answer-2 • yes I no I :(numberp ?answer-2)

$?z)))

=>

(assert (sdl-169-matched ?patlent-! ?answer-l))

(assert (sdl-tSg-matched ?patXent-2 ?answer-2))

(assert (sdl-lsg-matched (?patlent-t ?answer-l)))

(assert (sdl-169-matched (?patlent-2 ?answer-2))))

(defrule sdl-169-1 '°

(sdl-169-matched paul yes)

(sdl-169-matcbed brad NO)

(sdl-169-matched (paul yes))

(sdl-t69-matched (br_ NO))

=>

(assert (success sdl-169)))

(defrule sdi-169-2 '"

(declare (salience -10))

(not (success sdl-i69))

=>

(assert (fall sdl-169)))

(defrule s_l-lTO ""

(patlent-n_me _patlent)

(patient-name (?patleat))

(sdl-tTO ?patient COMFLAINS I HAS $7

?complaint J blackout I

faintness]

ratine I
headache I

vertigo I

anxlety I

confuslon I

depression I
drowsiness !

oervousuess I

numbness I

paralysis I

tension I

Inglln I

veakness $?)

(sdl-170 (?patient C_LAINS I HAS $?

?complalnt & blackout I

faintness I

fatigue I
headache I

vertigo I

anxiety)

confusion J

depression I

unMnown

unknown

unknown

121

ART/ADA DESIGN PROJECT - PHASE [FINAL REPORT '_

drowsiness I

nervousness I

numbness I

paralysis I

tension I

tingling I

weakness $?))

(_ssert (sdl-170-compl_[nt ?patient ?compl_int))

(Rssert (sdl-170-compl_lnt (?patient ?compl_int))))

(de:rule sdl-170-1 °"

(sdl-170-complaint p_ul vertigo)

(sdl-170-complalnt paul faintness)

(sdl-170-complalnt brad headache)

(sdl-170-complalnt (paul vertigo))

(sdl-170-complatnt (p_ul falntness))

(sdl-170-complalnt (brad headache))

=>

(assert (success sdl-170)))

(defrule sdl-170-2 ""

(declare (salience -10))

(not (success sdl-170))

=>

(assert (fall sdl-170)))

(de:rule sdl-171 '"

(patient-n_me ?patient)

(age ?patient ?Rge • -unknown

• :(>: ?age 21))

(patlent-n_me (?p&tlent))

(seq-age ?patient (?age _ "unknown

• :(>= ?age 21)))
=>

(_ssert (sdl-t71 _patlent yes))

(_ssert Csdl-17t (?patient yes))))

(de:rule sdl-17t-2 '"

(patient-name ?patient)

(age ?patlent ?age • -unknown

• :(< ?age 21))

(p_tlent-n_me (?p_tlent))

(seq-age ?patient (?_ge • -unknown

• :(< ?_ge 21)))

(_ssert (sdl-171 ?patient no))

(assert (sdl-171 (?p_tlent no))))

(defrule sdl-tTI-3 ""

(sdl-17l paul yes)

(sd1-171 br_d no)

(sdl-171 (paul yes))

(sdl-171 (brad no))

=>

(assert (success sdl-t71)))

(defrule sdI-171-4 ""

(declare (salience -10))

(not (success sdi-171))

=>

(_ssert (:_il sdl-171)))

(de:rule sdi-172-2 ""

:)O

-- ART/ADA DESIGN PROJECT - PHASE I FINAL REPORT

(patien_-n_me ?pattlnt)

(patient-name (?patient))

(sdl-172 ma]or-complalnt ?patient

9re_son

drowsiness I

confusion)

(sdl-172 recent-he_-in]ury _patlent no)

(sdi-[72 confus_on-lild ?patient yes)

(sdl-172 (ma]or-co_lalnt ?patient

7re_son •

drowsiness i

confusion))

(sdl-172 (recent-he&d-lnJury ?patient no))

(sdl-172 (confuslol-mild ?patient yes))

(or (not (sdl-172 mm_or-complalnt ?patient

"conflsion •

-dro_awlness))

(not (sdi-172 (malor-compl_int ?patient

-conftslon •

-drowEiness))))

,one of these complaints

no recent head injury

one of these complalnts

no recent head injury

mild symptom

;no other complaints

=>

(_ssert (sdl-172 recommendation ?patient waiting room))

(assert (sdl-172 (rlcommendation ?patient waiting room))))

(defrule sdi-172-3 '"

(sdl-172 recommendmtlon paul waiting room)

(sdl-172 (recommendation paul waiting room))

(or (not (sdl-172 rtcommendatlon brad waiting room))

(not (sdl-172 (recommendation brad waiting room))))

=>

(assert (success s_1-i72)))

(defrule sdl-172-4 ="

(declare (salience -iO))

(not (success sdl-172))

=>

(assert (fail sdl-172)))

(defrule sdl-173 ="

(sdl-173 ?casel ?ai ?bl ?cl)

(sdl-173 (?_asel ?a/ ?bl ?cI))

(sdl-173 ?case2 • -easel • "foo _ "bar

?a2 _ (noZ (symbolp ?a2)) • :(numberp ?a2) • _(< ?a2 ?al)

(sdl-173

=>

(assert

(assert

?b2 _ :

7c2 • :

(?case2

?a2 • :

?b2 _ :

?c2 • :

(not (symbolp ?b2)) • :(numberp ?b2) • :(> ?b2 9b[)

(no_ (symbolp ?c2)) • :(numberp ?c2) • :(< ?c2 ?cI))

• -casel • -foo _ "bar

(no_ (symbolp ?a2)) • :(numberp ?a2) • :(< ?a2 ?a_)

(no_ (sy_bolp ?b2)) • :(numberp ?b2) • :(> _b2 _bl)

(noL (symbolp ?c2)) • :(numberp ?c2) • :(< ?c2 =cI)))

(sdl-173-m&_hed ?ca.se! ?case2))

(sdl-173-m_hed (?case! ?case2))))

(defrule sd1-173-3 ''

(sdl-L73-matched cLsei case2)

(sdl-173-matched (clsel case2))

(or (not (sdl-173-_tched -casel -case2))

(not (sdl-173-mmtched (~easel "case2))))

z>

(assert (success s_I-173)))

(defrule sdi-173-4 ""

(declare (salience -iO))

123

AHT/ADA DESIGN PROJECT - PHASE [FINAL REPORT

(not (success sdi-173))

=>

(assert (fail sdi-173)))

(de(rule sdi-174 '"

(sdi-174 Oc_sel ? ? ? ?al ? ?bl ? ?el)

(sdi-174 (?casel? ? ? ?al ? ?bl ? ?el))

(sdi-174 _case2 _ -c_sel • "foo _ "bar ? _ _

?a2 _ (not (symbolp ?a2)) _ :(numberp oa2)

_b2 _ (not (symbolp ?b2)) _ :(numberp ?b2)

?c2 _ .(not (symbolp ?c2)) _ :(numberp ?c2)

(sdi-174 (?case2 a -c_sel _ "foo _ "bar ? _ ?

_a2 £ :(not (symbolp ?a2)) & :(numberp ?a2) £

?b2 _ _(not (symbolp ?b2)) _ :(numberp ?b2) a

_c2 S :(not (symbolp ?c2)) _ _(numberp ?c2)

=>

(assert

(assert

(sdl-t74-matched ?easel ?case2))

(sdl-t74-matched (?easel ?case2))))

(< ?a2 ?al) ?

(> ?b2 _bl) ?

(< ?c2 ?cl))

(< ?a2 ?Ri) ?

(> ?b2 ?bl) ?

(< ?c2 ?ct)))

(de(rule sdi-174-3 ""

(sdl-174-matched easel case2)

(sdl-174-matched (easel c_se2))

(or (not (sdl-174-matched -easel -case2))

(not (sdl-174-matched (-easel "case2))))

=>

(asser_ (success sdi-174)))

(de(rule sdI-174-4 ""

(declare (salience -10))

(not (success sdi-174))

=>

(assert (fall sdi-174)))

(de(rule sdl-175 ""

(sdl-175 pallet ?pallet)

(sdl-175 options $?optlons)

(sdl-175 (pallet ?pallet))

(sdl-IT5 (options $?optlons))

(sdl-175 case ?ASB

:(= (/ (- _ASB (mod ?_sb tO00)) tO00) ?PALLET)

:(= 0 (POSITIONS ?asb ?OPTIONS))) ; if not a member

(sdl-i75 (case ?ASB

:(= (/ (- ?ASB (mod ?asb I000)) I000) ?PALLET)

:(= 0 (POSIT_ON$?asb ?OPTIONS)))) ; if not a member

_->

(assert (sdl-t75-matched ?ash))

(assert (sdl-t75-matched (?ash))))

(de(rule sdi-175-3 ""

(sdl-175-matched "5000)

(sdl-175-matcbed ('5000))

=>

(assert (f&il sdi-175)))

(defrule sd1-176 ""

(sdi-176 options $?optlons)

(sdi-176 (options S?optlons))

(sdi-176 case ?Rsb

:(not (= (positions ?ash ?options) 0)))

(sdi-178 (case 9_sb

:(not (= (positions ?asb ?options) 0))))

=>

(assert (sdl-17B-matched ?ash))

(assert (sdl-17B-matched (?ash))))

124

._RT/ADA DESIGN PROJECT - PI.-L_.SE I FINAL REPc)RT

(defrule sd1-176-3 ""

(sdl-176-matched "5000)

(sdl-t76-m&tched (-5000) 1

=>

(asser% (fail Sd1-176)))

(defrule sdi-177 ""

(sdl-177 optlons $_optlons)

(sdl-t77 (optlons S?opttons))

(sd1-£77 case _ASB

:(: 0 (POSITIONS ?ash ?OPTIQNS)))

(sdl-t77 (case ?ASB

:(: 0 (POSITIONS _asb _OPTION$))))

_->

(assert (sdl-177-matched ?asb))

(assert (sdl-177-matched (?ash))))

(defrule sdi-177-3 ""

(sdl-177-matched -5000)

(sdl-lT7-matched (-5_'3))

=>

(assert (fail sdi-177)))

(defrule sdl-178 '"

(or (not (sdl-t78 ?a

:(not (symbolp ?a))))

(nOt (sdi-178 (?a

:(not (symbolp ?a))))))

=>

(assert (fall sdl-178)))

(defrule sdi-179 ""

(sdl-t79 optlons $?optlons)

(sdl-179 case ?ASB)

(sd1-179 (options S?options))

(sdi-179 (case ?ASB))

(test (not (= 0 (POSITIONS ?asb ?OPTIONS))))

(assert (sd1-179-matched ?asb))

(assert (sdl-179-matched (?ash))))

(defrule sdi-179-3 ""

(sdl-179-matcbed -5000)

(sdl-179-m&tched (-5000))

=>

(assert (fall sdi-179)))

(defrule sdl-180 ""

(sdl-180 opt%ons S?op_1ons)

(sdl-180 case ?ASB)

(sdl-I80 (options $?optlons))

(sdl-180 (case ?ASB))

(test (= (POSITIONS ?_sb ?OPTIONS) 0))

=>

(assert (sdl-180-matched ?_sb))

(assert (sdl-180-matched (?asb))))

(defrule sdl-180-3 ""

(sdl-180-matched -5000)

(sd[-180-m_tched (-5000))

=)

(assert (fall sdi-tSO)))

(defrule sdl-181 ""

125

ART,,ADA DESIGN PROJECT - PHASE ! FL_AL REPORT

(sdl-181 5000)

(sdl-_81 (5000))

(or (not (sdl-18! "5000))

(not (sdl-lSl ('5000))))

(assert (fall sdl-t81)))

_defrule sdl-182 ""

<declare (s&lience $00))

(sdl-182 ?est a -"psi' ?psi _ -"est')

(sdl-182 (?est & "'psi" ?psi _ -'est"))

z>

(assert (sdl-182-matched ?es% 9psi))

(assert (sdl-182-matched (?est ?psi))))

C4efrule sdi-182-i ""

(or

(sdl-t82-matched "pst" "psi')

(sdl-182-m_tched "est" 'est')

(sdl-182-matched 'psi" "est')

(sdl-182-matched ('psi' "psi'))

(sdl-182-matched ('est" "est'))

(sdl-$82-m&tched ('ps%" "es%'))

(not (sdl-182-matcbed "est' 'psi'))

(not (sdl-182-matched ('est" "psi'))))

=)

(assert (fall sdl-t82)))

(defrule sdl-183 '"

(sdl-183 "=(+ I I))

(sdl-183 ('=(+ I i)))

=>

(assert (fall sdl-i83)))

(defrule sdl-i84 ""

(sdl-184 -2)

(sd1-184 ('2))

=>

(assert (tail sdl-184)))

(defrule sdl-185 ""

(sdl-185 ''string')

(sdl-185 (''string'))

=)

(assert (tail sdl-t85)))

(defrule sdl-186 ""

(declare (sallence I00))

(sdl-188 ?string _ "string')

(sdl-186 (?string _ ''string'))

=>

(_sser_ (sdl-186-ma_¢hed ?string))

(assert (sdl-186-m_tcbed (?Strlng))))

(defrule sdl-186-1 '"

(or

(sdl-lB6-matched "string')

(sdl-186-matcbed ('string'))

(not (sdl-186-m&tched 'foo'))

(not (sdl-186-matched ('foo'))))

(assert (fall sdi-188)))

(defrule sdl-187 ""

IO.6

ART/ADA DESIGN PROJECT - PHASE I FI.N'._L REPORT

(dectare (salience 100))

(sdi-187 ?strlngl I "string" Vstrlzg2 • -'string')

(sdl-187 (?strlngl _ "'string" _strlng2 • -"string'))

=>

(assert (sdl-t87-matched _strlngt ?string2))

(assert (sdl-IgT-matc_ed (?strlngI ?string2))))

(defrule sdi-187-1 '"

(or

(sdl-[B7-matched 's_ring" "foo')

(sdl-_87-matched ('string' 'foo'))

(not (sdl-187-matched °foo" "foo°))

(not (sdl-187-matched ('foo' "foo'))))

=>

(assert (fall sdl-187)))

(defrule sdl-L88 '"

(sdi-188 "=(string-append 'foo" 'bar'))

(sdl-188 (-=(string-append 'foo' "bar')))

=>

(assert (fall sdl-188)))

(defrule sdi-189 '"

(sdl-189 ?a ; ":(÷ i l))

(sdl-189 (?a _ -:(+ I I)))

=>

(assert (fall sdl-189)))

(defrule sdl-190 ''

(sdl-tgo ?a ; :(not (numberp ?a)))

(sdl-t90 (?a • :(not (numberp ?a))))

=>

(assert (sdl-190-matc_ed ?a))

(assert (sdl-LgO-matcbed (?a))))

(defrule sdl-190-1 ""

(or

(sdl-t90-matched I)

(sdl-190-matched (i))

(not (sdl-190-matched foo))

(not (sdl-i90-matched (foo))))

=>

(assert (fail sdl-190)))

(defrule sdl-191 '"

(sdl-191 "t & "0 I • -'foo" • "bar _ "2 • "12345 6789 • -'fee" • -blee)

(sdl-191 ('i • "Of • -'foo" _ "bar • -2 ; -123456789 • -'fee" • -blee))

=>

($ssert (f&il sdl-191)))

(defrule sdl-192 ""

(sdl-192 ?char-hum t :(or (<= 97 ?char-num 102)

(<= 65 ?char-hum 70)

(<= 48 _char-num 57)))

(sdl-192-seq (?char-hum • :(or (<= 97 ?char-hum 102)
(<= 55 ?char-hum 70)

(<= 48 ?char-hum 57))))

=>

(assert (sdl-t92-m_tched ?char-num))

(assert (sdl-192-matcbed (?char-hum))))

(defrule sdl-lg2-1 '"

(or

(sdl-192-matched 40)

1'2-7

ART/._DADESIGNPROJECT- PHASE I FINAL REPORT .

(not (sdl-192-matched 50))

(sdl-192-maCcbed 60)

(not (sdl-192-matched 70))

(sdl-192-m_tched 80)

(sd1-192-matcbed 90)

(not (sdl-tg2-m_tched 100))

(sdl-lg2-matcbed (40))

Cnot (sd1-Zg2-m_tched (50)))

(sdl-192-_atched (60))

{not _sdl-192-_atched (70)))

(sdl-lS2-matched (BO))

(sdt-t92-matched (90))

(not (sdl-Z92-matched (100))))

(assert (fail sd1-192)))

• ; BDC additions to the rule b&se follow...

(defrule bdc-200-1

'Does HALT work?"

(declare (salience -t000))

=>

(priatout t t "TEST IS OVER" t)

(h_l_))

(defrule bdc-200-2

(decl&re (s&lle.nce -t00t))

=>

(ass_rt (f_il bdc-200)))

(deffac£s bdc-201

(bdc-201 & b c d e))

(deffacCs bdc-20l-sequences

(bdc-201 (_ b c d e)))

(defrul_ bdc-201-t "'

(bdc-20t $?d_t&)

(bdc-20t ($?dat&))

=>

(if (not (members b ?d&t&))

then (assert (fR%1 bdc-2Ol&)))

(if (memberS z ?d_t_)

then (assert (f_il bdc-201b))))

;matches a b c d • f

m

t28

