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The goal of my work this summer was to find airfoil shapes which maximize the

ratio of lift over drag for given flow conditions. For a fixed Mach number, Reynolds

number and angle of attack, the lift and drag depend only on the airfoil shape. This then

becomes a problem in optimization: find the shape which leads to a maximum value of

lift over drag. The optimization was carried out using a package developed by Gregory

A. Wrenn called KSOPT Ill. This is a self contained computer code for finding the

minimum of a function subject to constraints. To find the lift and drag for each airfoil

shape a flow solution has to be obtained. This was done using a two dimensional Navier

Stokes code developed by Swanson, Turkel and Jameson.

The airfoil shape is defined analytically as a linear combination of orthonormal basis

ftmctions. The amplitudes of each term uniquely define a surface. Four terms are retained

for both the upper and lower airfoil surface. Therefore there are a total of eight design

parameters which characterize an airfoil shape. For fixed free stream flow conditions the

lift and drag depend only on these eight design parameters.

The objective function is tile quantity which is to minimized. In the present work

the goal is to maximize lift over drag. This suggests two possibilities for the objective

function -- the negative of the ratio of lift over drag or the inverse, namely, the ratio of

drag over lift. More success was obtained with the former.

It was found during the course of the work that several geometric constraints had to be

put on the design space. These constraints were necessary to prevent the optimizer from

specifying airfoil shapes which were impossible or unrealistic. A total of six geometric

constraints were imposed. These included constraints on the airfoil area, the radius of

curvature at the leading edge and minimum thickness.

Several problem areas became apparent as various cases were tried. First of all, even

though constraints were imposed, the optimizer sometimes generated unrealistic shapes.

This is because KSOPT allows constraints to be violated as it carries out its search for

an optimum. For these cases a call to the flow code has to be skipped. Secondly, the
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flow code becomes unsteady or divergent for some shapes, particularly at shapes with

high lift. This presents a dilemma for the optimizer because it must generate shapes

with high lift but not so high that the flow code cannot handle .......mere. Its nr,_'".... a,,,r,tn_,'-"-

the optimizer to go right up to the edge of the cliff and search around but not fall over.

There is also a difficulty with resolution in the flow solution. The resolution in lift and

..,.......... _.^ ,..... k .... t,_ ,.k .... • i;r ..... v a ............ ! by m, .... of _h_,._ In thle

case, the optimizer may not get the correct sign for the gradient of the objective function

and start the search in the wrong direction. The objective function has more than one

local minimum. Therefore the optimizer may end up at a relative minimum instead of

the absolute minimum. For this reason it is important to start with more than one guess

for the initial shape. For the runs carried out this summer two initial shapes were used:

a symmetric NACA 0012 and a NACA 0012 with five percent camber.

The optimization process was carried out for a number of cases. In all cases the

free stream Mach number was kept at 0.3 and the Reynolds number at 5 million. In

one case the angle of attack was 6.0 degrees. In all others the flow was kept at zero

incidence. Airfoil shapes were obtained with lift over drag ratios as high as 113. Some

general guidelines emerged as experience with the optimizer increased. Some of these

are as follows

1. The optimization process seems to work better with the objective function equal to

the negative of lift over drag.

2. There is more than one local minimum. So start with more than one initial shape,

at least one with camber.

3. The final shape obtained depends on the mesh size and number of multigrid cycles

used in the flow code.

4. Use the internal scaling option in KSOPT.

5. Additional constraints or modifications in the objective function may be necessary

to avoid obtaining shapes which are too highly cambered or have very sharp trailing

edges.

From experiences with KSOPT it is clear that airfoil optimization it is not yet at

a point where it can be fully automated. Human intervention in the process is still

necessary. However, if the user is persistent and provides some intelligent and patient

prodding, the optimization process can lead to some good airfoil designs. In future

work it would be interesting to investigate the effects of adding additional constraints

on the maximum camber, the trailing edge angle, and the pitching moment. Also some

additional investigation into other objective functions may prove useful.

Reference

1. Wrenn, Gregory A. , "An Indirect Method for Numerical Optimization Using the

Kreisselmeier-Steinhauser Function", NASA Contractor Report 4220, March 1989.

99


