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Abstract C‘ f'

An identification procedure is proposed to identify the damage characteristics (location and
size of the damage) from dynamic measurements. This procedure was based on minimization of
the 'mean-square’ measure of difference between measurement data (natural frequencies and mode
shapes) and the corresponding predictions obtained from the computational model. The procedure
is tested for simulated damage in the form of stiffness changes in a simple fixed-free spring-mass
system and symmetric cracks in a simply-supported Bernoulli-Euler beam. It is shown that when all
the mode information were used in the identification procedure it is possible to uniquely determine
the damage properties. Without knowing the complete set of modal information, a restricted region
in the initial data space has been found for realistic and convergent solution from the identification
process.

Introduction

There is a considerable body of research on identification problems, that is, the problem of
identifying the engineering properties or reconstructing the structural configuration of a vibrating
system from certain natural frequency spectra and/or corresponding mode shape. Such problems
were considered by Barcilon {1, 2], McLaughlin [3, 4], Gladwell [5-7], and Gladwell ¢t al. [8]. Most
of these studies involve the determination of material properties from natural frequencies, and
they emphasize the existence, uniqueness, and methods for determination of properties (termed
'reconstruction’).

An detection procedure was developed by Shen and Taylor [9] to determine the crack character-
istics (location zc and size cr of the crack) of Bernoulli-Euler beams from their dynamic response.
The idea of this procedure was related to methods of structural optimization. Specifically, the
structural damage was identified in a way to minimize one or another measure of the diflerence
between a set of data (measurements) Ty, and the corresponding values for dynamic response My
obtained by analysis of a model for the damaged beam. This may be expressed symbolically as the
following optimization problem:

min norm{Ty — Mg). (1)

zc,cr

Naturally, the minimization represented here is constrained by the equations which model the
physical system. Moreover, as indicated in the discussion by Shen and Pierre [10, 11], one can
note that the more modal information used for crack detection, the more accurate and reliable the
result that can be achieved. For practical purposes, the objective of Eq. (1) was formulated based
on a certain set of specific modes; specifically the first three modes are considered in the inverse
procedure.

In this study the corresponding to the mean-square measure of the norm, as shown in Eq. (1),
is examined. The identification process is based on minimization of the *mean-square’ measure of
difference between measurement data (natural frequencies and mode shapes) and the corresponding

!predictions obtained from the computational model. The identification procedure is tested for 1
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Emulated damage in the form of a symmetric cracks in a simply-supported Bernoulli-Euler beam 1
and a fixed-free spring-mass model. The uniqueness and reliability of the identification process is
confirmed by solving several damage identification examples with specified damage positions.

Problem Statement

In this section, variational formulations for the identification of damaged one-dimensional
structures are presented. The mean square differences between measured and modeled values of
frequency and mode shape are employed as the objective function in one of the formulations. In
other words, the inverse process seeks to determine the damage parameters, location zc and size
cr, in the mathematical model to minimize the mean square difference between the test data and
analytical predictions. The problem formulations are presented in forms of a cracked Bernoulli-
Euler beam and a multi degrees of freedom (DOF) spring-mass system.

Cracked beam model

In the treatment of this problem, it is assumed that the testing information (data) is provided
from certain test points distributed over the structure. This data is comprised of frequency and
mode shape information associated with the lower several response modes.

For a simply-supported uniform beam containing one pair of symmetric cracks (see Fig. 1),
the problem of optimization in crack detection can be expressed, in terms of comparisons between
modeled response and test data, as

2

min [norm(wy, — w2, wial2m) = Wal2im))] (2)

subject to constraints that define the beam response w, (ic., the equations for free vibration), and
which prescribe appropriate normalization of w, and test data wi,.

Here cr = dﬁﬁ represents crack ratio (a measure of crack depth), and zc identifies crack
position (see Fig. 1). Also, the objective function measure of diflerences between measured and

modeled values of deflection and frequency in Eq. (2) is stated for present purposes in the form:

M T
non(wga - wg’ Weg ~ Wo) = (Z[(‘-‘)t?a - ""’3)2 + Z (Wia(Zem) — wa(l'tm))z])% (3)
a=] m=1

where w,, w, represent the natural frequency and mode shape of ath bending free vibration
mode, M is the number of modes for which test information is available, and, once again, the
corresponding test data are symbolized by wyq and wy,. Here x4y, (m = 1,2,...,T) locates the m-th
out of T measure stations, respectively. The measures w;, and w, that appear in the norm must
be normalized on a common basis in order to facilitate comparison between the data and model
values.

The symbol & is introduced to represent the square of the norm given in Eq. (3). The
identification problem now can be stated:

min @ g
subject to: l
[ ABIQui@) - wipa whi@)da = 0 5)
0
T-1
Z(wa(xtm)wﬁ(xtm))Aztm - a3 =10 (6)

m=2
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(- (er + azc) — R L0 (7)
e <er £ CF (8)
ze < zc £ 7T 9

where a, 8=1,....M, a is a weighting factor on the c¢r and zc, R represents the upper bound on
value cr + aze, and ¢, zc, and TF, cr represent the upper and lower bounds of the crack (damage)
parameters zc and cr, respectively. (Note that both upper and lower bounds on the variables ¢r
and zc are necessary in the present problem.) Since w, comprise an orthonormal set, 74 is defined
as

T-1
Naa = Z wg lrlm Azim, 711_1}100 Nap =0 for a#5 (10)
m=2

The effect of cracks on the structural properties of the beam is reflected by factor @ in Eq. (5),
as described for symmetric surface cracks in Shen and Pierre [10]. In other words, the optimization
parameters zc and cr cited in Eq. (4) enter the problem via Q.

According to the K-K-T (Kurash-Kuhn-Tucker) necessary conditions for the optimization
problem Egs. (4-9), there exist Lagrange multipliers A, , Aag, and T'x which satisfy the following
equations (the notation ’|,’ refers to solution points):

Ae > 0

Asg > 0
T [(er + azc) - R] |.=0 (11)
(2 (ex—er)}|.=0 (12)
[T3 (zc-7¢)] [.=0 (13)
[T (ze ~ zc)] |.= 0 (14)
[[s (er — )] .= 0 (15)

The solution must satisfy the following three equations as well:

[2(wfa = w3) + AapACE] = 0 (16)
(EIQu!(z))" — w2pAwa(z)]) [+=0 ;Zim < T < Tym41) (17)
T-1 o-1
E {—2(wta(z) ~ wa(z)) + [2Acawalz) + Z Aapwp(z)
m=2 g=1
M
+ Z AagU)g(I)]Az,m + 2Aa[(E]QwZ(I) " wZﬂAwa(x)]} |I=17tm|‘= 0 (18)

B=a+1
Note that the above equation of motion (Eq. 17) is valid interval by interval over the span of the
structure.
Finally, the conditions for stationarity of ® w.r.t. the optimization variables er and zc (ie.,
the optimality conditions) are:

M
» Aa(EI/l gg(w;’(x))"‘dz) 4T =T+ T3] =0 (19)
a=1 0 cr

i
|
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:

[E AO(EI/I (?Q w”(z))2dz) + Tya + T3 = Ty] .= 0 (20)

o The problem formulatzon for the numerical method-mean square criterion

The purpose in this subsection is to re-state the inverse cracked beam problem with mean
square criterion, Eqgs. (4-9), in the following form that is more convenient for computational pur-
poses. With the introduction of symbols £ and T for convenicnce, the statement becomes:

M T
min > [(ia = &a)? + D (Wialzim) = wa(zim))’] (21)
=gz m=1
subject to :
T T
[(14Q Z('wat(xtm))2 - Eor E (wa ztm ]Altm - Ta =0 (22)
m=1 m=1
T-1
Z(WO(ztm)wﬁ(xtm))Axtm - TNap =0 (23)
m=2
0 <cr £1.0 (24)
0 <zc £10 (25)

where a, § =1,...,M, variable vector z; = {cr,z¢,&0, Wo(Zim)}s

wilipA

g = Zetd (20)
and
T T
= [040 E ('u"tc«(-'z;tm))'2 —&a Z (wta Zim) ]A-Ttm (27)
m=1 m=1

Spring-mass model
The spring-mass model to which the present identification procedure is applied is shown in
Fig. 2. It consists of 3 masses connected by linear springs of stiffness defined by

ki = k(1.0 - —)3 (28)

where dm; is defined as a damage parameter at i-th spring. If dm; is interpreted to represent
the same physical meaning as cr does in the cracked beam model, the system’s damage condition
may be introduced by specifying a certain value to ’damage parameters’. For instance, according
to Eq. (28), a damaged condition can be constructed in which stiffness drops 25% and 50% at
the spring 2 and 3. This is accomplished by assigning the values dm, and dmgj to be 0.2743
and 0.6189, respectively. In a sense, the spring-mass model can be viewed as a simple simulation
analogy of the cracked beam, ie., both extent and location of damage can be represented in the
model. The fundamental frequencies w; of axial vibrations are related to the mode shapes #; =
(uy,uz,u3)? ,i=1,2,3 through the equations:

wl (K] - &al [N =0 ;i=1,2,3 (29)

2 . . .
where §; = EkﬂL Therefore, the present damage identifi ition problem can be stated as

min Z[(fn—fx +Z(Ut1‘ 2,)? (30) ;

=dm,; &, i i=1
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E1bject to:
al [K,)a - &al =0 ;i=1,2,3 (31)
a4 - 6;=0 ;4,5=1,2,3 (32)
0 < dm; 1.0 (33)

Numerical Analysis

The numerical optimization technique set forth in this study for vibrating cracked beam iden-
tification problems is accomplished using the VMCON optimization package program (this imple-
ments a sequential quadratic programming method). The VMCON program uses Powell's algorithm
which is an iterative scheme designed to converge to a point that satisfies the necessary conditions.
Additional information regarding to VMCON is available in Ref. {12].

Cracked beam model

The cracked beam model to which the identification procedure is applied is shown in Fig. 1. It
is a simply supported beam of length I equal to 18.11 of it’s thickness 2d, with uniform rectangular
cross-section area A, and a pair of symmetric cracks of er = 0.5 located at mid-span (zc = 0.5).

Unless otherwise stated, the damage properties (cr and zc) of the simply supported cracked
beams are identified by direct solution of the optimalization problems described in the previous
section. The sensitivity to chosen values for the initial crack position zc are discussed later in this
section. '

o Ezamples with position of the crack (damage) spccified

Consider the first example for crack identification, the simply supported cracked beam, for
which the crack position zc is known. In other words, only the crack ratio cr is to be identified; there-
fore, the variables in this problem are cr, £’s, and mode shapes w(2z) (2, = {c7,£a, Wo(ZTim)} Zo =
{cr,€a,84i})- This simplified example problem with the crack position specified (z¢ = 0.5) is
presented to demonstrate the concept of the crack identification procedure described in the last
section.

In this example, it is assumed that the dynamic measurements are collected at 9 test positions
(T = 9) equally spaced over the span. The first and last test stations are located at the left and
right supported end, respectively. Hence, the length of each test span Azypm,m = 1,...,T = 1is
determined to be 1?-'%‘1. In structural dynamic testing, ordinarily only a relatively small subset
of the theoretically available eigenvalues and eigenvectors can be measured accurately, ie., realistic
information on higher modes is difficult to obtain from the measurements at a limited sct of test
stations. Only information from the first three modes is to be used as test data in the present
identification process. Furthermore, according to the observations in Shen and Pierre [10], the even
modes of a simply supported beam are not sensitive to a mid-span crack; therefore, in effect only
first and third mode (@ = 1,3) information is used to represent crack damage.

Once again, the crack identification problem presented by Eqs. 21-25 is solved here with a
specified value zc = 0.5. For given initial values of z, this optimization problem is solved to
minimize the criterion F. The results of the cases with various initial conditions are shown in
Table 1. In order to clearly compare the results, only the first three variables, &,£3, cr, of variable
vector z, are listed in the Table 1.

In Table 1, the top row denotes the assumed crack ratio and corresponding first and third
eigenfrequencies. The symbol * denotes the expected optimal solution through the identification
process. The first two column entries, £1,£3, indicate the fundamental and the third frequencies
corresponding to the initial crack ratio er which is given in the next column. The last three columns

[give the final values corresponding to previous entry values. These final values are obtained at the

—



104

Third International Conference on Inverse Design Concepts and Optimizaton in Engineering Sciences
(ICIDES-IID. Editor: G.S. Dulikravich, Washingion D.C., October 23-25, 1991

rsta,ge where computation is terminated when the further optimal search obtains improvements for_l

criterion F less than the specified tolerance (10F — 5 was adopted in the present study). Recall
that for an uncracked beam cr is identically zero. Therefore, in this example, it is decided to start
with the case of the initial value cr = 0.0 and for each case thereafter the cr value is increased by
0.1.

From the results presented in the first case of Table 1, one sees that the parameters §;,£3, and
cr were identified to be 0.84684, 70.1348, and 0.50033 from 1.0, 81.0, and 0.0, respectively. The
mean square critera F was cut down from 118.13502 to 0.42440E-5. The maximum error is less
than 0.5% of the test data for these parameters. The results are also quite impressive for mode
shapes. In order to observe the global variance clearly, the initial, final, and testing mode shapes
are plotted in Fig. 3. Three curves appear on each plot: the initial mode shape, the finial mode
shape, and the mode shape from test response. The final mode shape on these plots agrees well
with the test mode shape. This is expected and verified the accuracy observed from the results in
Table 1. It can be clearly seen that accuracy of the mode shapes will worsen if higher mode results
are to be predicted. Improvement can be obtained by an appropriate adjustment of the location of
these test stations. However, a sensitivity analysis of the test stations with respect to the accuracy
of the dynamic measurements is required. This is not considered further in the present study.

In Table 1, rows 5 to 11 present the results for cases with initial ¢r = 0.1 to 0.8. The corre-
sponding final point values listed in the columns 4-6 show that these cases exhibit, as expected,
similar solution characteristics and accuracy. This provides a physical understanding of the geome-
try of the solution set: for the inverse cracked beam problem with specified crack position, the mean
square criterion of Eq. (21) is a convex function and it is bounded by the constraints of Eqs. (22-
25). Hence, one may conclude that the convergence of the present optimization problem is obtained
independent of the initial data chosen. In other words, as long as the initial data is selected within
the problem’s feasible domain, an accurate and unique solution through the identification process
is expected.

Clearly the prediction of mode 3 shape shown in Fig. 3 fails to reproduce the expected sin
curve. This is because the 3rd mode shape was plotted based on the deflections of the mode shape
measured at only 9 test stations. While this reflects a limitation on liow well mode shapes are
portrayed, the quality of the final result for the identification problem is unaffected.

e Simultaneous identification of crack position and depth

The second numerical example deals with the crack identification of a simply supported cracked
beam with unknown crack ratio and with crack position unknown. In this treatment, the variables
in the optimization problem are cr,zc, £’'s, and mode shapes w,(z) (z; = {cr,2¢,En, Wa(Zim)})-
Due to the limitations of the VMCON program, the examples that concerning with the testing
mode shapes w, provided in the form of continuous functions are not shown in this subsection.

The formulation of the crack identification problem (Eqs. 21-25) is tested again with both
crack position and depth are assumed unknown. In the first few cases, the simulated dynamic test
measurements are assumed to be collected at 9 equally spaced test stations (T = 9). The first
and last test positions are located at the left and right supported end, respectively. This example
will be solved a second time using an increased number of test stations, to provide information on
sensitivity of the procedure to the amount of test data.

In Table 2, the top row denotes the assumed crack ratio, crack position, and corresponding
first and third eigenfrequencies. The symbol # denotes the expected optimal solution through the
identification process. The first column entry T denotes the number of test stations used to collect
dynamic measurements. The second and third column entries, £, £3, indicate the fundamental and
the third frequencies corresponding to the initial crack ratio ¢r and crack position ze, which are
given in the next two columns. The last four columns provide the final values corresponding to

—
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rthe previous entry values. These final values are obtained at the stage where the computation is}

terminated, when the optimal search obtains step-wise improvements of F less than a specified
tolerance (10E — 5 in the present study).

Table 2 shows that cases with T=9 have the final values of £ close to €%, but almost all of
these cases have unacceptable final estimates of zc and cr. For instance, if the initial position
is selected as z¢ = 0.4 and c¢r = 0.4, the values of zc and cr at the final iteration are 0.99789
and 0.36289 which are approximately 98% and 28% different than the given test data. In other
words, evidently the configuration with zc = 0.99789 and cr = 0.36289 is able to provide another
minimum value of the criterion (besides the one associated with the expected result). This cracked
beam configuration is shown in the solid curve of Fig. 4 . The mis-match between final and test
mode shapes can be clearly seen. This observation confirmed the unacceptable error previously
obtained in the comparison of zc and cr between the final and test data. Except for the case with
initial ¢r = 0.4 and zc = 0.48 which provides less than 1% estimation error, the rest of the cases
in Table 2 with 9 test stations are also found to have similarly large estimation error. Therefore a
dependable solution in crack identification is almost impossible to achieve on the basis of the 9 test
stations simulated measurement information on first and third mode response. This confirmed the
observations in Shen and Pierre [10, 11}, ie., for a cracked beam with an unknown crack position,
a unique solution is not to be expected.

However, by comparing the third mode shape in Figs. 3(b) and 4(b) to the mode shape in
Fig. 11(c) of Ref. [10], it can be seen that an accurate third mode shape can not be approximated
based on the displacements collected from 9 test stations only. This implies that the accuracy of
the above computational identification might be improved if the third mode is approximated well.
Therefore, the cases with more test stations should be examined since they would clearly provide
better mode shape approximation. The largest number of test stations which can be accommodated
in the identification procedure is 45, due to the limitations of the optimization program package.
Once again, the test measurement points are equally spaced, and first and last stations are set
located at the left and right supported end, respectively. The VMCON problem formulation is
identical to the case of T=9; however, the variable vector z is expanded from 22 components to 94.

Rows 12 to 17 of Table 2 summarizes the results through the minimization process. As in the
previous cases, the final values of frequency £ are observed to be close to test values £*. Acceptable
final solution values for zc and cr are shown in the results of the cases in which initial zc and cr are
selected within the range from zc = 0.4,cr = 0.4 to zc = 0.6,¢7 = 0.6. On the other hand, within
this range, good agreement is also shown in mode shapes. Figures. 5 and 6 display the initial,
final, and test mode shapes for cases with the initial zc = 0.4,¢cr = 0.4 and zc = 0.6,cr = 0.6.
Excellent agreement is observed between the final and test mode shapes. Moreover, by comparing
the final data curve in Figs. 5 and 6 with the mode shape in Fig. 11(c) of Ref. [10}, a more accurate
third mode is approximated. This indicates that more accurate information on mode shapes is
required to obtain a satisfactory solution from the identification process in the case where both
crack position and crack depth are unknown.

Questions arise concerning the conditions under which the identification procedure can pro-
vided an unique solution. As discussed in Shen and Pierre {10, 11} and concluded in the studies
of Gladwell et. al. [8], if all the mode information is used in the identification procedure, then
the system’s properties can be identified uniquely. However, for practical reasons, in structural
dynamic testing only a small subset of the eigenvalues and eigenvectors can be represented in the
measurement data. Furthermore, even if substantially more modal information would be avail-
able, the minimization search may be prohibitive for such a large-dimensional feasible domain that
would result. These comments are intended to point out certain limitations inherent in the identifi-
cation procedures. These considerations is addressed with the presentation in the following, which

i
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dgscﬁbes sufficient conditions for the unique identification from the dynamic measurements of a _1
multi DOF vibrating spring-mass system. :

Spring-mass model

The following examples of damage identification problems were constructed by introducing the
damage through the drop in the stiffness or, more conveniently, the value of each damage parameter
to change the system’s dynamics behaviour. These dynamic changes, taken as the test simulation
of response data, are used to deduce the value of each damage parameter via the identification
process.

The numerical optimization technique set forth in this study for vibrating cracked beam iden-
tification problems is accomplished using the VMCON optimization package program (this imple-
ments a sequential quadratic programming method). The damage properties (dm;,7 = 1,2,3) of
the fixed-free spring-mass system are identified by direct solution of the optimalization problems
described in the previous section.

The first example corresponds to the identification of a system’s damage, dm; = 0.0,dm; =
0.5,dm3 = 0.25, using first and second mode information. The first five variables, £,&2, dm;,
dmg, and dmg of each vector z are listed in Table 3. The top row denotes the assumed damage
parameters and corresponding first and second eigenfrequencies and the symbol * denotes the
expected optimal solution through the identification process. The first and second column entries,
1,2, indicate the fundamental and the second frequencies corresponding to the initial damage
parameters, dm;,dmg,dmg, which are given in the next three columns. The last five columns give
the final values corresponding to previous entry values. These final values are obtained at the stage
of the program is terminated when the further optimal search obtain improvements F less than a
tolerance (10E — 5 was adopted in the present study).

In Table 3, each case has the final values of £ close to £, but almost all of them have the
unacceptable final results for zc and ¢r. Only the case with initial dm, = 0.48 and dmj =
0.24 has less than a 1% estimation error. These results show performance of the present damage
identification process is generally unacceptable if only first and second modes are used.

The first six variables, £&;,£5,£3, dm;, dm,, and dmg of each vector z are listed in Table 4 the
top row denotes the assumed damage parameters and corresponding first and sccond eigenfrequen-
cies and the symbol * denotes the expected optimal solution through the identification process. In
this example, all the modes are used to deduce the damage conditions. Satisfactory predictions are
obtained in each case, in contrast to the results examined in Table 3. Even though starting point
is located at boundary of the feasible set (dm; = 0.0,dmy = 0.0, dm3 = 0.0), the agreement is still
precise. These results confirm the expectation that a unique and accurate solution predictions are
assured if all the modal information is included as data in the damage identification process.

Conclusions

A general method for damage identification of a simple beam and a spring-mass system is
presented. The method may be useful as a component of an on-line nonintrusive damage detection
technique for vibrating structures. A formulation is expressed as a direct minimization problem
statement with a criteria of the mean square difference of natural frequencies and mode shapes
between test measurements and corresponding model values. The damage identification problem
is reduced to finding the damage parameters that will satisfy appropriate constraints and minimize
the mean square difference.

The uniqueness and reliability of the identification process is confirmed by solving several
damage identification examples with specified damage positions. Without knowing the damaged
}oca,tion, a restricted region in initial data space had been found for which there will be a realistic

'
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ﬁmd convergent solution from the identification process. This region is small, and can be expanded
if substantially more modal information would be available. However, the minimization search may
be prohibitive for such a large-dimensional feasible domain that would result.
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I

[ Test Data: £=0.84703. £3=70.1348, cr =05 |
Initiai Data finai Data

£ & fer 14 S ! er |
1.0 8.0 | 0.0 1 0.84684 | 70.1348 | 0.50043 |
0.98841 | 30.0769 { 0.1 | 0.84697 | 70.1346 i 0.50019 !
0.97217 | 78.8135 [ 0.2 | 0.84704 | 70.1347 { 0.49998 |
0.94815 i 77.0062 | 0.3} 0.84701 | 70.1348 1 0.50007 |
0.91032 | 74.3024 | 0.4 | 0.84694 | 70.1347 | 0.50024 |
0.73638 | 63.7848 | 0.6 | 0.84705 i 70.1348 | 0.49962
0.54574 | 55.0511 | 0.7 | 0.84703 | 70.1348 | 0.50034
0.27233 { 45.9316 | 0.8 [ 0.84700 { 70.1347 | 0.50009 |

Table 1: Numerical resuits based on mean square problem statement of Eqgs. (21-25) with the crack
(damage) specified (zc = 0.5).

L Test Data: £7=0.84703. £3=70.1348., cr"=0.5. zc'=0.5
Initial Data Final Dala
T [ & & er jze | & [ & | er zc |
9 || 0.91806 | 78.5161 | 0.4 | 0.4 | 0.69639 | 70.1359 | 0.99789 | 0.36289
9 0.91371 | 76.6365 | 0.4 | 0.43 | 0.70007 | 70.1362 | 0.99440 | 0.39620 |
9 0.91158 | 75.1335 { 0.4 1 0.46 | 0.84610 | 70.1347 | 0.91029 | 0.53775
9 i 091056 | 74.7464 | 0.4 0.47 { 0.84711 | 70.1347 | 0.67125 | 0.49033
9 1| 091063 | 74.5157 | 0.4 0.48 | 0.84704 | 70.1348 | 0.50534 | 0.49972
9 I 0.73472 | 63.8062 | 0.6 0.51 | 0.84704 | 70.1348 | 0.60027 | 0.50526 |
9 0.73711 | 64.2643 | 0.6 | 0.52 | 0.84704 | 70.1348 | 0.60083 | 0.50531 !
9 73617 | 64.7619 { 0.6 | 0.53 | 0.84704 | 70.1348 | 0.60141 ) 0.50534 |
9 i 0.73929 | 65.6727 | 0.6 0.54 | 0.84705 | 70.1348 | 0.60255 | 0.49459
9 0.73909 | 656.6112 | 0.6 | 0.55 ] 0.84702 | 70.1348 | 0.99721 | 0.24709
9 0.75452 | 74.0109 [ 0.6 | 0.6 | 0.70040 | 70.1363 | 0.99079 | 0.59307
45 || 0.97475 | 80.2193 | 0.2 | 0.4 | 0.90130 | 70.1347 | 0.94855 | 0.94404
45 1| 0.91806 | 78.5161 | 0.4 | 0.4 | 0.84420 | 70.1345 | 0.53053 | 0.51586
45 | 0.91531 | 77.2676 { 0.4 0.42 | 0.84686 | 70.1347 | 0.50838 | 0.50198 }
45 | 0.96219 | 78.5819 { 0.25 | 0.45 | 0.84643 | 70.1348 | 0.51729 | 0.49389
45 1| 0.75452 | 74.0109 { 0.6 | 0.6 | 0.84645 | 70.1348 | 0.51723 | 0.50609
45 If 0.64083 | 77.7173 | 0.7 | 0.7 | 0.89079 | 70.1347 | 0.38895 | 0.81817 |

Table 2: Numerical results based on mean square problem statement of Egs. {21-25). The position
of the damage zc is a variable.

[ Test Data: £;=0.15296. £3=1.2956, £5=2.2404, dm;=0.0. dm3=0.5. dm3=0.25

Initial Data ~ Final Data

& & amy | dmq | dmy | § &2 dm, dm, dmy |
0.19806 | 1.5549 { 0.0 0.0 0.0 0.15299 | 1.2956 { 0.21392 | 0.40077 | 0.10985

0.18986 | 1.4975 { 0.0 0.1 0.05 | 0.15204 | 1.2955 ( 0.17532 | 0.41741 | 0.13265 |
0.18123 | 14429100 0.2 | 0.1 0.15296 | 1.2956 0.13478 | 0.43493 | 0.15777 |
0.17218 | 1.3911 { 0.0 0.3 0.15 | 0.15297 [ 1.2956 | 0.09222 { 0.45445 { 0.18530 |
0.16275 | 1.3420 | 0.0 0.4 0.2 | 0.15293 | 1.2955 | 0.04751 | 0.47635 | 0.21576 |
0.15846 | 1.3088 | 0.0 0.44 | 0.24 | 0.15294 | 1.2956 | 0.02043 | 0.48975 | 0.23502 |
0.15494 | 1.J047 | 0.0 0.48 | 0.24 | 0.15295 | 1.2956 | 0.00973 | 0.49511 0.24281 |

Table 3: Numerical results for spring-mass mode! using first and second mode information.
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| Test Data: ¢ =0.15206. 3= 1.2956, (3=3.2484. ami=0.0. ami=1.5, am3i=u.25 ;
—
Finas Data

| lastial Data |
§1 L& 1 & | dmy | amq i amy | & &2 & - dmy

0.10806 | 1.5549 [ 3.2469 100 100 0.0 0.15294 | ..2066 | 2.2494 | 0.0002
0.18986 | 14975 i 3.0209 ] 0.0 ;0.1 0.05 | 0.15294 | 1.2055 ( 2.2494 ) 0.0002
D.18123 | 1.4420 | 2.8086 1 0.0 0.2 +u.l | 0.15242 | 1.2955 | 2.2494 | 0.0067
0.17218 | 1.2911 | 2.6095 100 03 :0.15! 0.15265 1 1.2955 | 2.2494 10.0039
10.16275 | 1.0420 1 2.4232 (0.0 104 102 . 0.15280 | 1.2955 « 2.2494 { 0.0019
0.15848 | 1.J088 | 2.3329 { 0.0 10.44 1 0.24 | 0.15295 | 1.2956 | 2.2494 | 0.0000
0.15494 | 1.3046 | 2.2832 { 0.0 1 0.48 [ 0.24 | 0.15292 | 1.2056 | 2.2494 1 0.0004

ama ama
0.5001 | 0.2495 &
0.5001 ; 0.2498
0.5026 | 0.2442 1
0.5015 | 0.2494
0.5008 | U.2484 I
0.5002 ! 0.2499 |
0.5002 ¢ 0.2496 4

Tabie 4: Numencal results for spring-mass model using ail three mode information.
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Figure 1. Geometry of a simply supported beam containing a palr of symmetrir edge cracks al
mid-span, zc = ‘
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Figure 2. Geometry of 2 3 DOF spring. mass beam moslel
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