
NASA Technical Memorandum

,,! / /

/

104166

USER'S GUIDE FOR NETS/PROSSS

James L. Rogers
William J. LaMarsh II

(NASA-TM-IO_I66) USER'S GUIDE

NFTS/PROSSS (NASA) 31 p

FOR

CSCL 09_

G3161

N92-136qO

Unclas

005307_

October 1991

N/ A
National Aeronautics and
Space Adminislralion

Langley Research Center
Hampton, Virginia 23665-5225

https://ntrs.nasa.gov/search.jsp?R=19920004472 2020-03-17T13:45:57+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42815037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2"-.., ,.4r

1. INTRODUCTION

Expensive analysis programs are often combined with optimization

procedures to solve engineering problems. To obtain an optimal
solution requires numerous iterations between the analysis program

and the optimizer. This often becomes prohibitive due to the cost

and amount of computer time needed to converge to an optimal

solution. Therefore, any new software package that could

significantly reduce the amount of computer time required to reach

an optimal solution would be beneficial.

PROSSS (Programming System for StruCtural Synthesis, ref. 1,2,3)

was developed several years ago to provide an open-ended system

for coupling analysis and optimization. Although PROSSS was

designed to handle any type of analysis program, most of the work
has evolved around coupling a finite element structural analysis

program with an optimization program. In NETS/PROSSS, the

structural analysis program has been replaced by NETS (ref. 4), a
neural network program developed at NASA Johnson Space Center,

and coupled with CONMIN (ref. 5), an optimization program. The
neural network approximates the results from the analysis program

allowing the user to reach a near-optimal solution in much less time
than before. The user can then use these results as a starting point

in a normal optimization process and converge to an optimal solution

with significantly fewer iterations.

The purpose of this paper is to serve as a user's guide for

NETS/PROSSS. The key features include the neural network,

determining the training pairs for the neural network, and the

approximated analysis/optimization process. A small problem is

given to serve as an example of how to apply the system.

2

2. THE NEURAL NETWORK

The user must first become familiar with the neural network

program, NETS, which was developed at NASA Johnson Space Center

and is available thorough COSMIC. NETS is an interactive, back

propagation neural network simulator. The details for using NETS
are given in the NETS user's guide (ref. 4).

After becoming familiar with NETS, the next step is to determine
the format of the neural networl_. The neural network format

consists of input nodes and output nodes, and should have hidden

layer nodes. Hidden layers are not directly related to the input or
the output of the network, but help perform the desired mapping

between an input and its corresponding output to yield a better

approximation. The input nodes typically consist of the design

variables, while the output nodes consist of values for the
constraint functions, behavior variables, and the objective function.

The number of nodes to use in the hidden layer is still a research

issue. A good first estimate is a number between the average and

the sum of the number of nodes in the input and output layers. The

neural network format is saved on a file and input to NETS with the
"c" option in the NETS menu.

The neural network is trained with training pairs. Training pairs

consist of known inputs and known outputs. The best results are

obtained when these values have been scaled to be between 0.1 and

0.9. The training pairs are input to NETS with the "i" option in the

NETS menu. More details on how to generate and scale training pairs

appear in Section 3.

The training pairs are propagated through NETS using the "t" option

in the NETS menu to generate a weight matrix connecting the input

nodes to the output nodes. The weight matrix generated by training

the neural network determines the functional relationship among the

input and output nodes. Usually training is done to 1% error using
the NETS default training values. This weight matrix can then be

saved in a portable format with the "s" option in the NETS menu.

The name ANALYSIS.PWT should be used for saving this file.

At this point, the user can generate a C routine for simulating the

analysis program with the "g" option in the NETS menu. Details
about this routine are in Section 4. NETS is then terminated with

the "q" option in the NETS menu.

3

3. GENERATING TRAINING PAIRS

One of the keys to approximating the analysis results with a neural

network is the generation of the training pairs. Training pairs

consist of known inputs and known outputs. There are two ways to

generate the training pairs. (1) Execute an analysis program several

times with different design variables selected randomly over the

range of design variables. (2) Begin the optimization process (use

PROSSS) and save the analysis results from several cycles.

Preliminary tests with the sample problem indicate that the second

method generates a better set of training pairs if large move limits

(30%) are used. (Note: If finite differences are used to generate

gradients, each of the analysis results obtained with perturbed
design variables can also be used as a training pair.)

It is very difficult to determine how many training pairs will be

needed For the sample problem described in section 6, both seven

and thirty-two training pairs were used with good accuracy. These

training pairs were obtained from five cycles through PROSSS

(taking the baseline analysis and the five gradient analyses from

each cycle) plus the initial baseline analysis data, and a final

analysis execution with all design variables at the lower bounds.

The lower bound execution was required because the neural network

interpolates to obtain the output data.

The range of the data might also be an important factor because each
value must be scaled to be between 0.1 and 0.9 for NETS.

This is done by generating a file of training pairs for input to a

scaling program provided in the delivery package to generate a file

for input to NETS. The scaling equation is:

y = .1 + .8 * (x - xmin) / (xmax - xmin) (i)

where xmin and xmax are the minimum and maximum range values

for the different input and output nodes.

4

4. MODIFYING THE SUBROUTINE TO CALL NETS

Section 2 mentions a routine for calling NETS from another program

which is generated with the "g" option from the NETS menu. Name
this routine ANALYNN. When called by NNOPT, the main program in

NETS/PROSSS, ANALYNN will propagate input node data (the design

variables) through the neural network and obtain output node data

(constraints, behavior variables and an objective function) for input

to the optimizer. However, several changes must be made to

ANALYNN before it can be integrated into the NETS/PROSSS program.

A sample of the ANALYNN routine is listed in Appendix A with

comments to indicate the required changes.

Since NETS and its utilities are written in C, a C compiler is

required. After making the modifications to the ANALYNN routine,
save it on a file with a ".c" suffix to distinguish it as C source code.
Make sure the name of the routine is ANALYNN to match the call

statement in the NNOPT main program. Replace the NETS routine

net.¢ with net-prosss.c which is supplied in the delivery package.

This routine changes the way NETS prints out information. It

removes titles and places the information in a column format. This

reduces the amount of I/O in NETS/PROSSS, hence speeding up the
execution. The user must then link all FORTRAN and C routines

together. The method for this depends on the computer being used.

If the operating system is case sensitive, such as UNIX, then all file

names should be lower case. Since most FORTRAN compilers are not
case sensitive, the calls to routine ANALYNN and other external

routines can remain upper case.

5

5. NETS/PROSSS

NETS/PROSSS is a variation of the original PROSSS described in

references 1,2, and 3. The program requires several files for data

storage and transfer.

(1) The input values for CONMIN (ref. 5) are read from unit 7.

In addition, this file contains values for the move limits

(BL and BU), the finite difference step size (XlNC), the
minimum and maximum values for each of the input and

output nodes of the neural net (problem dependent), and

the number of optimization cycles (MAXCYC) desired.

(2) CONMIN output is on unit 6.

(3) The weights (portable format) for the neural network are
on file ANALYSIS.PWT.

(4) Unit 8 contains data output from NETS for input to

CONMIN.

(5) Unit 9 contains data output from CONMIN for input to
NETS.

The user is required to write two routines for NETS/PROSSS. The
first routine is called OPT2ANL. An example of this problem

dependent routine is in Appendix B. This routine scales (equation 1)

the input node data to a form suitable for input to NETS (between 0.1
and 0.9). In addition, this routine reads the minimum and maximum

values for the input and output nodes from unit 7 on the first cycle

through the system. This requires that the cycle number be input to
the routine. The minimum and maximum values are stored in a

common block called RANGES. If the parameter list for the user-

supplied OPT2ANL routine is different from that in the main program

then the calling statement must be changed also.

6

The second routine is ANL2OPT. An example of this problem
dependent routine is in Appendix C. This routine unscales the data
output from the neural network for input into CONMIN. The unscaling
equation is:

x = xmin + ((y - ,1) * (xmax - xmin)) / .8 (2)

The routine requires an option parameter, IOPT, where IOPT=I

implies unscaling baseline daia (initial design variables in a cycle)
and IOPT--2 implies unscaling gradient data (perturbed design

variables). Data are read from unit 8. Two additional initial reads
and one additional final read are required because of the NETS output

format. The minimum and maximum values, input through routine

OPT2ANL, are passed to ANL2OPT through the RANGES common block.

If the parameter list for ANL2OPT routine is changed then the

calling statement in the main program must also be changed.

7

A flowchart for NETS/PROSSS is shown in figure 1. A listing of the
problem independent code is Appendix D. The main program, NNOPT,
calls the routines shown in the figure. CONMIN values are input in
subroutine INCNMN. The design values are scaled for input to NETS
by routine OPT2ANL. The design values are propagated through NETS
by calling routine ANALYNN. The NETS output is unscaled for input to
CONMIN by routine ANL2OPT. Gradients are computed in routine
EVALSUB. The program then iterates through CONMIN and a linear
extrapolation analysis routine called ANALY. If the objective
function has converged to an optimum (the objective function has
not changed by more than a certain tolerance for three iterations)
the system stops, otherwise the design variables are saved and a
new cycle begins.

Stop

Yes

CONMIN
No

_L
_r

Converge? ANALY

EVALSUB

Figure 1 - NETS / PROSSS flowchart (Main program is NNOP'r)

8

Figure 2 indicates how NETS/PROSSS can be integrated into an

optimization process.

J Analyses J

i

PROSSS

iiii

J Neural Net J(NETS)

J Optimization(CONMIN) I

NETS / PROSSS

Figure 2 - Flowchart of optimization process with NETS/PROSSS

9

6. SAMPLE PROBLEM

A 3000 DOF cantilever beam (figure 3) serves as an example to
demonstrate how to apply NETS/PROSSS. This finite element model
for this beam has 1025 joints, 640 3D solid brick (1xlx2) elements

(arranged 4x4x40). This problem has five design variables which
determine the shape of the beam, forty cumulative stress
constraints and one objective function (weight). The loads are

applied in component 3 at the 25 joints on the outer edge of the
beam as shown in figure 3.

J

J

J

J

J
Side view

J

End view

537 3418 4590 3418 537
1074 6836 9180 6836 1074
1074 6836 9180 6836 1074
1074 6836 9180 6836 1074

537 3418 4590 3418 537

Loads onjoints _ end view

Figure 3 - Test problem and model with loading conditions

10

The following steps indicate what is needed to execute

NETS/PROSSS for this problem. Bold-face names indicate files

which are available in the delivery package.

(1) The neural network has 5 input nodes, 41 output nodes, and 46

nodes on the hidden layer and is stored in file BEAM.NET.

(2) EAL/PROSSS (ref. 3) is executed to generate the training

pairs. After creating an executable for program SCALE.FOR,

this program is used to scale the data between 0.1 and 0.9,
these pairs are stored in file BEAM.lOP for input into NETS to

train the network and determine the weight matrix. (Note: The

SCALE.FOR routine is problem dependent and needs to be
modified to read the data in a format output from the analysis

program. An example of this program for this particular

sample problem appears in Appendix E.) The weight matrix is
then stored in a portable format in file ANALYSIS.PWT using

the "s" option in NETS.

(3) The "g" option in the NETS menu is used to create the routine
ANALYNN. After making the changes discussed in Section 4,

the routine is stored in file BEAMNN.C (Appendix A).

(4) A file, BEAM.IN, containing the input values for CONMIN, the

move limits, finite different step size, the minimum and

maximum values for each of the input and output nodes of the

neural network, and the number of optimization iterations is

created.

(5) Routines OPT2ANL and ANL2OPT are written and stored in

files OPT2ANL.FOR and ANL2OPT.FOR, respectively.

(6) The problem dependent files: BEAMNN.C (Appendix A),

OPT2ANL.FOR (Appendix B), and ANL2OPT.FOR (Appendix C);

the optimizer, CONMIN; and the problem independent routines
stored on file NNPROSSS.FOR (Appendix D) are compiled and

linked to form the executable program.

(7) BEAM.IN is assigned to unit 7 and the program can be

executed.

11

The complete optimization process with 5% move limits using
PROSSS alone is shown in figure 4. The starting point has all design
variables at 8. The final objective function is 219.61, with design
variables of 6.68, 5.53, 4.53, 4..00, 4.00 (4.00 is the lower bounds for

the optimizer).

380

360

340

320"

300"
Weight

280

260

240

220

200
0 2 4 6 8 10 12 14 16 18

Figure 4 - Optimization process with PROSSS

-! ,

12

a

1.

.

.

.

.

REFERENCES

Sobieszczanski-Sobieski, J.; and Bhat, R. B.: "Adaptable

Structural Synthesis Using Advanced Analysis and

Optimization Coupled By a Computer Operating System." ___

Collection of Technical PaDers on Structures

AIAA/ASME/ASCE/AHS 20th SDM Conference, April 1979,

pp. 20-71, AIAA Paper No. 79-0723.

Rogers, J. L. Jr.; Sobieszczanski-Sobieski, J.; and Bhat, R. B.:
"An Implementation of the Programming Structural Synthesis

System (PROSSS)." NASA TM 83180, December 1981.

Rogers, J. L. Jr.: "Combining Analysis with Optimization at

Langley Research Center - An Evolutionary Process."

Proceedings of the Second International ASME Computers in

Engineering Conference, Vol. 3, pp. 83-91, San Diego, CA,

August 1982.

Baffes, P. T.: "NETS 2.0 User's Guide." LSC-23366,

NASA Lyndon B. Johnson Space Center, September 1989.

Vanderplaats, G. N.: "CONMIN - A FORTRAN Program for
Constrained Function Minimization User's Manual."

NASA TM X-62282, August 1973.

13

Appendix A - Source listing for the ANALYNN routine for
calling NETS

/* NETS Network Delivery File */
r */

/* a product of the AI Section */
/* NASA, Johnson Space Center */

/* */

/* principal author: */
/* Paul Baffes *1

/* *t

/* contributing authors: */
/* Brian Dulock */

/* Chris Ortiz *1

/° Modified for the NETS/PROSSS*/

/* application. Developed at */

/* NASA Langley Research Center'/
/* */

/* NETS/PROSSS developed by: */

/* Jim Rogers */
/* */

/* Modified by: */
/" Bill LaMarsh II */

/*- NETS/PROSSS mods */

/* Make sure these ".h" files are in you current directory or */

/* modify these 5 lines to point to where they reside. *I
/*- end NETS/PROSSS mod */

#include "common+h"

#include "weights.h"

#include "layer.h"
#include "net.h"

#include "netio.h"

#define INPUT_SIZE 5

#define OUTPUTSIZE 41

i*. NETS/PROSSS mods */

/* Include the external calls to: *I

extern int IO__get default__int0;

extern void N_querynet();
/*- end NETS/PROSSS mod */

extern Net

extern Net

extern int

extern void

*B_create_net();

*B_free_net();

N_reset_wts0;

P_prop_input();

14

extern void

extern void

extern Sint

exlern float

extern void

PA_initialize0;

D_initialize();

C_float to Sint0;
C_Sint to float();

sys_init rand0;

/#*o =_ *!

/* Global Variables */

/*. -/

float beam16_Inputs[INPUT_SIZE];

float beam16_Outputs[OUTPUT._SIZE];

Net *beam16 NetPtr;

/t* ... e!

/* Here is an example of a main routine. Note that the network */

/* is initialized once BEFORE before the propagate routine is °/

C called and cleaned up once AFTER ALL calls to propagate are "/

/* completed. That is, you only need to call initialize once "t
/* to build the network and once to throw it away. Note also */

t* that the inputs and outputs are communicated via the two "/

/* global arrays defined at the top of the file. */
/* */

/* This routine should be replaced with your own routines(s) */

/* designed for your application. *t
/'- .. */

/*- NETS/PROSSS roods */

/* Modify subroutine name to analynn0 from main() to analynn0 "/

/* Also, the user should be aware that the names of pointers */

/* and subroutines will change. In this example, all pointers */

/* and subroutines will begin with "beam16" (example in User's */

r Guide). */
/°- end NETS/PROSSS mod *I

analynn0

{
int i;

void beam16_initialize0;

void beam16_propagate0;

void beam16_._cleanup();

/* These names will change "1

/* to whatever your net is */
/* called. */

beam 16_initialize0;

for (i = 0; i < INPUT_SIZE; i++)

beam16 Inputs[i] = .9;

beam16_propagate0;

/*- NETS/PROSSS roods "1

/* These two lines are not necessary. They only print out */

1" the neural net give for the output. This only clutters */

1" the output file. Leave them in for checkout (or curiousity) */

/* purposes. "/

15

/* */

r for (i = O; i < OUTPUT_SIZE; i++) */

/* printf("\n output %d = %10.61", i, beam16_Outputs[i]); */
/*- end NETS/PROSSS mod */

beam1 6_cleanup0;

} t* example main program */

/e ... */

/* call this routine once to setup the network */
/*. , */

void beam1 6_initialize0

{
/*- NETS/PROSSS roods */

/* Modification to the "_initialize" routine was necessary to */

/* include the weights (.pwt), input (fort.8) and */

/* output (fort.g) all using files as opposed to interactive. */
/* */

/* Another int was declared (tl) as well as a FILE pointer */

/* (fp). */
/- *t

int tl ;

FILE *fp;
/* */

/*- end NETS/PROSSS rood

int i;

................. */

/* *I

/* call initialization code °/

/*_ */

beam16_NetPtr = NULL;

sys_init_rand0;

PA_initialize0;

D_initialize();

/* e/t

/* create network.*/

/* uses network *1

/* configuration */

/* file (.net) */
/* that was used */

/* for training. */
1%............... */

beam16_NetPtr = B_create_net(1, "beam16.net");

beam16_NetPtr->use_biases = TRUE;

beam16_NetPtr->num_inputs = INPUT SIZE;

beam16_NetPtr->num_outputs = OUTPUT SIZE;

/* .. */

/* reset weights and the input, output arrays */
i °- ... *1

/*. NETS/PROSSS mods *1

16

/* Here is where the files are being used.

/* these lines:

/*

/*

/*

/*

/*

/*

/*

/* and replace with:
/*

t*

Comment or delete */

*/

*/

N_reset_wts(beaml 6_NetPtr, "temp.pwt", PORTABLE_FORMAT);

for (i = O; i < INPUT_SIZE; i++) *1

beam16_lnputs[i] = 0.0; */

for (i = 0; i < OUTPUT_SIZE; i++) *I

beam16_Outputs[i] = 0.0; */
*t

*1

*1

end NETS/PROSSS mod */

°/

tl = (N_resetwts(beam16 NetPtr, "analysis.pwt", PORTABLE_FORMAT));

if (tl == ERROR) printf ("ERROR in resetting weights ");

fp = fopen("fort.8", "wt");

N_query_net(beam16_NetPtr, "fort.9", fp, -1);

fclose(fp);
for (i = 0;i < INPUT_SIZE; i++)

beam16_lnputs[i] = 0.0;
for (i = O;i < OUTPUT_SIZE; i++)

beam16_Outputs[i] = 0.0;

} /* beam16_initialize */

I° call this routine every time you want to query */

/* the network. Note that it assumes the "Input" */

/* array is already loaded with input values */
1" .. */

void beam16_propagate()

{
int i;

Layer *input, *output;

/* get pointers to network input and output */
/*- ... */

input = beam16_NetPtr->input_layer;

output = beam16_NetPtr->output layer;

/*.... *t t

t* load input values; propagate network *1
/*- "/

for (i = O; i < INPUT_SIZE; i++)

input->node_outputs[i] = C_float to Sint(beam16__lnputs[i]);

P_prop_input(beaml 6_NetPtr);

/. e/

1" setup output values "/
/*- */

for (i = 0; i < OUTPUT_SIZE; i++)

17

} /*

beam16_Outputs[i] = C_Sint to float(output->node outputs[i]);

"t

beam16__propagate */

/t t .. _h t

/* call this routine once to free the space */

/* used by the network. */
/*. */

void beam16_cleanupO

{
B_free_net(beam 16_NetPtr);

} /* beam16_cleanup "/

18

Appendix B - Source listing for problem dependent
subroutine OPT2ANL

SUBROUTINE OPT2ANL(ICYCLE,NDV,N1 ,XINC,X)

C

C THIS SUBROUTINE CONVERTS DESIGN VARIABLES OUTPUT FROM CONMIN

C TO INPUT FOR THE NEURAL NET BY SCALING THE DESIGN

C VARIABLES AND THEIR PERTURBATIONS TO BETWEEN. 1 AND .9

C

COMMON/RANGES/DVMAX, DVMIN,OBJMAX,OBJMIN,CONMAX,CONMNN

DIMENSION X(N1)
C

C INPUT RANGES ON FIRST PASS

C

IF(ICYCLE.EQ.1) THEN

READ(7,40) DVMAX

READ(7,40) DVMIN
READ(7,40) OBJMAX

READ(7,40) OBJMIN

READ(7,40) CONMAX

READ(7,40) CONMNN
ENDIF

REWIND 9

C

C WRITE SCALED DESIGN VARIABLES

C

WRITE(9,10)

DO I= 1,NDV

DVSCAL = .I+.8*((X(I)-DVMIN)/(DVMAX-DVMIN))
IF(DVSCAL.LT..1) DVSCAL = .1

IF(DVSCAL.GT..9) DVSCAL = .9
WRITE(9,20) DVSCAL

ENDDO

WRITE(9,30)
C

C LOOP THROUGH DESIGN VARIABLES
C MAKE PERTURBATIONS TO COMPUTE FINITE DIFFERENCES

C

DO J = 1,NDV

X(J) = X(J)*(I.-XINC)

WRITE(9,10)
DO I = 1,NDV

DVSCAL = .1 +.8*((X(I)-DVMIN)/(DVMAX-DVMIN))

IF(DVSCAL.LT.. 1) DVSCAL = .1

IF(DVSCAL.GT..9) DVSCAL = .9

WRITE(9,20) DVSCAL

ENDDO

WRITE(9,30)

X(J) = X(J)/(1.-XINC)

ENDDO

REWIND 9

C

10 FORMAT(1H0

20 FORMAT(F10.5)

30 FORMAT(1H))

40 FORMAT(10X,F10.5)
RETURN

END

19

20

Appendix C - Source listing for problem dependent
subroutine ANL2OPT

SUBROUTINE ANL2OPT(IOPT,NCON,N2,G,GI,OBJ,OBJI)

C
C THIS SUBROUTINE CONVERTS DATA OUTPUT FROM THE NEURAL NET

C TO INPUT FOR CONMIN BY UNSCALING FROM .1 TO .9

C

.............
DIMENSION G(N2),GI(N2),UNSCLC(3)
CHARACTER*80 TEMP

C

C IOPT = 1 => BASE DATA

C IOPT = 2 => PERTURBED DATA

C

C UNSCALE INPUT VALUES. Two initial read are required since

C the output from nets has a blank line then an 'Output' statement.
C

READ(8,30) TEMP

READ(8,30) TEMP
C

C UNSCALE CONSTRAINTS

C

READ(8,40) UNSCLC(1),UNSCLC(2),UNSCLC(3),UNSCLO

DO II = 1,NCON

IF(IOPT. EQ. 1)

1 GI(II) = CONMNN + (((UNSCLC(II)-.1)*(CONMAX-CONMNN))/.8)

IF(IOPT.EQ.2)

1 G(Ii) = CONMNN + (((UNSCLC(II)-.1)*(CONMAX-CONMNN))/.8)
ENDDO

C

C UNSCALE OBJECTIVE FUNCTION

C

IF(IOPT.EQ. 1)

10BJI = OBJMIN + (((UNSCLO-.1)*(OBJMAX-OBJMIN))/.8)

IF(IOPT.EQ.2)
10BJ = OBJMIN + (((UNSCLO-.1)*(OBJMAX-OBJMIN))/.8)

C

C

C

One more read is required to read the last ')'.

READ(8,30) TEMP
C

30 FORMAT(80A)

40 FORMAT(3X, FS.6,3X,F8.6,3X,F8.6,3 X,FS.6)
RETURN

END

21

Appendix D - Source listing for problem independent
routines of NETS/PROSSS

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

PROGRAM NNOPT

PROGRAM TO INTERFACE OPTIMIZER WITH NEURAL NET TO

PERFORM CONSTRAINED MINIMIZATION OF A FUNCTION FOR FINITE DIFFERENCE

INPUTS : VECTORS OFZ)ESIGN VARIABLES AND BOUNDS

VECTORS OF OBJECTIVE FUNCTION AND GRADIENTS

VECTORS OF CONSTRAINTS AND GRADIENTS

A TAYLOR SERIES EXPANSION IS USED FOR APPROXIMATE ANALYSIS

FILES USED BY THIS PROGRAM

FILE 6 CONTAINS OUTPUT FROM CONMIN

FILE 7 CONTAINS INPUT DATA FOR CONMIN

FILE 8 CONTAINS DATA OUTPUT FROM THE NEURAL NET
FILE 9 CONTAINS DATA INPUT FOR THE NEURAL NET

REAL*4 A(20000)
COMMON/OPTREAL/BL,BU,XINC

COMMON/CNMN1/DELFUN,DABFUN,FDCH,FDCHM,CT,CTMIN,CTL, CTLMIN,ALPHAX,

1 ABOBJ1 ,THETA,OBJ, N DV, NCON,NSIDE,IPRINT, NFDG,NSCAL,
2 LINOBJ, ITMAX,ITRM, ICNDIR,IGOTO,NAC,INFO,INFOG,ITER

COMMON/CONSAV/RSAV(50),ISAV(25)

DIMENSION KA(1)

EQUIVALENCE (A(1), KA(1))
EXTERNALANALYNN !$PRAGMAC(ANALYNN)

Initialize convergence data.

OBJ1 = 10.

OBJ2 = 50.

OBJ3 = 10.

TOL = .001

C

IADX = 1

IADVLB = IADX + N1

C

C INPUT PARAMETERS FOR CONMIN

C

CALL INCNMN

C

C SET UP BLANK COMMON

C

N1 = NDV + 2

N2 = NCON + 2*NDV

N3 = N2

N4 = N2

N5 = 2"N2

NDVP1 = NDV + 1

22

IADVUB = IADVLB + N1

IADG -- IADVUB + Nt

IADSCA = IADG + N2

IADDF = IADSCA + N1

IADA = IADDF + N 1

lADS = IADA + Nt*N3

IADG1 = lADS + N1

IADG2 = IADG1 + N2

IADB = IADG2 + N2

IADC = IADB + N3*N3

IADISC = IADC + N4

IADIC = IADISC + N2

IADMS1 = IADIC + N3

IADXl = IADMSl + N5

IAVLBI = IADXl + N1

IAVUBI = IAVLBI + N1

IADGI = IAVUBI + N1

IAGRDO = IADGI + N2

IAGRDG = IAGRDO + N1

KREQ = IAGRDG + (NI'N2)
C

C ZERO OUT BLANK COMMON

C

DO II = 1,KREQ

A(II) = O.

KA(II) = 0
ENDDO

C

C INPUT DATA FOR OPTIMIZATION

C

DO II = I ,NDV

READ(7,J O) A(IAVLBI+II-I)
ENDDO

DO II = I,NDV

READ(7,10) A(IAVUBI+II-I)
ENDDO

DO II = I,NCON

READ(7,20) KA(IADISC+II-I)
ENDDO

C

(3 READ IN INITIAL DESIGN VARIABLES

C

DO II = 1,NDV

READ(7,10) A(IADXI÷II-1)
ENDDO

C

C READ IN MAXIMUM OPTIMIZATION ITERATIONS

C

READ(7,20) MAXCYC
C
C LOOP THROUGH OPTIMIZTION CYCLE

C

DO ICYC = 1,MAXCYC

C

23

C SCALE DATA FOR INPUT TO NEURAL NET

C

CALL OPT2ANL(ICYC,NDV,N 1,XINC,A(IADXl))
C

C SIMULATE ANALYSIS BY PROPAGATING

C DATA THROUGH NEURAL NET

C

CALL ANALYNN0
C

C INPUT BASE DATA COMPUTED BY NEURAL NET

C

REWIND 8

CALL ANL2OPT(1 ,NCON,N2,A(IADG),A(IADGI),OBJ,OBJI)
C

C CALL SUBROUTINE TO COMPUTE GRADIENTS

C

DO ICOUNT = 1,NDV

CALL ANL2OPT(2,NCON,N2,A(IADG),A(IADGI),OBJ,OBJI)

CALL EVALSUB(N 1,N2,NDV,NCON,A(IADX),A(IADXI),A(IADG),A(IADGI),

1 A(IAGRDO),A(IAGRDG),OBJ,OBJI,XlNC,ICOUNT)
ENDDO

REWIND 8

C

C STORE INITIAL VALUES FOR OPTIMIZATION

C

DO II = 1,NDV

A(IADX+II-1) = A(IADXI+II-1)

A(IADVLB+II-1) = A(IAVLBI+II-1)

A(IADVUB+II-1) = A(IAVUBI+II-1)
ENDDO

DO II = 1,NCON

A(IADG+II-1) = A(IADGI+II- 1)
ENDDO

OBJ = OBJI

C

C COMPARE PHYSICAL BOUNDARIES WITH MOVE LIMITS

C CHANGE PHYSICAL BOUNDARIES IF NECESSARY

C

DO II = 1,NDV

TVLB = BL * A(IADXI+II-1)

IF(TVLB.GT.A(IADVLB+II-1)) A(IADVLB+II-1) = TVLB

TVUB = BU * A(IADXI+II-1)

IF(TVUB.LT.A(IADVUB+II-1)) A(IADVUB+II-1) = TVUB
ENDDO

C

C LOOP THROUGH OPTIMIZER AND LINEAR ANALYSIS
C

DO LOOP=1,50

C

C CALL TO OPTIMIZER

C

CALL CONMIN(A(IADX),A(IADVLB),A(IADVUB),A(IADG),A(IADSCA),

1 A(IADDF),A(IADA),A(IADS),A(IADG 1),A(IADG2),A(IADB),

2 A(IADC),KA(IADISC),KA(IADIC),KA(IADMS1),N1,N2,N3,N4,NS)

24

C
C SKIP OUT OF LOOP IF OPTIMIZATION IS COMPLETE

C

IF(IGOTO.EQ.0) GO TO 60
C

C LINEAR EXTRAPOLATION ANALYSIS

C

CALL ANALY(OBJI,A(IADGI),A(IADG),A(IADXl),A(IADX),

1 A(IAGRDO),A(IAGRDG),A(IADDF),KA(IADIC),A(IADA),N 1,N2,N3)
C

ENDDO

C

C RESET DESIGN VARIABLE DATA FOR USE BY NEURAL NET

C

60 DO II = 1,NDV

A(IADXI+II-1) = A(IADX+II-1)
ENDDO

C

C SAVE DATA FOR PLOTTING

C

WRITE(12,*) OBJ
C

C CHECK FOR TERMINATION BECAUSE NO CHANGE IN

C OBJECTIVE FUNCTION IN THREE PASSES

C

OBJ3=OBJ2

OBJ2=OBJ1

OBJ1 =OBJI

C

DA=ABS((OBJ3-OBJ2)/OBJ2)

DB=ABS((OBJ2-OBJ 1)/OBJ 2)
IF ((DA.LE.TOL).AND.(DB.LE.TOL)) GO TO 40

ENDDO

C

10 FORMAT(10X,F10.5)

20 FORMAT(IOX,15)

30 FORMAT(4F10.5)
C

40 STOP

END

SUBROUTINE INCNMN

C

C THIS SUBROUTINE READS IN THE CONMIN PARAMETERS

C

COMMON/OPTREAL/BL,BU,XlNC
COMMON/CNMNI/DELFUN,DABFUN,FDCH,FDCHM, CT, CTMIN,CTL,CTLMIN,ALPHAX,

1 ABOBJ1 ,THETA,OBJ,NDV,NCON,NSIDE,IPRINT, NFDG,NSCAL,

2 LINOBJ, ITMAX, ITRM,ICNDIR,IGOTO,NAC,INFO, INFOG,ITER

REWIND 7

C

C INTEGER PARAMETERS

C

READ(7,10)NDV
READ(7,10)NCON
READ(7,10)NSIDE
READ(7,10)IPRINT
READ(7,10}NFDG
READ(7,10)NSCAL
READ(7,10)LINOBJ
READ(7,10)ITMAX
READ(7, f O} rTRM

READ(7,10) ICNDIR

READ(7,10) IGOTO

READ(7,10) NAC

READ(7,10) INFO

READ(7,10) INFOG

READ(7,10) ITER
C

C REAL PARAMETERS

C

READ(7,20) DELFUN

READ(7,21) DABFUN

READ(7,20) FDCH
READ(7,20) FDCHM

READ(7,20) CT

C

C

READ(7,20) CTMIN

READ(7,20) CTL

READ(7,20} CTLMIN

READ(7,20) ALPHAX

READ(7,20) ABOBJ1

READ(7,20) THETA

READ(7,20) OBJ

READ(7,20) BL

READ(7,20) BU

READ(7,20) XlNC

10 FORMAT(10X,15)
20 FORMAT(IOX,F10.5)

21 FORMAT(10X, E15.10)
RETURN

END

25

26

SUBROUTINE ANALY(OBJI,GI,G,XI_X,GRDOBJ,GRDG,

1 DF,IC,A,Nt,N2,N3)

C

C SUBROUTINE FOR LINEAR EXTRAPOLATION ANALYSIS

C

COMMON/CNMN1/DELFUN,DABFUN,FDCH,FDCHM,CT,CTMIN,CTL, CTLMIN,ALPHAX,

1 ABOBJ1 ,THETA,OBJ,NDV, NCON,NSIDE,IPRINT,NFDG,NSCAL,

2 LINOBJ,ITMAX, ITRM, ICNDIR,IGOTO, NAC, INFO, INFOG,ITE R

DIMENSION GI(N2),G(N2),XI(N1),X(N1),GRDOBJ(N1),GRDG(N1,N2),

1 DF(N3),A(N 1,N2),IC(N3)

IF(INFO.EQ.2) GO TO 24
C

C RESTORE OBJECTIVE FUNCTION AND CONSTRAINTS TO INITIAL VALUES

C

OBJ=OBJI

DO 5 IJ=l ,NCON

5 G(U)=GI(IJ)
C
C RECOMPUTE OBJECTIVE FUNCTION AND COONSTRAINTS BASED ON DIFFERENCE

C IN PERMUTED DESIGN VARIABLE

C

DO 2O I=I,NDV

DXl = X(1)-XI(b

GINC = GRDOBJ(I)*DXl

IF(GRDOBJ(I).LT.0.0 .AND. LINOBJ.EQ.0)
1 GINC = GINC/(I.+DXl/X(I))

OBJ = OBJ+GINC

DO 10 J=i ,NCON

GINC = GRDG(I,J)*DXl

IF(GRDG(I,J).LT.0.0) GINC = GINC/(I.+(DXl/X(I)))

G(J) : G(J)+GINC
10 CONTINUE

20 CONTINUE

GO TO 7O

C
C STORE GRADIENT OF OBJECTIVE FUNCTION FOR EACH DESIGN VARIABLE

C

24 DO 25 IDF = 1,NDV

DF(IDF) = GRDOBJ(IDF)
25 CONTINUE-

C

C DETERMINE ACTIVE AND VIOLATED CONSTRAINTS

C

NAC=0

DO 3O J=I,NCON

IF(G(J).LT.CTL)GO TO 30
NAC=NAC+I

IC(NAC)--J
3O CONTINUE

C

C STORE CONSTRAINT GRADIENTS

C

27

C
C
C
C
C

C
C
C

DO 60 11=1,NDV
DO 50 JJ=l ,NAC
31=IC(JJ)
A(II,JJ)=GRDG(II,J1)

5O CONTINUE
60 CONTINUE
70 RETURN

END
SUBROUTINE EVALSUB(N1,N2,NDV,NCON,X,XI,G,GI
1 ,GRDOBJ,GRDG,OBJ,OBJI,XINC,ICOUNT)

t. _ t t t,* tiI, t _ tt tt* t* t*t o t t Ott t t* t t**** • _ t t t t e_ • _t e** t * t t t • t • t t t

SUBROUTINETO COMPUTEGRADIENTS

_t ff jr t t t o t _ _ ttt _t _r t i1,* t* *t _ t*t _ t** t* t t t t *_ t Q_ t _t t * • t*** Q • t t t t*

DIMENSION X(N1),XI(N1),G(N2),GI(N2),GRDOBJ(N1),GRDG(N 1,N2)

FIND CHANGE IN DESIGN VARIABLE

X(ICOUNT) = XI(ICOUNT)*(1.-XINC)
DELTX=X(ICOUNT)-XI(ICOUNT)
X(ICOUNT) = XI(ICOUNT)

C
C CONSTRAINT GRADIENTS
C

DO L = 1,NCON
GRDG(ICOUNT,L)=(G(L)-GI(L))/DELTX

ENDDO
C
C OBJECTIVEFUNCTION GRADIENTS
C

GRDOBJ(ICOUNT)=(OBJ-OBJI)/DELTX
C

RETURN
END

28

Appendix E - Source listing for the problem dependent

program for scaling data for input to the
neural net

PROGRAM SCALE

C

C THIS PROGRAM SCALES THE DESIGN VARIABLES, CONSTRAINTS,

C AND OBJECTIVE FUNCTION FOR INPUT TO NETS (.1 < X < .9)

C

READ(5,10) NDV

READ(5,10) NCON

READ(5,10) NPAIRS

READ(5,20) DVMAX
READ(5,20) DVMIN

READ(5,20) OBJMAX
READ(5,20) OBJMIN "

READ(5,20) CONMAX

READ(5,20) CONMIN
C

C LOOP ON NUMBER OF TRAINING PAIRS REQUIRED

C

DO I = 1,NPAIRS

WRITE(8,5)

5 FORMAT(1H0
C

C DESIGN VARIABLES

C

DO II = 1,NDV

READ(7,30) DV

DVNN = .1 + (.8*((DV-DVMIN)/(DVMAX-DVMIN)))

IF(DVNN.LT..1) DVNN = .1

IF(DVNN.GT..9) DVNN = .9

WRITE(8,30) DVNN
ENDDO

C

C CONSTRAINTS

C

DO II = 1,NCON

READ(7,30) CON
CONNN = .1 + (.8*((CON-CONMIN)/(CONMAX-CONMIN)))

Ii_(C6NNN.LT.. 1) CONNN = ".1

IF(CONNN.GT..9) CONNN = .9

WRITE(8,30) CONNN
ENDDO

C

C OBJECTIVE FUNCTION

C

READ(7,30) OBJ

OBJNN = .1 + (.8*((OBJ-OBJMIN)/(OBJMAX-OBJMIN)))

IF(OBJNN.LT..1) OBJNN = .1

IF(OBJNN.GT..9) OBJNN = .9

WRITE(8,40) OBJNN

29

ENDDO

C

C FORMATS

C

10 FORMAT(10X,15)

20 FORMAT(10X,F10.5)

30 FORMAT(F10.5)

40 FORMAT(F10.5,1H))

C

STOP

END

| |iiiii

Form Approved
REPORT DOCUMENTATION PAGE OMeNo.O;'O4-O,Se

ii

i Public reporting burden for this ¢ollecbo. of infOrmatiO..is e_,tlmgte¢l to average I hour lore re%ooe..e, including the time for reviewing instructions. Searching eIisting data sour¢es.

gathering and maintaining the data needed, and completing aM revmwmg the cbllectio, of mfoematio.. Send comments re,larding this .burden est!mate Or any other aspect of this

collection of infOrmalton, ie_lucling suggestiOns fOe reducing this burden. 1o Wash,ngton Heaclquaner$ T,em,i¢es. Directorate JOe Informatfon OPerations and Reports, 1215 Jefferson

Dav,s Highway, Suite 1204. ArlingtOn. VA 222024302, and to the Office of Manageme-t a_l Budget. Paperwork Reductmn Pro ect (0704-0188}. Washington. OC 20503.

1. AGENCY USE I_NLY '(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1991 Technical Memorandum

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

User's Guide for NETS/PROSSS

6. AUTHOR(S)

James L. Rogers and William J. LaMarsh II

L

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/NIONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

505-63-50-06

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-I04166

11. SUPPLEMENTARY NOTES

James L. Rogers: Langley Research Center, Hampton, Virginia.

William J. LaMarsh,II: Unisys Corporation, Hampton, Virginia.

12a_61STRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

13.'ABSTRACT(Maximum2_words)

12b. DISTRIBUTION CODE

Expensive analysis programs are often combined with optimization procedures to solve

engineering problems. To obtain an optimal solution requires numerous iterations

between the analysis program and the optimizer. This often becomes prohibitive due

to the cost and amount of computer time needed to converge to an optimal solution.

Therefore, any new software package that could significantly reduce the amount of

computer time required to reach an optimal solution would be beneficial.

NETS/PROSSS was developed to help meet this need. The purpose of this paper is to

serve as a user's guide for NETS/PROSSS. The key features include the neural

network, determining the training pairs for the neural network, and the approximated

analysis/optimization process. A small problem is given to serve as an example of

how to apply the system.

94. SUBJECT TERMS

Neural Networks; Optimization, Analysis; Structured Synthesis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5S00

t8. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified
, , ,m_Tm

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

30

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSI $td Z3g. lB
29R-102

