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The problem of determining the profile of a channel or duct {given its upstream cross-section and

length} that provides the maximum static pressure rise is solved. Incompressible, laminar flow governed
by the steady-state Navier-Stokes equations is assumed. Recent advances in computational resources and

algorithms have made it possible to solve the "direct _ problem of determining such a flow through a body
of known geometry. It is possible to obtain a set of "adjoint _ equations, the solution to which permits the
calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher

pressure rise. The solution to the adjoint problem can be shown to represent an artificially constructed flow.
This interpretation provides a means to construct numerical solutions to the adjoint equations that do not

compromise the fully viscous nature of the problem. This paper addresses the algorithmic and computational

aspects of solving the adjoint equations. The form of these set of equations is similar but not identical to
the Navier-Stokes equations. In particular some issues related to boundary conditions and stability are
discussed. The use of numerical solvers is validated by solving the problem of optimum design of a plane

diffuser. The direct as well as the adjoint set of partial differential equations are discretized using a finite-
volume formulation. Each of the resulting set of algebraic equations are then solved numerically to obtain

a change in profile that will ensure an increase in the static pressure rise. Upon successive applications

of this procedure, an "optimum" profile is obtained beginning with an initial guess of a diffuser profile.
Such optimum diffuser profiles are obtained at Reynolds numbers varying from 10 to 2000. The optimality

condition, that the shear stress all along the wall must vanish for the optimum diffuser, is also recovered

from the analysis. It is shown that numerical solutions obtained in this fashion do satisfy the optimality
condition.

1. INTRODUCTION

A shape optimization problem is one in which an objective function defined on a domain and/or on its

boundary through the solution of a boundary value problem, is minimized {or maximized} with respect to
the variation of the domain. One problem of this nature is UWhat is the shape of a body (of given volume}
which has minimum drag when moved at constant speed in a viscous fluid? ". Pixonneau (1973} addressed

this problem in Stokes flow for a three-dimensional unit-volume body. It was shown that at optimality the

normal derivative of the velocity is constant along the boundary of the body. In addition it was also shown

that the general shape of the body is similar to a prolate spheroid including a conical front end and rear ends
of angle 120 degrees. However, due to the lack of a numerical Stokes flow solver, a complete body profile
could not be obtained.

In a subsequent study, Pironneau {1974} derived the change in energy dissipation due to a small hump

on a body in uniform, steady, laminar flow. Using the above result in conjunction with variational methods

of optimal control "necessary optimality conditions" for four minimum-drag problems were obtained. These
conditions lead to a set of equations for an additional set of variables called the _co-statC or the _adjoint"

variables as opposed to the "direct" variables which are the unknown velocities. At the time Pironneau (1974)

was unable to carry out such a numerical integration. Instead, however using a boundary layer assumption
he was able to prove that a two-dimensional unit-area body with the smallest drag has a wedge-shaped
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front end. In a subsequent work Glowinski and Pironneau (1975} presented numerical computations of the

minimum-drag profile of a two-dimensional body in laminar flow, although with a Reynolds number large

enough (between 1,000 to 100,000) to permit a boundary layer approximation. The present study belongs

to this class in its theoretical approach with particular emphasis on computation of optimum profiles in the

absence of simplifying assumptions such as Stokes flow or thin boundary layers.

Another related class of optimum design problems is the question of determining the profile of a two-

dimensional body that will attain a desired surface pressure distribution. The body is assumed to be in

otherwise uniform flow. The designer usually has a better understanding of how the performance is related

to the the pressure distribution than the relationship between the profile and the performance. In recent

survey paper, Jameson (1988} suggests that the design problem be treated as a control problem in which

the control is the profile of the boundary. He also provides a comprehensive summary of the earlier related

studies in this direction. In a significant step towards addressing real flows Giles et. al. (1985) addressed

the problem of shape design for flows governed by the two-dimensional Euler equations. They write the

two-dimensional Euler equations in a streamline coordinate system and for fixed pressure distribution obtain

a Newton solution for the unknown surface coordinates.

In the present study optimum design of an internal flow component such as a diffuser in laminar flow

is considered. The problem of determining the profile of a plane diffuser (of say, given upstream width and

length} that provides the maximum static pressure rise is formulated using a variational method derived

from optimal control theory. Careful consideration of the numerical stability of the adjoint equations we

have been able to demonstrate the feasibility of optimum design in the context of laminar Navier-Stokes

equations without the additional boundary layer assumption.

2. STATEMENT OF THE PROBLEM

Consider a plane diffuser as shown in figure 1 of given upstream width W 1 and given length L with

incompressible, laminar flow through it. The flow is governed by the incompressible, steady forms of the

Navier-Stokes and continuity equations. These are:

ui,i : 0

uiu,.,= _p:, + vu,,ii (1)

where p* = p/p. Here ui, p, p, and _, are the velocity components, pressure, density and kinematic viscosity
respectively.

A no slip condition is imposed on the bounding wall. Dirichlet type boundary conditions are assumed

at the entrance and exit, specifically, it is assumed that the streamwise velocity component at the entrance

and exit is specified and the transverse velocity component at the entrance and exit is assumed to be ,ero.

Symmetry conditions are assumed at the centerline. All velocities and lengths are scaled using the average

entrance velocity, V, and the diffuser entrance width W_ throughout the paper. Hence the Reynolds number

for the flow through the diffuser is defined as Re = (V • WI)/_'.

It is desired that the optimum diffuser profile be such as to maximize the value of this parameter for a

given upstream width and length. Since pressure may vary across the diffuser inlet and exit regions it was

decided to choose the change in the flow weighted integral (over the exit and inlet cross-sectional areas} of

the static pressure rise as the objective function. This quantity is given by:

J(FM}=fr p'uinids + _r p*uinids (2)
! o

where n_ is the i th component of the unit normal vector and FM is the portion of the diffuser wall that is

to be shaped. The goal then is to determine the diffuser profile that maximizes the above function. The

normalized diffuser length, L/W1, (henceforth simply called the length} is kept constant. The normalized

exit width W2/WI, (henceforth simply called the exit width} is left arbitrary, and its actual value for the

optimum diffuser is part of the solution to the problem and is determined along with the rest of the profile.

Since the only mechanism for total pressure drop in the diffuser is viscous dissipation, the optimum profile

is also the profile for which the viscous dissipation is a minimum.
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3. MATHEMATICAL FORMULATION

In this section, the variation of the objective function with respect to the variation of the boundary is

obtained by means of a perturbation type of analysis. This analysis follows from arguments not unlike those

used for optimum design in potential flow, in an earlier paper by (_abuk and Modi (1990).

First the variation of the solution of the direct problem due to boundary variation is obtained. Let p(s)

be an arbitrary function of arclength s, defined on FM, and let e be a positive number. Here FM is part of

the boundary that is to be shaped. The whole boundary, including the wall of the diffuser, the centerline

and the inlet and exit areas, is denoted by F and the domain enclosed by F is denoted by fl. Let each point

on FM be moved by ep(s) along the outer normal direction. The curve constructed in this way is denoted

by FM, c and the new domain is denoted by fl_ as shown in figure 1. Let (u_,p _) be the solution of (1} in the

new domain fl,. Let (¢,, r) be defined as follows.

¢_ = lira e-1 [u S _ u{] • fl,
e--0

r : lim e -1 [p' - p*] • fl.
_0

(3}

Then (u_,p _) can be written as:

u, = u, + _¢_ (4)
p* : p* + e_r

Since both (u[,p*) and (ui,p*) satisfy the Navier-Stokes equations, it can be shown that (¢i, r) satisfy the

following set of equations:

¢,,, = o (s)
uj¢i,f + qbjui,i = --r5 + v¢i,ii

In a similar way it can be shown that on the fixed portions of the boundary

¢,=0 on(r-r_,) (e)

since both u S and ui satisfy the same boundary conditions.
The next step is to derive the conditions satisfied by ¢_ on I'M. Consider a point P on PM, and a

corresponding point Pc on FM., such that P_ lies on the outward normal 6, as shown in figure 1. Assume

that ep(s) is positive. A Taylor's series expansion of u S about the point P, evaluated at • = _lt',, along the

normal direction 6 is

"b. = '4b + _p\ a. ] _ + o(d)
(v)

+oIel
= u_]t, + _¢dP + e# \ a. ]p

Since the velocities satisfy the no slip condition on FM, (i.e. u_]p, = Ui]p = 0);

¢' = -P k a_ ] on ru. (8)

The first variation of the objective function is obtained next. The value of the objective function for the

new domain is given by,
$,

/ p'+.d, +/ (9)J(FM,,)
Jr t Jro

The first variation of the objective function, M, is defined by the relation

J(rM.) - S(rM) = e6J + 0(?). (10)

The first variation of the objective function can be shown to be:

6J= fr 7cu, nids+ fr ruinids,
1 o

(::)
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which is an integral expression over the entrance and exit boundaries. The next step is the transformation

of this integral from one that is over F; and Fo to one that is over r M. This is achieved through the

introduction of an adjoint variable problem. The inner product of the perturbation equations {5) and the

adjoint variables, (z¢, r), integrated over the domain, and added to (11), and after using the divergence

theorem gives

- (121+

+//¢i (_zio: + uizi,i + uyz:.,i - r,i) dA .

The adjoint problem has to be defined such that the domain integrals in (15) vanish identically. The choice

of boundary conditions for these equations is made such that the only nonzero terms are those that are

integrals over I'M, the wall that is to be shaped. Let us define the following adjoint problem

zi,i = 0 in fl

L'zi,ii + u_(zi,i + zi,i) - r,i = 0 in fl

"i = Ui on r.

(]3)

Using (6), (8), and (13), equation (12) can be written as

_J = _ ,. p(s) \ o,, ] \ o,, ] as. (14)

In the above equation, the integration is over the boundary that is to be shaped. We can choose p(s) as:

\on] \o_] (15)

since that would ensure a positive change in the objective function, J, for a sufficiently small non-negative

weighting function, co(s). The function p(s) provides the boundary movement for a positive change in J.

To evaluate p(s) we need to solve the direct problem {i.e. Navier-Stokes equations) given by (1) and the

adjoint problem in zi given by (13). Note that the optimality condition is satisfied when either the shear

stress, Oui/On, or the adjoint shear stress, Oz,/On, on the walls vanishes. The former criterion for optimum

diffuser profiles was also pointed out by Chang(1976).

It will be shown that the above formulation is equivalent to the earlier work of Glowinski and Pironneau

(1975). By a change of variable, the adjoint problem can be transformed into the following form:

wi,i = 0 in fl

vwi,ii + uiwi.y + wiui, i - q,i = -%'ui,i in fl

wi = 0 on F.

(16)

where 2wi = (zi -u,) and 2q = (r- p* + (1/2)u_- 2ujwj). The first variation of the objective function
then becomes

6J = _ P \ 0,, / TE, + 2 0_ / ds. (_7)

The form of the adjoint variable problem defined by (16) is identical to that derived by Glowinski and

Pironneau (1975). Either one of the above adjoint problems can be solved numerically to obtain the next

shape. However upon examination of (16), it becomes evident that the wiui, i term may lead to a numerically

unstable scheme. This is because the approach to steady state would be attained via an iterative "time

evolution" like scheme that would then be of the form dw/dt = w(const) + .--. This form is likely to result

in the exponential growth of the inevitable roundoff and truncation error8 present at any iterative step. Also
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the presence of the inhomogeneous term, -uju,.i , in the above equations may lead to a linear growth of the

roundoff and truncation errors in the numerical computations. It is expected that these numerical difficulties

will be absent in the (z_, r) formulation of the adjoint variable problem obtained in this paper and given by

(13). Hence this is the set of equations for which the algorithm for the numerical solution of the adjoint

problem is developed.

As pointed out by Pironneau {1974), the adjoint equations do not seem to arise from any identifiable

physical phenomenon. It is however possible to demonstrate that the adjoint variable problem is associated

with a certain artificially constructed flow. A change of variables leads to the following form.

!
Zi, i = 0

( ' )-r' =0 inflt t Z_,j. + Zj, i ,_UZi,jj -- uj

i f
z i -_- U i _ --U i

in fl

on F.

(18)

where z_ = -z,, u_ = -u,, and r' = -r. The first equation in (18) is identical to the continuity equation.

Compare the second equation in (18) with the Navier-Stokes equation written here in a slightly different

form.

 'ui,sj - uj (",,s + - = o (m)

where _ = p" - (1/2)u_. Observe that the problem in adjoint variable z_ is analogous to the the Navier-

Stokes problem in variable ui with the following exception: the convective velocities in the adjoint problem

are specified rendering the problem linear and are obtained from the direct problem. These convective

velocities, u_., are identical in magnitude but opposite in direction to those of the _direct" problem. The

boundary conditions for the adjoint variables are z_ = -ui on F. Hence on the walls they imply a no

slip condition as in the direct problem. But at the inflow and outflow boundaries, _adjoint" flow is found

entering at the domain exit ro and leaving at the domain entrance rl, thus suggesting an _adjoint _ flow in

the direction opposite to that of the actual flow.

The above interpretation of the adjoint variable problem will be useful in constructing a modified

problem whose solution will provide numerical values, albeit approximate, for the shear stress, Oui/art, and

the adjoint shear stress, Oz,�an, in (15). It is found that a shape optimization algorithm that obtains its

boundary movement from these approximate numerical solutions does indeed lead to diffuser shapes that

satisfy the optimality condition.

4. NUMERICAL ASPECTS

The boundary conditions chosen for the diffuser in the above formulation are of Dirichlet type. A

parallel flow of arbitrary distribution is assumed to exist at the diffuser entrance and exit. These boundary

conditions are clearly unrealistic both from a practical as well as computational standpoint. However this

is the only set of boundary conditions for which we have been able to derive the adjoint variable problem.

Given this limitation it was decided to verify whether the boundary movement suggested by (15) would

continue to provide a means to obtain optimum shapes even if some of the Dirichlet conditions were replaced

with computationally suitable Neumann conditions.

Boundary Conditiotts for Navier-Stokcs Equations

A parallel flow assumption at the upstream boundary implies Dirichlet boundary conditions for both

the velocity components. Instead a computationally desirable Neumann condition for the transverse velocity

component (Ou_/cgn = 0 on rl) issubstituted while retaining a Dirichht condition for the streamwise com-

ponent. A parabolic profilecorresponding to a fully developed laminar flow isspecified for this component.

At the downstream boundary the parallel flow assumption isreplaced with computationally desirable Neu-

mann conditions for both the velocity components (cgu_/cgn= au2/an = 0 on to). Similar approximations

will be made in the solution of the adjoint variable problem, keeping in mind the reversal of the role of

entrance and exit boundaries. At the solid wall, a boundary whose profile is to be determined, a no slip

condition is enforced. At the diffuser centerline the usual symmetry conditions are used since the flow is

assumed to be symmetric. At the entrance, exit, and wall, pressure has been extrapolated from the within

the domain by assuming that the second derivative of the pressure vanishes on the domain boundary. At

the centerline symmetry condition is imposed for the pressure.
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Boundary Conditions for Adjoint Equation8

The role of entrance and exit are reversed for the adjoint equations. Therefore, at the exit boundary

a Dirichlet type condition is used only for the streamwise component of the co-state vector. Therefore we

set zl = ul on Fo, with ul taken from the solution of the Navier-Stokes equations. For the remaining

component z2 of the co-state vector at exit and for both components of the co-state vector at entrance,

Neumann conditions are employed instead. At the wall where all velocity components vanish and therefore,

z_, the co-state vector that is analogous to the velocity is set to zero. The adjoint variable, r °, is analogous

to the pressure term in the Navier-Stokes equations and hence no analytical boundary condition is available

for this variable. However, a computational boundary condition is implemented for this variable. The value

of r* is extrapolated to the boundary from values at interior points assuming that the streamwise second

derivative vanishes at the boundary. This is done at all boundaries except at the centerline where a symmetry
condition is enforced.

5. NUMERICAL SOLVERS

Navier-Stokes Equations Solver

The primitive variable form of the incompressible steady Navier-Stokes equations is solved using an

artificial compressibility formulation due to Chorin(1967). In this formulation, the continuity equation

is modified using the time derivative of the pressure term. The steady-state solution of the Navier-Stokes

equations is then obtained as the large time solution of the unsteady momentum equations with the perturbed

divergence equation. These unsteady equations are:

p_ + _2u_,i = 0
(2o)

+ j = -v;, +

where fl is analogous to the speed of sound. Note that these equations do not represent any transient physical

phenomenon and hence the transient solution has no physical meaning until steady state is attained. This

is indicated by the vanishing of the time derivative terms in the numerical solution.

The equations are normalized using the velocity and length scales V and WI defined earlier. In addition

time and pressure axe normalized using the ratio WI/V and pV 2 respectively. The Reynolds number of the

flow through the diffuser is then given by Re = {V • Wt)/v.

The equations are discretized in space using a finite volume formulation. The spatial discretisation is

performed on the conservative form of the governing equations using a central difference scheme.

An explicit one-step multistage Runge-Kutta stepping scheme is used for integration in time. Since

transient behavior is not an issue and a larger time step is desirable, a four-stage Runge-Kutta scheme

with first order accuracy in time and a relatively high Courant-Friedrichs-Lewy (CFL) number has been

chosen. In order to improve the convergence rate, a local time step is computed for each cell at each elapsed

time level. These time steps have been estimated from a stability analysis of the algorithm. A fourth

order linear artificial dissipation term is introduced to damp the high-frequency oscillations a_sociated with

the so-called sawtooth or plus-minus waves, i.e. waves associated with the shortest wavelengths. Implicit

residual smoothing is performed at each iteration to enhance the stability region of the technique. A more

complete discussion of the finite volume formulation, stability considerations, local time stepping, artificial

dissipation, implicit residual smoothing and the computational boundary conditions is provided in Cabuk,

Sung and Modi (1991).

The computational grid is generated by solving a set of elliptic partial differential equations similar

to those suggested by Thompson et al. (1974). The set of algebraic equations thus obtained is solved by

successive over-relaxation (SOR). A typical grid is shown in figure 2. Grids generated by this method were

nearly orthogonal and the cell dimensions in each direction are approximately equal.

Adjoint Equation Solver

The solution to the adjoint set of equations is obtained as the steady state solution to the following set
of equations:

r; =
1 {21)
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where r" = r - ZkZk.i. A nonlinear term ½ (zkzk)., is introduced in the above equation to enhance the rate
of convergence. The utility of this term was established by means of preliminary calculations performed on

a straight duct geometry where an exact solution of the Navier-Stokes solution is known for fully developed
laminar flow.

The equations are normalized following a procedure similar to that utilized for the Navier-Stokes equa-

tions. The nondimensional form of the above equation is identical to the equations above with the exception

of the first term on the right hand side of (21) where the kinematic viscosity, v, is replaced by the reciprocal
of the Reynolds number.

The numerical algorithm for the solution of the adjoint set of equations is essentially similar to the

algorithm for the Navier-Stokes equations. Some subtle but important differences do exist since the equations
solved are after all not the same. A discussion of the numerical algorithm is presented here, since this solution

to the best of our knowledge represents the first successful numerical solution of the adjoint set of equations
in the absence of either a thin boundary layer or a Stokes flow assumption. Spatial discretisation is carried

out by centered-difference finite volume formulation. The term, uy (zi,i + zy,,), on the right hand aide of (21)

is not in a divergence form. In the treatment of this term the velocities, uy, which have already been obtained
by the Navier-Stokes solver, are treated as known quantities and are assumed constant inside each cell. Hence

the volume integral over the cell is performed by applying the divergence theorem to the remaining part of

this term, i.e. (zi.j + zji).
The other terms in (21) are treated in the same fashion as the finite volume formulation of the Navier-

Stokes equations. A fourth order linear artificial dissipation term is introduced to damp high-frequency
oscillations. Time integration is carried out by a Runge-Kutta scheme with local time stepping. The

discrete form of the equations for the adjoint problem are:

Re-* 62
dq _ (A6, + B6j + C6K)q = E-_v(SI , + SJ6_ + SK6_)q- eK(6_ + 6_ + 6_)qAv_ (22)

where

A

0 19_SIX J92SIY _2SIZ ]
SIX V + (ui - zi) SIX (u, - z,) SIY (u, - zl) SIZ I
SIY (u2 - za) SIX U + (u2 - z2) SIY (u2 - z2) SIZ I
SIZ (ua - za)SIX (ua- za)SlY V + (ua - za)SIZJ

B _____

0 fl2SJX /92SJY _2SJZ ]SJX V+(u,-z,)SJX (ul-zl)SJY (u,-z,)SJZ J

]sJy (_-_3)sJX v+{_2-_2)sYY (_-_2)sJZ ]
[. SJZ (us - z3) SJX (us - z3) SJY V + (u3 - z3) SJZJ

C

0 _2SKX _2SKY

SKX W + (ul - z,) SKX (u, - zl) SKY

SKY (u2 - za) SKX W + (u2 - z2) SKY
SKZ (us - za) SKX (us - z3) SKY

#2sgz ]
(u, - z,)SKZ |
(u2 - z2) SKZ |

W + (ua- za) SKZJ

and

with

[ ooioE= 0 1

0 0

q = [r*_Zl,

U = tqSIX + u2SIY + uaSIZ,

V = uISJX+ u_SJY + uaSJZ,

W = uISKX + u2SKY + u3SKZ,

Z2_Z3] T

SI = SIX 2 + SIY 2 + SIZ 2,

SJ = SJX 2 + SJY 2 + SJZ 2,

SK = SKA n + SKY 2 + SKZ 2
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Sciences

The volume of the cellis AV and (SIX, SIY, SIZ), (SJX, SJY, SJZ) and (SKX, SKY, SKZ) are the

surface-area vectors normal to the I, d and K cell surfaces, respectively. SI, SJ and SK are the squares
of the surface areas of I, J and K cell surfaces, respectively. The first, second and fourth order centered

differences are defined in the same fashion as in Sung(1987). The maximum local time step permitted for

stability is obtained by neglecting both the viscous and the artificial dissipation terms in the adjoint problem

and is given by

At <_ CFL ( A-_o ) (23)

The maximum eigenvalue, Ao, in the above equation is estimated as

where

and

1[ + j_o=[ 0+ 02+_2c_

0 --IUI+ [SIX(ul- z_)[ + ISIY(u2- z2)l+ ISIZ(u3 - z3)l

+ IVl+ ISJX (_i- zl)[+ISJY(u2- z2)l+lSJZ(u3- z3)l

+ IWI+ ISKX(ul - z,) [+ ISKY (u2 - z2) l + ISKZ (u3 - z3) l

(24)

and

where

1[ J
1[ + 1_+= _ 0++ Oy,+p_sJ

_K = _ OK+ O_<+ _2SK

O_=lVl + IsIX (ul - z,)[+ [SlY (u2 - z2) l+ [SIZ(ua - za) l

O+ =IV[ + ISJX (u, - z,)l+ [SJY (u2 - z2)[ + [SJZ (ua - z3) l

OK =lWl + ISKX(ul - =x)l+ ISKY (u2 - z2) l+ ISKg(u3 - z3) I

Then the local time step has been computed from (23) with the maximum eigenvalue given by (25).

Profile Modification Algorithm

The principal steps of the optimization procedure are;

a) Choose an initial diffuser profile.

b) Generate a computational grid that conforms to the diffuser wall.

c) Obtain the steady state solution to the direct problem.

C _ = (ISIX I+ ISIY I + ISIZI) _

-+(ISJXl + ISJrl + IsJZl) _

+(ISKXI + ISKYI + ISKZI) 2.

The maximum eigenvalue of the resulting matrix system, including both the viscous terms and the artificial

dissipation term has been estimated as

Ao =V/A_ + (4Re-ISI/AV + 16eK) 2

+V/A_ + (4Re-'SJ/AV + 16eK) 2 (25)

+V/A_c +(4Re-ISK/AV + 16,K) 2
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d) Obtain the steady state solution to the adjoint problem, by treating the required velocities as known

from step {c).

e) Compute au,/an and cgz_/cgn from the solutions in steps (c) and (d) respectively. Choose a non-negative

weighting function w(s} and hence obtain p(s) from (15}.

f) Move nodes on the diffuser wall to be profiled along the outer normal direction by p{s). The curve

connecting the nodes after this movement represents the new diffuser profile.

g) Go to step (b) unless the change in diffuser pressure rise obtained from step {c) is smaller than a desired

convergence parameter.

The iterative profile modification process is continued until the change in pressure rise is a small fraction

of the total pressure rise. An alternate method is to continue the process until the value of p{s) everywhere

along the wall is less than a critical value. In step (e), the weighting function, w{_), is chosen to be

proportional to the arclength, s, along the diffuser wall measured from the diffuser entrance. This ensures

that the entrance width is maintained constant but the exit width may vary with the diffuser profile. When

shifting the diffuser wall to a new curve obtained from step {f} some care must be exercised since the curve

is being redefined using only a finite number of discretely spaced points. Checks are performed on the

location of points on the new curve to ensure that boundary nodes do not conglomerate or coalesce after

their movement to a new position. Heuristic measures axe also adopted to ensure that the appearance of

small amplitude wiggles in the new profile axe damped to some extent so as to prevent the growth and built

up of numerical errors in the subsequent calculation

RESULTS AND DISCUSSION

Using the numerical solvers and the profile modification algorithm described above, optimum diffuser

profiles have been obtained for a single diffuser length L/W 1 = 3 at Reynolds numbers Re=S0, 100, 200 and

500. A sound speed, f12, of 2 for the Navier-Stokes equations and 2.5 for the adjoint equations was used at

all Reynolds numbers. The calculation at Re=200 {henceforth called the reference case} has been examined

in particular detail to establish issues of convergence and accuracy.

The reference case was first examined for convergence of the profile modification algorithm. For this

purpose, a computational grid of 61 nodes in the x and 31 nodes in the y directions is employed, both for

the Navier-Stokes as well as the adjoint variable problem. Beginning with an initial shape the diffuser profile

was obtained after each application of the shape modification algorithm. The initial profile and some of the

intermediate profiles axe shown in figure 3. The change in the profile shape is observed to be small between

the fourth and the ninth iteration and the change was found to be insignificant after nine iterations. Hence

the iterative process is stopped at the ninth iteration providing a reasonably converged optimum shape. The

question of computational accuracy of the solvers and hence the accuracy of the optimum profile is addressed

next.

The precise error due to a finite grid size on the optimum profile is difficult to determine since the actual

optimum curve is not known apriori, nor are any other calculations or experimental data available. However

one way to estimate the effects of the unavoidable truncation errors in a numerical calculation is to obtain

the optimum diffuser profile using progressively finer grids until the there is no change with grid size. Once

again the reference case of Re=200 was examined for this purpose using grids of 31 by 16, 61 by 31 and

finally 121 by 61. The optimum profiles obtained using the three grids are shown in figure 4. The results

show that the difference between the shapes is negligibly small, providing some evidence that at these grids

the contribution of the truncation errors may not be significant. In view of this observation, a grid sise of

61 by 31 is found to be a suitable compromise between accuracy and computational work for the results

presented here.

In an earlier section we proposed that it was computationaUy desirable to replace some of the Dirichlet-

type boundary conditions with Neumann-type conditions in both the Navier-Stokes and the adjoint equation

solvers. To justify at least partially the validity of solving the modified numerical problem we must verify

whether the optimum shapes obtained in this fashion do indeed satisfy the optimality condition, i.e. vanishing

shear stress on the wall, arising from the analysis.

In figure 5 the wall shear stress normalized by the corresponding value for a straight duct, is shown

for the optimum shape as well as at several intermediate stages of iteration. The wall shear stress for the

optimum shape is found to be vanishingly small for all but 10 percent of the wall at the upstream end.
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The shear stress distributions at intermediate iterations demonstrate a monotonous decrease towards the

optimum values. Closer examination of the shear stress for the optimum and intermediate shapes at other

Reynolds numbers confirm the same behavior as well Hence the results obtained do provide some aposteriori

justification for the boundary condition approximations made in the modified numerical problem.

Further justification is sought by examining the behavior of the objective function for the reference

diffuser. The velocity averaged static pressure rise (i.e. the objective function defined by equation 2) is

shown in figure 6 at successive iterations of the shape modification process. The objective function for this

modified numerical problem is indeed found to increase with each application of the boundary movement

suggested by equation {15). The area averaged static pressure rise through the reference diffuser also increases

with with shape modification as seen in figure 6. These observations are found to be valid at calculations at

other Reynolds numbers in the present study as well.

In addition to the reference case, calculation of the optimum diffuser profile was carried out at three

other Reynolds numbers, Re= 50, 100 and 500. In figure 7, these profiles are shown for a diffuser of L/W1 = 3

for a grid of 61 by 31. At lower Reynolds numbers the optimum diffuser profile permits a larger exit area to

inlet area ratio as one would expect higher viscous effects to support greater diffusion without separation.

The angle at which the diffuser profile departs at the upstream corner is difficult to compute accurately since

the flow in that corner may not be accurately resolved. Nevertheless, the approximate angle decreases from

56 degrees to 19 degrees as the Reynolds number increases from 50 to 500. For the Reynolds number range

in which numerical solutions are presented here, further refinement of the grid did not lead to any significant

change in the optimum profile. This was not found to be true of computations at Reynolds numbers higher
than 500.

To evaluate the performance of the optimum diffuser, a pressure recovery coefficient, Cp, is defined,

which is the ratio of the static pressure rise of the optimum diffuser to the static pressure rise for an ideal

diffuser (in potential flow} with the same W2/WI ratio as the optimum diffuser. Note that the denominator

of this ratio is independent of the actual profile between the upstream and downstream cross-sections of the

diffuser. Using Cp as a parameter, the performance of the optimum diffuser is now compared with that of

a straight walled diffuser with the same W2/WI ratio at several different Reynolds numbers in the laminar

regime. The Cp values of straight diffusers are found numerically using the Navier-Stokes solver on the

straight walled geometry without any shape modification steps. As seen from figure 8, the Cp values for the

optimum diffusers are always higher than those for straight diffusers.

In conclusion, the feasibility of shape optimization for incompressible laminar flows has been demon-

strated. This approach may also be adopted to other domain optimization problems where the performance

depends on the geometry of the component, and flow is governed by the viscous laminar flow {either com-

pressible or incompressible} equations. It may also be possible to consider variations of the objective functions

depending upon the design criterion of interest. All computational results presented in this paper were car-

ried out either on an Intel 30386 33MHz microprocessor based machine or on a microVAX II workstation.

The CPU times for these calculations are of the order of several hours. The theoretical framework as well as

numerical solution code for the extension of the method to three-dimensional flow now exist and such flows

are the subject of study by the authors at present.

The research reported in this paper is based upon work supported by the National Science Foundation
under Grant No. CBT-87-10561.
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Figure (1) Schematic diagram of a plane diffuser. Flow enters at upstream boundary FI and

exits at the downstream boundary Fo. The wall to be shaped is FM and symmetry
line is Ft.
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Figure (2) A typical computational grid for a plane diffuser obtained using the grid generation
program. Grid size is 61 by 31. This was the domain for the optimum diffuser at
Re=200 and L/WI = 3.
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Figure (3) Profiles of a reference diffuser at successive iterations. The grid size is 61 by 31. O

: Initial shape, _ : First iteration, _ : Fourth iteration, * : Ninth iteration.
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Figure (4) Effect of grid size on optimum profile of a reference diffuser. O : 31 by 16, n : 61
by 31, * : 121 by 61.
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Figure (5) Normalized wall shear stress at successive iterations for a reference diffuser. The

grid size is 61 by 31. O : Starting shape, m : First iteration, A : Fourth iteration, *

: Ninth iteration.
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Figure (6) Static pressure rise through the reference diffuser at successive iterations. The grid

size is 61 by 31. O : Area-averaged pressure rise, A : Velocity-averaged pressure

rise.
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Figure (7) Optimum diffuser profiles at different Reynolds numbers for L/Wz = 3. Grid size is

61 by 31. O : Re=50, N : Re=100, A : Re=200, o : Re=500.
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Figure (8) Variation of the pressure coefficient, Cp with Reynolds number for L/Wz = 3. 0 "

Optimal diffusers, A : Straight diverging diffusers.


