-

brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

Formulation of the Linear Model from the Nonlinear
Simulation for the F18 HARV

Charles E. Hall, Jr.

Assistant Professor
Mechanical and Aerospace Engineering
Norith Carolina State University
Raleigh, North Carolina 27695

The F18 HARV is a modified F18 aircraft which is capable of flying in the post-stall regime in order to
achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized
by nonlinearities in the aerodynamic coefficients. These acrodynamic coefficients are not expressed as analytic
functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a
nonlinear model of the aircraft’s dynamics. Nonlinear system theory has made many advances, but this area
is not sufficiently developed to allow its application to this problem, as many of the theorems are existance
theorems and that the systems are composed of analytig functions. Thus, the feedback matrices and the
state estimators are obtained from linear system theory téchniques. It is important, in order to obtain the
) correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics
be as accurate as possible. .

The nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The
ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data.
ACSL has commands to form the linear representation for the system. This is a two step process. The
first step is to trim the system, which is identical to trimming the aircraft. This involves calculating the
trim input, u*, for a given trim state, x*, such that the derivatives of the state vector, x, are zero. The
state space for the simulation is x = (u, w,¢,0)T The second stép is to calculate the Jacobians of the state
transisiton map, f(x) with respect to x at x*, and the input map, g(x,u) with respect to u at x* and u*.
For analytic functions this is accomplished by calculating the partial derivatives of the functions, but since
analytic functions do not exist, and ACSL can not perform symbolic calculations, the Jacobians are formed
by numeric differentiation. ACSL uses the central difference method to perform the numeric differentiation.
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Where the perturbation vector is defined as 6 = ({/cos(a)/100, Usin(a)/100,5°/s,2°)T. This is used to
calculate the A matrix for the linear representation, x = Ax + B with X = x — x* and @ = u — u*,
Similarly the B matrix is calculated by the numerical differentiation of g(-). The result of this is that the A
and B matrices are not only functions of x* and u*, but also of 6.
The state transition map, f(x), and the input map g(x, u), are derived from the equations of motion
for the system. A predominant part of these equations are based on the aerodynamic forces and moments.
These forces and moments are calculated via the standard methods by using a nondimensional coefficient.
These coefficients are the results of wind tunnel testing and they are stored in data files. The data points
are generally functions of two variables, a and Mach number. Occasionally, a third variable is added such
as control surface deflection. For this work, emphasis was placed on the a-Mach space variables. There are
different sets of & vaules and Mach number values at which the coefficients are known. For example, Cp,
: are known for a € {-12.,-4.,—2.,0,,...} and Mach number € {0.2,0.6,0.8,0.85, .. .} but Gy, are known for
! a € {-4,0.,4.,...} and Mach number € {0.2,0.6,0.8,0.9,...}. To calculate the particular coefficient, with
o and Mach number either equal or not equal to values in the respective sets, a second order Lagrange
? interpolation is performed. If the desired @ and M are both equal to elements in the respective sets, then
: the Lagrange interpolation yields the coeflicient from the table. This is accomplished first by bracketting
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the & and Mach number, M, between availible oy and M, such that «; < o < a;4, and M; < M < Mjy,.
Letting Ace = a4y — oy and AM = M; 4 — Mj, and (5 be the coeflicient C at o; and M;, the following

expression yeilds C(«x, M).
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It can be seen from the form of Eq. 2 that for a constant « or M, the plot for the resulting one variable function
C'(-) is aseries of counccted straight line segments. Caleulation of the various aerodynamic coefficients, not
including coeflicients in «, and snmmation into the total force and moment calculation are perform by the
FORTRAN subroutine SFAERRE. SFAERRF -takes into account the various sets of a and M that are
availible.

When the system is lincarized about some trim point and the cigenvalues are compared to those of
the DMS simulation, some diflerences arise. The eigenvalues also exhibited a dependence on §. With the
need for accurate linear representations for the system, the following work addressed the problem of how to
minimize the differences of the two systems.

Due to the dependence on the perturbation size, &, in the numerical calculation of the Jacobian, elim-
ination of the numerical differentiation would address this problem and possibly assist in minimizing the
differences between the two models. ‘The concept was to express the tabular data in a known functional
form, that could have its derivative calculated analytically by a FORTRAN subroutine. Various possible
functional forms were examined, such as the fourth order Lagrange, full order Lagrange, and quadratic,
cubic, quartic splines. These functions were (! or greater over the entire a-Mach space, being at least C! on
the boundaries of different «-Mach cells. The full order Lagrange interpolation and the various splines pro-
duced oscillations that were not desirable. ‘T'he fourth order Lagrange interpolation required a data window,
which developed discontinuities in the derivatives at the window boundaries. Applying these techniques to
the many data tables during cach iteration would be computer intensive, and discontinuities would still exist
in the derivatives on the cell houndaries.

An intermediate approach has been followed. Numerical differentiation has been retained with a larger
perturbation step size, and the data space for “sparcely”™ distributed data has been augmented. The larger
perturbation step size is opposite to the expected limit in calculating a derivative. The use of the increased
perturbation size has the eflect of decreasing the magnitude of the second derivative of the particular coeffi-
cient. The perturbation step size has been set equal to one half of the minimum parameter step size, in this
study éo = 1°. The a perturbation which is uscful for operations with the acrodynamic data space, but « is
not a state space variable but it is related to the state variable w. A function &, = f(84) was calculated and
included in the formulation ol the linear model. The angmenting of the data space also provides the for the
minimization of the second derivative. 'The data space is augmented by calculating intermediate values for
the particular coefficient by using a fourth order Lagrange interpolation. For example for a function of one
variable defined at o« = 0,4,8,12, .., a value of the function can be estimated al o = 2,6,10,... by using
the nearest four data points.

These techniques have been applicd in a staged way to the ACSL simulation. The modified perturbation
step size was applied to the lincarization of the system, as were the unimodified perturbation step size. Then
the data for C,,, was augmented by using the fourth order Lagrange interpolation for intermediate data
points in a. Nine different « values were set, and the longitudinal eigenvalues were calculated by each of the
three methods at each a. The differences between the various longitudinal eigenvalues were small, except
for two cases. "The locus of the cigenvalues, as a function of « was generated as a result of this work.
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