P.145

Material Property for Designing,

Analyzing, and Fabricating

Space Structures

FINAL REPORT

GRANTOR-NASA AMES RESEARCH CENTER

GRANTEE-CALIFORNIA POLYTECHNIC STATE UNIVERSITY

GRANT NUMBER NAG2-637

November 15, 1989 - December 31, 1991

Principal Investigator

Faysal A. Kolkailah, Ph.D., P.E. Professor of Aeronautical Engineering

California Polytechnic State University San Luis Obispo, CA 93407

(NASA-CR-189516)MATERIAL PROPERTY FORN92-14119DESIGNING, ANALYZING, AND FABRICATING SPACESTRUCTURES Final Report, 15 Nov. 1989 - 31UnclusDec. 1991(California Polytechnic StateUnclusUniv.)145 pCSCL 110 G3/24 0055210

ABSTRACT

Material Property for Designing, Analyzing, and Fabricating Space Structures

Faysal A. Kolkailah, Ph.D., P.E.

The objective of the first task of this study was to perform an analytical study of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite/epoxy composite projectile that will achieve hypervelocity of 6-10 Km/s.

For the second task of this study, the objective was to determine the feasibility of dialectics to monitor cure of graphite/epoxies. Several panels were fabricated, cured, and tested at Cal Poly and the astronautics lab with encouraging results of monitoring the cure of graphite/epoxies.

As to the third task of this study, the objective was to determine the optimum cure process for large structures. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.

ACKNOWLEDGEMENTS

I would like to thank the Edwards Air Force Astronautic Laboratory for sponsorship of the research. Also, I wish to express my thanks to Ames Research Center for their directional and administrative help and support.

I would like to take this opportunity to express my deep gratitude to Mr. Gelhausen and both Mr. Jim Wanchek and Mr. Jim Koury for their technical support and help during the course of this research effort.

INTRODUCTION

Composites are the preferred materials for future high performance structures. While isotropic materials such as steel, aluminum, and titanium are useful for specific purposes, organic and metallic composites may be used for a wide range of applications. to achieve the higher performances of composites, several tedious mathematical calculations must be accomplished. Computers are ideally suited to perform these calculations.

However, the fact that engineers have little practical experience designing and building composite structures in a major concern. this problem arises from a lack of funds at universities for expansion of facilities to include composite laboratories in the curricula and an insufficient number of qualified instructors. If future engineers do not become familiar with composites in college than they will have little reason to use composites in future designs. In carrying out the tasks of this study, the participating students are given a unique opportunity for valuable hands-on experience.

OBJECTIVE

The objective of this project is to determine material properties for advanced materials applicable to space structures. The properties of these materials will be employed in designing, analyzing, and fabricating composite structures at the Astronautics Laboratory (AL) at Edwards Air Force Base.

TASK I

AN OPTIMUM DESIGN ANALYSIS OF COMPOSITE PROJECTILE

An Optimum Design of Composite Projectile

A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering

> by Thomas D. Kim October 1990

APPROVAL PAGE

TITLE : An Optimum Design of Composite Projectile

AUTHOR : Thomas Dong-Hyup Kim

DATE SUBMITTED : October 1990

Faysal A. Kolkailah Thesis Advisor

Signature

9D

nature

Lawrence H. Nelson Committee Member

James L. Koury Committee Member

z

D. E. Soudeni

Doral R. Sandlin Department Head

Signature

ABSTRACT

AN OPTIMUM DESIGN OF COMPOSITE PROJECTILE

Thomas Dong-Hyup Kim

October 1990

The subject of this study is to apply the finite element analysis and the micro-macromechanic analysis to an optimum design technique for the mutilayered graphite/epoxy composite projectile that will achieve hypervelocity of 6-10 km/s.

The optimum design technique used in this study depends on the internal pressure, external body force induced on the projectile, the angle of the lay ups, and the materials. These dependent relations are used to calculate the optimum radii, the required minimum thickness of the projectile, and the minimum number of lay ups.

The micro-macromechanic (Mic-Mac) analysis enables designer to calculate readily the stresses, strains, and displacements in each layers during the firing of the projectiles. In Mic-Mac analysis, laminated plate theory is used and the projectile is designed as a pressure vessel. The Mic-Mac analysis did not provide an accurate stress/strain values. However, this technique is useful in preliminary design process, since the analysis determines the approximated values.

The finite element analysis (FEA) code TEXGAP2D was employed for the analysis of two dimensional projectile model. The FEA code translated the loads, boundary conditions, and material specifications from the finite element pre- and post-processor code called the PATRAN. Combined use of PATRAN and TEXGAP2D obtained an accurate structural analysis of a projectile. Assumptions were made to simplify both the projectile model and the loads. Analysis of the type and degree of complexity described in this study is continued in the research community and no experimental data are present at this time. Results from an analyses are presented which illustrate the method.

ACKNOWLEDGEMENTS

This author sincerely thanks professor Faysal A. Kolkailah and Mr. James L. Koury for their assistance and guidance throughout the course of his undergraduate/graduate studies and through the completion of this thesis.

The author would like to acknowledge the efforts and appreciation of the staff of the Composite Materials Laboratory and the Design Evaluations Group at the Air Force Astronautics Laboratory for assisting the development of the projectiles.

The author would like to thank the Aeronautical Engineering Department at California Polytechnic State University, San Luis Obispo for the support and making him a better person. The author would like to thank anyone whom he didn't mentioned here.

This work is dedicated to my family and my girlfriend Tamlyn. Without their understanding and support this opportunity could never have occurred.

TABLE OF CONTENTS

	Page
List of Tables	VII
List of Figures	VIII
Chapter	
1. Introduction	
 A. Background B. Objective C. The Problem D. Finite Element Analysis 	1 2 3 4
2. Method of Analysis	
 A. Introduction B. GENLAM Program C. Micro-Macromechanic Analysis D. PATRAN Analysis E. TEXGAP2D Finite Element Analysis 	- 5 5 10 12
3. Analysis Results	
 A. Introduction B. Mic-Mac Results C. PATRAN and TEXGAP2D Results 	- 14 14 18
4. Conclusion and Recommendations	- 33
Appendixes	
 A. Method of Projectile Fabrication B. Equations of Laminate Plate Theory C. Tables of Mic-Mac Analysis D. Tables of LAMRANK Analysis E. TEXGAP2D Analysis Data 	35 37 44 49 52
Glossary	86
Bibliography	89

TABLES

Table		page
1.	The Lamination Module	- 7
2.	The Strength Analysis Module	- 7
3.	The Stress Analysis Module	. 8
4.	The Micromechanics Module	9
5.	Comparison of Various Composite Materials	- 15
6.	Stress Analysis Data of 5 mm Dome Projectile	30
7.	Stress Analysis Data of 8 mm Dome Projectile	31
8.	Stress Analysis Data of 10.0 mm Dome Projectile	- 32
9.	Micro-Macromechanic Analysis Data	- 44
10.	LAMRANK Data	- 59
11.	TEXGAP2D Analysis Data	- 52

٠

FIGURES

Figure	;		page
	1.	The Railgun Configuration	1
	2.	Projectile Configuration	3
	3.	Configuration of the Closed End Cylinder	6
	4.	Finite Element Model	11
	5.	Axial Stresses versus Ply angles	15
	6.	Ultimate Stress versus Ply angles	16
	7.	Stress versus Thickness at Ply Angles of ± 54.5 degrees	17
	8.	Strength ratio versus Thickness at ±54.5 degrees	17
	9.	Model with Boundary Conditions	19
	10.	Projectile with 2.6 mm Dome Thickness	18
	11.	Stress Analysis of 2.6 mm Dome Projectile	20
	12.	Contour Plot of 2.6 mm Dome Projectile	20
	13.	Close Up View of the 2.6 mm Dome Section	21
	14.	Close Up View of the Contour Plot at the Dome	21
	15.	Stress Analysis of 2.6 mm Dome with Pressure Loading	22
	16.	Stress Analysis of 2.6 mm Dome with Body Force Load-	22
	17.	Projectile with 5.0 mm Dome Thickness	23
	18.	Stress Analysis of 5.0 mm Dome Projectile	24
	19.	Close Up View of 5.0 mm Dome Section	24
	20.	Projectile with 8.0 mm Dome Thickness	25
	21.	Stress Analysis of 8.0 mm Dome Projectile	26
	22.	Projectile with 10.0 mm Dome Thickness	27
	23.	Stress Analysis of 10.0 mm Dome Projectile	28

24.	Stresses Versus Weight	29
25.	Gravity Acceleration Versus Pressure	29
26.	Mandrel Configuration	35

CHAPTER 1

INTRODUCTION

Background

The goal of a research on electromagnetic launchers (railgun) is to develop an electromagnetic means of accelerating substantial masses or perhaps tightly bound group of particles to the hypervelocity regime. The definition of hypervelocity is understood as a velocity substantially greater than that achievable with conventional propellants (> 2 km/s).

The principle of the railgun is shown in Figure-1.

FIGURE 1 THE RAILGUN CONFIGURATION

The current flowing in the rails produce a magnetic flux density between the rails and this magnetic field interacts with the current flowing in the foil attached back of the projectile. Then high amount of current (0.5-2.0 mega-amps) causes a deflagration of an electrically heated aluminum foil which turns into plasma causing rapidly expanding hot gases giving initial driving force.

Rashleigh and Marshall's pioneering paper on the railgun in 1978 reported a velocity of 5.7 km/s for 2.5-g projectile. The reliable operation of a plasma-armature railgun today is limited to about 6.5 km/s. Two experiments have reported achieving 8 km/s with gram size projectile, but this performance is generally erratic for reasons which are not well understood. The projectile used in those experiments consist of polycarbonate (Lexan). The current record velocity for a railgun is about 10 km/s achieved in one test with an expendable launcher using a gram size particle.

The emerging high modulus, high strength composite materials are proposed by Air Force for the construction of projectile. It is known that the use of composite materials improves performance and offers a significant amount of material savings up to 25% over that of metal (isotropic) materials such as the aluminum. However, to take full advantage in the use of orthotropic properties of the composite materials, a reliable design method based on accurate stress analysis with the use of an appropriate failure criterion is required.

Current research being done at the Eglin Air Force Base, Florida and Sparta Inc. of San Diego, California emphasizes the need for the lightweight projectile that can withstand enormous loads and pressures. The understanding of the plasma conditions inside the barrel and the material characteristics are some of the critical area that needs to be better understood.

Objective

The objective of this study is to perform an optimum design analysis of a projectile that will survive the initial given pressures and loads. This design will assist in the construction of a composite projectile that will achieve hypervelocity of 6-10 km/s.

This is first time that composite material is considered for the use as a projectile. The design will be based on micro-macromechanic analysis, modeling and pre/post processing by PATRAN code, and the finite element analysis code of TEXGAP2D. The finite element method is a

proven technique for using computers to predict a wide variety of structural behaviors.

The assumptions used for this analysis include the following:

- Uniform base pressure distribution
- Axisymmetric loading
- Perfectly constrained at rails during launch
- Friction effects neglected
- No tumbling after exit from barrel

The Problem

In 1989, a group of researchers at the Eglin Air Force Base, Florida and the Air Force Astronautics Laboratory, California designed and fabricated composite projectile that was experimented. The figure describing the projectile is shown below. The projectile was 130 mm long and had diameter of 82 mm. The material used was T300 Graphite/ Epoxy. The railgun used for this experiment had 5 meter long barrel with in bore diameter of 56 mm. The electrical current used for the firing of the projectile was 750,000-1.0 million amperes, creating the base pressure of 30-40 ksi and the external body force of 500,000 - 600,000 g's..

FIGURE 2 PROJECTILE CONFIGURATION

The projectile was preaccelerated with gaseous helium at velocity of 1.0 km/s before the current was switched on. At that instant time of the given current, the deflagration of the aluminum foil behind the projectile created a massive pressure which the dome section of the projectile was

assumed to be blown off. Initially, the body section of the projectile reached velocity of approximately 4.7 km/s inside the railgun barrel. As the projectile reached the exit muzzle, the velocity declined to zero. Later it was concluded that the barrel and the projectile was fluctuating causing the velocity to decrease rapidly.

This study is to analyze the structure of the projectile that had the failure and proceed to design projectile that will survive the next firing coming up in 1991.

Finite Element Analysis

Modeling of the projectile was performed using PATRAN computer applications. A projectile model is generated using grids, lines, arcs, and patches. The type of element employed is a two dimensional quadrilateral elements. The finite element analysis parameters such as forces, loads, and boundary conditions are inserted at any stages of modelling process. Once the model has been completed, it is transferred to decoder module of any finite element analysis code such as TEXGAP, NASTRAN, ABAQUS,...etc. The decoder takes graphical information produced by PATRAN and creates the input neutral file that will be used by the analysis module. The geometry of the model is checked while enabling the user to define material and element properties associated with the projectile model.

After creating and decoding the neutral file by PATRAN, the model is ready to be processed by employing TEXGAP2D or any other finite element analysis processors. TEXGAP2D FEA processor calculates stresses and displacements of the loaded model. Completed error free analysis of the model is then translated back to PATRAN for the visualization. The effects of the stresses on a model can be displayed graphically using many different stress criteria and visual display options. More detailed description of PATRAN and TEXGAP codes are listed in Chapter 2.

CHAPTER 2

METHOD OF ANALYSIS

Introduction

Analysis performed in this study was first obtained by the laminated plate theory with the use of computer program called GENLAM and spreadsheet analysis of micro-macromechanics.

In order to determine the accurate stress concentration of the projectile structure and find the possible failure sites, the finite element code TEXGAP2D was used for the analysis. The mesh generation of finite element model was performed by the use of PATRAN modelling code. The finite element code CS/NASTRAN was initially used with only few successes due to the difficulty of interfacing and translating with PATRAN code. The details of the computer codes are described below.

GENLAM Program

The GENLAM computer program was developed by the Think Composites of Dayton, Ohio. In GENLAM, the coefficients in the governing differential equations are calculated using the laminated plate theory (LPT) listed in Appendix B. After the boundary value problem has been solved the LPT is used to calculate the strain and the stress state in the plate. However, in many instances the in-plane loads and the moments are known in statically determinant problems. The LPT can then be used directly to calculate the stress in the plate. Therefore, GENLAM calculates the stress values at the top and bottom of each ply.

Micro-Macromechanic Analysis (Mic-Mac)

The integrated micro-macromechanics analysis was performed using spreadsheet based on Microsoft Excel. This program was also developed by Think Composites of Dayton, Ohio. Input of the ply angle, thickness, pressure, axial force, and safety factor determines the stresses and strains. The analysis employed in this analysis does not consider buckling, or the interlaminar failures. The assumption such as uniform pressure distribution and drag is neglected in this analysis.

In this analysis, filament wound pressure vessel (projectile) is assumed to have adjacent ($\pm B$) angle lay ups and that adjacent ($\pm B$) lay ups act as an orthotropic unit. Projectile can be made up with several of such orthotropic units wound one over another as in Figure-3 below. It is assumed that the length (L) of the projectile is such that the longitudinal bending deformation due to the end closures of the vessel is limited to only small end portions of the projectile compared to the overall length. The projectile is subject to axisymmetric internal pressure and external body force.

FIGURE 3 CONFIGURATION OF THE CLOSED END CYLINDER

The Mic-Mac program is then applied to the problem solving. The program is divided into four distinguishing parts.

- Lamination module
- Strength analysis module
- Stress analysis module
- Micromechanics module

In lamination module Table 1 next page, the ply material is identified and up to four ply angles of any value can be selected in any order.

TABLE 1 THE LAMINATION MODULE

A	В	С	D	E	F	G	Н	1
READ ME	Theta 1	Theta 2	Theta 3	Theta 4				
[ply angle]	0.0	90.0	54.5	-54.5	[repeat]	h, #	h, E-3	[Rotate]
[ply#]	0	0	1	1	67.0	134.0	660.0	0,00

The number of plies in each ply group is arbitrary. Being limited to symmetric laminates, the total number of plies is twice the sum of the ply group. In choosing the ply angle for this analysis, trial and error was performed in order to find the desired ply angles.

The strength analysis module Table 2, computes both intact and degraded plies. This calculates the in-plane strength with and without considering residual stress resulting from the lamination of a multidirectional composite. Quadratic failure criterion is used.

TABLE 2 THE STRENGTH ANALYSIS MODUL

A	В	С	D	E	F	G	Н	1
R/intact	#####	#####	0.99	0.99	R/FPF	0.99	safety	1.50
R/degraded	#####	#####	2.59	2.59	R/LPF	2.59	R/lim*	1.73
					R/ult	2.59	R/lim	0.99

The maximum laminate stress and strain at first-ply-failure (FPF) or last-ply-failure (LPF) is simply the resulting laminate stress or strain multiplied by the strength ratio. The lowest strength ratio determines the ply group that would fail first, which is the FPF of the laminate. The ultimate of the laminate is the higher of the FPF and LPF. This is valid if we limit loading to the monotonic, proportional type only; i.e., no unloading and reloading. Safety margin of 1.5 is used in the analysis.

A design limit is defined as the lower FPF and LPF divided by safety margin. With this definition, limit is always equal to or lower than FPF. Defining another limit called limit*, which equals ultimate divided by safety margin. At limit* matrix cracking is tolerated.

The stress analysis module of Table 3 on next page, the length and diameter of the cylinder is plotted. There are three possible loads: an axial force in tension or compression, internal or external pressure, and a

torque applied along the cylinder axis. For this analysis, an axial force was assumed to be that of an impact force caused by the exploding foil behind the projectile.

A	В	С	D	E	F	G	Н	
size, m or ir		9L,9D,E-	3	<sg></sg>	<sg>lim</sg>	<sg>lim*</sg>	<sg>ult</sg>	{E°}lim
[Length]	5,00	19.51	1	65.	65.	113.	169.	2.8
[Diameter]	3.60	25.79	2	128.	127.	221.	332.	7.5
Angle of the	wist,deg	0.00	6	0.	0.	0.	0.	6.9
	[Load]	[Load] lir	n	<ep>E-3</ep>	<ep>lim</ep>	<ep>lim*</ep>	<ep>ult</ep>	E^u/E'
Axial load F	10.00	9.94	1	3.90	3.88	6.73	10.10	0.33
Pressure P	47.00	46.71	2	7.16	7.12	12.36	18.54	0.41
Torque	0,00	0.00	6	0.00	0.00	0.00	0.00	0.98

TABLE 3 THE STRESS ANALYSIS MODULE

This axial force is calculated from the Lorentz Force equation.

$$\mathbf{F} = \frac{1}{2} \mathbf{L} \times \mathbf{I}^2 \tag{1}$$

where L is the inductance and the I is the current. All loads can be applied simultaneously.

The laminate stress induced from the combined loads can be calculated using the in-plane stress equations below.

$$\sigma_1^{o} = \frac{PD}{4h} + \frac{F}{\pi Dh}$$

$$\sigma_2^{o} = \frac{PD}{2h}$$

$$------(2)$$

where P is the pressure, D is the diameter of the cylinder, h is the thickness, and the F is the axial force.

The resulting strains are calculated from the in-plane stress-strain relation

$$\{ \in {}^{\circ} \} = [a^*] \{ \sigma^{\circ} \}$$

where a* is the normalized compliance matrices and it is obtained as follows:

$$[A] = \int_{\frac{h}{2}}^{\frac{h}{2}} [Q] dz$$
 (5)

and

$$[A^*] = \frac{[A]}{h} \tag{6}$$

obtaining,

 $[a^*] = [A^*]^{-1}$ (7) where [A] is the In-plane stiffness and A^* is the normalized in-plane stiffness. [Q] is the on-axis plane stress stiffness which can be computed from the engineering constants as follows:

$$[Q] = \begin{bmatrix} \frac{E_X}{1 - \gamma_X \gamma_Y} & \gamma_X Q_{YY} & 0 \\ & \gamma_Y Q_{YY} & \frac{E_Y}{1 - \gamma_X \gamma_Y} & 0 \\ & 0 & 0 & E_S \end{bmatrix}$$
.....(8)

where Q12 = Q21, Q16 = Q61 = 0, Q26 = Q62 = 0 and E is the Young's Modulus and γ is the Poission's ratio. The growths in length due to the applied loads can be found using the displacement equation below.

$$\partial L = L \in {}_1^0$$

where L is the length. Finally the stresses and strains at limit, limit* and ultimate are the resulting stress and strain multiplied by the corresponding strength ratios.

The micromechanics module Table 4 lists the principal laminate stiffness component and the loss of each component due to matrix degradation.

Α	В	C	D	E	7	G	Н	I
	Topr	c,moist	vol/f	Em	Efx	Xm	Xfx	Em/Em°
Baseline	71.6	0.005	0.66	0.49	45	8.1	770	0.30
[Modified]	71.6	0.005	0.66	0.49	4 5	8.1	770	0.30
Mod/Base	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mod-Base	0.0	0.000	Hot/Wet	0.49	45	8.1	770	

TABLE 4 THE MICROMECHANICS MODULE

If the degradation factor is lower than 0.3, the loss of laminate stiffness is expected to be lowered. Also listed are the thermal and moisture expansion coefficients of the laminate. This could be an important factor when the material is exposed to slowly changing environments for long period of time, or if it is subjected to suddenly changing environments for short time period such as in plasma conditions.

PATRAN Analysis

Mesh generation of finite element analysis was performed by PATRAN code developed by the PDA Engineering of Costa Mesa, California. PATRAN function is the ability to construct, view, analyze, and understand the nature and behavior of an object. The result is to optimize the design. PATRAN is split into four major areas or phases of concern:

- Geometric Modeling
- Analysis Modeling
- Analysis
- Postprocessing

In Geometric Modeling involves creation of an accurate solid or generation of a continuous geometry surface model of a structure. This is the development of a set of mathematically defined regions which closely approximate the physical object. Grids, lines, and patches are used to create the model.

The Analysis Modeling is the creation of finite elements and their loading environments based upon this geometric model. This is where the model can be subdivided into any required density for finite element model generation. This phase is analysis dependent and there may be several finite element models generated from one geometry model. The loads and material properties are assigned in this phase. Boundary conditions are inserted in this phase as well. Model is constrained in radial direction and the external body force (acceleration of gravity) is simply obtained from the equation below.

 $Gee = \frac{\text{Total applied force}}{\text{Mass of projectile}} = \frac{P A}{M_P}$

For isotropic material properties the PATRAN command is as follows:

PMAT, mat, ISO, ym, , n, r, a

where "mat" is the material identification, "ym" is the Young's modulus, "n" is the Poisson's ratio, "r" is the mass density, and "a" is the coefficient of thermal expansion. The shear modulus field and all additional fields are ignored by the translator.

The PATRAN command for generating nodes is as follows:

GFEG, id-LPH, Gtype, mesh,,,,spc-list

where "id-LPH" is the identification number of nodes, "Gtype" is defined as structural node, "spc-list" is the single point constraint number.

The PATRAN command for generating elements is as follows:

CFEG, id-LPH, QUAD/8/7,,prop-id where"QUAD/8/7" element type produces an axisymmetrical 8-node guadratic element, and "prop-id" is the property identification.

The PATRAN command to set boundary condition is as follows:

DFEG, id-LPH, option,load, set-id

where "option" is the either Pressure, Force, or Displacement, "load" is the amount of load applied on the model.

An analysis of its behaviors can be performed, once a completely described finite element model has been developed in conjunction with its properties and loads. PATRAN reads finite element analysis code performed by the TEXGAP2D and converts analysis results output from analysis program into files which can be read and translated by PATRAN.

In Postprocessing phase, the graphics oriented interpretation of the analysis results are displayed. The stress concentration, displacements, and the deformed geometry is colored and displayed visually. Many plot options are listed in this phase such as contour, fringe, and deformed or undeformed model is plotted. Figure 4 is the representation of the finite element generated by the PATRAN.

FIGURE 4 FINITE ELEMENT MODEL

TEXGAP2D Finite Element Analysis

The finite element analysis code TEXGAP2D developed by ANATECH International Corporation was used to analyze the model. The Air Force Astronautics Laboratory, California has funded the development of the TEXGAP program over the last decade in order to provide for the accurate determination of stresses and deformation fields in various areas.

TEXGAP2D is a finite element program for the analysis of static, twodimensional, linear elastic plane or axisymmetric bodies. The TEXGAP FEA was performed using the VAX/VMS on a Ethernet network system. Computer terminals Tektronix model 4109A and model 4207 was used to input and analyze the data..

TEXGAP2D contains the provision for calculating, along user prescribed sets of element boundaries, displacement and traction data files. These files can be used to calculate boundary data used in a subsequent solution of a portion of the original model. TEXGAP uses many built in subroutines. After displacements have been calculated in one of the routines, the strains and the stresses are calculated in routine called STRESS.

TEXGAP employ solution of simultaneous equations by elimination. A brief review of the basic technique used in programming equation solver is discussed below.

Let the simultaneous equations be represented as:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \text{ for } i = 1, 2, ... n$$

where a_{ij} are the stiffness coefficients, b_i the nodal point forces and x_j the unknown, and n is the total number of degree of freedoms (DOF). The standard elimination procedure is to solve for x_1 in terms of x_2 , x_3 , ... x_n from the first equation. It is important to use the first equation to eliminate the first unknown because no re-ordering (pivoting) is necessary. Solving the first equation for x_1 gives

$$x_1 = \frac{1}{a_{11}} (b_1 - \sum_{j=2}^n a_{1j} x_j)$$
 (10)

-----(9)

This equation (10) is now substituted for j=2 through j=n

and collecting

$$\sum_{j=2}^{n} (a_{ij} - \frac{a_{i1}a_{1j}}{a_{11}}) x_j = b_i - \frac{a_{i1}}{a_{11}} b_1 \quad \text{for } i = 2, 3, \dots n$$
------(12)

Thus, the order of the system of equations is reduced from size n to n-1. After n-1 such eliminations, the equations are reduced to an upper triangular from that permits solution for the unknowns by backsubstitution. This direct Gaussian elimination is straight forward code in Fortran language. The code does not take advantage of either the symmetry or the banded nature of the equilibrium equations generated by finite element methods.

The following is the TEXGAP2D input deck that is to calculate the stresses and strains.

```
$ PROJECTILE
AXISYMMETRIC
SETUP, 311, DEF, 20
*EXTERNAL
BODY, FORCE, 32000
SOLVE
STRESS, 2
TRANSLATE
STOP
```

As can be seen the input deck is quiet short, but this can be representative of a very complex problem. It is assumed that all the setup information is contained in the external file including the material properties.

CHAPTER 3

ANALYSIS RESULTS

Introduction

The four different axisymmetrical projectile models with various thicknesses were analyzed by PATRAN and TEXGAP2D. The first model investigated was made and fired in 1989 without much successful results. The next three models are proposed design concept that are analyzed and one of the model is to be constructed for the firing in 1991.

The material used for these investigations were an isotropic carbon fibers with the Young's Modulus of 25×10^6 psi, Possion's ratio of 0.3, and the density of 0.064 lb/in³. The effects of stress concentration and failure analysis of the projectile is evaluated.

As mentioned earlier, Mic-Mac analysis was used to get approximated values. The material considered in this analysis was the IM6/Epoxy (Carbon fiber). This material has high axial ply stiffness and axial ply strength when compared with other composite materials as listed in Table 5 next page. With this material and the axial force, internal pressure, length, and diameter are inserted into Mic-Mac program to be analyzed. The program then calculates the stresses, strains, and the strength ratios at various thicknesses. Various Mic-Mac analysis are shown in Table 9 in Appendix C.

Mic-Mac Results

With a given data of outside diameter (≤ 3.66 inches) and pressure (47 ksi), Mic-Mac analysis demonstrated that the optimum design of a projectile is accomplished by choosing an optimum lay up angles of ± 54.5 degrees and a thickness of 0.6600 inches. This resulted in highest ultimate stress (burst pressure) of 169 ksi and in-plane stress limit was 65 ksi. A comparison of the various lay up angles with the stress is shown in Figure 5 and Figure 6 in Page 15 thru 16.

	0.555	0555		0500	0.5070					
IYPE	CFRP	CERP	<u>KPRP</u>	GFRP	CERIP					
FIBER	IM6	T300	KEV 49	E-GLASS	AS4					
MATRIX	EPOXY	EPOXY	EPOXY	EPOXY	PEEK					
ENGINEERING CONSTANTS, MSI OR DIMENSIONLESS										
Ex 29.46 26.27 11.03 5.6 19.4										
Ey	1.626	1.49	0.08	1.2	1.27					
Es	1.22	1.04	0.33	0.6	0.74					
nu/x	0.32	0.28	0.34	0.26	0.28					
V/f	0.66	0.7	0.6	0.45	0.66					
rho	1.6	1.6	1.46	1.8	1.6					
ho, E-6 in	4925	4925	4925	4925	4925					
PLY STIF	FNESS, K	SI	•							
Qxx	29.63	26.39	11.12	5.68	19.55					
Qyy	1.63	1.5	0.8	1.22	1.3					
Qxy	0.52	0.42	0.27	0.32	0.36					
Qss	1.22	1.04	0.33	0.6	0.74					
PLY STRENGTH, KSI										
X	507.98	218	203	154	309					
X'	223.51	218	34	89	160					
Y	8.13	6	2	4	12					
Y'	21.77	36	8	17	29					
S	14.22	10	5	10	23					

TABLE 5 COMPARISON OF VARIOUS COMPOSITE MATERIALS

FIGURE 5 STRESS VS. PLY ANGLES

From the Figure 7 shows a minimum thickness of 0.6600 inches, the in-plane stress was 65 ksi which was equal to the in-plane stress limit. This resulted in strength/ stress ratio of R = 1.0. This ratio determines that possible failure will occur in the first ply. If R value falls below $R \le 1.0$, the applied stress has exceeded the strength. But, if R > 1.0, then applied stress can be increased. This figure is illustrated in page 17.

Figure 8 shown in page 17 is the Strength Ratio versus the Thickness. At thickness of 0.3448 inches, the strength/stress ratio (R) value was R/FPF = 0.52. This determines that the applied stress has exceeded the strength by a factor of 1.92 and the first-ply-failure (FPF) is most likely to occur.

The last-ply-failure (LPF) is not likely even at this load due to the strength ratio for the last-ply-failure is R/LPF = 1.35. If the R/LPF = 1.0, the total destruction of the projectile is evident. At thickness of 0.7880 inches, the strength ratio was R/FPF = 1.19 and the applied stress can increase by a factor of 1.19 before the first ply-failure occurs. Analyzing the data and the figures, it was determined that at the thickness of 0.6600 inches, the in-plane longitudinal (axial) stress based on the strength of material was calculated to be 65 ksi which equals to the in-plane longitudinal stress at the design limit. At this stress limit of 65 ksi,

FIGURE 7 STRESS VS. THICKNESS AT PLY ANGLES OF \pm 54.5 DEGREES

FIGURE 8 STRENGTH RATIO VS. THICKNESS AT \pm 54.5 DEGREES

the strength ratio was R/LPF = 1.0. This is where the first-ply-failure is starting to occur. If this value becomes R < 1.0, the applied load should be decreased. The length value had no effective changes in either the stresses or the strains. This is due to the fact that the length effects only angle of twist under torque. Since no torque was applied to the vessel, all the values stayed constant. The stresses and strains discussed at limit, limit* and ultimate are the resulting stress and strain multiplied by

the corresponding strength ratios. From this analysis, recommends that the thickness should not be less than 0.6600 inches which is considered an optimum thickness for the given conditions. However, the values obtained were averaged over the entire pressure vessel. These results should be used as an approximated values for the initial design process. In this analysis, the stress concentration and the exact failure regions were not available to be determined.

PATRAN and TEXGAP Results

All of the results of TEXGAP2D are given in Tables 6 thru 8 at the end of the Chapter 3 and and in Appendix E. Figure 9 shows the internal body force of 50 ksi and external body force (G loading) of 1 x10⁶ gees and radially constrained projectile model generated by the PATRAN. Figures 10 thru 14 represent analyzed results of axisymmetrically loaded projectile performed by TEXGAP. The dimension of the projectile has 79 mm length, 2.6 mm dome thickness and 5 mm body thickness.

FIGURE 10 PROJECTILE WITH 2.6 mm DOME THICKNESS

Results shows the highest stress concentrations and bending moments at the regions of the dome section. The maximum stress of 2198 ksi was located at the middle section of the dome as indicated by the spectrum analyzer. The minimum stress (compressive) of -309 ksi did cause the buckling and bending of the projectiles body and the dome section. These stresses shown by the figure are results of the internal pressure loading and the external body force. Thus, as noted in the test firing in 1989, the dome section of the projectile is most likely to have failed causing the destruction of the dome.

FIGURE 9 MODEL WITH BOUNDARY CONDIT 21 5

CONTRACT PROJE IS OF POUR OUNLITY

FIGURE 14 CLOSE UP VIEW OF THE CONTOUR PLOT AT THE DOME

R,

FIGURE 15 STRESS ANALYSIS OF 2.6 mm DOME WITH PRESSURIE LOADING

Analyzing individual loads on the projectile, Figure 15 shows only the pressure loading of 50 ksi acting on the projectile. The maximum stress of 406 ksi and minimum stress of -91.1 ksi was located at the dome. It is noted that pressure loading caused most of its stress concentration at the bottom end of the projectile with average stress of 157 ksi. Also at the location of the dome/body interface had large amount of stresses (50.9) ksi resulting the buckling of the mid body section of the model.

Figure 16 shows the results obtained only by the external body force of $1.x10^6$ gees. The maximum stress of 729 ksi was located in small portion of the dome and the minimum stress of -329 ksi was also at the dome section. Large stress concentration was located at the dome and the end section of the projectile. External body force resulted in higher stress than the pressure loading. Combine loading of the forces yield almost three fold increase in stresses. It was noted that by decreasing the both loads on the projectile by half of the original value also decreased the stress by half.

Figure 17 below shows the projectile with dome thickness of 5.0 mm.

FIGURE 17 PROJECTILE WITH 5.0 mm DOME THICKNESS

Figure 18 and Figure 19 shows the results of the TEXGAP plotted by the PATRAN. Most of the stress concentrations was located at the dome

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ł.

ORIGINAL PAGE 18 OF POOR QUALITY with the maximum stress of 715 ksi and minimum stress of -238 ksi. The possible failure sites are easily viewed by the figures. Even at the thickness of 10 mm, the mid-body section is under compressive force which will cause the buckling. The buckling of the dome and the body caused by the large bending moments closely follow previous pattern displayed by the Figure 11. Overall, stress decreased more than 60 % when compared with the Figure 11.

Figure 20 shows the projectile with the dome thickness of 8 mm.

FIGURE 20 PROJECTILE WITH 8 mm DOME THICKNESS

Figure 21 is the plotted results of TEXGAP2D. It is interesting to note that the high stress concentration is located not at the dome section, but on the body section of the projectile. The highest stress of 1188 ksi was located at very small point near the body/bore rider interface. This stress migrated down well into the body section causing high stresses along the way. Although high stresses of 344 ksi was present at the front portion of the dome, the rest parts had moderate stress of 103 ksi. The lowest stress of -380 ksi was located at the dome/bore rider section. This is the part where the buckling would likely to occur. Therefore, this projectile has good chance of surviving the firing. The only major concern is the high weight of 393.5 grams which is an increase of 16.9 % compared with 5.0 mm dome projectile. However, at same time, the stress has decreased by 36 %.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 22 shows the projectile with dome thickness of 10 mm and Figure 23 is the plotted result of the TEXGAP2D analysis. This projectile has a uniform thickness of 10 mm at the dome and the body of the projectile. The weight is increased 28.3% when compared with projectile of Figure 17. The high stress concentration was located at the bottom section of the dome/body interface. At that point, the maximum stress of 444 ksi was recorded. The minimum stress of -93.3 ksi was located at the center portion of the dome. This projectile would probably have survived the test firing. The projectile shows very little buckling at the dome and at the mid-body section. The stress has decreased by 47.1% when compared with the projectile with 5 mm dome. This is illustrated in the Figure 24 in page 29 along with the Figure 25 which describes the effects of the pressure loading. Increase of the pressure resulted in the increase of the gravity acceleration and stresses.

FIGURE 22 PROJECTILE WITH 10 mm DOME THICKNESS

掘

ORIGINAL PAGE IS OF POOR QUALITY

28

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 6 STRESS ANALYSIS DATA OF 5 mm DOME PROJECTILE

TEXGAP84-2D VERSION

58352-90

PAGE 1

ASISEMMETRIC PROBLEM

projectile

LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL

MATERIAL =	10	QUANTITY	R	Z	ELEM	MAXIMUM	R
Z	ELEM	MINIMUM SIGR	3.496E+00	9.382E+01	90	8.223E+02	3.588E+00
9.884E+01	91	-1.144E+03 SIGZ	0.000E+00	9.650E+01	88	6.900E+02	1.963E+01
9.076E+01	108	-7.845E+02 SIGT	2.562E+01	8.940E+01	119	6.775E+02	3.588E+00
9.884E+01	91	-1.082E+03 TAURZ	1.920E+01	8.806E+01	110	6.439E+02	2.562E+01
8.940E+01	119	-5.297E+02 TAURT	3.615E+01	6.124E+01	154	0.000E+00	3.615E+01
6.124E+01	154	0.000E+00 TAUZT	3.615 E+01	6.124E+01	154	0.000E+00	3.615E+01
6.124E+01	154	0.000E+00 SIG1	2.562E+01	8.940E+01	119	9.206E+02	1.920E+01
8.806E+01	114	-4.345E+02	2.812E+01	8.702E+01	119	2.238E+02	1.920E+01
8.806E+01	110	-1.450E+03	2 562E+01	8.940E+01	119	6.775E+02	3.588E+00
9.884E+01	91	-1.082E+03	0 0005+00	9.900E+01	87	7.427E+02	4.025E+01
1.674E+01	27	2.196E+00	3 4965+00	9.382E+01	90	2.790E-05	3.588E+00
9.884E+01	91	-3.333E-05	0 0005+00	9 775E+01	87	3.279E-05	1.963E+01
9.076E+01	108	-3.665E-05	1 6265-01	9 981F+01	110	2.821E-05	3.588E+00
9.884E+01	91	-3.007E-05	1.0305+01	0.9065+01	110	6.696E-05	2.562E+01
8.940E+01	119	GAMRZ -5.509E-05	1.9206+01	6.000E+01	154	0 000E+00	3.615E+01
6.124E+01	154	GAMRT 0.000E+00	3.615E+01	6.1248+01	154	0.0005+00	3.615E+01
6.124E+01	154	GAMZT 0.000E+00	3.615E+01	6.1242+01	1.54	2 7678-05	1 9415+01
8.941E+01	113	EPS1 -1.330E-05	0.000E+00	9.900E+01	87	3.7072-05	1 0205+01
8.806E+01	110	EPS2 -5.873E-05	1.762E+00	9.521E+01	90	-1.01/2-00	2.5205+01
9.884E+01	91	EPS3 -3.007E-05	1.636E+01	8.981E+01	110	2.821E-05	3.3002+00
1.674E+01	27	GAMMAX 2.284E-07	0.000E+00	9.900E+01	87	7.725E-05	4.0256+01
	_ .						

TIME IN STRESS = 7.140E+00 SECONDS

TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION) GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE GENERATED PATRAN DISPLACEMENT NEUTRAL FILE

TIME IN TRANSLATE = 1.150E+00 SECONDS

TABLE 7 STRESS ANALYSIS DATA OF 8 mm DOME PROJECTILE

TEXGAP84-2D VERSION

318AUG-90

र

projectile

LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL

MATERIAL =	10	QUANTITY	R	2	ELEM	MAXIMUM	R
Z	ELEM	MINIMUM SIGR	4.200E+01	5.800E+01	77	4.853E+02	4.200E+01
6.000E+01	77	-1.348E÷03 SIGZ	4.400E+01	5.800E+01	82	1.720E+03	4.200E+01
6.000E÷01	73	-7.686E+02 SIGT	4.400E+01	5.800E+01	82	6.650E+02	4.200E+01
6.000E+01	77	-5.746E+02 TAURZ	4.400E+01	5.800E+01	82	6.685E+02	4.400E÷01
6.000E+01	182	-6.891E+02	4.600E+01	1.000E+00	183	0.000E+00	4.600E-01
1.000E+00	183	0.000E+00	4 600E±01	1.000E+00	183	0.000E+00	4.600E÷01
1.000E+00	183	0.000E+00	4.4000.01	5 8005+01	82	1.969=+03	4.200E+01
6.000E+01	77	-5.322E+02	4.4002+01		33	1 753F±02	4.200E+01
6.000E+01	77	SIG2 -1.514E+03	2.589E+01	9.3072+01		£ £505±02	4 200F±01
6.000E+01	77	SIG3 -5.746E+02	4.400E+01	5.8002+01	02	1.0105.03	3 7075+01
5.164E+01	74	TAUMAX 4.177E+00	4.400E+01	5.800E+01	82	1.0192+03	5.7572+01
6.000E+01	77	EPSR -3.867E-05	4.200E+01	5.800E+01	77	2.16/E-05	4.2002+01
5 800F±01	77	EPS2 -2.086E-05	4.400E+01	5.800E+01	82	5.864E-05	4.200E÷01
0.400=.01	, , ,	EPST	3.400E+01	2.558E+01	141	1.6842-05	0.000E+00
9.4002+01	100	GAMRZ	4.400E+01	5.800E+01	82	6.9525-05	4.400E+01
5.000E+01	102	GAMRT	4.600E+01	1.000E+00	183	0.000E+00	4.600E+01
1.000E+00	183	GAMZT	4.600E+01	1.000E+00	183	0.000E+00	4.600E÷01
1.000E+00	183	0.000E+00 EPS1	4.400E+01	5.800E+01	82	7.163E-05	3.500E÷01
2.263E+01	141	-5.380E-06 EPS2	2.646E+01	8.441E+01	40	2.308E-06	4.200E÷01
6.000E+01	77	-4.727E-05 EPS3	3.400E+01	2.558E+01	141	1.684E-05	0.000E÷00
9.400E+01	4	-7.414E-06 GAMMAX	4.400E+01	5.800E+01	82	1.060E-04	3.797E+01
6.164E+01	74	4.344E-07					

TIME IN STRESS = 7.500E+00 SECONDS

.

TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION) GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE GENERATED PATRAN DISPLACEMENT NEUTRAL FILE

TIME IN TRANSLATE = 9.500E-01 SECONDS

TABLE 8 STRESS ANALYSIS DATA OF 10.0 mm DOME PROJECTILE

T E X G A P 8 4 - 2 D VERSION

4855P-90

e

:

.

projectile

LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL

	10	OUANTITY	R	Z	ELEM	MAXIMUM	R
Z	ELEM	MINIMUM	1.111E+01	1.026E+02	68	4.284E+02	3.900E+01
0.000E+00	158	-2.131E+02	3 388E+01	6.293E+01	1	5.590E+02	2.096E+01
8.677E+01	45	-3.475E+02	2 6505:01	2 000F+00	157	4.652E+02	3.047E+01
8.010E+01	30	-1.461E+02	0.0005.00	1 0155+02	75	1.862E+02	4.150E+01
6.000E+01	3	-2.368E+02	0.0005+00	2 0005100	162	0 000E+00	4.500E+01
2.000E+00	162	TAURT 0.000E+00	4.5002+01		162	0 000E+00	4.500E+01
2.000E+00	162	TAUZT 0.000E+00	4.500E+01	2.0002+00	102	5 678F+02	4.400E+01
2.000E+00	84	SIG1 -2.009E+02	3.388E+01	0.293E+01	-	2 0545:02	3 9005±01
0.000E+00	159	SIG2 -3.859E+02	9.845E+00	9.775E+01	02	2.054E+02	2 0475±01
8.010E+01	30	SIG3 -1.461E+02	3.650E+01	2.000E+00	157	4.00220+02	4 4005.01
7.895E+00	88	TAUMAX 5.078E+00	3.351E+01	6.580E+01	9	2.8396+02	
0.000E+00	157	EPSR -1.127E-05	1.111E+01	1.026E+02	68	1.3452-05	3.4005+01
9 208E+01	61	EPSZ -1.187E-05	3.388E+01	6.293E+01	1	2.005E-05	1.1282+01
6 021F±01	9	EPST -3.435E-06	3.400E+01	0.000E+00	157	1.678E-05	3.533E+U1
6.0008.01	2	GAMRZ	0.000E+00	1.015E+02	75	1.937E-05	4.150E+01
0.000E+01	162	GAMRT	4.500E+01	2.000E+00	162	0.000E+00	4.500E+01
2.00000000	162	GAMZT	4.500E+01	2.000E+00	162	0.000E+00	4.500E+01
2.0000000	102	EPS1	3.388E+01	6.293E+01	1	2.051E-05	4.400E+01
2.000E+00	150	EPS2	2.683E+01	8.475E+01	37	2.771E-06	3.900E+01
0.000E+00	128	EPS3	3.400E+01	0.000E+00	157	1.678E-05	3.533E+01
6.921E+01	9	-3.4352-00 GAMMAX	3.351E+01	6.580E+01	9	2.952E-05	4.400E+01
7.895E+00	88	5.28IE-0/					

TIME IN STRESS = 7.270E+00 SECONDS

TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION) GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE GENERATED PATRAN DISPLACEMENT NEUTRAL FILE

TIME IN TRANSLATE = 1.180E+00 SECONDS

32

.

CHAPTER 4

CONCLUSION AND RECOMMENDATION

In this study, the finite element analysis approach to modeling was successfully employed to produce an optimum design of a composite projectile. The computer programs Micro/Macromechanic analysis and GENLAM were useful for preliminary design calculations since these programs gave approximated values. The uses of modeling code PATRAN and finite element analysis code of TEXGAP2D could be valuable tools for any designer to have. This analysis verified the failure of the projectile that was fired in 1989 testing. The cause was the failure of the dome section due to the presence of high stress concentrations and buckling due to large bending moments.

From the three new design analyses presented in this study, the projectile with 8 mm dome thickness would be adequate enough to survive the firing conditions. The analysis showed that the stress was evenly distributed throughout the dome section where the main concern of the failure is located.

The projectile with 5.0 mm dome thickness had 60 % decrease in the stress concentration when compared with the projectile with 2.6 mm dome thickness. Even with this decrease in stress, the analysis still showed high stresses at the dome and followed similar patterns of buckling. However, the projectile has fairly good chance of surviving the firing. The projectile with 10 mm dome thickness would definitely survive the firing. This projectile showed small stress concentrations when compared with all of the other designs. The only disadvantage is the high weight it possesses.

The results shown illustrate that the complete loading environment produces a stress field that are easily understood. Another benefit from the analyses of this study is the visualization of the stress concentrations.

The various effective boundary constraints resulted in different stresses in addition to bending moments. This presented difficulties choosing the placement of the constraints. The best results were obtained when the projectile was constrained radial direction at the bottom edges of the dome and one other point at the bottom end of the projectile body.

The present code has some limitations such as it is good for the linear static analysis for the elastic regions and high loading conditions are not possible. In the future analysis, it is strongly recommended that 3-dimensional nonlinear analysis should be performed using orthotropic property conditions. One possible code that is recommended is the "DYNA 3-D" code. Finally, a better understanding of the plasma reaction, drag and the hypervelocity effects of the projectile inside the railgun is needed.

APPENDIX A

METHOD OF PROJECTILE FABRICATION

The mandrel for the projectile was designed to be used for the layup of the projectile. Figure 26 shows the configuration.

FIGURE 26 CONFIGURATION OF THE PROJECTILE MANDREL

This mandrel is made from an aluminum rod. The mandrel is then cleaned and polished with wax for 15 minutes. After the wax has been dried for another 15 minutes, the process is repeated up to 5 more coatings of wax. Finally, the mandrel is sprayed with releasing agent to deter against sticking with the composite material.

The following layup of the projectile was performed using Kevlar cloth and graphite/epoxy materials. First, the Kevlar cloth is covered over the mandrel and it is hand stretched past the tangent point of the dome/body intersection. Excess materials are then cut to exact specification. Secondly, the mandrel with first layup is taken to the tumble winder where graphite/epoxy toe is used for the filament winding of the body section. This process is repeated until the material has reached the designed goal.

After the layup, the part is ready for the bagging. The part is first bagged with release film followed by breather cloth to absorb the moisture and then bagging film. The air flow tube is inserted to check for the leaks and to pump the air out. Finally, the finished bagged part is put into autoclave to be cured for 3 hours at temperature of 300 degree Fahrenheit.

APPENDIX B

EQUATIONS OF LAMINATED PLATE THEORY

Lorentz Force = $\frac{1}{2}$ Inductance (L) x Current (I)² --(1.1) In-plane stresses are: $\sigma_1^{\circ} = \frac{PD}{4h} + \frac{F}{\Pi Dh}$ ------ (1.2) $\sigma_2^{\circ} = \frac{PD}{2h}$ ----- (1.3) In-plane strain is $\{E^{0}\} = [a^{*}]\{O^{0}\}$ ------ (2.1) where $[A] = \int_{-h/2}^{h/2} [Q] dz$ ----- (2.2) $\begin{bmatrix} A^* \end{bmatrix} = \frac{\begin{bmatrix} A^* \end{bmatrix}}{b} \qquad (2.3)$ $[a^*] = [A^*]^{-1}$ ----- (2.4) The displacement or changes in lengths are

$$\partial L = L \varepsilon_1^{\circ}$$
 (3.1)

The on-axis plane stress stiffness and compliance of a unidirectional ply can be computed from the engineering constants as follows:

$$\begin{bmatrix} Q \end{bmatrix} = \begin{bmatrix} \frac{E_{X}}{1 - \nu_{X}\nu_{y}} & \nu_{y}Q_{yy} & 0 \\ \nu_{y}Q_{xx} & \frac{E_{X}}{1 - \nu_{X}\nu_{y}} & 0 \\ 0 & 0 & E_{s} \end{bmatrix} - \dots (4.1)$$

where, $Q_{12} = Q_{21}$, $Q_{16} = Q_{61} = Q_{26} = Q_{62} = 0$

where, $S_{12} = S_{21}$, $S_{16} = S_{61} = S_{26} = S_{62} = 0$

Using the figure below to define the in-plne stress, stress resultant, and laminate stiffness by integration:

$$N_{X} = \int_{-h/2}^{h/2} \sigma'_{x} dz$$

$$M_{X} = \int_{-h/2}^{h/2} \sigma'_{x} z dz$$
(5.1)

rewriting to obtain equation 5.2

$$\left\{ \begin{matrix} N_{x} \\ N_{y} \\ N_{xy} \end{matrix} \right\} = \int_{-h/2}^{-h/2} \left\{ \begin{matrix} \sigma_{x} \\ \sigma_{y} \\ Txy \end{matrix} \right\} dz = \sum_{k=1}^{n} \int_{-a_{k-1}}^{a_{k}} \left\{ \begin{matrix} \sigma_{x} \\ \sigma_{y} \\ Txy \end{matrix} \right\} dz$$

$$\begin{cases} N_{X} \\ N_{Y} \\ N_{XY} \\ N_{XY} \\ \end{cases} = \sum_{k=1}^{n} \begin{bmatrix} \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{21} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{31} & \bar{Q}_{32} & \bar{Q}_{33} \end{bmatrix}_{K} \begin{pmatrix} \int_{a_{k-1}}^{a_{k}} \begin{cases} E_{X}^{\bullet} \\ E_{y}^{\bullet} \\ N_{X}^{\bullet} \\ N_{X}$$

Finally obtain Equation 5.4

$$\begin{bmatrix} N_{X} \\ N_{Y} \\ N_{Y} \\ N_{XY} \end{bmatrix} = \begin{bmatrix} \bar{A}_{11} & \bar{A}_{12} & \bar{A}_{16} \\ \bar{A}_{21} & \bar{A}_{22} & \bar{A}_{26} \\ \bar{A}_{31} & \bar{A}_{32} & \bar{A}_{33} \end{bmatrix} \begin{bmatrix} E_{X}^{\circ} \\ E_{y}^{\circ} \\ S_{Xy}^{\circ} \end{bmatrix} + \begin{bmatrix} \bar{B}_{11} & \bar{B}_{12} & \bar{B}_{16} \\ \bar{B}_{21} & \bar{B}_{22} & \bar{B}_{26} \\ \bar{B}_{31} & \bar{B}_{32} & \bar{B}_{33} \end{bmatrix} \begin{bmatrix} k_{X} \\ k_{y} \\ k_{Xy} \end{bmatrix}$$

WHERE

$$A_{ij} = \sum_{k=1}^{n} \left(\overline{Q}_{ij}\right)_{k} \left(a_{k} - a_{k-1}\right)$$

$$B_{ij} = \sum_{k=1}^{n} (\overline{Q}_{ij})_{k} (a_{k}^{2} - a_{k-1}^{2})$$

The strain-stress relations for an axisymmetric muti-layered cylinder (Figure-3) in cylinderical coordinates are given by :

$$\begin{aligned} & \in_{r}^{(k)} = S_{rr}^{(k)} \sigma_{r}^{(k)} + S_{r\theta}^{(k)} \sigma_{\theta}^{(k)} + S_{rz}^{(k)} \sigma_{z}^{(k)} \\ & \in_{\theta}^{(k)} = S_{r\theta}^{(k)} \sigma_{r}^{(k)} + S_{\theta\theta}^{(k)} \sigma_{\theta}^{(k)} + S_{\theta z}^{(k)} \sigma_{z}^{(k)} \\ & \in_{z}^{(k)} = S_{rz}^{(k)} \sigma_{r}^{(k)} + S_{\theta z}^{(k)} \sigma_{\theta}^{(k)} + S_{zz}^{(k)} \sigma_{z}^{(k)} \end{aligned}$$

where $S_{ij}^{(k)}$ (ij = r, θ ,z) are components of the compliance matrix. The superscript k refers to the k-th layer.

The strain in z-direction is assumed to be constant ($\epsilon_z^{(k)} = \epsilon_z^{0}$) Then strain-stress relations modify to

$$\begin{aligned} \varepsilon_{r}^{(k)} &= \beta_{rr}^{(k)} \sigma_{r}^{(k)} + \beta_{r\theta}^{(k)} \sigma_{\theta}^{(k)} + v_{rz}^{(k)} \varepsilon_{z}^{0} \\ \varepsilon_{\theta}^{(k)} &= \beta_{r\theta}^{(k)} \sigma_{r}^{(k)} + \beta_{\theta\theta}^{(k)} \sigma_{\theta}^{(k)} + v_{z\theta}^{(k)} \varepsilon_{z}^{0} \\ \end{aligned}$$
where $\beta_{ij}^{(k)} &= S_{ij}^{(k)} - S_{iz}^{(k)} S_{jz}^{(k)} S_{zz}^{(k)}$, $(ij = r, \theta)$
 $v_{iz}^{(k)} &= S_{iz}^{(k)} S_{zz}^{(k)}$, $(ij = r, \theta)$

The radial,
$$\sigma_r^{(k)}$$
, and hoop, $\sigma_{\theta}^{(k)}$, stresses are

$$\sigma_r^{(k)} = A_k [(r/a_k)^{g(k)-1} - (a_k/r)^{g(k)+1}] + B_k [-(r/a_k)^{g(k)-1} + c_k^{2g(k)}(r/a_k)^{g(k)+1}] - -----(6.1)$$

$$\sigma_{\theta}^{(k)} = A_k g(k) [(r/a_k)^{g(k)-1} - (a_k/r)^{g(k)+1}] - B_k g(k) [-(r/a_k)^{g(k)-1} + c_k^{2g(k)}(a_k/r)^{g(k)+1}] - -----(6.2)$$

and

$$\sigma_{z}^{(k)} = (\epsilon_{z}^{\circ} - S_{rz}^{(k)}\sigma_{r}^{(k)} - S_{\theta z}^{(k)}\sigma_{\theta}^{(k)}) / + S_{zz}^{(k)} - ---- (6.3)$$

where $A_k = (q^{(k-1)} c_k^{g(k)+1})/(1 - c_k^{2g(k)})$ $B_k = q^{(k)}/(1 - c_k^{2g(k)})$ $c_{k} = a_{k-1}/a_k$ $g(k) = [\beta_{rr}^{(k)}/\beta_{\theta\theta}^{(k)}]^{1/2}$

To determine ε_z^{o} , the axial stress,

$$\sum_{k=1}^{n} 2\pi \int_{a_{k-1}}^{a_{k}} \sigma_{z}^{(k)} r dr = \pi (q^{(i)} - q^{(e)}) a^{2} + F \qquad ----- (6.4)$$

Substituting $\sigma_z^{(k)}$ from Equation 6.3 and the expressions for $\sigma_r^{(k)}$ and $\sigma_{\theta}^{(k)}$ from Eq 6-1 and 6-2 into equation 6-4 and performing the integration, the expression for ε_z° is given by:

$$\epsilon_{z}^{o} = [(q^{(i)} - q^{(e)})a^{2} + F/\pi - \sum_{k=1}^{n} (q^{(k-1)}\partial_{k} + q^{(k)}\mu_{k})]/\Delta$$

where

$$\partial_{k} = -2[a_{k}c_{k}^{g(k)+1}(S_{rz}^{(k)} + g(k)S_{\theta z}^{(k)})(a_{k}-c_{k}^{(k)}a_{k-1})/(1+g(k)) - a_{k-1}(S_{rz}^{(k)} - g(k)S_{\theta z}^{(k)})(a_{k}c_{k}^{(k)}a_{k-1})/(1+g(k))]/\{S_{zz}^{(k)}(1-c_{k}^{2g(k)})\}$$

$$\mu_{k} = -2[a_{k}(S_{rz}^{(k)} + g(k)S_{\theta Z}^{(k)})(a_{k}-c_{k}^{g(k)}a_{k-1})/(1+g(k)+a_{k-1}c_{k}^{g(k)}(S_{rz}^{(k)}) - g(k)S_{\theta Z}^{(k)})(a_{k}c_{k}^{(k)}a_{k-1})/(1-g(k))]/\{S_{zz}^{(k)}(1-c_{k}^{2g(k)})\}$$

and

$$\Delta = \sum_{k=1}^{n} (a_{k}^{2} - a_{k-1}^{2}) / S_{zz}^{(k)}$$

APPENDIX C

•

	A	В	С	D	E	F	G	Н	1
1	MIC-MAC/CY	LIN VES	SEL: {[th	eta/#], .	}total	Ply mat:	IM6/ep[E	ng]	
2	READ ME	Theta 1	Theta 2	Theta 3	Theta 4				
3	[ply angle]	0.0	90.0	54.5	-54.5	[repeat]	h, #	h, E-3	[Rotate]
4	[ply#]	0	0	1	1	67.0	134.0	660.0	0.00
5									
6	R/intact	#####	# # # # # #	0.99	0.99	R/FPF	0.99	safety	1.50
7	R/deoraded	#####	#####	2.59	2.59	R/LPF	2.59	R/lim*	1.73
8						R/ult	2.59	R/lim	0.99
9	size	m or in	9L.9D.E-	3	<sg></sg>	<sg>lim</sg>	<sg>lim*</sg>	<sg>ult</sg>	{E°}lim
10	[Lenath]	5.00	19.51	1	65.	65.	113.	169.	2.8
11	[Diameter]	3.60	25.79	2	128.	127.	221.	332.	7.5
12	Angle of tw	/ist.deg	0.00	6	0.	0.	0.	0.	6.9
13					•.				
14		[Load]	[Load] lin	n	<ep>E-3</ep>	<ep>lim</ep>	<ep>lim*</ep>	<ep>ult</ep>	E^u/E^
15	Axial load F	10.00	9.94	1	3.90	3.88	6.73	10.10	0.33
16	Pressure P	47.00	46.71	2	7.16	7.12	12.36	18.54	0.41
17	Torque	0.00	0.00	6	0.00	0.00	0.00	0.00	0.98
18								<u>.</u>	
19		T opr	c.moist	vol/f	Em	Efx_	Хт	Xfx	Em/Em°
20	Baseline	71.6	0.005	0.66	0.49	45	8.1	770	0.30
21	[Modified]	71.6	0.005	0.66	0.49	4 5	8.1	770	0.30
22	Mod/Base	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
23	Mod-Base	0.0	0.000	Hot/Wet	0.49	45	8.1	770	
24							İ		
25						l			<u> </u>
26									<u> </u>
27	Ply data link	ed to Ply	Data File	9:		1	<u> </u>		
28	IM6/ep[Eng]	29.463	1.6255	0.32	1.2192	0.4935	251.6	320	
29	507.98258	223.51	8.1277	21.771	14.224	1.2	71.6	0.005	
30	-0.5	4925	0.66	1.6	0.516	0.5	0.2	0.9	<u> </u>
31	-0.166667	15.611	0	0.6	0.316	0.004	0.004	1 3600	!
32	11.37	55.86	0.906	1.61	0	0	1 0	0	<u> </u>
33						<u> </u>		<u> </u>	<u> </u>
34							i	<u> </u>	1
35						<u> </u>		<u> </u>	<u> </u>
36							<u> </u>	<u>!</u>	1
37						i	<u> </u>	!	<u> </u>
38	·							<u>!</u>	1
39			!			i		1	1

TABLE 9 MICRO-MACROMECHANIC ANALYSIS DATA

'	J	ĸ	L	M	N	0	Р	Q
1	INTACT PLY		ULE		Temperature	deg and m	oisture	
2	IM6/ep[End	1			[T] opr	72	72	1.00
3	Rigid bo	dy rotation of	of the entire	laminate, il	[c],wet	0.005	0.005	1.00
4	Stiffness	Baseline	Modified	Mod/B	T cure	252	252	1.00
5	Ex.GPa	29.46	29.46	1.00	T glass	320	320	1.00
6	Ey.GPa	1.63	1.63	1.00	T •	1.00	1.00	1.00
7	nu/x	0.32	0.32	1.00	del T	-180	-180	1.00
8	Es.GPa	1.22	1.22	1.00				
9	ho,E-6m	4925	4925	1.00	Thermal exp	pansion, E-6	5/deg	
10	Micromecha	anics data			alph/x	-0.17	-0.17	1.00
11	vol/f	0.66	0.66	1.00	alph/y	15.61	15.61	1.00
1 2	Efx	4 5	45	1.00	Moisture e:	xpansion./c		
$\frac{1}{13}$	Em	0.49	0.49	1.00	beta/x	0.00	0.00	1.00
14	eta/v	0.52	0.52	1.00	beta/y	0.60	0.60	1.00
15	v*/v	0.27	0.27	1.00				
16	Efv.GPa	4.17	4.17	1.00	Ply & const	i strengths,	MPa	
17	eta/s	0.32	0.32	1.00	X	508	508	1.00
18	v*/s	0.16	0.16	1.00	Х.	224	224	1.00
19	Gfx.GPa	15.85	15.85	1.00	Υ	8	8	1.00
20					Y'	22	22	1.00
21	Plane stres	s stiffness.	GPa		S	14	14	1.00
22	Qxx	29.63	29.63	1.00	[Fxy*]	-0.50	-0.50	1.00
23	Qvv	1.63	1.63	1.00	[Xf]	770	770	1.00
24	Qxv	0.52	0.52	1.00	[Xm]	8	8	1.00
2 5	Qss	1.22	1.22	1.00	l	<u> </u>	<u> </u>	
26	Linear com	binations, G	Pa -		Strength pa	arameters.	Pa^-18	
27	U1	12.46	12.46	1.00	Fxx	8.81	8.81	1.00
28	U2	14.00	14.00	1.00	Fyy	5651.44	5651.44	1.00
29	U3	3.17	3.17	1.00	Fxy	-111.55	-111.55	1.00
30	U4	3.69	3.69	1.00	Fss	4942.95	4942.95	1.00
31	U5=G/iso	4.39	4.39	1.00	Fx,E-9	-2.51	-2.51	1.00
32	Quasi-isotr	opic consta	ints		Fy.E-9	77.10	77.10	1.00
33	E,GPa	11.37	11.37	1.00	Gxx	5821	5821	1.00
34	nu	0.30	0.30	1.00	Gyy	14915	14915	1.00
35		1			Gxy	-464	-464	
36	Density	1.60	1.60	1.00	Gss	7347	7347	1.00
37	rho/m	1.20	1.20	1.00	Gx	-34	-34	1.00
38	rho/f	1.81	1.81	1.00	i Gy	125	125	1.00
20							<u> </u>	<u> </u>

	R	S	Т	U	٧	W	X
1	INTACT LAN	INATE MODU	LUS MODULI	E - elastic and	hygrotherma	constants	
2							
3	[Angle]	theta/1	theta/2	theta/3	theta/4		
4	[theta]	0.0	90.0	54.5	-54.5	[REPT]	
5	[#/grp]	0.0	0.0	1.0	1.0	67	
6	2X.rad	0.00	3.14	1.90	-1.90	h/r,#	
7	4X,rad	0.00	6.28	3.80	-3.80	2.0	
8							
9	Top z*	1.00	1.00	1.00	0.50		
10	Bott z*	1.00	1.00	0.50	0.00		
11	del(z*)	0.00	0.00	0.50	0.50	h	
12				-		0.660	
13							
14	Stiff	[0]/1	[Q]/2	[Q]/3	[Q]/4	[A]	[A*]
15	11	29.63	1.63	5.41	5.41	4E+00	5.41
16	22	1.63	29.63	14.53	14.53	1E+01	14.53
17	21=12	0.52	0.52	6.19	6.19	4E+00	6.19
18	66	1.22	1.22	6.88	6.88	5E+00	6.88
19	61=16	0.00	0.00	4.67	-4.67	0E+00	0.00
20	62=26	0.00	0.00	8.57	-8.57	0E+00	0.00
21					<u>IAI</u>	8E+01	
22	Compl	[a]		[a*]		Eio	
23	11	5E-01		4E-01		2.78	
24	22	2E-01		1E-01		7.45	
25	21=12	-2E-01		-2E-01		0.43	
26	66	2E-01		1E-01		6.88	,
27	61=16	0E+00		0E+00		0.00	
28	62=26	0E+00		0E+00		0.00	
29							
30	Nonmechanic	cal stress and	strain			V*/iA	
31	V*/1A	0.00	0.00	-0.16	-0.16	-0.33	
32	V*/3A	0.00	0.00	0.47	-0.47	0.00	
33		р^п /Т	p^n /c	sig^n /T	sig^n /c	alpha o	beta o
34	1	1E-05	6E-01	2E-05	8E-01	5E+00	2E-01
35	2	-1E-05	-3E-01	1E-05	5E-01	-1E+00	-4E-02
36	6	sig^n o	eps^n o	0E+00	0E+00	0E+00	0E+00
37	1	5E-04	8E-05	e/x	3E-05		
38	2	8E-04	2E-05	e/y	2E-04		
39	6	0E+00	0E+00	e/s	0E+00		

	AE	1 10	ALL	AI	A 1	AK
	STRENGTH AN		<u> </u>		~ ~ 1	
2	theta	0.0	90.0	54.5	-54.5	<u></u>
3	#/group	0.0	0.0	1.0	1.0	
4	2Xtheta	#DIV/0!	#DIV/01	1.9	-1.9	<u></u>
5						
6	On-axis mech s	strains				(p.q.r)^n
7	eps x+	#DIV/0!	#DIV/0!	6.1E-03	6.1E-03	4.9E-05
8	eps y+	#DIV/0!	#DIV/0!	5.0E-03	5.0E-03	3.1E-05
9	eps s+	#DIV/0!	#DIV/0!	3.1E-03	-3.1E-03	0.0E+00
10						
11						
12						
13						
14	a+^m	#DIV/0!	#DIV/0! -	6.3E-01	6.3E-01	
15	b+^m	#DIV/0!	#DIV/0!	4.2E-01	4.2E-01	
16	b/2a/+	#DIV/0!	#DIV/0!	3.3E-01	3.3E-01	
17						
18						
19						FPF/mech
20	R+/mech	#DIV/0!	#DIV/0!	0.972	0.972	0.972
21		########	########	0.972	0.972	
22	On-axis residua	0.000	0.000	0.972	0.972	
23	eps x^r	#DIV/0!	#DIV/0!	9.3E-06	9.3E-06	
24	eps y^r	#DIV/0!	#DIV/0!	-1.3E-04	-1.3E-04	
25	eps s^r	#DIV/0!	#DIV/0!	-5.9E-05	5.9E-05	
26			r			
27	a^r	#DIV/0!	#DIV/0!	2.8E-04	2.8E-04	
28	b^r	#DIV/0!	#DIV/0!	-1.7E-02	-1.7E-02	
29	a^r+b^r	#DIV/0!	#DIV/0!	-1.6E-02	-1.6E-02	
30	c^r	#DIV/0!	#DIV/0!	-1.0E+00	-1.0E+00	
31	b^mix/+	#DIV/0!	#DIV/0!	-2.1E-02	-2.1E-02	
32	b^Sum	#DIV/0!	#DIV/0!	4.0E-01	4.0E-01	<u></u>
33	(b/2a)^Sum	#DIV/0!	#DIV/0!	3.2E-01	3.2E-01	
34						
35						
36						
37	R+^m+r	#DIV/0!	#DIV/0!	0.994	0.994	9.942-01
38		#########	########	0.994	0.994	
39	.	0.000	0.000	0.994	0.994	

/

	Y	Z	AA	AB	AC	AD	AE
1	STRENGTH	ANALYSIS MC	DULE I -		1		1
2	theta	0.0	90.0	54.5	-54.5	[r]	[zc]
3	#/group	0.0	0.0	1.0	1.0	67	0.0
4	2Xtheta	#DIV/0!	#DIV/0!	1.9	-1.9	h	7E-01
5							
6	Top laminat	e loads & stra	ins		1	1	1
7		Ni, MN/m or	kip/in	eps o.E-3		(p.q.r)eps	In-pl
8	1	4.3E+01		3.9E+00		ро	5.5E+00
9	2	8.5E+01		7.2E+00		90	-1.6E+00
10	6	0.0E+00		0.0E+00		ro	0.0E+00
11							1
1 2	On-axis eps	ilons		<u> </u>		1	1
13	epsx o	#DIV/0!	#DIV/0!	6.1E+00	6.1E+00	1	
14	epsy o	#DIV/0!	#DIV/0!	5.0E+00	5.0E+00	ĺ	
15	epss o	#DIV/0!	#DIV/0!	3.1E+00	-3.1E+00		
16							
17				1			
18							
19							
20		<sig></sig>	p.q.r <sig></sig>	<eds></eds>			
2 1	1	6.5E+01	9.7E+01	3.9E+00			
22	2	1.3E+02	-3.1E+01	7.2E+00			1
23	6	0.0E+00	0.0E+00	0.0E+00		·	
24	sigl.epsl	1.1E+02	3.1E+01	8.2E+00			
25		max sig	1.1E+02	max lepsi	8.2E+00	1-4nu+nu^2	
26		sig quad	8388.2838	1+nu^2	1.0876793	-0.096749	
27		Q-iso	AI 2024	SS 304	Netting anal	ysis: π/4	
28	E.GPa	11.4	69.0	210.0	[0]	0.00	1
29	X,MPa	56	200	400	[90]	0.00	1
30	rho	1.60	2.70	7.80	[45]	0.00	0
31	R=X/Isig	0.503	1.801	3.603	[-45]	0.00	0
32	rel rho	1.00	1.69	4.88	# plies	0.00	2
33	eps/iso	9.87E+00	1.67E+00	5.50E-01			
34	rel stiff	1.210	0.205	0.067	Netting analy	sis: off-axis	cross-ply
35	spec stiff	1.210	0.346	0.329	N 1/[0]	8.5E+01	3.382E-05
36	spec R	0.50	1.067	0.739	N 11/[90]	4.3E+01	1.726E-05
37					theta/o	ol	1.00
38		.		1			1.00
39				1			2

•

48

÷

.

APPENDIX D

1

TABLE 10 LAMRANK DATA

Absolute laminate stiffness matrix | A B | | B D |

•

Intact Materials	
0.3628E+07 0.4146E+07 0.4666E+05	0.5127E+00 0.3467E+00 -0.1240E+00
0.4146E+07 0 9733E+07 0 8566E+05	0.3457E + 00 = 0.2353E + 00 = 0.2285E + 00
0.4666E+05 = 0.8566E+05 = 0.4612E+03	0.34072+00 0.23032+00 -0.22852+00
0.40002403 0.83002403 0.40122407	-0.1240E+00 -0.2285E+00 0.7813E-01
0.5127E+00 0 3467E+00 -0 1240E+00	0 1357E+06 0 1551E+06 0 2619E+04
$0.3467E\pm00$ $0.2363E\pm00$ $0.2285E\pm00$	0.1551E+00 $0.1551E+00$ $0.2018E+04$
0.3407 ± 00 0.2305 ± 00 0.2205 ± 00	0.1551E+06 $0.3641E+06$ $0.4806E+04$
-0.1240E+00 -0.2285E+00 0.7813E-01	0.2618E+04 0.4806E+04 0.1725E+06
Degraded Materials	
0.2622E+07 $0.4284E+07$ $0.4664E+05$	$0.2991E_{1}00_{1}0.4014E_{1}00_{1}0.1217E_{1}00_{1}$
	0.2001E+00 $0.4014E+00$ $-0.1210E+00$
0.4284E+07 0.8943E+07 0.9034E+05	0.2881E+00 $0.4014E+00$ $-0.1216E+000.4014E+00$ $0.7402E+00$ $-0.2393E+00$
0.4284E+07 0.8943E+07 0.9034E+05 0.4664E+05 0.9034E+05 0.4497E+07	0.2881E+00 $0.4014E+00$ $-0.1216E+000.4014E+00$ $0.7402E+00$ $-0.2393E+00-0.1216E+00$ $-0.2393E+00$ $0.4443E+00$
0.4284E+07 0.8943E+07 0.9034E+05 0.4664E+05 0.9034E+05 0.4497E+07	0.2881E+00 0.4014E+00 -0.1218E+00 0.4014E+00 0.7402E+00 -0.2393E+00 -0.1216E+00 -0.2393E+00 0.4443E+00
0.4284E+07 0.8943E+07 0.9034E+05 0.4664E+05 0.9034E+05 0.4497E+07	0.2881E+00 0.4014E+00 -0.1218E+00 0.4014E+00 0.7402E+00 -0.2393E+00 -0.1216E+00 -0.2393E+00 0.4443E+00
0.4284E+07 0.8943E+07 0.9034E+05 0.4664E+05 0.9034E+05 0.4497E+07 0.2881E+00 0.4014E+00 -0.1216E+00	0.2881E+00 0.4014E+00 -0.1216E+00 0.4014E+00 0.7402E+00 -0.2393E+00 -0.1216E+00 -0.2393E+00 0.4443E+00 0.9809E+05 0.1602E+06 0.2617E+04
0.4284E+07 0.8943E+07 0.9034E+05 0.4664E+05 0.9034E+05 0.4497E+07 0.2881E+00 0.4014E+00 -0.1216E+00 0.4014E+00 0.7402E+00 -0.2393E+00	0.2801E+00 $0.4014E+00$ $-0.1216E+000.4014E+00$ $0.7402E+00$ $-0.2393E+00-0.1216E+00$ $-0.2393E+00$ $0.4443E+000.9809E+05$ $0.1602E+06$ $0.2617E+040.1602E+06$ $0.3345E+06$ $0.5069E+04$
$\begin{array}{c} 0.4284E+07 & 0.8943E+07 & 0.9034E+05 \\ 0.4284E+05 & 0.9034E+05 & 0.4497E+07 \\ \hline \\ 0.2881E+00 & 0.4014E+00 & -0.1216E+00 \\ 0.4014E+00 & 0.7402E+00 & -0.2393E+00 \\ -0.1216E+00 & -0.2393E+00 & 0.4443E+00 \\ \hline \end{array}$	0.2881E+00 0.4014E+00 -0.1216E+00 0.4014E+00 0.7402E+00 -0.2393E+00 -0.1216E+00 -0.2393E+00 0.4443E+00 0.9809E+05 0.1602E+06 0.2617E+04 0.1602E+06 0.3345E+06 0.5069E+04

.

Absolute	laminate	compliance	татгіх	1	аb	1
			•		l b d	1

Intact Materials 0.5371E-06 -0.2288E-06 -0.1185E-08 -0.2288E-06 0.2002E-06 -0.1404E-08 -0.1185E-08 -0.1404E-08 0.2169E-06	-0.2008E-11 0.4904E-12 0.1005E-12 0.4905E-12 -0.1232E-12 0.9735E-13 0.9514E-13 0.9903E-13 -0.1051E-12
-0.2008E-11 0.4905E-12 0.9514E-13	0.1436E-04 -0.6116E-05 -0.4752E-07
0.4904E-12 -0.1232E-12 0.9903E-13	-0.6116E-05 0.5352E-05 -0.5630E-07
0.1005E-12 0.9735E-13 -0.1051E-12	-0.4752E-07 -0.5630E-07 0.5799E-05
Degraded Materials 0.1754E-05 -0.8401E-06 -0.1312E-08 -0.8401E-06 0.5142E-06 -0.1619E-08 -0.1312E-08 -0.1619E-08 0.2224E-06	-0.6037E-11 0.2644E-11 0.9042E-13 0.2644E-11 -0.1400E-11 0.1295E-12 0.8743E-13 0.1314E-12 -0.5959E-12
-0.6037E-11 0.2644E-11 0.8743E-13	0.4688E-04 -0.2246E-04 -0.5261E-07
0.2644E-11 -0.1400E-11 0.1314E-12	-0.2246E-04 0.1375E-04 -0.6491E-07
0.9042E-13 0.1295E-12 -0.5959E-12	-0.5261E-07 -0.6491E-07 0.5947E-05

	In	tact Materials					
5.4144	6.1877	.0696	·	0.0000	0.0000	0.0000	
6.1877	14.5266	.1278	(0.0000	0.0000	0.0000	
.0696	.1278	6.8831	1	0.0000	0.0000	0.0000	
0 0000	0.000	0 0000		5 4 1 4 4	6 1876	.1045	
0.0000	0.0000	0.0000		6.1876	14.5266	.1918	
0.0000	0.0000	0.0000		.1045	.1918	6.8831	
0.0000	0.0000	0.0000					
	De	graded Materia	ls				
3 9136	6.3934	.0696	().0000	0.0000	0.0000	
6 3934	13.3470	.1348	C).0000	0.0000	0.0000	
.0696	.1348	6.7125	().0000	0.0000	0.0000	
0 0000	0 0000	0.0000	•	3 9136	6.3934	.1044	
0.0000	0.0000	0.0000		6 3934	13.3470	.2022	
0.0000	0.0000	0.0000		.1044	.2022	6.7125	
0.0000	0.0000	0.000					
N	1	inne nomelio	aaa matrix	. 1 .*	6*/31 1//1	(iza 0**0	
Norma	llized lam	imate compila	nce matrix	l b*t	d* 1	5 y psiy	
	Ir	tact Materials					
359.8779	-153.2842	27940		0002	0.0000	0.0000	
-153.2841	134.1394	49407		0.0000	0.0000	0.0000	
7940	9407	145.3090	_	0.0000) 0.000) 0.0000	
0005	.0001	0.0000		359.883	9 -153.27	81 -1.1911	
.0001	0.0000	0.0000	-	153.2781	134.147	3 -1.4112	
0.0000	0.0000	0.0000		-1.191	1 -1.41	145.3413	
	De	araded Materia	de				
1175 0280	-562 846		,	- 0005	.0002	0.0000	
-562 8461	344 545	2 -1 0844		.0002	0001	0.0000	
2788	.10844	149 0075		0,0000	0.0000	0.0000	
0/00	-1.0044	1471012		0.0000	0.0000		
0014	0007	0.000		1175 04	50 .562 8	431 -1 3185	
0014	.0000	0.0000		562 94	30 -302.0	575 -1 6269	
.0006	0003	0.0000		-202.04	ل. ۲۰۰ ۰ 1. 185 1	6269 149 0460)
U.UUUU	0.0000	001		-1.	2107 -I	.0207 177.0400	1

-

•

Normalized laminate stiffness matrix | A* B* | (msi) | 3B* D* | Engineering Constants (Intact Materials) (msi) E10 =2.7787 E2o = 7.4549 E6o = 6.8819 -2.7787 E2f = 7.4545 E6f = 6.8804 Elf =Coupling Coefficients Nu210 = .4259Nu620 = -.0070Nu610 = -.0022Nu260 = -.0065Nu12o = 1.1427Nu160 = -.0055Nu61f = -.0033Nu62f = -.0105Nu21f = .4259Nu12f = 1.1426Nu16f = -.0082Nu26f = -.0097Engineering Constants (Degraded Materials) (msi) 2.9024 E6o = 6.7111 .8510 E2o = E10 =E1f =.8510 E2f = $2.9023 \quad \text{E6f} =$ 6.7093 Coupling Coefficients Nu62o = -.0031Nu610 = -.0007Nu210 = .4790Nu260 = -.0073Nu12o = 1.6336Nu160 = -.0059Nu61f = -.0011Nu62f = -.0047Nu21f = .4790Nu26f = -.0109Nu16f = -.0088

Load Case No 1 (Intact Materials)

Nu12f = 1.6335

1

k2 k6 Eps1 Eps2 Eps6 k1 0.1315E-02 0.4994E-03 -0.2601E-04 -0.5633E-08 0.7867E-09 0.1924E-08

Eps1f Eps6f *E-3 Eps10 Eps2o Eps60 Eps2f 1.3149 .4994 -.0260 0.0000 0.0000 0.0000

M2 M6 N6 M1 N1 N2 0.4300E+04 0.8500E+04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Siglo	Sig2o	Sig6o	Sig1f	Sig2f	Sig6f	(ksi)
6.4179	12.6866	.0000	.0000	.0000.	.0000	

51

APPENDIX E

4

TABLE 11 TEXGAP2D ANALYSIS DATA

DIRECT LIST OF TRANSLATED DATA

ISO, BULLET	10.0.250000E+08.0.300000E+00.0.000000E+00.0.165600E-03
END MATERIA	ALS
POINT 1	$1 0 0000000 \pm 00 0 7960000 \pm 02$
POINT, 1,	1,0.000000E+00,0.792750E+02
POINT, 2,	1, 0, 281092E+01, 0, 794326E+02
POINT, 5,	$1, 0.2010922 \pm 01, 0.7945202 \pm 02$
POINI, 4,	$1 \land 2702720 \land 01 \land 7870085102$
POINT, 5,	$1, 0.2702722 \pm 01, 0.7079002 \pm 02$
POINT, 6,	1, 0.00000000, 00, 0.70000000000000000000
POINT, 7,	1, 0.000000000000, 00, 00000000000000000
POINT, 8,	1, 0.2594536+01, 0.7614906+02
POINT, 9,	1, 0.00000000, 00, 0.77573000, 02
POINT, IU,	1, 0.0000000000000, 0.7700000000000000000
POINT, II,	1, 0.2407545+01, 0.7750705+02
POINT, 12,	1,0.000000000,00,0,770000000000000000000
POINT, 13,	1,0.00000000000000000000000000000000000
POINT, 14,	1,0.23/9292+01,0.7000522+02
POINT, 15,	1,0.5582328+01,0.7893148+02
POINT, 16,	1,0.54/5/0E+01,0./8622/E+02
POINT, 17,	1,0.53690/E+01,0.783139E+02
POINT, 18,	1,0.526245E+01,0.780051E+02
POINT, 19,	1,0.515583E+01,0.776964E+02
POINT, 20,	1,0.5049206+01,0.7738766+02
POINT, 1,	2,0.494258E+01,0.770788E+02
POINT, 2,	2,0.4/2933E+01,0./64613E+02
POINT, 3,	2,0.483596E+01,0.767701E+02
POINT, 4,	2,0.821986E+01,0.781232E+02
POINT, 5,	2,0.790869E+01,0.775445E+02
POINT, 6,	2,0.759869E+01,0.769653E+02
POINT, /,	2,0./28/4/E+01,0./6386/E+02
POINT, 8,	2,0.69/625E+01,0./58080E+02
POINT, 9,	2,0.107465E+02,0.770116E+02
POINT, 10,	2,0.105452E+02,0.767487E+02
POINT, 11,	2,0.103440E+02,0.764858E+02
POINT, 12,	2,0.101428E+02,0.762229E+02
POINT, 13,	2,0.994162E+01,0.759600E+02
POINT, 14,	2,0.974042E+01,0.756971E+02
POINT, 15,	2,0.953921E+01,0.754342E+02
POINT, 16,	2,0.913680E+01,0.749084E+02
POINT, 17,	2,0.933B00E+01,0.751713E+02
POINT, 18,	2,0.131115E+02,0.756226E+02
POINT, 19,	2,0.1262682+02,0.7516232+02
POINT, 20,	2,0.121421E+02,0.747019E+02
POINT, 1,	3,0.1165/4E+02,0.742415E+02
POINT, 2,	3,0.111/2/E+02,0./3/812E+02
POINT, 3,	3,0.152998E+02,0.739691E+02
POINT, 4,	3,0.150213E+02,0.737775E+02
POINT, 5,	3,0.14/42/E+02,0./35858E+02
POINT, 6,	3,0.144642E+02,0.733942E+02
POINT, /,	3,0.141857E+02,0.732025E+02
POINT, 8,	3,0.1350/28+02,0./301098+02
POINT, 9,	3,U.13020/E+U2,U./20192E+U2
POINT, 10,	5, U.15U/10E+U2, U./24359E+U2
POINT, 11,	3,U.1335U2E+U2,U./262/6E+U2
POINT, 12,	3,U.1/2930E+U2,U./200U2E+U2
POINT, 13,	3, U.100/535+U2, U./1/0495+U2
POINT, 14,	3,U.160561E+02,U./14/05E+02

DIRECT LIST OF TRANSLATED DATA

POINT,	11,	6,0.215378E+02,0.614960E+02
POINT,	12,	6,0.202844E+02,0.614355E+02
POINT.	13,	6.0.260000E+02.0.610000E+02
POINT.	14.	6.0.253092E+02.0.609591E+02
POINT.	15.	6,0,246184E+02,0,609182E+02
POINT.	16.	6.0.239276E+02.0.608773E+02
POINT.	17.	6.0.232368E+02.0.608364E+02
POINT,	18	$6 \ 0 \ 225459E+02 \ 0 \ 607955E+02$
POINT,	19	6.0.218551E+02.0.607546E+02
POINT,	20	6 0 204735E+02 0 606728E+02
POINT,	1	7 0 2116 $A3F+02$ 0 607137F+02
POINT,	5'	7,0.211000E+02,0.007157E+02
POINT,	5'	7,0.200000000000000000000000000000000000
POINT,	<i>,</i>	7,0.240305E+02,0.001005E+02
POINT,	4,	7,0.2331706+02,0.6003516+02
POINT,	2,	7,0.2197558+02,0.5996948+02
POINT,	<u>b</u> ,	7,0.2063406+02,0.5990366+02
POINT,	1.	7,0.260000E+02,0.593333E+02
POINT,	8,	/, 0.25345/E+02, 0.5930/8E+02
POINT,	9,	7,0.246914E+02,0.592824E+02
POINT,	10,	/,0.2403/1E+02,0.592569E+02
POINT,	11,	7,0.233828E+02,0.592314E+02
POINT,	12,	7,0.227284E+02,0.592059E+02
POINT,	13,	7,0.220741E+02,0.591804E+02
POINT,	14,	7,0.207655E+02,0.591294E+02
POINT,	15,	7,0.214198E+02,0.591549E+02
POINT,	16,	7,0.260000E+02,0.585000E+02
POINT,	17,	7,0.247170E+02,0.584628E+02
POINT,	18,	7,0.234340E+02,0.584256E+02
POINT,	19,	7,0.221510E+02,0.583884E+02
POINT,	20,	7,0.208680E+02,0.583512E+02
POINT,	1,	8,0.260000E+02,0.576667E+02
POINT,	2,	8,0.253677E+02,0.576545E+02
POINT,	З,	8,0.247353E+02,0.576424E+02
POINT,	4,	8,0.241030E+02,0.576303E+02
POINT,	5,	8,0.234706E+02,0.576182E+02
POINT,	6,	8,0.228383E+02,0.576060E+02
POINT,	7,	8,0.222059E+02,0.575939E+02
POINT.	8,	8,0.209412E+02,0.575697E+02
POINT.	9,	8,0.215736E+02,0.575818E+02
POINT.	10,	8,0.260000E+02,0.568333E+02
POINT.	11.	8,0,247463E+02,0.568214E+02
POINT.	12.	8.0.234926E+02.0.568095E+02
POINT.	13.	8,0.222390E+02,0.567976E+02
POINT.	14.	8.0.209853E+02.0.567856E+02
POINT.	15.	8,0.253750E+02,0.560000E+02
POINT.	16.	8,0,260000E+02,0,560000E+02
POINT.	17.	8.0.247500E+02.0.560000E+02
POINT.	18.	8,0,241250E+02,0,560000E+02
POINT	19	8,0.235000E+02.0.560000E+02
POINT	20.	8.0.228750E+02.0.560000E+02
POINT	1.	9.0.222500E+02.0.560000E+02
POINT	2.	9.0.210000E+02.0.560000E+02
POINT	3	9.0.216250E+02.0.560000E+02
POINT	Δ΄	9.0.247500E+02.0.553333E+02
POINT	ξ'	9 0 260000E+02 0 553333E+02
POINT	6	9.0.263333E+02.0.560000E+02
	ν,	J, J. 2033332, 02, 0. 3000002+02

Ł

•

DIRECT LIST OF TRANSLATED DATA

۰.

.

		+
POINT,	15,	3,0.1543/86+02,0.7117516+02
POINT.	16,	3,0.148196E+02,0.708797E+02
POINT	17	3.0.190497E+02.0.699328E+02
	10	3 0 197164F+02 0 698335F+02
POINT,	10,	3,0.10/104E+02,0.0000000000000
POINT,	19,	3,0.183830E+02,0.09/343E+02
POINT.	20,	3,0.180497E+02,0.696350E+02
DOTNE	1	4.0.177164E+02.0.695358E+02
FOINI,	5'	4 0 172821E+02 0 694365E+02
POINT,	4,	
POINT,	3,	4,0.1/049/E+02,0.6935/2E+02
POINT.	4.	4,0.163831E+02,0.691387E+02
POINT	5 ່	4.0.167164E+02.0.692380E+02
POINT,	2'	4 - 0.205733E + 0.2 - 0.675641E + 0.2
POINT,	<u>°</u> ,	4,0.2037336+02,0.0730125:02
POINT,	1.	4,0.198/186+02,0.0/4/206+02
POINT,	8,	4,0.191703E+02,0.673799E+02
POINT	9	4.0.184681E+02.0.672888E+02
DOINT,	10	A 0 177666F+02 0 671966F+02
PUINT,	10,	4,0.11/00000+02,0.0/190000.00
POINT,	11,	4,0.218036E+02,0.650312E+02
POINT,	12,	4,0.214432E+02,0.650412E+02
POINT	13.	4.0.210828E+02.0.650513E+02
DOINT,	11	A = 0.207224E + 02.0.650613E + 02
POINT,	14,	4, 0.2072240+02, 0.0500130+02
POINT,	15,	4,0.2036208+02,0.6507138+02
POINT,	16,	4,0.200016E+02,0.650814E+02
POINT.	17.	4.0.196412E+02,0.650914E+02
DOINT,	1.9	4 0 189204E+02.0.651115E+02
POINT,	10,	4,0.100000000000000000000000000000000000
POINT,	19,	4,0.1928086+02,0.0510146+02
POINT,	20,	4,0.225030E+02,0.643593E+02
POINT.	1,	5,0.216893E+02,0.643688E+02
DOINT	2	5 0 208745E+02.0.643796E+02
POINT,	~ ~ ′	E = 0.200610E+02 = 0.643891E+02
POINT,	3,	5,0.2000100+02,0.04305100
POINT,	4,	5,0.192480E+02,0.643972E+02
POINT,	5,	5,0.232024E+02,0.636B75E+02
POINT	6.	5.0.227457E+02.0.636855E+02
DOINT,	7'	5 0 222889E+02 0 636835E+02
FUINI,		5,0.22200000,0270000000000000000000000000
POINT,	в,	5,0.2183222+02,0.0300102+02
POINT,	9,	5,0.213/55E+02,0.636/96E+02
POINT.	10.	5,0.209187E+02,0.636776E+02
POINT	11	5 0 204620E+02.0.636757E+02
FOINT,	111	= 0.1054955+02.0.6367175+02
POINT,	12,	5,0.1994036+02,0.0307178(02
POINT,	13,	5,0.200053E+02,0.636737E+02
POINT,	14,	5,0.239018E+02,0.630156E+02
POTNT.	15.	5.0.228806E+02.0.629970E+02
POINT,	16	5 0 218608E+02.0.629771E+02
POINT,	17,	5,0.21000000,02,0000000000000000000000000
POINT,	±/,	5,0.2004096+02,0.0255716,02
POINT,	18,	5,0.198216E+02,0.629357E+02
POINT,	19,	5,0.246012E+02,0.623437E+02
POINT	20.	5.0.240344E+02.0.623245E+02
DOT NT	-ĩ,	6 0 234676E+02.0.623053E+02
POINT,	5'	$6 0 220000 \pm 02 0 622861 \pm 02$
POINT,	4,	
POINT,	3,	6, U. 223341E+U2, U. 622609E+U2
POINT.	4,	6,0.217673E+02,0.622477E+02
POINT	5	6,0,212005E+02,0.622285E+02
DOINT,	£'	6 0 200670E+02 0 621901E+02
PUINT,	<u>°</u> ,	(0, 0, 2000, 00+02, 0, 021, 010, 01+02)
POINT,	1,	0, U. 20033/E+U2, U. 022093E+U2
POINT,	8,	6,0.253006E+02,0.616719E+02
POINT	9.	6,0.240454E+02,0.616141E+02
POINT	10	6.0.227916E+02.0.615551E+02
TOTHT!	T 0 1	\$,\$, 5 , 2

.

•

.
.

POINT,	7,	9,0.266667E+02,0.560000E+02
POINT,	8,	9,0.266667E+02,0.553333E+02
POINT.	9.	9.0.235000E+02.0.553333E+02
POINT.	10.	9.0.222500E+02.0.553333E+02
POINT.	11.	9.0.210000E+02.0.553333E+02
POINT.	12.	9.0.270000E+02.0.560000E+02
POINT	13	9.0.273333E+02.0.560000E+02
POINT.	14.	9.0.273333E+02.0.553333E+02
POINT.	15	9.0.280000E+02.0.560000E+02
POINT.	16.	9.0.276667E+02.0.560000E+02
POINT,	17	9 0 280000E+02 0 55333E+02
POINT,	18	9,0,2800000E+02,0.555555555702
POINT	19.	9,0,276667E+02,0,546667E+02
POINT.	20	9.0.280000E+02.0.540000E+02
POINT.	Ĩ.	10.0.280000E+02.0.53333E+02
POINT.	2.	10.0.276667E+02.0.533333E+02
POINT		10.0.280000E+02.0.520000E+02
POINT.	4.	10.0.276667E+02.0.520000E+02
POINT.	5.	10.0.280000E+02.0.526667E+02
POINT.	6.	10.0.253750E+02.0.546667E+02
POINT.	7.	10.0.247500E+02.0.546667E+02
POINT.	8.	10.0.260000E+02.0.546667E+02
POINT.	9.	10.0.263333E+02:0.546667E+02
POINT.	10.	10,0,266667E+02,0,546667E+02
POINT.	11.	10.0.241250E+02.0.546667E+02
POINT.	12.	10.0.235000E+02.0.546667E+02
POINT.	13.	10.0.228750E+02.0.546667E+02
POINT.	14.	10.0.222500E+02.0.546667E+02
POINT.	15,	10.0.210000E+02.0.546667E+02
POINT,	16,	10,0.216250E+02,0.546667E+02
POINT,	17,	10,0.270000E+02,0.546667E+02
POINT,	18,	10,0.273333E+02,0.546667E+02
POINT,	19,	10,0.273333E+02,0.540000E+02
POINT,	20,	10,0.273333E+02,0.533333E+02
POINT,	1,	11,0.273333E+02,0.520000E+02
POINT,	2,	11,0.273333E+02,0.526667E+02
POINT,	З,	11,0.247500E+02,0.540000E+02
POINT,	4,	11,0.260000E+02,0.540000E+02
POINT,	5,	11,0.235000E+02,0.540000E+02
POINT,	6,	11,0.266667E+02,0.540000E+02
POINT,	7,	11,0.270000E+02,0.533333E+02
POINT,	8,	11,0.222500E+02,0.540000E+02
POINT,	9,	11,0.210000E+02,0.540000E+02
POINT,	10,	11,0.270000E+02,0.520000E+02
POINT,	11,	11,0.253750E+02,0.533333E+02
POINT,	12,	11,0.247500E+02,0.533333E+02
POINT,	13,	11,0.260000E+02,0.533333E+02
POINT,	14,	11,0.241250E+02,0.533333E+02
POINT,	15,	11,0.235000E+02,0.533333E+02
POINT,	16,	11,0.263333E+02,0.533333E+02
POINT,	1/,	11,0.266667E+02,0.533333E+02
POINT,	18,	11,0.228/50E+02,0.533333E+02
POINT,	19,	11,0.222500E+02,0.533333E+02
POINT,	20,	11,0.210000E+02,0.533333E+02
POINT,	1,	12, U. 21625UE+U2, U. 533333E+O2
POINT,	2.	12,0.20000/E+02,0.520000E+02

.

•

	2	12 0 266667E+02.0.526667E+02
	<i>x</i>	12 0 247500E+02.0.526667E+02
POINT,	21	12,0.2475000+02,0.526667E+02
POINT,	5,	$12, 0.200000 \pm 02, 0.520007 \pm 02$
POINT,	6,	12, 0.2330002+02, 0.5200072+02
POINT,	7,	12,0.263333E+02,0.526667E+02
POINT,	8,	12,0.222500E+02,0.526667E+02
POINT,	9,	12,0.210000E+02,0.52000/E+02
POINT,	10,	12,0.253750E+02,0.520000E+02
POINT.	11,	12,0.260000E+02,0.520000E+02
POINT.	12.	12,0.247500E+02,0.520000E+02
POINT.	13.	12.0.241250E+02,0.520000E+02
POINT	14.	12.0.235000E+02,0.520000E+02
POINT,	15.	12.0.228750E+02,0.520000E+02
DOINT,	16	12.0.222500E+02.0.520000E+02
POINT,	17	12 0 210000E+02.0.520000E+02
POINT,	10	12 0 216250E+02.0.520000E+02
POINT,	10,	12, 0.260000E+02, 0.493333E+02
POINT,	17,	12,0.20000E+02,0.493333E+02
POINT,	20,	12,0.2475000E+02,0.493333E+02
POINT,	±,	13,0.235000E+02,0.195333E+02
POINT,	4,	12, 0.222500E+02, 0.493333E+02
POINT,	3,	13,0.210000E+02,0.4566667E+02
POINT,	4,	13,0.260000E+02,0.4666667E+02
POINT,	5,	13,0.25375000,02,0.46666670,02
POINT,	6,	13,0.24/500E+02,0.400007E+02
POINT,	7,	13, 0.241250E+02, 0.466667E+02
POINT,	8,	13, 0.235000E+02, 0.466667E+02
POINT,	9,	13,0.228/500+02,0.4666670.02
POINT,	10,	13,0.222500E+02,0.466667E+02
POINT,	11,	13,0.210000E+02,0.466667E+02
POINT,	12,	13,0.216250E+02,0.466667E+02
POINT,	13,	13, 0.260000E+02, 0.440000E+02
POINT,	14,	13, 0.247500E+02, 0.440000E+02
POINT,	15,	13, 0.235000E+02, 0.440000E+02
POINT.	16,	13,0.222500E+02,0.440000E+02
POINT.	17.	13,0.210000E+02,0.440000E+02
POINT.	18.	13,0.260000E+02,0.413333E+02
POINT.	19.	13,0.253750E+02,0.413333E+02
POINT	20.	13,0.247500E+02,0.413333E+02
POINT	- 1 .	14.0.241250E+02,0.413333E+02
POINT,	2.	14.0.235000E+02,0.413333E+02
POINT	3.	14.0.228750E+02,0.413333E+02
POINT.	4.	14.0.222500E+02,0.413333E+02
POINT	5.	14.0.210000E+02,0.413333E+02
POINT,	6.	14.0.216250E+02.0.413333E+02
POINT,	7.	14.0.260000E+02.0.386667E+02
POINT,	8.	14.0.247500E+02,0.386667E+02
POINT,	°,	14.0.235000E+02.0.386667E+02
POINT,	10'	14.0.222500E+02.0.386667E+02
POINT,	11	14.0.210000E+02.0.386667E+02
POINT	12	14 0 260000E+02.0.360000E+02
POINT,	12,	14 0 253750E+02.0.360000E+02
POINT,	13,	14 0 247500E+02.0.360000E+02
POINT,	14,	14 0 241250E+02.0.360000E+02
POINT,	10,	14 0 235000E+02 0 360000E+02
POINT,	10,	14,0.238750E+02,0.360000E+02
POINT,	1/,	$14, 0.2207500E\pm02, 0.300000E\pm02$
POINT,	18,	14,0.222000+02,0.3000000+02

•

2

.

.

POINT.	19.	14.0.210000E+02.0.360000E+02
POINT.	20.	14.0.216250E+02,0.360000E+02
POINT	1.	15.0.260000E+02,0.333333E+02
POINT,	2	15.0.247500E+02.0.333333E+02
POINT,	3	15.0.235000E+02.0.333333E+02
POINT,	, x'	15 0 222500E+02.0.333333E+02
POINT,	", "	15 0 210000E+02 0 333333E+02
POINT,	5,	15,0.210000E+02,0.306667E+02
POINT,	2,	$15, 0.260000\pm02, 0.300007\pm02$
POINT,	1.	15,0.2537500+02,0.3000070+02
POINT,	8,	15,0.24/500E+02,0.306667E+02
POINT,	9,	15,0.241250E+02,0.306667E+02
POINT,	10,	15,0.235000E+02,0.306667E+02
POINT,	11,	15,0.228750E+02,0.306667E+02
POINT,	12,	15,0.222500E+02,0.30666/E+02
POINT,	13,	15,0.210000E+02,0.306667E+02
POINT,	14,	15,0.216250E+02,0.306667E+02
POINT,	15,	15,0.260000E+02,0.280000E+02
POINT.	16,	15,0.247500E+02,0.280000E+02
POINT.	17.	15.0.235000E+02.0.280000E+02
POINT.	18.	15.0.222500E+02,0.280000E+02
POINT	19	15.0.210000E+02.0.280000E+02
POINT,	20	15.0.260000E+02.0.253333E+02
POINT,	1	16.0 253750E+02.0.253333E+02
POINT,	5'	16 0 247500E+02 0 253333E+02
POINT,	2, 2	16 0 241250E+02 0 253333E+02
POINT,	3,	16, 0.2412502+02, 0.2535352+02
POINT,	4, E	16, 0.2397505+02, 0.2533335+02
POINT,	5,	16, 0.22075000, 02 0.2533330, 02
POINT,	<u>p</u> ,	$10, 0.2223000\pm02, 0.233330\pm02$
POINT,	1.	$16, 0.210000\pm02, 0.2555555\pm02$
POINT,	8,	16,0.216250E+02,0.2555555E+02
POINT,	9,	16,0.260000E+02,0.226667E+02
POINT,	10,	16,0.24/500E+02,0.22666/E+02
POINT,	11,	16,0.235000E+02,0.226667E+02
POINT,	12,	16,0.222500E+02,0.22666/E+02
POINT,	13,	16,0.210000E+02,0.22666/E+02
POINT,	14,	16,0.260000E+02,0.200000E+02
POINT,	15,	16,0.253750E+02,0.200000E+02
POINT,	16,	16,0.247500E+02,0.200000E+02
POINT,	17,	16,0.241250E+02,0.200000E+02
POINT.	18,	16,0.235000E+02,0.200000E+02
POINT.	19,	16,0.228750E+02,0.200000E+02
POINT.	20.	16,0.222500E+02,0.200000E+02
POINT.	1.	17,0.210000E+02,0.200000E+02
POINT.	2.	17.0.216250E+02.0.200000E+02
POINT.	3.	17.0.260000E+02,0.173333E+02
POINT	4.	17.0.247500E+02.0.173333E+02
POINT	Ξ.	17.0.235000E+02.0.173333E+02
POINT,	6	17.0.222500E+02.0.173333E+02
DOINT,	~ '	17.0.210000E+02.0.173333E+02
POINT,	,	17.0.280000E+02.0.400000E+01
POINT,	°,	17.0.280000E + 02.0.333334E + 01
POINT,	10,	$17.0.276667 \pm 02.0.30000 \pm 01$
POINT,	10,	17 0 20000 = 020000 = 020000 = 010000 = 010000 = 010000 = 010000 = 010000 = 010000 = 010000 = 0100000 = 0100000 = 0100000 = 0100000 = 01000000 = 01000000 = 01000000 = 010000000 = 010000000 = 0100000000
POINT,	11,	17,0.200000000000000000000000000000000000
POINT,	12,	17, 0.2700075, 02 0.200005+01
POINT,	13,	17,0.2800008+02,0.200008+01
POINT,	14,	17,0.280000E+02,0.133334E+01

.

.

*

POINT, 16, 17,0.280000E+02,0.00000E+00 POINT, 17, 17,0.276667E+02,0.00000E+02 POINT, 19, 17,0.260000E+02,0.146667E+02 POINT, 20, 17,0.253750E+02,0.146667E+02 POINT, 21, 18,0.241250E+02,0.146667E+02 POINT, 3, 18,0.235000E+02,0.146667E+02 POINT, 4, 18,0.228750E+02,0.146667E+02 POINT, 5, 18,0.221500E+02,0.146667E+02 POINT, 6, 18,0.210000E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.273333E+02,0.400000E+01 POINT, 10, 18,0.273333E+02,0.266666E+01 POINT, 11, 18,0.273333E+02,0.0133334E+01 POINT, 12, 18,0.273333E+02,0.0133334E+01 POINT, 13, 18,0.273333E+02,0.133334E+01 POINT, 14, 18,0.273333E+02,0.133334E+01 POINT, 15, 18,0.247500E+02,0.120000E+02 POINT, 14, 18,0.273333E+02,0.666664E+000 POINT, 15, 18,0.247500E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 17, 18,0.225000E+02,0.120000E+02 POINT, 18, 18,0.2270000E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.93333E+01 POINT, 3, 19,0.270000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.93333E+01 POINT, 7, 19,0.226000E+02,0.93333E+01 POINT, 10, 19,0.22500E+02,0.93333E+01 POINT, 11, 19,0.216020E+02,0.93333E+01 POINT, 12, 19,0.226667E+02,0.93333E+01 POINT, 13, 19,0.226667E+02,0.93333E+01 POINT, 14, 19,0.266667E+02,0.93333E+01 POINT, 12, 19,0.2266667E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.93333E+01 POINT, 12, 19,0.2266667E+02,0.93333E+01 POINT, 12, 19,0.2266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 12, 19,0.266667E+02,0.266666E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 12, 0.0.26333BE+02,0.666666E+01 POINT, 4, 20,0.26333BE+02,0.666666E+01 POINT, 4, 20,0.26333BE+02,0.266666E+01 POINT, 7, 20,0.26333BE	POINT	15.	17.0.276667E+02.0.133334E+01
POINT, 17, 17, 0.276667E+02, 0.00000E+00 POINT, 18, 17, 0.280000E+02, 0.666664E+00 POINT, 19, 17, 0.253750E+02, 0.146667E+02 POINT, 20, 17, 0.253750E+02, 0.146667E+02 POINT, 1, 18, 0.241250E+02, 0.146667E+02 POINT, 3, 18, 0.228750E+02, 0.146667E+02 POINT, 4, 18, 0.228750E+02, 0.146667E+02 POINT, 5, 18, 0.222500E+02, 0.146667E+02 POINT, 7, 18, 0.210000E+02, 0.146667E+02 POINT, 7, 18, 0.210000E+02, 0.146667E+02 POINT, 8, 18, 0.273333E+02, 0.40000E+01 POINT, 8, 18, 0.273333E+02, 0.40000E+01 POINT, 10, 18, 0.273333E+02, 0.200000E+01 POINT, 11, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.120000E+02 POINT, 13, 18, 0.273333E+02, 0.120000E+02 POINT, 15, 18, 0.220000E+02, 0.120000E+02 POINT, 15, 18, 0.220000E+02, 0.120000E+02 POINT, 15, 18, 0.220000E+02, 0.120000E+02 POINT, 16, 18, 0.227500E+02, 0.120000E+02 POINT, 17, 18, 0.270000E+02, 0.120000E+02 POINT, 19, 18, 0.270000E+02, 0.266666E+01 POINT, 20, 18, 0.270000E+02, 0.266666E+01 POINT, 20, 18, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.93333E+01 POINT, 4, 19, 0.26000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.22500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 10, 19, 0.22500E+02, 0.93333E+01 POINT, 13, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 16, 19, 0.22650E+02, 0.93333E+01 POINT, 17, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.266666E+01 POINT, 14, 19, 0.266667E+02, 0.266666E+01 POINT, 14, 19, 0.266667E+02, 0.66666E+01 POINT, 15, 19, 0.26667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 20, 0.26333E+02, 0.66666E+01 POINT, 16, 20, 0.26333E+02, 0.66666E+01 POINT, 5, 20, 0.26333E+02, 0.266666E+01 POINT, 6, 20, 0.26333E+02, 0.266666E+01 POINT, 7, 20, 0.26333E+02, 0.4	POINT,	16	17.0.280000E+02.0.000000E+00
POINT, 18, 17,0.280000E+02,0.666664E+00 POINT, 19, 17,0.253750E+02,0.146667E+02 POINT, 20, 17,0.253750E+02,0.146667E+02 POINT, 1, 18,0.241250E+02,0.146667E+02 POINT, 2, 18,0.241250E+02,0.146667E+02 POINT, 3, 18,0.228750E+02,0.146667E+02 POINT, 5, 18,0.222500E+02,0.146667E+02 POINT, 6, 18,0.210000E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.273333E+02,0.400000E+01 POINT, 10, 18,0.273333E+02,0.400000E+01 POINT, 11, 18,0.273333E+02,0.00000E+01 POINT, 12, 18,0.273333E+02,0.00000E+01 POINT, 13, 18,0.273333E+02,0.133334E+01 POINT, 14, 18,0.273333E+02,0.133334E+01 POINT, 15, 18,0.260000E+02,0.120000E+02 POINT, 14, 18,0.273333E+02,0.120000E+02 POINT, 15, 18,0.24000E+02,0.120000E+02 POINT, 14, 18,0.227500E+02,0.120000E+02 POINT, 16, 18,0.220500E+02,0.120000E+02 POINT, 17, 18,0.22500E+02,0.120000E+02 POINT, 18, 18,0.220500E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.20000E+02 POINT, 19, 18,0.270000E+02,0.20000E+02 POINT, 1, 19,0.270000E+02,0.3333E+01 POINT, 2, 19,0.270000E+02,0.93333E+01 POINT, 5, 19,0.22500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 6, 19,0.22500E+02,0.93333E+01 POINT, 11, 19,0.226667E+02,0.93333E+01 POINT, 13, 19,0.226667E+02,0.93333E+01 POINT, 14, 19,0.26667E+02,0.93333E+01 POINT, 15, 19,0.26667E+02,0.93333E+01 POINT, 10, 19,0.22500E+02,0.93333E+01 POINT, 11, 19,0.22600E+02,0.93333E+01 POINT, 12, 19,0.26667E+02,0.26666E+01 POINT, 13, 19,0.266667E+02,0.20000E+01 POINT, 14, 19,0.266667E+02,0.20000E+01 POINT, 14, 19,0.266667E+02,0.20000E+01 POINT, 14, 19,0.266667E+02,0.20000E+01 POINT, 14, 19,0.266667E+02,0.20000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.266666E+01 POINT, 12, 0.0.26333E+02,0.66666E+01 POINT, 14, 20,0.225500E+02,0.66666E+01 POINT, 4, 20,0.26333E+02,0.266667E+01 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 7, 2	POINT,	17	17 0 276667E+02.0.000000E+00
POINT, 19, 17,0.260000E+02,0.146667E+02 POINT, 20, 17,0.253750E+02,0.146667E+02 POINT, 2, 18,0.241250E+02,0.146667E+02 POINT, 3, 18,0.22500E+02,0.146667E+02 POINT, 4, 18,0.228750E+02,0.146667E+02 POINT, 5, 18,0.220500E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 8, 18,0.273333E+02,0.333334E+01 POINT, 10, 18,0.273333E+02,0.020000E+01 POINT, 11, 18,0.273333E+02,0.020000E+01 POINT, 11, 18,0.273333E+02,0.020000E+01 POINT, 12, 18,0.273333E+02,0.020000E+01 POINT, 13, 18,0.273333E+02,0.020000E+02 POINT, 14, 18,0.273333E+02,0.13334E+01 POINT, 15, 18,0.260000E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 16, 18,0.225500E+02,0.120000E+02 POINT, 16, 18,0.22500E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 19, 0.270000E+02,0.400000E+01 POINT, 19,0.270000E+02,0.400000E+01 POINT, 3, 19,0.270000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 5, 19,0.22500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.22600E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 11, 19,0.22600E+02,0.93333E+01 POINT, 6, 19,0.22500E+02,0.93333E+01 POINT, 11, 19,0.22600E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.266666E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.22600E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.266666E+01 POINT, 12, 19,0.22600E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.266666E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.22600E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.266666E+01 POINT, 18, 19,0.266667E+02,0.266666E+01 POINT, 18, 19,0.266667E+02,0.266666E+01 POINT, 12, 20,0.26333E+02,0.66666E+01 POINT, 14, 20,0.22500E+02,0.66666E+01 POINT, 4, 20,0.26333E+02,0.266667E+02 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 7, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 7, 20,	POINT,	18	17 0.280000E+02.0.6666664E+00
POINT, 20, 17,0.253750E+02,0.146667E+02 POINT, 1, 18,0.247500E+02,0.146667E+02 POINT, 3, 18,0.22500E+02,0.146667E+02 POINT, 4, 18,0.228750E+02,0.146667E+02 POINT, 5, 18,0.222500E+02,0.146667E+02 POINT, 5, 18,0.222500E+02,0.146667E+02 POINT, 7, 18,0.210000E+02,0.146667E+02 POINT, 7, 18,0.210333E+02,0.400000E+01 POINT, 8, 18,0.27333E+02,0.400000E+01 POINT, 10, 18,0.273333E+02,0.266666E+01 POINT, 11, 18,0.273333E+02,0.20000E+01 POINT, 12, 18,0.273333E+02,0.20000E+01 POINT, 12, 18,0.273333E+02,0.20000E+01 POINT, 12, 18,0.273333E+02,0.20000E+01 POINT, 13, 18,0.273333E+02,0.20000E+02 POINT, 14, 18,0.273333E+02,0.20000E+02 POINT, 15, 18,0.22000E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 16, 18,0.2270000E+02,0.120000E+02 POINT, 17, 18,0.22000E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.13333E+01 POINT, 2, 19,0.270000E+02,0.93333E+01 POINT, 3, 19,0.270000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.22750E+02,0.93333E+01 POINT, 7, 19,0.221500E+02,0.93333E+01 POINT, 8, 19,0.22500E+02,0.93333E+01 POINT, 10, 19,0.22650E+02,0.93333E+01 POINT, 11, 19,0.220000E+02,0.93333E+01 POINT, 12, 19,0.2266667E+02,0.93333E+01 POINT, 13, 19,0.2266667E+02,0.93333E+01 POINT, 13, 19,0.2266667E+02,0.93333E+01 POINT, 14, 19,0.2266667E+02,0.93333E+01 POINT, 12, 19,0.22650E+02,0.93333E+01 POINT, 13, 19,0.2266667E+02,0.93333E+01 POINT, 14, 19,0.2266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.266666E+01 POINT, 17, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.22650E+02,0.266666E+01 POINT, 17, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.22650E+02,0.666666E+01 POINT, 16, 20,0.26333E+02,0.66666E+01 POINT, 12, 00,0.26333E+02,0.66666E+01 POINT, 4, 20,0.2253750E+02,0.66666E+01 POINT, 4, 20,0.2253750E+02,0.66666E+01 POINT, 6, 20,0.26333E+02,0.266667E+01 POINT, 6, 20,0.26333E+02,0.266667E+01 POINT, 6, 20,0.26333E+02,0.400000E+01 POINT	POINT,	10,	17 0.260000E+02.0.146667E+02
POINT, 1, 18, 0.247500E+02, 0.146667E+02 POINT, 2, 18, 0.241250E+02, 0.146667E+02 POINT, 4, 18, 0.228750E+02, 0.146667E+02 POINT, 5, 18, 0.222500E+02, 0.146667E+02 POINT, 6, 18, 0.210000E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 8, 18, 0.27333E+02, 0.40000E+01 POINT, 10, 18, 0.27333E+02, 0.266666E+01 POINT, 11, 18, 0.27333E+02, 0.266666E+01 POINT, 12, 18, 0.27333E+02, 0.266666E+01 POINT, 13, 18, 0.27333E+02, 0.00000E+00 POINT, 14, 18, 0.27333E+02, 0.00000E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.22500E+02, 0.120000E+02 POINT, 16, 18, 0.2270000E+02, 0.120000E+02 POINT, 17, 18, 0.22500E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.3333E+01 POINT, 20, 18, 0.270000E+02, 0.3333E+01 POINT, 2, 19, 0.270000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.228750E+02, 0.93333E+01 POINT, 6, 19, 0.228750E+02, 0.93333E+01 POINT, 10, 19, 0.228750E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.3333E+01 POINT, 13, 19, 0.266667E+02, 0.33333E+01 POINT, 13, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 16, 19, 0.266667E+02, 0.200000E+00 POINT, 16, 19, 0.266667E+02, 0.200000E+00 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 18, 19, 0.266667E+02, 0.66666E+01 POINT, 19, 19, 0.266667E+02, 0.66666E+01 POINT, 19, 19, 0.266667E+02, 0.66666E+01 POINT, 19, 19, 0.266667E+02, 0.66666E+01 POINT, 19, 19, 0.266667E+02, 0.66666E+01 POINT, 4, 20, 0.26333E+02, 0.66666E+01 POINT, 6, 20, 0.26333E+02, 0.66666E+01 POI	POINT,	20	17 0 253750E+02.0.146667E+02
POINT, 2, 18, 0.241250E+02, 0.146667E+02 POINT, 3, 18, 0.235000E+02, 0.146667E+02 POINT, 4, 18, 0.228750E+02, 0.146667E+02 POINT, 5, 18, 0.22500E+02, 0.146667E+02 POINT, 6, 18, 0.210000E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 9, 18, 0.273333E+02, 0.400000E+01 POINT, 10, 18, 0.273333E+02, 0.200000E+01 POINT, 11, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.200000E+01 POINT, 13, 18, 0.273333E+02, 0.666664E+00 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.247500E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 18, 18, 0.22000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.33334E+01 POINT, 2, 19, 0.270000E+02, 0.33334E+01 POINT, 3, 19, 0.253750E+02, 0.933332E+01 POINT, 4, 19, 0.26000E+02, 0.933332E+01 POINT, 5, 19, 0.253750E+02, 0.933332E+01 POINT, 6, 19, 0.247500E+02, 0.933332E+01 POINT, 6, 19, 0.247500E+02, 0.933332E+01 POINT, 7, 19, 0.228500E+02, 0.933332E+01 POINT, 8, 19, 0.22600E+02, 0.933332E+01 POINT, 10, 19, 0.222500E+02, 0.933332E+01 POINT, 11, 19, 0.22600E+02, 0.933332E+01 POINT, 13, 19, 0.26667E+02, 0.933332E+01 POINT, 14, 19, 0.26667E+02, 0.933332E+01 POINT, 15, 19, 0.26667E+02, 0.33333E+01 POINT, 14, 19, 0.26667E+02, 0.40000E+01 POINT, 14, 19, 0.26667E+02, 0.40000E+01 POINT, 14, 19, 0.26667E+02, 0.40000E+01 POINT, 14, 19, 0.26667E+02, 0.40000E+01 POINT, 16, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.26667E+02, 0.66666E+01 POINT, 17, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 12, 0.0, 0.26333E+02, 0.66666E+01 POINT, 4, 20, 0.235300E+02, 0.66666E+01 POINT, 6, 20, 0.26333E+02, 0.40000E+01 POINT, 6, 20, 0.26333E+02, 0.40000E+01 POINT, 6, 20, 0.26333E+02, 0.40000E+01 POINT, 6, 20, 0.26333E+02, 0.40000E+01	POINT,	20,	18 0 247500E+02.0.146667E+02
POINT, 2, 18,0.24125000E+02,0.146667E+02 POINT, 4, 18,0.228750E+02,0.146667E+02 POINT, 5, 18,0.222500E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 7, 18,0.216250E+02,0.146667E+02 POINT, 8, 18,0.27333E+02,0.400000E+01 POINT, 10, 18,0.27333E+02,0.266666E+01 POINT, 11, 18,0.27333E+02,0.20000E+01 POINT, 12, 18,0.27333E+02,0.20000E+01 POINT, 13, 18,0.27333E+02,0.00000E+01 POINT, 14, 18,0.27333E+02,0.00000E+01 POINT, 15, 18,0.26000E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 17, 18,0.22500E+02,0.120000E+02 POINT, 16, 18,0.221000E+02,0.120000E+02 POINT, 17, 18,0.210000E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 10, 18,0.210000E+02,0.266666E+01 POINT, 20, 18,0.270000E+02,0.3333E+01 POINT, 2, 19,0.270000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 5, 19,0.241250E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.242500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.24250E+02,0.93333E+01 POINT, 8, 19,0.226750E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.216000E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.93333E+01 POINT, 14, 19,0.266667E+02,0.93333E+01 POINT, 15, 19,0.266667E+02,0.93333E+01 POINT, 14, 19,0.266667E+02,0.93333E+01 POINT, 15, 19,0.266667E+02,0.93333E+01 POINT, 16, 19,0.266667E+02,0.93333E+01 POINT, 16, 19,0.266667E+02,0.93333E+01 POINT, 16, 19,0.266667E+02,0.93333E+01 POINT, 16, 19,0.266667E+02,0.666666E+01 POINT, 16, 19,0.266667E+02,0.66666E+01 POINT, 16, 19,0.266667E+02,0.66666E+01 POINT, 16, 19,0.266667E+02,0.66666E+01 POINT, 16, 19,0.266667E+02,0.66666E+01 POINT, 16, 19,0.266667E+02,0.66666E+01 POINT, 16, 20,0.26333E+02,0.66666E+01 POINT, 16, 20,0.26333E+02,0.66666E+01 POINT, 4, 20,0.225500E+02,0.66666E+01 POINT, 5, 20,0.26333E+02,0.06000E+02 POINT, 6, 20,0.26333E+02,0.06000E+01 POINT, 6, 20,0.26333E+02,0.06000E+01 POINT, 6, 20,0.26333E+02,0.013334E+01 POINT, 6, 20,0.26333E+0	POINT,	1, 2	10, 0.241250E+02, 0.146667E+02
POINT, 4, 18, 0.228750E+02, 0.146667E+02 POINT, 5, 18, 0.222500E+02, 0.146667E+02 POINT, 6, 18, 0.210000E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 8, 18, 0.273333E+02, 0.40000E+01 POINT, 10, 18, 0.273333E+02, 0.266666E+01 POINT, 11, 18, 0.273333E+02, 0.266666E+01 POINT, 12, 18, 0.273333E+02, 0.266666E+01 POINT, 13, 18, 0.273333E+02, 0.266666E+01 POINT, 14, 18, 0.273333E+02, 0.66666E+01 POINT, 15, 18, 0.26000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 10, 18, 0.270000E+02, 0.40000E+01 POINT, 20, 18, 0.270000E+02, 0.40000E+01 POINT, 1, 19, 0.270000E+02, 0.40000E+01 POINT, 3, 19, 0.270000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.22500E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 10, 19, 0.22650E+02, 0.93333E+01 POINT, 11, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.266667E+02, 0.93333E+01 POINT, 16, 19, 0.266667E+02, 0.93333E+01 POINT, 17, 19, 0.266667E+02, 0.66666EE+01 POINT, 16, 19, 0.266667E+02, 0.66666EE+01 POINT, 18, 19, 0.266667E+02, 0.66666EE+01 POINT, 12, 20, 0.23500E+02, 0.66666EE+01 POINT, 4, 20, 0.23533E+02, 0.66666EE+01 POINT, 5, 20, 0.26333E+02, 0.46000E+02+01 POINT, 6, 20, 0.26333E+02, 0.46000E+01 POINT, 6, 20, 0.26333E+02, 0.40000E+01 POINT, 6, 20, 0.26333E+02, 0	POINT,	4,	18,0.241250Et02,0.146667E+02
POINT, 4, 16, 0.226500E+02, 0.146667E+02 POINT, 5, 18, 0.222500E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 9, 18, 0.27333E+02, 0.400000E+01 POINT, 9, 18, 0.27333E+02, 0.33334E+01 POINT, 10, 18, 0.27333E+02, 0.266666E+01 POINT, 11, 18, 0.27333E+02, 0.266666E+01 POINT, 12, 18, 0.27333E+02, 0.200000E+00 POINT, 13, 18, 0.27333E+02, 0.666664E+00 POINT, 14, 18, 0.27333E+02, 0.666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.23500E+02, 0.120000E+02 POINT, 18, 18, 0.22000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.20000E+02 POINT, 20, 18, 0.270000E+02, 0.20000E+02 POINT, 20, 18, 0.270000E+02, 0.400000E+01 POINT, 2, 19, 0.270000E+02, 0.3333E+01 POINT, 3, 19, 0.270000E+02, 0.93333E+01 POINT, 6, 19, 0.241250E+02, 0.93333E+01 POINT, 6, 19, 0.241250E+02, 0.93333E+01 POINT, 6, 19, 0.226750E+02, 0.93333E+01 POINT, 6, 19, 0.226750E+02, 0.93333E+01 POINT, 10, 19, 0.2266667E+02, 0.93333E+01 POINT, 10, 19, 0.22650E+02, 0.93333E+01 POINT, 10, 19, 0.2266667E+02, 0.66666E+01 POINT, 11, 19, 0.216000E+02, 0.66666E+01 POINT, 13, 19, 0.266667E+02, 0.33334E+01 POINT, 14, 19, 0.266667E+02, 0.33333E+01 POINT, 15, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 17, 19, 0.266667E+02, 0.66666E+01 POINT, 12, 19, 0.266667E+02, 0.66666E+01 POINT, 12, 19, 0.266667E+02, 0.66666E+01 POINT, 12, 19, 0.266667E+02, 0.66666E+01 POINT, 12, 0, 0.247500E+02, 0.66666E+01 POINT, 12, 0, 0.26333E+02, 0.00000E+00 POINT, 6, 20, 0.26333E+02, 0.00000E+00 POINT, 6, 20, 0.26333E+02, 0.00000E+01 POINT, 6,	POINT,	3,	10, 0.23900000000000000000000000000000000000
POINT, 6, 18, 0.210000E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 8, 18, 0.273333E+02, 0.400000E+01 POINT, 10, 18, 0.273333E+02, 0.266666E+01 POINT, 11, 18, 0.273333E+02, 0.266666E+01 POINT, 12, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.000000E+00 POINT, 13, 18, 0.273333E+02, 0.000000E+02 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.247500E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 10, 18, 0.270000E+02, 0.120000E+02 POINT, 10, 18, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.93333E+01 POINT, 3, 19, 0.277000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.22500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.226000E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 11, 19, 0.2166667E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 12, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.26667E+02, 0.93333E+01 POINT, 15, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.26667E+02, 0.66666E+01 POINT, 15, 19, 0.26667E+02, 0.66666E+01 POINT, 16, 19, 0.26667E+02, 0.66666E+01 POINT, 17, 19, 0.26667E+02, 0.66666E+01 POINT, 16, 19, 0.26667E+02, 0.66666E+01 POINT, 17, 19, 0.26667E+02, 0.66666E+01 POINT, 16, 19, 0.26667E+02, 0.66666E+01 POINT, 17, 19, 0.26667E+02, 0.66666E+01 POINT, 18, 19, 0.26667E+02, 0.66666E+01 POINT, 19, 19, 0.26667E+02, 0.66666E+01 POINT, 12, 0, 0.247500E+02, 0.66666E+01 POINT, 12, 0, 0.247500E+02, 0.66666E+01 POINT, 12, 0, 0.26333E+02, 0.00000E+00 POINT, 6, 20, 0.26333E+02, 0.00000E+00 POINT, 6, 20, 0.26333E+02, 0.00000E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT,	POINT,	4, E	18, 0.22500E+02, 0.146667E+02
POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 7, 18, 0.216250E+02, 0.146667E+02 POINT, 9, 18, 0.273333E+02, 0.333334E+01 POINT, 10, 18, 0.273333E+02, 0.266666E+01 POINT, 11, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.00000E+00 POINT, 13, 18, 0.273333E+02, 0.00000E+00 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 17, 18, 0.210000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 10, 19, 0.270000E+02, 0.120000E+01 POINT, 1, 19, 0.270000E+02, 0.000000E+01 POINT, 3, 19, 0.270000E+02, 0.000000E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.235000E+02, 0.93333E+01 POINT, 8, 19, 0.22500E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 10, 19, 0.226750E+02, 0.93333E+01 POINT, 11, 19, 0.216000E+02, 0.93333E+01 POINT, 11, 19, 0.2166667E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.266667E+02, 0.93333E+01 POINT, 12, 19, 0.26667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.200000E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.26667E+02, 0.200000E+01 POINT, 16, 19, 0.26667E+02, 0.200000E+01 POINT, 16, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.26667E+02, 0.66666E+01 POINT, 17, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.26667E+02, 0.666666E+01 POINT, 17, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.26667E+02, 0.666666E+01 POINT, 17, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 20, 0.26333E+02, 0.66666E+01 POINT, 4, 20, 0.26333E+02, 0.66666E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+00 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 7, 20, 0.26333E+02, 0.400000E+01 POINT, 8, 20, 0.253750E+02, 0.400000E+01	POINT,	5,	18,0.222300B+02,0.146667E+02
POINT, 8, 18, 0.273333E+02, 0.40000E+01 POINT, 9, 18, 0.273333E+02, 0.333334E+01 POINT, 10, 18, 0.273333E+02, 0.266666E+01 POINT, 11, 18, 0.273333E+02, 0.133334E+01 POINT, 12, 18, 0.273333E+02, 0.000000E+00 POINT, 13, 18, 0.273333E+02, 0.000000E+00 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 18, 18, 0.22500E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 19, 18, 0.270000E+02, 0.266666E+01 POINT, 20, 18, 0.270000E+02, 0.000000E+00 POINT, 3, 19, 0.270000E+02, 0.00000E+00 POINT, 4, 19, 0.260000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.228750E+02, 0.93333E+01 POINT, 8, 19, 0.228750E+02, 0.93333E+01 POINT, 10, 19, 0.228750E+02, 0.93333E+01 POINT, 10, 19, 0.22650E+02, 0.93333E+01 POINT, 11, 19, 0.216250E+02, 0.93333E+01 POINT, 12, 19, 0.26667E+02, 0.400000E+01 POINT, 13, 19, 0.26667E+02, 0.400000E+01 POINT, 14, 19, 0.266667E+02, 0.203333E+01 POINT, 15, 19, 0.26667E+02, 0.200000E+01 POINT, 16, 19, 0.26667E+02, 0.200000E+01 POINT, 17, 19, 0.26667E+02, 0.666666E+01 POINT, 16, 19, 0.266667E+02, 0.666666E+01 POINT, 17, 19, 0.26667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 19, 19, 0.266667E+02, 0.666666E+01 POINT, 10, 19, 0.226500E+02, 0.666666E+01 POINT, 10, 19, 0.226500E+02, 0.666666E+01 POINT, 12, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.266637E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 14, 20, 0.225500E+02, 0.666666E+01 POINT, 5, 20, 0.26333E+02, 0.00000E+02 POINT, 6, 20, 0.26333E+02, 0.00000E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02	POINT,	<u>ې</u>	$10, 0.2160000 \pm 02, 0.146667 \pm 02$
POINT, 9, 18,0.273333E+02,0.33334E+01 POINT, 10, 18,0.273333E+02,0.266666E+01 POINT, 11, 18,0.273333E+02,0.200000E+01 POINT, 12, 18,0.273333E+02,0.133334E+01 POINT, 13, 18,0.273333E+02,0.00000E+00 POINT, 14, 18,0.273333E+02,0.666664E+00 POINT, 15, 18,0.260000E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 17, 18,0.235000E+02,0.120000E+02 POINT, 18, 18,0.22500E+02,0.120000E+02 POINT, 19, 18,0.270000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.400000E+01 POINT, 2, 19,0.270000E+02,0.000000E+01 POINT, 3, 19,0.270000E+02,0.000000E+01 POINT, 4, 19,0.260000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.242500E+02,0.93333E+01 POINT, 8, 19,0.22500E+02,0.93333E+01 POINT, 8, 19,0.22650E+02,0.93333E+01 POINT, 10, 19,0.22550E+02,0.93333E+01 POINT, 10, 19,0.22650E+02,0.93333E+01 POINT, 11, 19,0.216250E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.203333E+01 POINT, 15, 19,0.266667E+02,0.203333E+01 POINT, 14, 19,0.266667E+02,0.200000E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 14, 19,0.266667E+02,0.200000E+01 POINT, 15, 19,0.26667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.266666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 14, 19,0.266667E+02,0.666666E+01 POINT, 15, 19,0.266667E+02,0.666666E+01 POINT, 16, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 10,0.260000E+02,0.666666E+01 POINT, 12, 0,0.22333E+02,0.00000E+00 POINT, 4, 20,0.22333E+02,0.00000E+01 POINT, 6, 20,0.26333E+02,0.00000E+01 POINT, 6, 20,0.26333E+02,0.00000E+01 POINT, 10, 20,0.26333E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E	POINT,		10, 0.27333E+02, 0.40000E+01
POINT, 10, 18, 0.273333E+02, 0.266666E+01 POINT, 11, 18, 0.273333E+02, 0.200000E+01 POINT, 12, 18, 0.273333E+02, 0.133334E+01 POINT, 13, 18, 0.273333E+02, 0.000000E+00 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.26000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 19, 18, 0.22500E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.120000E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.000000E+01 POINT, 4, 19, 0.260000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.22500E+02, 0.93333E+01 POINT, 11, 19, 0.222500E+02, 0.93333E+01 POINT, 8, 19, 0.22650E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.216000E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.93333E+01 POINT, 15, 19, 0.266667E+02, 0.00000E+01 POINT, 14, 19, 0.266667E+02, 0.00000E+01 POINT, 15, 19, 0.266667E+02, 0.033334E+01 POINT, 15, 19, 0.266667E+02, 0.033334E+01 POINT, 16, 19, 0.266667E+02, 0.133334E+01 POINT, 17, 19, 0.266667E+02, 0.66666E+01 POINT, 18, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 17, 19, 0.266667E+02, 0.66666E+01 POINT, 18, 19, 0.266667E+02, 0.66666E+01 POINT, 19, 0.260000E+02, 0.66666E+01 POINT, 4, 20, 0.210000E+02, 0.66666E+01 POINT, 4, 20, 0.210000E+02, 0.66666E+01 POINT, 5, 20, 0.26333E+02, 0.26666E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.40000	POINT,	°,	18 0 273333E+02 0 333334E+01
POINT, 10, 18,0.273333E+02,0.200000E+01 POINT, 11, 18,0.273333E+02,0.133334E+01 POINT, 12, 18,0.273333E+02,0.00000E+00 POINT, 13, 18,0.273333E+02,0.00000E+00 POINT, 14, 18,0.273333E+02,0.120000E+02 POINT, 15, 18,0.260000E+02,0.120000E+02 POINT, 17, 18,0.235000E+02,0.120000E+02 POINT, 18, 18,0.22500E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.266666E+01 POINT, 2, 19,0.270000E+02,0.000000E+00 POINT, 3, 19,0.270000E+02,0.000000E+00 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.93333E+01 POINT, 8, 19,0.22500E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.210000E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.21650E+02,0.93333E+01 POINT, 10, 19,0.2266667E+02,0.400000E+01 POINT, 12, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 16, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 17, 20,0.235000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.22500E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.26666E+01 POINT, 7, 20,0.26333E+02,0.400000E+01 POINT, 8, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	10	10, 0.273333E+02, 0.266666E+01
POINT, 11, 18, 0.273333E+02, 0.133334E+01 POINT, 12, 18, 0.273333E+02, 0.000000E+00 POINT, 13, 18, 0.273333E+02, 0.666664E+00 POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 18, 18, 0.22500E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.400000E+01 POINT, 2, 19, 0.270000E+02, 0.400000E+01 POINT, 1, 19, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.000000E+02 POINT, 4, 19, 0.253750E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.226000E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 11, 19, 0.216000E+02, 0.93333E+01 POINT, 11, 19, 0.216000E+02, 0.93333E+01 POINT, 12, 19, 0.216250E+02, 0.93333E+01 POINT, 11, 19, 0.266667E+02, 0.400000E+01 POINT, 12, 19, 0.266667E+02, 0.200000E+01 POINT, 14, 19, 0.266667E+02, 0.200000E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.266667E+02, 0.200000E+01 POINT, 17, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 13, 19, 0.266667E+02, 0.33334E+01 POINT, 14, 19, 0.266667E+02, 0.366666E+01 POINT, 15, 0, 0.26333E+02, 0.466666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.2253750E+02, 0.400000E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01	POINT,	10,	$19 0 273335 \pm 02.0 200000 \pm 01$
POINT, 12, 18, 0.273333E+02, 0.000000E+00 POINT, 13, 18, 0.273333E+02, 0.6666664E+00 POINT, 14, 18, 0.273333E+02, 0.6666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 19, 18, 0.22500E+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.400000E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.000000E+00 POINT, 4, 19, 0.260000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.247500E+02, 0.93333E+01 POINT, 8, 19, 0.235000E+02, 0.93333E+01 POINT, 8, 19, 0.22500E+02, 0.93333E+01 POINT, 8, 19, 0.22500E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.400000E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 15, 19, 0.266667E+02, 0.666666E+01 POINT, 15, 19, 0.266667E+02, 0.66666E+01 POINT, 16, 19, 0.266667E+02, 0.66666E+01 POINT, 17, 19, 0.266667E+02, 0.66666E+01 POINT, 18, 19, 0.266667E+02, 0.66666E+01 POINT, 14, 20, 0.247500E+02, 0.66666E+01 POINT, 16, 20, 0.247500E+02, 0.66666E+01 POINT, 4, 20, 0.210000E+02, 0.66666E+01 POINT, 4, 20, 0.210000E+02, 0.66666E+01 POINT, 4, 20, 0.210000E+02, 0.66666E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.26666E+01 POINT, 8, 20, 0.26333E+02, 0.40000E+01 POINT, 8, 20, 0.26333E+02, 0.40000E+01 POINT, 9, 20, 0.253750E+02, 0.40000E+01 POINT, 9, 20, 0.253750E+02, 0.40000E+01 POINT, 10, 20, 0.260000E+02, 0.40000E+01	POINT,	12,	18, 0.273333E+02, 0.133334E+01
POINT, 14, 18, 0.273333E+02, 0.666664E+00 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 15, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 19, 18, 0.22500E+02, 0.120000E+02 POINT, 19, 18, 0.22000E+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.400000E+01 POINT, 1, 19, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.247500E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.253750E+02, 0.93333E+01 POINT, 8, 19, 0.228750E+02, 0.93333E+01 POINT, 9, 19, 0.228750E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 12, 19, 0.216250E+02, 0.93333E+01 POINT, 11, 19, 0.216000E+02, 0.93333E+01 POINT, 12, 19, 0.216250E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.93333E+01 POINT, 14, 19, 0.266667E+02, 0.266666E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.266667E+02, 0.666666E+01 POINT, 16, 19, 0.266667E+02, 0.666666E+01 POINT, 16, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 14, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 7, 20, 0.26333E+02, 0.400000E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01	POINT,	12,	10 0.273335E+02 0 00000E+00
POINT, 14, 18, 0.273932+0.0000E+02 POINT, 15, 18, 0.260000E+02, 0.120000E+02 POINT, 16, 18, 0.247500E+02, 0.120000E+02 POINT, 17, 18, 0.235000E+02, 0.120000E+02 POINT, 19, 18, 0.210000E+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.400000E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.93333E+01 POINT, 5, 19, 0.253750E+02, 0.93333E+01 POINT, 6, 19, 0.241250E+02, 0.93333E+01 POINT, 7, 19, 0.241250E+02, 0.93333E+01 POINT, 8, 19, 0.228750E+02, 0.93333E+01 POINT, 7, 19, 0.228750E+02, 0.93333E+01 POINT, 8, 19, 0.228750E+02, 0.93333E+01 POINT, 10, 19, 0.222500E+02, 0.93333E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 12, 19, 0.216250E+02, 0.93333E+01 POINT, 13, 19, 0.266667E+02, 0.40000E+01 POINT, 15, 19, 0.266667E+02, 0.266666E+01 POINT, 16, 19, 0.266667E+02, 0.266666E+01 POINT, 16, 19, 0.266667E+02, 0.666666E+01 POINT, 17, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 19, 19, 0.260000E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 12, 0, 0.247500E+02, 0.666666E+01 POINT, 13, 19, 0.26667E+02, 0.133334E+01 POINT, 14, 20, 0.210000E+02, 0.666666E+01 POINT, 15, 20, 0.235000E+02, 0.666666E+01 POINT, 16, 20, 0.23500E+02, 0.666666E+01 POINT, 17, 20, 0.23500E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.266666E+01 POINT, 8, 20, 0.26333E+02, 0.26666E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.40000E+01	POINT,	13,	10, 0.273335+02, 0.666664E+00
POINT, 15, 18,0.247500E+02,0.120000E+02 POINT, 16, 18,0.247500E+02,0.120000E+02 POINT, 17, 18,0.235000E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.400000E+01 POINT, 2, 19,0.270000E+02,0.266666E+01 POINT, 3, 19,0.270000E+02,0.000000E+00 POINT, 4, 19,0.260000E+02,0.933333E+01 POINT, 5, 19,0.247500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.228750E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933332E+01 POINT, 11, 19,0.210000E+02,0.933332E+01 POINT, 11, 19,0.216250E+02,0.933332E+01 POINT, 12, 19,0.216250E+02,0.933332E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.260000E+02,0.666666E+01 POINT, 12, 19,0.260000E+02,0.666666E+01 POINT, 14, 20,0.210000E+02,0.666666E+01 POINT, 15, 20,0.235000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.206666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.26666E+01 POINT, 6, 20,0.26333E+02,0.26666E+01 POINT, 7, 20,0.26333E+02,0.26666E+01 POINT, 8, 20,0.26333E+02,0.26666E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 19, 20,0.26333E+02,0.26666E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.26333E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	14,	18,0.273335E+02,0.0000E+02
POINT, 16, 18,0.24,5001402,0.120000E+02 POINT, 17, 18,0.235000E+02,0.120000E+02 POINT, 19, 18,0.210000E+02,0.120000E+02 POINT, 20, 18,0.270000E+02,0.400000E+01 POINT, 2, 19,0.270000E+02,0.266666E+01 POINT, 2, 19,0.270000E+02,0.0000000E+02 POINT, 3, 19,0.270000E+02,0.000000E+00 POINT, 4, 19,0.260000E+02,0.933333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.93333E+01 POINT, 8, 19,0.235000E+02,0.93333E+01 POINT, 8, 19,0.228750E+02,0.93333E+01 POINT, 8, 19,0.228750E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.210000E+02,0.93333E+01 POINT, 12, 19,0.266667E+02,0.400000E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.666666E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 14, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 14, 19,0.260000E+02,0.666666E+01 POINT, 20, 19,0.22500E+02,0.666666E+01 POINT, 20, 19,0.22500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.22500E+02,0.666666E+01 POINT, 4, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	15,	18, 0.200000000000000000000000000000000000
POINT, 17, 18, 0.2230002+02, 0.120000E+02 POINT, 19, 18, 0.222500E+02, 0.120000E+02 POINT, 19, 18, 0.270000E+02, 0.400000E+01 POINT, 20, 18, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.000000E+00 POINT, 4, 19, 0.260000E+02, 0.933333E+01 POINT, 5, 19, 0.253750E+02, 0.933333E+01 POINT, 6, 19, 0.247500E+02, 0.933333E+01 POINT, 7, 19, 0.241250E+02, 0.933332E+01 POINT, 8, 19, 0.235000E+02, 0.933332E+01 POINT, 8, 19, 0.228750E+02, 0.933332E+01 POINT, 9, 19, 0.228750E+02, 0.933332E+01 POINT, 10, 19, 0.222500E+02, 0.933332E+01 POINT, 10, 19, 0.22650E+02, 0.933332E+01 POINT, 11, 19, 0.210000E+02, 0.933332E+01 POINT, 12, 19, 0.266667E+02, 0.400000E+01 POINT, 13, 19, 0.266667E+02, 0.400000E+01 POINT, 14, 19, 0.266667E+02, 0.200000E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.266667E+02, 0.200000E+01 POINT, 17, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 10, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.26607E+02, 0.666666E+01 POINT, 12, 19, 0.26000E+02, 0.666666E+01 POINT, 14, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.400000E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01	POINT,	17,	19, 0.235000F+02, 0.120000E+02
POINT, 16, 18, 0.2225002+02, 0.120000E+02 POINT, 20, 18, 0.270000E+02, 0.120000E+02 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 2, 19, 0.270000E+02, 0.266666E+01 POINT, 3, 19, 0.270000E+02, 0.000000E+00 POINT, 4, 19, 0.260000E+02, 0.933333E+01 POINT, 5, 19, 0.253750E+02, 0.933333E+01 POINT, 6, 19, 0.241250E+02, 0.933333E+01 POINT, 7, 19, 0.241250E+02, 0.933333E+01 POINT, 8, 19, 0.235000E+02, 0.933332E+01 POINT, 8, 19, 0.235000E+02, 0.933332E+01 POINT, 8, 19, 0.226750E+02, 0.933332E+01 POINT, 10, 19, 0.222500E+02, 0.933332E+01 POINT, 10, 19, 0.222500E+02, 0.933332E+01 POINT, 11, 19, 0.210000E+02, 0.93333E+01 POINT, 12, 19, 0.266667E+02, 0.400000E+01 POINT, 13, 19, 0.266667E+02, 0.400000E+01 POINT, 14, 19, 0.266667E+02, 0.200000E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.266667E+02, 0.200000E+01 POINT, 17, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 18, 19, 0.266667E+02, 0.666666E+01 POINT, 12, 19, 0.26607E+02, 0.666666E+01 POINT, 14, 20, 0.247500E+02, 0.666666E+01 POINT, 1, 20, 0.247500E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 5, 20, 0.26333E+02, 0.400000E+01 POINT, 6, 20, 0.26333E+02, 0.13334E+01 POINT, 8, 20, 0.26333E+02, 0.13334E+01 POINT, 8, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.26333E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01	POINT,	10	19, 0.22500E+02, 0.120000E+02
POINT, 19, 18,0.270000E+02,0.400000E+01 POINT, 20, 18,0.270000E+02,0.266666E+01 POINT, 2, 19,0.270000E+02,0.133334E+01 POINT, 3, 19,0.270000E+02,0.93333E+01 POINT, 4, 19,0.260000E+02,0.93333E+01 POINT, 5, 19,0.247500E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.235000E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.216020E+02,0.93333E+01 POINT, 11, 19,0.216250E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.260000E+02,0.666666E+01 POINT, 12, 0,0.247500E+02,0.666666E+01 POINT, 20, 19,0.22500E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	10,	18, 0.222500E+02, 0.120000E+02
POINT, 1, 19,0.270000E+02,0.26666E+01 POINT, 2, 19,0.270000E+02,0.133334E+01 POINT, 3, 19,0.270000E+02,0.000000E+00 POINT, 4, 19,0.260000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.235000E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933332E+01 POINT, 11, 19,0.210000E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 12, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 12, 19,0.26000E+02,0.666666E+01 POINT, 13, 20,0.22500E+02,0.666666E+01 POINT, 1, 20,0.247500E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.40000E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.40000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	19,	19, 0.270000E+02, 0.400000E+01
POINT, 1, 19,0.270000E+02,0.133334E+01 POINT, 3, 19,0.270000E+02,0.000000E+00 POINT, 4, 19,0.260000E+02,0.933333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.228750E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933332E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.260000E+02,0.666666E+01 POINT, 20, 19,0.22500E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.22500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 7, 20,0.26333E+02,0.133334E+01 POINT, 7, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 9, 20,0.253750E+02,0.400000E+001 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	20,	19 0 270000E+02.0.266666E+01
POINT, 2, 19,0.270000E+02,0.00000E+00 POINT, 4, 19,0.260000E+02,0.933333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.2287500E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933332E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 7, 20,0.26333E+02,0.266666E+01 POINT, 8, 20,0.26333E+02,0.400000E+00 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.26333E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	2,	19,0.270000E+02,0.133334E+01
POINT, 4, 19,0.26000E+02,0.93333E+01 POINT, 5, 19,0.253750E+02,0.93333E+01 POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.93333E+01 POINT, 8, 19,0.235000E+02,0.93333E+01 POINT, 9, 19,0.228750E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.210000E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.266666E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 7, 20,0.26333E+02,0.400000E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	2'	19,0.270000E+02,0.00000E+00
POINT, 4, 19,0.253750E+02,0.933333E+01 POINT, 6, 19,0.247500E+02,0.933333E+01 POINT, 7, 19,0.241250E+02,0.933332E+01 POINT, 8, 19,0.235000E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933333E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.266000E+02,0.666666E+01 POINT, 20, 19,0.22500E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.266666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 7, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.223750E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.400000E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.260000E+02,0.400000E+01 POINT, 9, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	5,	19,0.260000E+02,0.933333E+01
POINT, 6, 19,0.247500E+02,0.93333E+01 POINT, 7, 19,0.241250E+02,0.93333E+01 POINT, 8, 19,0.235000E+02,0.93333E+01 POINT, 9, 19,0.228750E+02,0.93333E+01 POINT, 10, 19,0.222500E+02,0.93333E+01 POINT, 11, 19,0.210000E+02,0.93333E+01 POINT, 12, 19,0.216250E+02,0.93333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.26000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.223750E+02,0.13334E+01 POINT, 8, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.260000E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	4, 5	19 0 253750E+02 0 933333E+01
POINT, 7, 19,0.241250E+02,0.933333E+01 POINT, 8, 19,0.235000E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933333E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.400000E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.266067E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 7, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.400000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	ے ۔ ح	19 0 247500E+02 0 933333E+01
POINT, 8, 19,0.235000E+02,0.933332E+01 POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933333E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.333334E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266067E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.400000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	۰, ۲	19 0 241250E+02.0.933333E+01
POINT, 9, 19,0.228750E+02,0.933332E+01 POINT, 10, 19,0.222500E+02,0.933333E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.000000E+01 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.22500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.400000E+01 POINT, 6, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 8, 20,0.26333E+02,0.13334E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,		19 0 235000E+02.0.933332E+01
POINT, 10, 19,0.222500E+02,0.933333E+01 POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 11, 19,0.216250E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.26333E+02,0.266666E+01 POINT, 6, 20,0.26333E+02,0.266666E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.133334E+01 POINT, 8, 20,0.26333E+02,0.400000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	°,	19 0 228750E+02.0.933332E+01
POINT, 11, 19, 0.210000E+02, 0.933333E+01 POINT, 12, 19, 0.216250E+02, 0.933333E+01 POINT, 12, 19, 0.266667E+02, 0.933333E+01 POINT, 13, 19, 0.266667E+02, 0.400000E+01 POINT, 14, 19, 0.266667E+02, 0.266666E+01 POINT, 15, 19, 0.266667E+02, 0.200000E+01 POINT, 16, 19, 0.266667E+02, 0.200000E+01 POINT, 17, 19, 0.266667E+02, 0.000000E+00 POINT, 18, 19, 0.266667E+02, 0.000000E+00 POINT, 20, 19, 0.260000E+02, 0.6666666E+01 POINT, 2, 20, 0.235000E+02, 0.6666666E+01 POINT, 3, 20, 0.222500E+02, 0.6666666E+01 POINT, 4, 20, 0.210000E+02, 0.666666E+01 POINT, 5, 20, 0.263333E+02, 0.40000E+01 POINT, 7, 20, 0.263333E+02, 0.133334E+01 POINT, 8, 20, 0.263333E+02, 0.133334E+01 POINT, 8, 20, 0.263333E+02, 0.400000E+00 POINT, 9, 20, 0.253750E+02, 0.400000E+01 POINT, 10, 20, 0.260000E+02, 0.400000E+01	POINT,	10'	19 0 222500E+02.0.933333E+01
POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.333334E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.200000E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.400000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	11,	19 0 210000E+02.0.933333E+01
POINT, 12, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.333334E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.133334E+01 POINT, 18, 19,0.266667E+02,0.0000000E+00 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 2, 20,0.235000E+02,0.666666E+01 POINT, 3, 20,0.222500E+02,0.666666E+01 POINT, 4, 20,0.210000E+02,0.666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	12	19 0 216250E+02.0.933333E+01
POINT, 14, 19,0.266667E+02,0.333334E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 15, 19,0.266667E+02,0.200000E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.000000E+00 POINT, 18, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.260000E+02,0.400000E+01	POINT,	12,	19 0 266667E+02.0.400000E+01
POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.133334E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 2, 20,0.247500E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.2666666E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.253750E+02,0.400000E+01 POINT, 9, 20,0.260000E+02,0.400000E+01	POINT,	11	19.0.266667E+02.0.333334E+01
POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.133334E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 19, 19,0.266667E+02,0.666666E+01 POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.22500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.2666666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	15	19.0.266667E+02.0.266666E+01
POINT, 17, 19,0.266667E+02,0.133334E+01 POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 19, 19,0.266667E+02,0.6666664E+00 POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	16.	19.0.266667E+02.0.200000E+01
POINT, 18, 19,0.266667E+02,0.000000E+00 POINT, 19, 19,0.266667E+02,0.6666664E+00 POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.2666666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.400000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	17.	19.0.266667E+02,0.133334E+01
POINT, 19, 19,0.266667E+02,0.666664E+00 POINT, 20, 19,0.260000E+02,0.666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.133334E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT,	18.	19.0.266667E+02,0.000000E+00
POINT, 20, 19,0.260000E+02,0.6666666E+01 POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.2666666E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	19.	19.0.266667E+02,0.666664E+00
POINT, 1, 20,0.247500E+02,0.6666666E+01 POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.2666666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 FOINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	20.	19.0.260000E+02,0.666666E+01
POINT, 2, 20,0.235000E+02,0.6666666E+01 POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	1.	20,0.247500E+02,0.666666E+01
POINT, 3, 20,0.222500E+02,0.6666666E+01 POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	$\tilde{2}$	20.0.235000E+02,0.666666E+01
POINT, 4, 20,0.210000E+02,0.6666666E+01 POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT	3.	20,0.222500E+02,0.666666E+01
POINT, 5, 20,0.263333E+02,0.400000E+01 POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	4.	20,0.210000E+02,0.666666E+01
POINT, 6, 20,0.263333E+02,0.266666E+01 POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	5.	20,0.263333E+02,0.400000E+01
POINT, 7, 20,0.263333E+02,0.133334E+01 POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	6.	20,0.263333E+02,0.266666E+01
POINT, 8, 20,0.263333E+02,0.000000E+00 POINT, 9, 20,0.253750E+02,0.400000E+01 POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	7.	20,0.263333E+02,0.133334E+01
FOINT, 9, 20,0.253750E+02,0.400000E+01 FOINT, 10, 20,0.260000E+02,0.400000E+01	POINT	8	20,0.263333E+02,0.000000E+00
POINT, 10, 20,0.260000E+02,0.400000E+01	POINT.	9	20,0.253750E+02,0.400000E+01
	POINT.	10,	20,0.260000E+02,0.400000E+01

ŧ.

.

٩.

A

			2475		00.0	40		1										
POINT,	11,	20,0	. 24/5	DUE+	02,0	.40		5+01										
POINT,	12,	20,0	.2412	:50E+	-02,0	.40	00001	E+01										
POINT.	13.	20.0	.2350	00E+	02,0	.40	00001	E+01										
DOTNT	14	2 ດົດ	2287	50E+	02.0	. 40	00001	E + 01										
FOINT,	171	20,0	2201	005.	020	40	00000	E+01										
POINT,	12,	20,0	. 4443		.02,0	. 40												
POINT,	16,	20,0	.2100	000E+	-02,0	.40	00000	5+01										
POINT,	17.	20,0	.2162	250E+	·02,0	.40	00001	E+01										
POINT.	18.	20.0	.2600	00E+	02.0	.33	33341	E+01										
DOINT,	10	20 0	2600	0054	02.0	26	66661	E + 01										
POINT,	201	20,0	2000		02/0	20	00000	D+01										
POINT,	20,	20,0	.2000		.02,0	. 20												
POINT,	1,	21,0	.2600	100E+	02,0	-13	33341	5+01										
POINT,	2,	21,0	.2600)00E+	·02,0	.00	00001	E+00										
POINT,	3,	21,0	.2600	00E+	-02,0	.66	66641	E+00										
POINT.	4	21.0	.2475	600E+	02,0	.33	33341	E+01										
DOINT	5	21 0	2537	5054	.02 0	26	66661	E + 01										
FOINT,	2.	21,0	2227		02,0	22	22241											
POINT,	ο,	21,0	.2350	0054	-02,0	. 33	22241	5+UI										
POINT,	7,	21,0	. 2225	DUE+	02,0	.33	33341	5+01										
POINT,	8,	21,0	.2100)00E+	-02,0	.33	33341	E+01										
POINT.	9.	21.0	.2537	'50E+	-02,0	.13	33341	E+01										
POINT.	10.	21.0	.2537	50E+	02.0	.00	0000	E+00										
DOINT	11	21 0	2475	0054	.02 0	26	6666	E+01										
POINT,	11,	21,0	- 291-	505-	02,0	- 20	66666											
POINT,	12,	21,0	.2412	50E4	.02,0	. 20	00000											
POINT,	13,	21,0	.2350	000E+	-02,0	. 26	66661	5+01										
POINT,	14,	21,0	.2287	50E+	-02,0	.26	66661	E+01										
POINT.	15.	21,0	.2223	500E+	-02,0	.26	66661	E+01										
POINT.	16.	21.0	.2100	00E+	02.0	.26	66661	E+01										
POINT	17	21 0	2167	50E4	02.0	26	66661	E + 01										
POINT,	10	21,0	2/75	005-	.02.0	20	00000	01										
POINT,	10,	21,0	. 24/.		02,0	1.20	7774											
POINT,	19,	21,0	. 24/5	SUDE-	02,0	.13	33341	5+01										
POINT,	20,	21,0	.2475	00E+	-02,0	.00	00001	E+00										
POINT,	1,	22,0	.2475	500E+	-02,0	.66	66641	E+00										
POINT.	2.	22.0	.2350	00E+	02,0	.20	0000	E+01										
POINT	3	22 0	2412	50E4	02.0	1.13	33341	E+01										
DOINT,	Δ,	220	2225	005-	.02.0	20	0000	F + 01										
POINT,	'	22,0			02,0	20	00000	- 01										
POINT,	5,	22,0	.2100	JOUE -	-02,0													
POINT,	6,	22,0	.2100)00E+	-02,0	1.13	33341	E+01										
POINT,	7,	22,0	.2162	250E+	-02,0	1.13	33341	E+01										
POINT,	8,	22,0	.2412	250E+	-02,0	.00	00001	E+00										
POINT	9	22.0	.2100	00E+	02.0	.00	00001	E+00										
POINT	10	22.0	2100	00E-	02.0	. 66	66641	E+00										
DOINT,	11	22.0	2162	5053	.02/0	00	0000	F±00										
POINT,	11,	22,0	2102	005-	02,0	1 2	22241	E 1 0 1										
POINT,	12,	22,0	. 2350	10064	-02,0	.12	22241											
POINT,	13,	22,0	.2287	50E+	-02,0	1.13	33341	E+01										
POINT,	14,	22,0	.2225	500E+	-02,0	1.13	33341	E+01										
POINT.	15,	22,0	.2350)00E+	-02,0	1.00	00001	E+00										
POINT	16.	22.0	.2350)00E+	-02.0	. 66	66641	E+00										
POINT,	17	22 0	2225	0054	02.0	00	00001	E+00										
POINT,	10'	22,0	222	0050	.02/0	66	66641	F+00			'							
PUINT,	10,	22,0	. 4445		02,0		00041											
POINT,	TA'	22,0	. 2281	DUE4	-02,0		00001	5700										
END, GR	ID			_							2	•	Ξ	1	16	1	3	٦
QQ,CS24	4, BU)	LLET,	1,	1,	4,	1,	17,	1,	15,	1,	2,	1,	р,	±,	10,	1,	<u>،</u> د	1
00,CS24	4, BUI	LLET.	4,	1,	7,	1,	19,	1,	17,	1,	6,	1,	в,	÷,	тв,	1,	э,	- -
00.052	4. BUI	LLET	7.	1.	10,	1.	1.	2,	19,	1,	9,	1,	11,	1,	20,	l,	з,	1
	4 800	LLET	10	ĩ	12.	1.	2.	2	1.	2.	13,	1,	14,	1,	З,	2,	11,	1
	ייזים א		15,	1	17	· · ·	11	5'	Q.	2	16	1.	5,	2.	10,	2,	4,	2
22,032			17	1	10	1	12	5'	11	5	18	1	6	2.	12.	2,	5,	2
QQ,CS24	ч,вОЛ	, ۲٬۱۰	1/,	μ,	724	÷,	тэ,	4,	<i>⊥</i> ⊥,	21	TO ,	÷,	۰,	- /	,			

2

	CS24 CS24 CS24 CS24 CS24 CS24 CS24 CS24	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	ULI ULI ULI ULI ULI ULI ULI ULI ULI ULI			19 9 11 13 15 3 5 7 9 17 19 1 3 11	, , , , , , , , , , , , , , , , , , ,		, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1	1, 2, 1, 5, , 9, , 1, , 4, , 1, 3, , 1, 3, , 1, 3, , 1, 3, , 1, 3, , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	5,	22222333334444	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	565790913435787			$ \begin{array}{r} 13\\15\\79\\17\\19\\11\\15\\17\\5\\\\end{array} $	7	2233333344444 44445	, , , , , , , , , , , , , 5	20 310 12 14 17 6 8 11 18 20 5 12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4	1 2 1 1 1 1 1 1 4,	789012345678901	2,	2223333334444	$ \begin{array}{c} 1 \\ 4 \\ 6 \\ 8 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ $	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2 2 3 3 3 3 3 4 4 4 4 4 5	· · · · · · · · · · · · · · · · · · ·	6 7 8 19 12 12 13 14 15 6 7 3 9 0	, , , , , , , , , , , , , , , , , , ,	22222333344444	5
: QQ, QQ,	CS23 CS12	4 , 34	BUI , BU	LLE JLI	ET, .ET	, 1 ',	5, 17,	,	4, 4,	17 1	, 8,	4	, : 4,	11 12	, 2,	5, 5	5,	9, 11	,	5, 5	, 10 , 1	6, 19,	4	, 4,	3	, 4,	5, 5	; ,	.0, 13	,	5, 5	;	2, 3,	5	5
00,	CS23 CS12	4, 34	BUI ,BU	JLI	ст, .ет	,	5, 7	, ,	5, 5,	7	, 9,	5	, 5,	1	, 3,	6, 6	1	9, 1	,	5, 6	, (6, 8,	, 5	; 5,	15 1	, 6,	5, 5	2	20, 2	,	5, 6	14	4, 15,	5	5
όο,	CS12	34	, BI	JLI	ET	,	9	,	5,	1	1,		5,	ŗ	5,	6	,	3	,	6	, .	10,	,	5,	1	7,	5	•	4	,	6	, :	16,		5
ġο,	CS12	34	, BI	JLI	ET	,	11	,	5,	1	2,		5,	6	5,	6	,	5	,	6	, -	13,	,	5,	1	8,	5	,	7	,	6	, :	L7,		5
οQ,	CS12	34	, ві	JLI	ET	,	19	,	5,		1,	i	6,	15	5,	6	,	13	,	6	, :	20,	,	5,		9,	6		14	,	6	,	8,		6
00,	CS12	34	, ві	JLI	ET	,	1	,	6,		З,	(6,	17	7,	6	,	15	,	6	,	2,	,	6,	1	Ο,	6	,	16	,	6	,	9,		6
QQ, QQ, QQ, QQ,	CS12 CS12 CS12 CS12 CS12	4, 4, 3, 34	BUI BUI BUI , BU	LLE LLE JLI	СТ, СТ, СТ, .ЕТ	1	3, 5, 3, 15,	6 6 6	5, 5, 5,	5 6 15 1	; ;	6 6 6	, . , .	19 20 9, 11	, , ,	6, 6, 7, 7	1 1	7, 9, 7, 9	,	6, 6, 7, 7	14	4, 7, 4, 16,	6 6 6	, , 6,	11 12 3	, , 4,	6, 6, 7, 7	1	8, 1, 8, 10	,	6, 7, 7, 7,	1(11), L, 2, 3,	6 6 7	7
	CS24 CS23 CS12 CS12 CS24 CS24 CS12	, B 4, , B 4, , B 4, , B 34	ULI BUI ULI BUI ULI , BU	LEI LEI LEI LEI JLI	ст, ст, ст, ст,	17 1 7 11	9, 9, 9, 13,	6, 7, 7, 7,	, 1 5, 7, , 1 7,	.9, 20 9, 11 .3, 1	, , 4,	6, 7, 7, 7,	1 , , , ,	3, 14, 3, 5, 7, 8	7 8 8 8	, , , , , , , , , , , , , , , , , , ,	11 1 1 5	, 3, 3, 7	7 8 ,8	, , , , , , , , , , , , , ,	18 8 10 12	, , , , , , , , ,	6, 7, 7, 7,	'1 '1 7,	5, 7, 18 9, 2	, 1 , 1 , 1 , 1	7, 7, 7, 7, 7,	12 1 2 6	, 5, 4, 9	7 8 8	, 7, 8, 8, 8,	4 16 18	; , , , , , , , , , , ,	7 7 7 7 7	7
; QQ, QQ, QQ, QQ,	CS2, CS24 CS24 CS22 CS12	BU , B , B 34	LLI ULI ULI , BU	ET, LEI LEI JLI	с, , ,ет	1, 3 5	, , 7,	8, 8, 8,	3 8,	, 5, 7,	8 8,	, ; 8, 8,	17 19 8,	, 9, 1, 2	8, 8 9 2,	1 , 9	6, 17 19	, ′1	8, 8 8 ,	, , 9	2, 4, 6,	, , 9,	8, 8, 8,	11 1 1 8,	2, 3, 1	8, 8 4,	1 3, 3, 8, 8,	5, 18 20	, , 3	8, 8 8 ,	1(, 1 , 1 , 1), [1, [2,]	8 , 13,	8 8	8
	, BUL , BUL	LEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		11 12 14 16 46 80 10 18 20 24 12 14 16 18	*********	12 12 12 13 13 13 13 13 13 14 14 14 14		L2, L4, L6, L0, L0, L20, L4, L0, L20, L4, L6, L20, L4, L6, L20, L4, L20, L4, L2, L2, L2, L2, L2, L2, L2, L2, L2, L2	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	1 1 2 1 1 1 1 1 1 1 1 1	6801024546898027		3333344444445555	4 6 8 10 18 20 2 4 12 14 16 18 6 8 10 12	* * * * * * * * * * * * *	13 13 13 13 13 14 14 14 14 14 15 15 15	* * * * * * * * * * * * * * *	10 13 15 15 10 15 10 10 10 10 10 10 10 10 10 10		12 12 12 12 13 13 13 13 13 14 14 14 14	, 2 , 1 , 1 , 1 , 1 , 1	20,,234,5678901,2345	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	2333333344445555	12 19 12 19 13 19 17 20 7 9 11 17		13313313313314444444444444444444444444		19 20 12 13 14 15 16 7 8 9 10 1 2 3 4		223333344455555			

•

QQ, BULLET, 6, 15, 8, 15, 2, 16, 20, 15, 7, 15, 16, 15, 1, 16, 15, 15 QQ, BULLET, 8, 15, 10, 15, 4, 16, 2, 16, 9, 15, 17, 15, 3, 16, 16, 15 QQ, BULLET, 10, 15, 12, 15, 6, 16, 4, 16, 11, 15, 18, 15, 5, 16, 17, 15 QQ, BULLET, 12, 15, 13, 15, 7, 16, 6, 16, 14, 15, 19, 15, 8, 16, 18, 15 QQ, BULLET, 20, 15, 2, 16, 16, 16, 14, 16, 1, 16, 10, 16, 15, 16, 9, 16 QQ, BULLET, 2, 16, 4, 16, 18, 16, 16, 16, 3, 16, 11, 16, 17, 16, 10, 16 QQ, BULLET, 4, 16, 6, 16, 20, 16, 18, 16, 5, 16, 12, 16, 19, 16, 11, 16

,

•

•

+

QQ,,BULLET,	6,	16,	7,	16,	1,	17,	20,	16,	8,	16,	13,	16,	2,	17,	12,	16	
QQ,,BULLET,	14,	16,	16,	16,	1,	18,	19,	17,	15,	16,	4,	17,	20,	17,	3,	17	
QQ,,BULLET,	16,	16,	18,	16,	з,	18,	1,	18,	17,	16,	5,	17,	2,	18,	4,	17	
QQ,,BULLET,	18,	16,	20,	16,	5,	18,	з,	18,	19,	16,	6,	17,	4,	18,	5,	17	
QQ,,BULLET,	20,	16,	1,	17,	6,	18,	5,	18,	2,	17,	7,	17,	7,	18,	6,	17	
QQ, , BULLET,	19,	17,	1,	18,	6,	19,	4,	19,	20,	17,	16,	18,	5,	19,	15,	18	
QQ, , BULLET,	1,	18,	з,	18,	8,	19,	6,	19,	2,	18,	17,	18,	7,	19,	16,	18	
QQ, , BULLET,	3,	18,	5,	18,	10,	19,	8,	19,	4,	18,	18,	18,	9,	19,	17,	18	
QQ,,BULLET,	5,	18,	6,	18,	11,	19,	10,	19,	7,	18,	19,	18,	12,	19,	18,	18	
QQ, , BULLET,	4,	19,	6,	19,	11,	20,	10,	20,	5,	19,	1,	20,	9,	20,	20,	19	
QQ, BULLET,	6,	19,	8,	19,	13,	20,	11,	20,	7,	19,	2,	20,	12,	20,	1,	20	
OO., BULLET,	8,	19,	10.	19,	15.	20,	13,	20,	9,	19,	3,	20,	14,	20,	2,	20	
OO. BULLET.	10,	19,	11.	19,	16.	20,	15,	20,	12,	19,	4,	20,	17,	20,	З,	20	
OO. BULLET.	10.	20.	11.	20.	11.	21.	19.	20.	Ξġ.	20.	4.	21.	5,	21,	18,	20	
OO. BULLET.	11.	20.	13.	20.	13.	21.	11.	21.	12.	20.	6.	21.	12.	21.	4.	21	
OO. BULLET.	13.	20.	15.	20.	15.	21.	13.	21.	14.	20.	7.	21.	14.	21.	6.	21	
OO. BULLET.	15.	20.	16.	20.	16.	21.	15.	21.	17.	20.	8.	21.	17.	21.	7.	21	
OO. BULLET.	19.	20.	11.	21.	19.	21.	1.	21.	5.	21.	18.	21.	,	21,	20.	20	
OO. BULLET.	11.	21.	13.	21.	12.	22.	19.	21.	12.	21.	2.	22.	3.	22.	18.	21	
OO. BULLET.	13.	21.	15.	21.	14.	22.	12.	22.	14.	21	4.	22.	13.	22.	2.	22	
OO. BULLET.	15.	21.	16.	$\tilde{21}$	6.	22.	14.	22.	17.	21.	5.	22.	7.	22.	4.	22	
OO. BULLET.	1.	21.	19	21	20.	21.	2.	21.	9.	21.	ĩ.	22.	10.	21.	3.	21	
OO. BULLET.	19.	21.	12.	22.	15.	22.	20.	21.	3.	22.	16.	22.	8.	22.	1.	22	
OO. BULLET.	12.	22	14.	22.	17.	22.	15.	22.	13.	22.	18.	22.	19.	22.	16.	$\bar{2}\bar{2}$	
OO BULLET	14	22'	- 6'	22	ġ.	22	17.	22	-7.	22	10.	22.	11.	22.	18.	22	
OO BULLET	16	ĨŔ,	17	ĨÃ,	- '	ĩñ	ÊŔ,	10	15	ĨÃ.	4	- 9 .	6.	10.	5.		
OO BULLET	17	В	ī ģí	в	12'	10'	7.	10	18.	8.	9.		11.	10.	4.	9	
OO BULLET	19	а́,	1,	ĕ,	14	10	12	10	20	Ř,	10	<u>.</u>	13.	10.	9.	9	
00 CS13 BUL	LET.	1	ā'	2	- Q.	15.	10.	14	10.	3.	- ĕ.	11.	- 9 (16.	10.	10.	9
OO. BULLET.	8.	10	7	10.	12.	11.	13.	Ĩ1.	6.	10.	3.	11.	11.	11.	4.	11	-
OO. BULLET.	7.	10.	12	10.	15.	<u> </u>	12.	11.	11.	10.	5.	11.	14.	īī.	3.	11	
OO. BULLET.	12	10.	14.	10.	19.	11.	15.	11.	13.	10.	8.	<u>11</u> .	18.	<u>11</u> .	5.	11	
00.CS13.BUL	LET	14	10	15.	10.	20	11	19.	11.	16.	10.	- <u>9</u> (11.	1.	12.	8.	11
OO. BULLET.	13	11	12	11	12	12.	11.	12.	11.	11.	4.	12.	10.	12.	5.	12	
OO BULLET	12	11,	15	11	14	12	12	12	14	11.	6.	12.	13.	12.	4.	12	
OO BULLET	15	11	10	11	16	12	14	12	18	11	8	12.	15.	12.	6	12	
00 CS13 BUI	1 E T	10	11,	20'	11	17	12	16	12	1	12	-ã'	12	18	12.	8.	12
QQ,CSIS,BUL	15	<u> </u>	13	20,	18	16'	18	- ŭ,	16	- á'	14	á	19	- <u>9</u> .	17.	Ğ,	
QQ,, BULLET	13,	۰, ۵	1,	۰, ۵	10,	10,	18	10'	12	á	Â,	<u>.</u>	17.	10.	14	á	
OO BULLET	- <u>-</u> ,	a'	16	e,	Ξġ,	10	10	10,	- 6,	ġ,	Š.	9	9.	10.	8.	ģ	
OO BULLET	18	á	18	10	20'	10'	1,	10,	19	a'	19	10.	2.	10.	20.	ģ	
OO BULLET	18	10	10,	10,	17	11	20	10,	17	10	6.	11.	7.	11.	19.	10	
OO BULLET	10	10,	- Q,	10	17	11	17	11	- á	10'	۵,	11.	16.	11.	6.	11	
OO BULLET	1,	10	20'	10	1,	11	- 3	10.	2	10.	2.	11.	4.	10.	5.	10	
OO BULLET	20'	10	17	11	2'	12	ĩ	11	~~'	11	3	12.	10.	11.	2.	11	
OO BULLET	17	11,	13	11,	11	12	2'	12	16	11	5'	12	7.	12.	3.	12	
OO BULLET	10	20,	10	20'	15	10	12	10	18	20'	6	20	14.	19.	5.	20	
OO BULLET	19	20,	1,	21	17	19,	15	19	20	20,	7	20	16.	19.	6.	20	
OO BUILET,	1,	21,	5'	$\frac{21}{21}$	18	10'	17	10'	20,	21	, í	20,	19	19.	7.	20	
OO BULLET	12'	10	15	10	10	18	- , ,	18	11	10	1	19	- <u>6</u>	18.	20.	18	
VV BIILLEW	15,	10	17	10	12,	10,	10	18	16	10	2'	10	11	18	1.	19	
OO BUILET,	17,	10	10,	10	12,	18	12,	18	10	10	Ĩ,	10	14	18	2	19	
QQ,,BULLET,	±/,	19 19	10,	18	11	17	Ξ <u>ρ</u> ΄	17	- <u>,</u>	18	12	17		17	10	17	
OO BUITET	10	19	12,	10,	1 <i>l</i>	17'	11	17	11,	18	15	17	12	17	12	17	
QQ,,BULLET, AA BUILEM	10,	19	12,	10,	16	17	10	17	14	18	17	17	18	17	15	17	
AG' DBEGGIDE	10	10,	13,	Δ ²		12103 1117	14/ n	5000) U E + 1	12	+ / ,	±/,	10,	± / ,	± ,	÷ 1	
PC'LUESSOKE	, TO,	, د	· 4,			10 T U Z	., 2		νυώτι	~ ~							

62

.

•

•

BC, PRESSUE	Ε , 1	1,	2,	2,	0.2	250	00	0E- 0E-	+02 +02	,0,	25 25	00 00	00	/E+ /E+	02
BC, PRESSUE	(E, 1		<i>2</i> ,	2'	0.1	250	00	05.	102	'n	25	ññ	õõ	IE+	02
BC, PRESSUE	(E,	3,	5,	2'	<u>~</u>	250	ñññ	OF.	102	. Õ	25	õõ	õõ	E+	02
BC, PRESSUE	(Ε,	3,	4,		<u>.</u>	250	00	05-	102	'ñ'	25	ññ	õõ	E+	02
BC, PRESSUE	ΚΕ, Ι	1.	4,	<u></u>	۰. ۲	250	000	05.	102	ίñ.	25	ňň	ňc	E+	02
BC, PRESSUE	RE, 1	. <u> </u>	2,	2,	0	230	000	05.	.02	' ^	25	20	ñ n	IF-	.02
BC, PRESSUE	RE,	5,	ь,	2,	0	250	000	OE.	+UZ	, 0.	25	20	200	151	.02
BC, PRESSU	RE, 1	.9,	5,	2,	0.,	250	000	05	+02	, 0.	25	00	20	I D I	02
BC, PRESSU	RE, 1	.3,	7,	Ζ,	0.	250	000	UE	+02	, <u>v</u> .	20	00	00		02
BC, PRESSUE	RE,	7,	8,	2,	0.2	250	000	0E-	+02	,0.	25	00	00) 上 十	02
BC, PRESSUE	RE, 1	.6, 3	12,	2,	0.3	250	000	0E	+02	, 0.	25	00	00	15+	·UZ
BC, PRESSUI	RE, 1	.0, :	13,	2,	0.3	250	000	0E	+02	,0.	. 25	00	00)E+	·02
BC, PRESSUL	RE,	4, 3	14,	2,	0.3	250	000	0E	+02	,0.	. 25	00	00)E+	.02
BC, PRESSUI	RE, 1	8, 3	14,	2,	0.3	250	000	0E	+02	,0.	. 25	00	00)E+	02
BC. PRESSU	RE. 1	2,	15,	2,	0.1	250	00	0E	+02	, 0	. 25	00	00)E+	.02
BC, PRESSUI	RE.	6,	16,	2,	0.1	250	00	0E	+02	,0.	. 25	00	00)E+	·02
BC, PRESSU	RE. 2	20. 3	16,	2,	0.3	250	00	0E	+02	, 0.	. 25	00	00)E+	-02
BC. PRESSU	RE.	5.	18.	2,	0.3	250	00	0E	+02	, 0.	. 25	00	00)E+	-02
BC PRESSU	RE. 1	lō.	19.	2,	0.3	250	00	0E	+02	, 0	. 25	00	00)E+	-02
BC PRESSU	RE. 1	5.	20.	2.	0.	250	00	0E	+02	,0	.25	00	00)E+	-02
BC PRESSII	RE 1	5.	21.	2.	0.	250	000	0E	+02	, 0	. 25	00	00)E+	-02
BC, FRESDO	1	21	~-/	0.2	50	000)E+	02	.0.	250	000	0E	+()2	
DC, SDEAR,	10'	21	, 	0 2	50	000)E+	02	. 0.	25	000	0E	;+()2	
BC, SHEAR,	12,	22,	'	0.2	50	ñññ	ΪĒ4	02	. o.	25	000	0E	+(20	
BC, SHEAR,	12,	22,	~~ ` '	5.2	ິດ	250	้ก๊ก	0E	+02	. 0	25	iño	0)E4	02
BC, PRESSU	KE, 1	147	<u> </u>	<u>َ</u> ^ ^ 2	50	000) E -	.02	ົດ	251	้ากัก	а 0 (+(12	• -
BC, SHEAR,	14,	22,	<u>م</u> ,	v.2	50	250	100	02	107	25	25	00	0)E4	-02
BC, PRESSU	RE,	1,	. 9,	4,	v.	230			+02		2.	: n n	0	15-	02
BC, PRESSU	RE,]	L4,	10,	2,	0.	250	100	UL 0 D	+02		. 20	000		יםו הםו	02
BC, PRESSU	RE, 1	19,	11,	2,	ų.	230	100		+02	, 0	- 4- 2 C	: n r		יםנ הםו	
BC, PRESSU	RE,	1,	21,	2,	0.	250	100	UL	+02	.,0	. 40 20			161	02
BC, PRESSU	RE,	17,	19,	2,	0.	251	100	UE 0	+02	.,0	. 45	:00	201) 5-7 () 5-7	ົດລ
BC, PRESSU	RE, 1	12,	18,	2,	0.	250	100	UE	+02	.,0	. 43			751	FU2
BC,SLOPE,	1,	1,	1,	0.0	00	000	JE+	-00	, 0.	00				50	
BC,SLOPE,	4,	1,	1,	0.0	00	000	JE+	-00	,0.	00			-	10	
BC,SLOPE,	7,	1,	1,	0.0	000	000	DE+	-00	,0.	00	000			10	
BC, SLOPE,	10,	1,	1,	0.0	00	000	0E+	-00	,0.	00	000	ODE	5+1	00	
BC, SLOPE,	12,	18,	2,	0.0	000	000	0E+	-00	,0.	00	000) () E	5+1	00	
BC, SLOPE,	17,	19,	2,	0.0	000	000	0E+	-00	,0.	00	000) () E	5+1	00	
BC, SLOPE,	1,	21,	2,	0.0	000	000	0E+	-00	,0.	.00	000) O E	5+1	00	
BC.SLOPE.	1,	21,	3	0.0	00	000	0E+	-00	,0.	.00	000) O E	5+1	00	
BC.SLOPE,	19,	21,	3	0.0	00	000	0E+	-00	,0.	. 00	000) () E	5+1	00	
BC.SLOPE.	14.	22.	3	0.0	00	00	0E+	-00	,0.	. 00	000) O E	5+1	00	
BC.SLOPE.	12.	22.	3	0.0	00	00	0E4	+00	,0.	. 00	000) O E	5+1	00	
END, ELEME	NTS														
22,222	5	BOD	Y.FC	DRCE		16	100)							
613	-		- •		• •										
015	6	SOL	VE												
614	Ũ	002													
014	7	STR	ESS	. 2											
615	,	DIN													
010	8	ጥወአ	NCT	ነጥድ											
616	o	TVA	נע כי ויני	111											
010	0	C TO	D												
<i>c</i> 1 7	Э	STO	r.												
61/															

1

-

238446-90

.

PAGE 2

-

projectile

ELEMENT DATA

EL	EMENT			NODE					NODE
NO. R	TYPE Z	MAT NO.	NO. I,J	I,J R	R Z	Z	NO.	I,J	
1 0.000	QQ 78.950	10 3	1 17,1	1,1 5.369	0.000 78.3 5.582	79.600 14 78.931	2 5	4,1 2,1	
0.000	79.275	6	5,1 7	2.703 16,1	78.7	791 78.623	8	3,1	
2.811	79.433	10	1	4.1	0.000	78.950	2	7,1	
0.000	78.300	3	19,1 4	5.156	77.6 5.369	96 78.314	5	6,1	
0.000	78.625	6	8,1 7	2.596 18,1	78.1 5.262	.49 78.005	8	5,1	
2.703	78.791		_	- 4		70 200	2	10 1	
3 0.000	QQ 77.650	10 3	1 1,2	7,1	0.000 77.0 5.156	78.300 79 77.696	5	9,1	
0.000	77.975	6	11,1	2.488	5 049	507	8	8,1	
2.596	78.149		,	20,1	5.045	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
4	QQ 77.000	10 3	1 2,2	10,1 4.729	0.000	77.650 161	2	12,1	
0.000	77.325	6	4 14,1	1,2 2.380	4.943 76.8	77.079 65	5	13,1	
2.488	77.507		7	3,2	4.836	76.770	8	11,1	
5	QQ	10	1	15,1	5.582	78.931	2	17,1	
5.369	78.314	3	11,2	9,2	10.746	77.012	5	16,1	
5.476	78.623	6	5,2	10,2	10.545	76.749	8	4,2	
8.221	78.123	1.0	1	17 1	5 369	78 314	2	19.1	
6 5.156	QQ 77.696	3	13,2	9.942	2 75.9	76,486	5	18,1	
5.262	78.005	6	6,2	7.599	76.9	965 76,223	8	5,2	
7.910	77.544		,	12,0	207272				
7 4.943	QQ 77.079	10 3	1 15,2	19,1 9.539	5.156 75.4	77.696	2	1,2	
5.049	77.388	6	4 7,2	13,2 7.287	9.942	75.960 387	5	20,1 6 2	
7.599	76.965		7	14,2	9.740	/5.09/	o	0,2	
8	QQ	10	1	1,2	4.943	77.079	2	2,2	
4.729	76.461	3	16,2 4	15,2	9.539	75.434	5	3,2	

4.836	76.770		6	8,2	6.976 75.808	7.2
7.287	76.387			,	17,2 9.330 75.171 0	
9	QQ	10	2	1	9,2 10.746 77.012 2 14.743 73.586	11,2
10.344	70.400		5	4	3,3 15.300 73.969 5	10,2
10.545	76.749		6	19,2 7	12.627 75.162 4,3 15.021 73.777 8	18,2
13.112	75.623					
10	QQ	10	-	1	11,2 10.344 76.486 2	13,2
9.942	75.960		3	4	5,3 14.743 73.586 5	12,2
10.143	76.223		6	20,2	12.142 74.702 6.3 14.464 73.394 8	19,2
12.627	75.162			·		
11	QQ	10	-	1	13,2 9.942 75.960 2	15,2
9.539	75.434		3	9,3	7,3 14.186 73.203 5	14,2
9.740	75.697		6	1,3 7	11.657 74.242 8,3 13.907 73.011 8	20,2
12.142	74.702					
12	QQ	10		1	15,2 9.539 75.434 2	16,2
9.137	74.908		3	10,3 4	13.072 72.436 9.3 13.629 72.819 5	17,2
9.338	75.171		6	2,3	11.173 73.781 11 3 13.350 72.628 8	1,3
11.657	74.242			,	11,5 150000 00000	
13	00	10		1	3,3 15.300 73.969 2	5,3
14.743	73.586		3	19,3 4	18.383 69.734 17.3 19.050 69.933 5	4,3
15.021	73.777		6	13,3	16.675 71.766 18.3 18.716 69.834 8	12,3
17.293	72.061			1	2013 201120 02100	

.

.

r

Ŧ

238246-90

PAGE 3

projectile

ELEMENT DATA

EL	EMENT					NODE					NODE
NO. R	TYPE Z	MAT	NO.	NO. I,J	NODE I,J I	R	Z	Z	NO.	I,J	
14 14.186	QQ 73.203	10	3	1 1,4	5,3 1	14. 7.716	.743	73.586	2	7,3 6.3	
14.464	73.394		6	14,3	19,3	6.056 18.	.383 71.4 .050	70 69.635	8	13,3	
16.675	71.766			·							
15 13.629	QQ 72.819	10	3	1 3,4	7,3	14. 7.050	.186 69.3	73.203 37	2	9,3	
13.907	73.011		6	4 15,3	1,4 1!	5.438 17	./10 71.1 383	75 69.436	8	14,3	
16.056	71.470			,	27.		• • • •				
16 13.072	QQ 72,436	10	3	1 4,4	9,3 1	13 6.383	.629 69.1	72.819 39	2	10,3	
13.350	72.628		6	4 16,3	3,4	17 4.819	.050 70.8	69.337 80 60.238	5	15.3	
15.438	71.175			7	5,4	10	./10	09.230	0	20,0	
17	QQ 69 734	10	3	1 13.4	17,3 2	19 1.083	.050 65.0	69.933 51	2	19,3	
18.716	69.834		6	4 7,4	11,4 1	21 9.871	.804 67.4	65.031 73	5	18,3	
20.573	67.564			7	12,4	21	.443	65.041	D	0,4	
18		10	2	1 15 4	19,3	18 0.362	.383	69.7 34	2	1,4	
17.710	69.530		6	4 8,4	13,4 1	21 9.170	.083	65.051 81	5	20,3	
19.871	67.473		-	7	14,4	20	.722	65.061	8	7,4	
19	QQ	10	-	1	1,4	17	.716	69.536	2	3,4	
17.050	69.337		3	17,4 4 9 4	15,4	20 8.468	.362	65.071 89	5	2,4	
19.170	67.381		Ū	7	16,4	20	.002	65.081	8	8,4	
20	QQ	10		1	3,4	17	.050	69.337	2	4,4	
16.383	69.139		3	18,4	17,4	8.920 19 7 766	.641	65.091	5	5,4	
16.716	67 289		D	7	19,4	19	.281	65.101	8	9,4	
21	QQ	10		1	11,4	21	.804	65.031	2	13,4	
21.083	65.051		3	7,5 4	2 5,5	2.289 23	63.6 .202 -	63.687	5	12,4	

x. -

21.443	65.041		6	1,5	21.688 64.370 6 5 22 746 63 686 8	20,4
22.503	64.359			'	0,5 22.140 05.000	
22 20,362	QQ 65.071	10	3	1 9,5	13,4 21.083 65.051 2 21.375 63.680	15,4
20. 722	65 061		6	4	7,5 22.289 63.684 5 20.875 64.380	14,4
20.122	05.001		Ũ	7	8,5 21.832 63.682 8	1,5
21.688	64.370					17 4
23	QQ 65 091	10	3	1 11.5	15,4 20.362 65.0/1 2 20.462 63.676	17,4
19.041			~	4	9,5 21.375 63.680 5	16,4
20.002	65.081		6	3,5 7	10,5 20.919 63.678 8	2,5
20.875	64.380					
24	QQ	10	2	1	17,4 19.641 65.091 2 19.549 63.672	18,4
18.920	65.111		5	4	11,5 20.462 63.676 5	19,4
19.281	65.101		6	4,5 7	19.248 64.397 13,5 20.005 63.674 8	3,5
20.061	64.389					
25	QQ	10		1	5,5 23.202 63.687 2	7,5
22.289	63.684		3	1,6 4	19,5 24.601 62.344 5	6,5
22.746	63.686		6	15,5	22.881 62.997 20 5 24.034 62.325 8	14,5
23.902	63.016			,		
26	00	10		1	7,5 22.289 63.684 2	9,5
21.375	63.680		3	3,6 4	22.334 62.267 1.6 23.468 62.305 5	8,5
21.832	63.682		6	16,5	21.861 62.977 2 6 22 901 62.286 8	15,5
22.881	62.997			'	2,0 22.701 02.200 0	•

•

•

238246-90

PAGE 4

projectile

ELEMENT DATA

.

EL	EMENT				1	NODE					NODE
NO. R	TYPE Z	MAT	NO.	NO. I,J	NODE I,J R	R	z	Z	NO.	I,J	
27 20.462	QQ 63.676	10	3	1 5,6	9,5 21	21. .201	375	63.680 9 62 267	2 5	11,5 10,5	
20.919	63.678		6	17,5 7	3,8 20 4,6	.841 21.	62.95 [°] 767	62.248	8	16,5	
21.861	QQ	10	3	1	11,5	20. .067	462	63.676 0	2	12,5	
20.005	63.674		6	4 18,5 7	5,6 19 7,6	21. .822 20.	201 62.93 634	62.229 6 62.209	5 8	13,5 17,5	
20.841	62.957 00	10		1	19,5	24.	601	62.344	2	1,6	
23.468	62.305		3 6	15,6 4 9,6	24 13,6 24	.618 26. .046	60.91 000 61.61	8 61.000 4	5	20,5	
25.301	61.672			7	14,6	25	. 309	60.959	8	8,0	
30 22.334	QQ 62.267	10	3	1 17,6 4	1,6 23 15,6	23. 237 24	.468 60.83 .618	62.305 6 60.918	5	2,6	
22.901 24.046	62.286 61.614		6	10,6 7	16,6	23	.928	60.877	8	9,6	
31 21.201	QQ 62.229	10	3	1 19,6	3,6 21 17,6	22 855 23	.334 60.75 .237	62.267 5 60.836	2 5	5,6 4,6	
21.767 22 791	62.248		6	11,6 7	21 18,6	.538 22	61.49 .546	6 60.796	8	10,6	
32 20.067	QQ 62.190	10	3	1 20,6	5,6 20	21).474	.201 60.67	62.229 3	2	6,5	
20.634	62.209		6	4 12,6 7	19,6 20 1,7	21).284 21	.855 61.43 .164	60.755 5 60.714	8	11,6	
21.538	61.496	10	2	1	13,6	26	.000	61.000	2	15,6	
24.618 25.309	60.918		6	4 3,7 7	7,7 24 8.7	26 1.659 25	.000 60.10 .346	59.333 0 59.308	5 8	14,6 2,7	
26.000	60.167	10		,	15.6	24	.618	60.918	2	17,6	
23.237	60.836	10	3	11,7 4	9.7	3.383 ⁻ 24	59.23 .691	59.282	5	16,6	

•

23.928	60.877		6	4,7	23.317 60.035 10 7 24.037 59.257 8	3,7
24.659	60.100			,		
35	QQ	10	-	1	17,6 23.237 60.836 2	19,6
21.855	60.755		3	13,7 4	11,7 23.383 59.231 5	18,6
22.546	60.796		6	5,7 7	21.976 59.969 12,7 22.728 59.206 8	4,7
23.317	60.035					
36	QQ	10	2	1	19,6 21.855 60.755 2 20.766 59.129	20,6
20.4/4	00.075		2	4	13,7 22.074 59.180 5	1,7
21.164	60.714		6	7	15,7 21.420 59.155 8	5,7
21.976	59.969					
37	QQ	10	2	1 3.8	7,7 26.000 59.333 2 24.735 57.642	9,7
24.091	59.202		, ,	4	1,8 26.000 57.667 5	8,7
25.346	59.308		0	7	2,8 25.368 57.655 8	16,7
26.000	58.500					
38		10	2	1 .	9,7 24.691 59.282 2 23.471 57.618	11,/
23.303	59.251		,	4	3,8 24.735 57.642 5	10,7
24.037	59.257		ь	18,7	4,8 24.103 57.630 8	17,7
24.717	58.462					10 7
39	QQ 59 180	10	٦	1 7.8	11,7 23.383 59.231 2 22.206 57.594	13,7
22.074	59.100		, ,	4	5,8 23.471 57.618 5	12,7
22.728	59.206		O	7	6,8 22.838 57.606 B	18,7
23.434	58.425					

.

.

4

.

70

TEXGAP84-2D VERSION

238246-90

.

PAGE 5

.

projectile

ELEMENT DATA

EL	EMENT					NODE					NODE
NO. R	TYPE Z	MAT	NO.	NO. I,J	NODE I,J R	R	Z	Z	NO.	I,J	
40 20.766	QQ 59.129	10	3	1 8,8 4	13,7 20 7.8	22 .941 22	.074 57.570 .206	59.180 57.594	2 5	14,7 15,7	
21.420	59.155 58.388		6	20,7 7	20 9,8	.868 21	58.351 .574	57.582	8	19,7	
41 24.735	QQ 57.642	10	3	1 17,8	1,8	26 .750	.000	57.667	2	3,8 2,8	
25.368	57.655		6	4 11,8 7	16,8 24 15,8	.746 25	.000 56.821 .375	56.000	8	10,8	
26.000 42	QQ 57 618	10	3	1 19.8	3,8 23	24	.735 56.000	57.642	2	5,8	
24.103	57.630		6	4 12,8 7	17,8 23 18,8	24 .493 24	.750 56.809 .125	56.000 56.000	5 8	4,8 11,8	
24.746 43	56.821 QQ	10	_	1	5,8	23	.471	57.618	2	7,8	
22.206 22.838	57.594 57.606		3 6	1,9 4 13,8 7	19,8 22 20,8	23 2.239 22	.500 . 56.797 .875	56.000 56.000	5 8	6,8 12,8	
23.493 44	56.809 QQ	10		1	7,8	22	.206	57.594	2	8,8	
20.941 21.574	57.570 57.582		3 6	2,9 4 14,8 7	1,9 2(22 22).985 21	56.000 56.785 625	56.000	5 8	9,8 13,8	
22.239	56.797	10		, 1	11,12	26	.000	52.000	2	12,12	
24.750	52.000		3 6	6,13 4 20,12	4,13 24	4.750 26 4.750	46.667 .000 49.333	46.667	5	10,12	
26.000	49.333			7	5,13	25	. 375	52 000	2	14,12	
46 23.500	QQ 52.000	10	3		2: 6,13	3.500 ²⁴ 24	46.667 1.750 49.333	46.667	5	13,12	2
24.125 24.750	52.00 <u>0</u> 49.333		U	7	7,13	24	1.125	46.667	8	20,12	2
47 22.250	QQ 52.000	10	3	1 10,13 4	14,12 23 8,13	2: 2.250 2:	3.500 46.663 3.500	52.000 7 46.667	2 5	16,12 15,12	2

22.875	52.000		6	2,13	22.250 49.333 9.13 22.875 46.667 8		1,13
23.500	49.333			•			
48 21.000	QQ 52.000	10	3	1 11,13	16,12 22.250 52.000 2 21.000 46.667 5 5 5		17,12
21.625	52.000		6	4 3,13 7	10,13 22.250 46.667 3 21.000 49.333 12,13 21.625 46.667 8		2,13
22.250	49.333						
49 24.750	QQ 46.667	10	3	1 20,13	4,13 26.000 46.667 2 24.750 41.333		6,13 5.13
25.375	46.667		6	4 14,13 7	18,13 26.000 41.333 24.750 44.000 19,13 25.375 41.333 8	ł	13,13
26.000	44.000						
50 23.500	QQ 46.667	10	3	1 2,14	6,13 24.750 46.667 2 23.500 41.333 20.12 24.750 41.333	:	8,13
24.125	46.667		6	4 15,13 7	23.500 44.000 1,14 24.125 41.333	3	14,13
24.750	44.000						
51 22.250	QQ 46.667	10	3	1 4,14	8,13 23.500 46.667 2 22.250 41.333 2 14 23 500 41.333 5	5	10,13 9,13
22.875	46.667		6	16,13 7	22.250 44.000 3,14 22.875 41.333	3	15,13
23.500	44.000						
52 21.000	QQ 46.667	10	3	1 5,14	10,13 22.250 46.667 2 21.000 41.333 4 14 22 250 41 333	5	11,13 12,13
21.625	46.667		6	17,13 7	21.000 44.000 6,14 21.625 41.333	3	16,13
22.250	44.000						

.

,

<u>،</u>

238246-90

Ł,

PAGE 6

projectile

ELEMENT DATA

EL	EMENT			NOD	E			NODE
NO. R	TYPE Z	MAT NO.	NO. I,J	NODE I,J R	R Z	Z	NO.	I,J
53 24 750	QQ 41.333	10 3	1 14,14	18,13 24.75	26.000 0 36.0	41.333 000	2	20,13
25.375	41.333	6	4 8,14	12,14 24.75	26.000 0 38.6	36.000 567 36.000	5. 8	19,13
26.000	38.667		1	13,14	23.373	30.000	Ū	.,
54 23.500	QQ 41.333	10 3	1 16,14	20,13 23.50	24.750 0 36.0	41.333 000	2	2,14
24.125	41.333	6	4 9,14 . 7	14,14 23.50	24.750 0 38.6 24.125	36.000 567 36.000	5	8,14
24.750	38.667		•	10,11				
55 22.250	QQ 41.333	10 3	1 18,14	2,14 22.25	23.500 0 36.0	41.333 000	2	4,14
22.875	41.333	6	4 10,14	16,14 22.25	23.500	36.000 567	5	3,14
23.500	38.667		7	17,14	22.8/5	36.000	o	9,14
56	QQ 41 333	10 3	1 19.14	4,14 21.00	22.250 0 36.0	41.333 000	2	5,14
21.625	41.333	6	4 11,14	18,14 21.00	22.250 0 38.0	36.000 667	5	6,14
22.250	38.667		7	20,14	21.625	36.000	в	10,14
57		10	1	12,14	26.000	36.000	2	14,14
24.750	36.000	5	4 2.15	6,15	26.000 0 33.	30.667 333	5	13,14
26.000	33.333	·	7	7,15	25.375	30.667	8	1,15
58	QQ	10	1	14,14	24.750	36.000	2	16,14
23.500	36.000	3	10,15	23.50 8,15 23.50	24.750	30.667	5	15,14
24.125	30.000	b	7	9,15	24.125	30.667	8	2,15
59	00	10	1	16,14	23.500	36.000	2	18,14
22.250	36.000	3	12,15 4	22.25	0 30. 23.500	667 30.667	5	17,14
22.875	36.000	6	4,15 7	22.25 11,15	0 33. 22.875	30.667	8	3,15
23.500	33.333		,	10 14	22 250	36 000	2	19,14
60 21.000	QQ 36.000	3	13,15 4	21.00	22.250	667 30.667	5	2.0.14

•

21.625	36.000		6	5,15	21.000	33.333	30.667	8	4,15
22.250	33.333			,	14,15 21		501007		•
61	QQ	10	-	1	6,15 26	5.000	30.667	2	8,15
24.750	30.007		3	4	20,15 26	5.000	25.333	5	7,15
25.375	30.667		6	16,15	1,16 25	28.000 5.375	25.333	8	15,15
26.000	28.000							_	
62 23,500	QQ 30.667	10	3	1 4,16	8,15 24 23.500	1.750 25.333	30.667	2	10,15
24 125	30.667		6	4 17.15	2,16 24 23.500	1.750 28.000	25.333	5	9,15
24.123	28 000		•	7	3,16 24	1.125	25.333	8	16,15
24.750	20.000	10		1	10 15 23	\$ 500	30.667	2	12,15
22.250	30.667	10	3	6,16	22.250	25.333	25 333	5	11,15
22.875	30.667		6	18,15	22.250	28.000	25.333	8	17.15
23.500	28.000			1	5,10 22	075	20.000	0	11720
64	QQ	10		1	12,15 22	2.250	30.667	2	13,15
21.000	30.667		3	4	6,16 22	25.333	25.333	5	14,15
21.625	30.667		6	19,15 7	21.000 8,16 21	28.000 L.625	25.333	8	18,15
22.250	28.000								
65 24.750	QQ 25,333	10	3	1 16,16	20,15 26 24.750	5.000 20.000	25.333	2	2,16
25.375	25.333		6	4 10,16	14,16 26 24.750	5.000 22.667	20.000	5	1,16
26.000	22.667			7	15,16 25	5.375	20.000	8	9,16

.

· · · · · · ·

,

238246-90

.

PAGE 7

projectile

ELEMENT DATA

EL	EMENT			N	ODE			NODE
NO. R	TYPE Z	MAT NO	NO. . I,J	NODE I,J R	R	Z Z	NO.	I,J
66 23.500	QQ 25.333	10 3	1 18,16	2,16 23.	24. 500	750 25.3 20.000	333 2 000 5	4,16
24.125	25.333	6	11,16	23.	500 24	22.667	00 8	10.16
24.750	22.667		7	17,10	24.	2010		,
67 22,250	QQ 25,333	10 3	1 20,16	4,16 22.	23. 250	500 25.3 20.000	333 2	6,16
22.875	25.333	6	4 12,16	18,16 22.	23. 250	500 20.0 22.667	00 5	5,16
23.500	22.667		7	19,16	22.8	875 20.0	000 8	11,16
68	QQ	10	1	6,16	22.	250 25.3	333 2	7,16
21.000	25.333	3	1,17	21.	22.	20.000 250 20.0	000 5	8,16
21.625	25.333	6	13,16	2,17	21.0	525 20.0	8 000	12,16
22.250	22.667	10	1	34 16	26	100 20 C	000 2	16.16
24.750	20.000	3	1,18	14,10 24.	750 26	14.667 100 14.6	67 5	15,16
25.375	20.000	6	4,17	24.	750 25	17.333	67 8	3,17
26.000	17.333		,	20,11	201			·
70 23,500	QQ 20.000	10 3	1 3,18	16,16 23.	24. [*] 500 :	750 20.0 1 4.6 67	000 2	18,16
24.125	20.000	6	4 5,17	1,18 23.	24. 500 :	750 1 4 .6 17.333	67 5	17,16
24.750	17.333		7	2,18	24.3	125 14.6	67 8	4,17
71	QQ	10	1	18,16	23.	500 20.0	200 2	20,16
22.250	20.000	3	5,18	3,18	250 . 23.!	14.667 500 14.6	567 5	19,16
22.875	20.000	ь	6,17 7	4,18 ^{22.}	250 .	375 14.6	67 8	5,17
23.500	17.333	10	1	20 16	22	250 20.0	100 2	1.17
21.000	20.000	3	6,18	20,10 21.	000	14.667 250 14.6	567 5	2,17
21.625	20.000	6	7,17	21. 7,18	000 21.0	17.333 525 14.6	67 8	6,17
22.250	17.333		·					
73 24.750	QQ 14.667	10 3	1 6,19	19,17 24.	26.0 750	000 14.6 9.333	67 2	1,18
			4	4.19	26.0	000 9.3	33 5	20.17

25.375	14.667		6	16,18	24.750	12.000	0 222	8	15 18
26.000	12.000			1	5,19	25.375	9.333	U	10,10
74 23.500	QQ 14.667	10	3	1 8,19	1,18 23.500	24.750	9 333	2	3,18 2,18
24.125	14.667		6	17,18 7	23.500 7,19	12.000 24.125	9.333	8	16,18
24.750	12.000	10		1	2 10	22 500	14 667	2	5 18
22.250	14.667	10	3	10,19 4	22.250 8,19	9.333 23.500	9.333	5	4,18
22.875	14.667		6	18,18 7	22.250 9,19	12.000 22.875	9.333	8	17,18
23.500	12.000	10		1	5.18	22.250	14.667	2	6,18
21.000	14.667		3	11,19	21.000 10,19	9.333 22.250	9.333	5	7,18
21.625	14.667		6	19,18 7	21.000 12,19	21.625	9.333	8	18,18
77 24.750	QQ 9.333	10	3	1 11,20	4,19 24.750	26.000	9.333	2	6,19
25.375	9.333		6	4 1,20 7	10,20 24.750 9.20	26.000 6.667 25.375	4.000	5	20,19
26.000	6.667			•	5,20	2010.0			
78 23.500	QQ 9.333	10	3	1 13,20	6,19 23.500	24.750 4.000	9.333	2	8,19
24.125	9.333		6	4 2,20 7	23.500 12,20	24.750 6.667 24.125	4.000	5 8	1,20
24.750	6.667			-	•				

ŧ.

PAGE 8

projectile

ELEMENT DATA

EL	EMENT				NOD	Е				NODE
NO. R	TYPE Z	MAT N	NO. I,	,J	NODE I,J R	R	Z	Z	NO.	I,J
79 22.250	QQ 9.333	10	1 3 15,	,20	8,19 22.25	23. 0	.500 4.000	9.333	2	10,19
22.875	9.333		6 3,2	20	22.25	0	6.667	4.000		5,15
23.500	6.667		7		14,20	22.	.875	4.000	8	2,20
80 21 000	QQ 9 333	10	1	.20	10,19	22. n	250	9.333	2	11,19
21.000			4	, 20	15,20	22.	250	4.000	5	12,19
21.625	9.333		6 4,2 7	20	17,20	21.	625	4.000	8	3,20
22.250	6.667									
81 24.750	QQ 4.000	10	1 3 11,	,21	10,20 24.75	26. 0	000 2.667	4.000	2	11,20
25.375	4.000		4 6 4.2	21	19,20	26. D	.000	2.667	5	9,20
26.000	3.333		7		5,21	25.	375	2.667	8	18,20
82		10	1	- 1	11,20	24.	750	4.000	2	13,20
23.500	4.000		³ ¹³ ,	. 21	11,21	24.	750	2.667	5	12,20
24.125	4.000		6 6,2 7	21	23.500 12,21) 24.	3.333 125	2.667	8	4,21
24.750	3.333									
83 22.250	QQ 4.000	10	1 3 15,	21	13,20 22.250	23.	500 2.667	4.000	2	15,20
22.875	4.000		4 6 7,2	21	13,21 22.250	23.)	500 3.333	2.667	5	14,20
23.500	3.333		7		14,21	22.	875	2.667	8	6,21
84	QQ 4 000	10	1	21	15,20	22.	250	4.000	2	16,20
21 625	4 000		4		15,21	22.	250	2.667	5	17,20
21.625	4.000		6 6,2 7	Ξ.	17,21	, 21.	625	2.667	8	7,21
22.250	3.333									
85 24.750	QQ 2.667	10	1 319,	21	19,20 24.750	26.)	000 1.333	2.667	2	11,21
25.375	2.667		4 6 18.	21	24.750	26.)	2.000	1.333	5	5,21
26 000	2 000		7		9,21	25.	375	1.333	8	20,20
96	00	10	1		11 21	7 ∦	750	2 667	2	13.21
23.500	2.667	τU	3 12, 4	22	23.500	24.	1.333	1.333	5	12 21

238246-90

24.125	2.667		6	2,22	23.500	2.000	1.333	8	18,21
24.750	2.000			'	5,22 21			-	
87 22.250	QQ 2.667	10	3	1 14,22	13,21 23. 22.250	.500	2.667	2	15,21
22.875	2.667		6	4,22	22.250 13.22 22.	2.000	1.333	8	2,22
23.500	2.000			·					
88 21.000	QQ 2.667	10	3	1 6,22	15,21 22. 21.000	.250 1.333	2.667	2	16,21
21 625	2.667		6	4	14,22 22.	.250 2.000	1.333	5	17,21
22.250	2.000		-	7	7,22 21.	.625	1.333	8	4,22
89 24 750	QQ 1 333	10	3	1 20.21	1,21 26. 24.750	.000	1.333	2	19,21
24.750	1 222		6	4	2,21 26	.000	0.000	5	9,21
25.375	1.333		0	7	10,21 25	.375	0.000	8	3,21
26.000	0.667					350	1	`	17 77
90 23.500	QQ 1.333	10	3	15,22	19,21 24. 23.500	0.000	1.333	2 E	2 22
24.125	1.333		6	4 16,22	20,21 24	0.667	0.000	5	3,22
24.750	0.667			7	8,22 24	.125	0.000	8	1,22
91	QQ	10	-	1 22	12,22 23	.500	1.333	2	14,22
22.250	1.333		3	4	15,22 23	.500	0.000	5	13,22
22.875	1.333		6	18,22 7	22.250 19,22 22	0.667	0.000	8	16,22
23.500	0.667				-				

77

-

ŧ

r

PAGE 9

238246-90

projectile

ELEMENT DATA

EI	EMENT				NODE				NODE
NO. R	TYPE Z	MAT NO.	NO. I,J	NODE I,J F	R	z	Z	NO.	I,J
92 21.000	QQ 1,333	10 3	1 9,22	14,22 21	22. 000	250	1.333	2 5	6,22 7.22
21.625	1.333	6	10,22	21	000	0.667	0 000	8	18.22
22.250	0.667		1	11,22	21.	025	0.000	U U	
93 24 750	QQ 56,000	10 3	1 7,10	16,8 24	26. 1.750	000	56.000	2	17,8
25 375	56 000	6	4	8,10	26. 1.750	000	54.667	5	15,8
25.575	55 333	Ũ	7	6,10	25.	375	54.667	8	5,9
94	QQ	10	1	17,8	24.	750	56.000	2	19,8
23.500	56.000	3	12,10 4	7,10	24.	750	54.667	5	18,8
24.125	56.000	6	9,9 7	23 11,10	3.500 24.	55.333 125	54.667	8	4,9
24.750	55.333							_	
95 22.250	QQ 56.000	10 3	1 14,10	19,8	23. 2.250	500 54.667	56.000	2	1,9
22.875	56.000	6	10,9	22	2.250	55.333	54.007 FA 667	e e	0 0
23.500	55.333		/	13,10	22.	8/5	54.007	U	5,5
96		10	$\frac{1}{15}$	1,9	22.	250	56.000	2	2,9
21.000	50.000	c S	4	14,10	22.	250	54.667	5	3,9
21.025	56.000	0	7	16,10	21.	625	54.667	8	10,9
22.250	55.333	10	1	9 10	26	000	54 667	2	7,10
24.750	54.667	3	12,11	24	1.750 26	53.333	53,333	5	6.10
25.375	54.667	6	3,11	24	1.750 ²⁵	54.000)	8	4.11
26.000	54.000		r	11,11			55.555	-	-,
98		10	1	7,10	24.	.750	54.667	2	12,10
23.500	54.007	з с	4	12,11	24	.750	53.333	5	11,10
24.125	54.00/	D	7	14,11	24	.125	53.333	8	3,11
24.750	54.000			10.10	~~	500	5A 667	2	14.10
99 22.250	QQ 54.667	10 3	19,11	12,10 22 15.11	23. 2.250 23.	53.333 500	54.007 } 53.333	5	13,10

78

22.875	54.667		6	8,11	22.250	54.000) 53 333	8	5.11
23.500	54.000			'	10,11 2		55.555	Ũ	5,11
100		10	-	1	14,10 2	2.250	54.667	2	15,10
21.000	54.007		с С	4	19,11 2	2.250	53.333	5	16,10
21.625	54.66/		6	9,11 7	1,12 2	1.625	, 53.333	8	8,11
22.250	54.000								
101 24.750	QQ 53,333	10	3	1 12.12	13,11 2	6.000	53.333	2	12,11
24.750	52.222		6	4 12	11,12 2	6.000	52.000	5	11,11
25.375	55.555		0	7	10,12 2	5.375	52.000	8	5,12
26.000	52.66/								
102 23.500	QQ 53.333	10	3	1 14,12	12,11 2 23.500	4.750 52.000	53.333	2	15,11
24.125	53,333		6	4 6.12	12,12 2 23,500	4.750 52.667	52.000	5	14,11
24 750	52 667		-	7	13,12 2	4.125	52.000	8	4,12
24.750	52.007	1.0		•	1 - 1 - 2	3 500	53 333	2	10 11
22.250	53.333	10	3	16,12	22.250	52.000	53.333	2 r	10,11
22.875	53.333		6	4 8,12	14,12 2 22.250	3.500 52.667	52.000	5	18,11
23.500	52.667			7	15,12 2	2.875	52.000	8	6,12
104	00	10		1	19.11 2	2.250	53.333	2	20,11
21.000	53.333		3	17,12	21.000	52.000 2.250	52.000	5	1,12
21.625	53.333		6	9,12	21.000	52.667	52 000	8	8.12
22.250	52.667			,	10,12 2.	1.065	52.000	-	5,12

-

238246-90

PAGE 10

projectile

ELEMENT DATA

EL	EMENT				NODE				NODE
NO. R	TYPE Z	MAT NO.	NO. I,J	NODE I,J F	R	z	Z	NO.	I,J
105 27.333	QQ 56.000	10 3	1 18,10	15,9 27	28. 7.333	.000	56.000	2	13,9
27.667	56.000	6	14,9	27	7.333	55.333	54.007 }	8	17 9
28.000	55.333		1	19,9	27.	. 007	54.007	Ū	21,5
106 26,667	QQ 56,000	10 3	1 10,10	13,9 26	27. 5.667	.333 54.667	56.000	2	7,9
27.000	56.000	6	4 8.9	18,10	27.	.333 55.333	54.667 3	5	12,9
27.333	55.333		7	17,10	27.	.000	54.667	8	14,9
107	QQ	10	1	7,9	26.	667	56.000	2	16,8
26.000	56.000	3	8,10 4	26 10,10	5.000 26.	54.667 667	54.667	5	6,9
26.333	56.000	6	5,9 7	26 9,10	5.000 26.	55,333 .333	3 54.667	8	8,9
26.667	55.333								10.10
108 27.333	QQ 54.667	10 3	1 20,10	18,9	28. 28.	53.333	54.667	2	18,10
27.667	54.667	6	4 19,10	1,10	28.	54.000	53.333	5	19,9
28.000	54.000		1	2,10	27.	667	53.333	D	20,9
109	QQ	10	1	18,10	27.	333	54.667	2	10,10
20.007	54.007	5	4	20,10	27.	333	53.333	5	17,10
27.000	54 000	Ū	7	7,11	27.	000	53.333	8	19,10
110	00	10	1	10,10	26.	667	54.667	2	8,10
26.000	54.667	3	13,11	26 17,11	.000 26.	53.333 667	53.333	5	9,10
26.333	54.667	6	4,11 7	26	.000 26.	54.000 333	53.333	8	6,11
26.667	54.000							_	
111 27.333	QQ 53.333	10 3	1 1,11	1,10 27	28. .333	000 52.000	53.333	2	20,10
27.667	53.333	6	4 2,11	3,10	28. .333	000 52.667	52.000	5	2,10
28.000	52.667		7	4,10	27.	00/	52.000	ö	5,10
112		10	1	20,10	27.	333	53.333	2	17,11
20.00/	23.333	3	4	1 11	.00/ 27	222	52 000	5	7 11

80 C-Z

27.000	53.333		6	3,12	26.667	52.667		_	
27.333	52.667			7	10,11	27.000	52.000	8	2,11
113 26.000	QQ 53.333	10	3	1 11,12	17,11 26.000	26.667) 52.000	53.333	2	13,11
26 222	E2 222		6	4	2,12	26.667	52.000	5	16,11
20.333	55.555		0	7	7,12	26.333	52.000	8	3,12
26.667	52.667								
114	QQ	10	2	1	10,20	26.000	4.000	2	19,20
26.000	2.007		3	4	13,19	26.667	4.000	5	18,20
26.000	3.333		6	6,20	26.333	2.667	3 333	8	5.20
26.333	4.000			1	14,19	20.007		U	5,20
115	QQ	10	_	1	19,20	26.000	2.667	2	1,21
26.000	1.333		3	17,19	26.667	26.667	2.667	5	20,20
26.000	2.000		6	7,20	26.333	1.333	2 000	0	6 20
26.333	2.667			1	16,19	20.00/	2.000	0	0,20
116	QQ	10		1	1,21	26.000	1.333	2	2,21
26.000	0.000		3	18,19	26.667	0.000 26 667	1.333	5	3.21
26.000	0.667		6	8,20	26.333	0.000		0	7 20
26.333	1.333			7	19,19	26.66/	0.66/	8	1,20
117	QQ	10		1	13,19	26.667	4.000	2	15,19
26.667	2.667		3	10,18	27.333	2.667	4 000	5	14.19
26.667	3.333		6	1,19	27.000	2.667	1.000	-	
27 000	4 000			7	9,18	27.333	3.333	8	20,18
£ 1 . U U U	4.000								

-

•

2382446-90

PAGE 11

projectile

ELEMENT DATA

EL	EMENT			NOD	E			NODE
NO. R	TYPE Z	MAT NO.	NO. I,J	NODE I,J R	R Z	Z	NO.	I,J
118 26,667	QQ 1.333	10	1 12.18	15,19 27.33	26.667 3 1.333	2.667	2	17,19
	2 000	c	4	10,18	27.333	2.667	5	16,19
20.007	2.000	o	7	11,18	27.333	2.000	8	1,19
27.000	2.667							
119	00	10	1	17,19	26.667	1.333	2	18,19
20.007	0.000	5	4	12,18	27.333	1.333	5	19,19
26.667	0.667	6	3,19 7	27.00 14,18	0 0.000 27.333	0.667	8	2,19
27.000	1.333							
120	QQ	10	1	8,18	27.333	4.000	2	10,18
21.333	2.66/	3	4	8,17	28.000	4.000	5	9,18
27.333	3.333	6	12,17	27.66	7 2.667 28.000	3.333	8	10,17
27.667	4.000			• • •				
121	QQ	10	1	10,18	27.333	2.667	2	12,18
27.333	1.333	3	14,17	28.00	28.000	2.667	5	11,18
27.333	2.000	6	15,17	27.66	7 1.333	2,000	8	12,17
27.667	2.667			20,21	201000			
122	QQ	10	1	12,18	27.333	1.333	2	13,18
27.333	0.000	3	16,17 4	28,00	28.000	1.333	5	14,18
27.333	0.667	6	17,17	27.66	7 0.000	0.667	8	15,17
27.667	1.333		,	/-/			-	•

-

			BOUNDARY	CONDITIONS		
	ELE	EMENT	TYPE	SIDE/NODE	VALUE1	VALUE2 VALU
E3	I	J				
0.00005.00	1	1	SLOPE	1	0.0000E+00	0.0000E+00
0.0000E+00	4	1	SLOPE	1	0.0000E+00	0.0000E+00
0.0000E+00	7	1	SLOPE	1	0.0000E+00	0.0000E+00
0.0000E+00	10	1	SLOPE	1	0.0000E+00	0.0000E+00
0.0000E+00			PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	1	2	PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	15	2	PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	9	3	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	3	4	PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	17	4	PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	11	5	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	5	6	PRESSURE	2	0.2500E+02	2 0.2500E+02
0.0000E+00	19	6	PRESSURE	2	0.2500E+02	2. 0.2500E+02
0.0000E+00	13	7	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	7	8	PRESSURE	- 2	0.2500E+02	0.2500E+02
0.0000E+00	16	12	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	10	13	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	4	14	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	18	14	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	12	15	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00		16	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	20	16	PRESSURE	- 2	0.2500E+02	0.2500E+02
0.0000E+00	5	18	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	10	19	PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	15	20	DEFSSIEF	- 2	0 2500E+02	0.2500E+02
0.0000E+00	15	20	BBECCUDE	2	0.25005+02	0.2500E+02
0.0000E+00	15	21	FRESSURE	2	0.00005+00	0.0000E+00
0.0000E+00	Ŧ	41	SLOPE	2	0.0000004000	0 00005+00
0.0000E+00			DECCUE	2	0.25005-00	0 25005+00
0.0000E+00			CHEND	2	0.25005+02	0 25005+02
			SHEAR	•	17 23100 ±117	

0.0000E+00	19	21	SLOPE	3	0.0000E+00	0.0000E+00
0.0000E+00			SHEAR	3	0.2500E+02	0.2500E+02
0.0000E+00	12	22	SLOPE	3	0.0000E+00	0.0000E+00
0.0000E+00			SHEAR	3	0.2500E+02	0.2500E+02
0.0000E+00	14	22	SLOPE	3	0.0000E+00	0.0000E+00
0.0000E+00	- •		SHEAR	3	0.2500E+02	0.2500E+02
0.0000E+00			DECCUEF	2	0.25005+02	0 2500E+02
0.0000E+00		0	PRESSURE	2	0.25005+02	0 25005+02
0.0000E+00	1	9	PRESSURE	2	0.25002+02	0.2500E+02
0.0000E+00	14	10	PRESSURE	2	0.25002+02	0.2500E+02
0.0000E+00	19	11	PRESSURE	2	0.2500E+02	0.2500E+02
0.00005+00	17	19	SLOPE	2	0.0000E+00	0.0000E+00
0.00002+00			PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00	12	18	SLOPE	2	0.0000E+00	0.0000E+00
0.0000E+00			PRESSURE	2	0.2500E+02	0.2500E+02
0.0000E+00						
RANGE OF I AN J	VALU	ES AN	D COORDINATES H	FOUND DURING E	LEMENT DEFINIT:	ION
IMIN = 1		JMI	N = 1	IMAX = 20	JMAJ	x = 22
RMIN = 0.0000 +01)E+00	ZMI	N = 0.0000E+0	00 RMAX = 2	.8000E+01 ZMAX	K = 7.9600E
TIME IN SETUP		=	1.980E+00 SECON	IDS		
BODY FORCES: ACELR = 0.000E 00	C+00	ACEL	Z = 1.610E+04	ACELT = 0	.000E+00 OMEGA	A = 0.000E+
FORMKF: JPRINT	=	3 IN	CT = 0 TRE	CF = -1.000E +	00	
TIME IN FORMKF		-	2.280E+00 SECON	IDS		
TIME IN ZIPP		-	4.240E+00 SECON	IDS		

,

.

.

84

238246-90

:

PAGE 13

projectile

. .

LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL

MATERIAL =	10 ELEM	QUANTITY	R	Z	ELEM	MAXIMUM	R
	0.00	SIGR	0.000E+00	7.960E+01	1	1.281E+02	2.475E+01
0.0002+00	90	SIGZ	2.100E+01	1.333E+00	92	3.028E+02	2.667E+01
4.000E+00	114	-4.474E+01 SIGT	0.000E+00	7.960E+01	1	1.279E+02	2.800E+01
2.667E+00	121	-8.596E+00 TAURZ	2.600E+01	0.000E+00	116	5.802E+01	2.600E+01
4.000E+00	114	-1.372E+02 TAURT	2.767E+01	1.333E+00	122	0.000E+00	2.767E+01
1.333E+00	122	0.000E+00	2 767F±01	1 3338+00	122	0 000E+00	2 767E+01
1.333E+00	122	0.000E+00	2.7075+01	1.0005.00		2 0265-02	2.7078+01
4.000E+00	117	-1.275E+01	2.0002+01	4.000000000		5.050E+02	2.0076+01
0.000E+00	90	SIG2 -8.946E+01	, 2.4/5E+01	4.000E+00	81	3.498E+01	2.4/5E+01
2.667E+00	121	SIG3 -8.596E+00	0.000E+00	7.960E+01	1	1.279E+02	2.800E+01
6.234E+01	29	TAUMAX 5.563E-01	2.100E+01	1.333E+00	92	1.637E+02	2.460E+01
0 000E+00	90	EPSR -6 111E-06	0.000E+00	7.765E+01	4	3.707E-06	2.350E+01
7 7005+01	1	EPSZ	2.100E+01	1.333E+00	92	1.111E-05	0.000E+00
0.0005.00	100	EPST	0.000E+00	7.765E+01	4	3.687E-06	2.800E+01
0.000E+00	122	GAMRZ	2.600E+01	0.000E+00	116	6.035E-06	2.600E+01
4.000E+00	114	-1.427E-05 GAMRT	2.767E+01	1.333E+00	122.	0.000E+00	2.767E+01
1.333E+00	122	0.000E+00 GAMZT	2.767E+01	1.333E+00	122	0.000E+00	2.767E+01
1.333E+00	122	0.000E+00 EPS1	2.100E+01	1.333E+00	92	1.111E-05	2.667E+01
5.200E+01	112	-4.920E-07 EPS2	2.733E+01	2.667E+00	120	3.253E-08	2.350E+01
0.000E+00	90	-6.280E-06	0 0005+00	7 7655+01	4	3 687E-06	2.800E+01
0.000E+00	122	-2.234E-07	2 100m.01	1 2225,00	ت د ن	1 7075 05	2 4605+01
6.234E+01	29	5.786E-08	2.1005+01	1.3335+00	52	I./U3E-05	2.4005-01

TIME IN STRESS = 5.410E+00 SECONDS

TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION) GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE GENERATED PATRAN DISPLACEMENT NEUTRAL FILE

TIME	IN	TRANSLATE	=	8.700E-01	SECONDS
TIME	IN	STOP	= '	1.831E+01	SECONDS

.

GLOSSARY and SYMBOLS

Axial Load (F): Applied load (Impact Force) in MN or kip.

- Baseline: Reference temp and moisture content, and micro mechanical data, back calculated from experimentally determined ply data.
- CFRP: Graphite fiber reinforced plastic.
- C_{moist}: Moisture concentration in absolute value.
- Delamination: Debonding process primarily resulting from unfavorable Interlaminar stresses.
- Degradation: Loss of property due to aging, corrosion, and repeated or sustained stress.
- <ep>: In-plane strain (Geometric measurement of deformation).
- Efx: Fiber longitudinal Young's modulus in msi.
- Em: Matrix Young's modulus in GPa or msi.
- E_m/E^o_m: Matrix degradation factor required for the last-ply-failure prediction.
- {E⁰} Lim: Effective in-plane engineering constants.
- E^U/E¹: Ratio of the effective engineering constant at design ultimate over limit. These ratios indicate laminate stiffness degradation due to matrix/interface cracking.
- FPF: first ply failure.
- GFRP: Glass fiber reinforced plastic.
- h#: Total thickness including core in number of plies.
- h, E-3: Total thickness in mm or inches.
- Isotropy: Property that is not directionally dependent. Strength and stiffness remain the same for all orientations of the coordinate axis.

- Laminate: Plate consisting of layers of uni or multidirectional plies of one or more composite materials.
- Layup (B): Ply stacking sequence or ply orientations of laminate.
- Length: Length of pressure vessel. This length affects only the angle of twist under torque.
- LFP: Last ply failure.
- Limit: The lower ply failure divided by safety margins.
- Limit*: Ultimate divided by safety margin.
- Mandrel: Male mold used for filament winding.
- Macromechanics: Structural behavior of composite laminates using the laminated plate theory. The fiber and matrix within each ply are smeared and no longer identifiable.
- Micromechanics: Calculation of the effective ply properties as functions of the fiber and matrix properties.
- [Modified]: User defined modification.
- Ply Angle: The first group is the outermost; i.e, the ply angles run from the outer surface toward the mid-plane.
- Ply #: Number of plies for each ply angle or ply group.
- Pressure (P): Internal or external pressure in ksi.
- Q: Reduced stiffness matrix.
- R/Degraded: Strength/Stress ratio of each ply group using degraded matrix.
- Railgun: Electromagnectic launcher.
- R/FPF: Lowest strength ratio for intact matrix is first-ply-failure.
- R/Intact: Strength/Stress ratio for each ply group using an intact matrix (no matrix/interface cracks).
- R/Lim: Strength ratio at limit = Min (FPF,Lim*).
- R/lim*: Strength ratio based on ultimate = Ult/Safety.

R/LPF: Lowest strength ratio for degraded matrix is last-ply-failure.

R/Ult: Strength ratio at ultimate = Max (FPF,LPF).

Repeat: Repeated sublaminates.

Rotate: Rigid body rotation of entire laminate (degree).

Safety: Factor of safety.

- <sg>: In-plane membrane stress, based on strength of materials.
- <sg> Lim: In-plane stress at design limit based on a chosen safety margin.
- <sg> Lim*: In-plane stress at ultimate-based limit based on a chosen safety margin.

<sg> Ult: In-plane stress at ultimate.

Stiffness: Ratio between the applied stress and the resulting strain.

T_{opr}: Operating temperature in degree C or F.

Vol/f: Fiber volume fraction in absolute value.

X_m: Matrix strength in ksi or MPa.

Xfx: Fiber longitudinal strength in ksi.

Young's Modulus: The slope of a stress-strain curve under uniaxial test.

 γ : Poission's ratio

BIBLIOGRAPHY

- Tsai, Stephen W. <u>Composite Design</u>. 3rd ed. Dayton: Think Composites, 1987.
- Egeland, Alv. "Birkeland's Electromagnetic Gun: A historical Review." <u>IEEE Transactions on Plasma Science</u>. Vol. 17, No. 2 (April 1989): 73-82.
- Rashleigh, S. C. and Marshall, R. A. "Electromagnetic acceleration of macro particles to high velocities," <u>Journal of Applied Physics</u>. Vol. 49, (April 1978): 2540-2542.
- Thornhill, L. D., Batteh, J. H., and Littrell, D. M. "Scaling Study for the Performance of Railgun Armatures." <u>IEEE Transactions on Plasma</u> <u>Science</u>. Vol. 17, No. 3 (April 1989): 409-421.
- Zukas, Jonas A. and Greszczuk, Longin B. <u>Impact Dynamics</u>. New York: John Wiley and Sons, Inc., 1982.
- Shigley, Josesph E. <u>Mechanical Engineering Design</u>. New York: McGraw-Hill Book Company, 1977.
- Davies, G. A. <u>Structural Impact and Crashworthiness</u>. New York: Elsevier Applied Science Publishers, 1984.
- Zucrow, Maurice and Hoffman, Joe <u>Gas Dynamics</u>. New York: John Wiley and Sons, Inc., 1976.
- Fung, Y. C. <u>Continuum Mechanics</u>. New Jersey: Prentice-Hall, Inc., 1977.
- Patran Plus User's Manual, Version 2.4, PDA Engineering, Costa Mesa, CA, 1989.
- TEXGAP2D User's Manual, ANATECH International Corp, La Jolla, CA, 1987.

TASK II

DIALECTICS FOR GRAPHITE/EPOXIES
ABSTRACT

The purpose of this task of the study was to determine the feasibility of dialectics to monitor cure of graphite/epoxies. Several panels were fabricated, cured and tested. Dialectics were used to monitor the results. Encouraging results of monitoring the care of graphite/epoxies were obtained.

RESULTS AND CONCLUSIONS

A separate report was submitted to the Astronautics Lab (Mr. Jim Koury). No copy available.

TASK III

STUDY FOR THE OPTIMUM CURE PROCESS FOR LARGE STRUCTURES

INTRODUCTION

The field of composite materials is growing at a rapid rate. Research into the subject always discovers something new and exciting. Engineering majors coming into the workforce will encounter composite structures on at least one occasion. Therefore, an engineering degree would not be complete without at least touching on the subject of composite materials. This is the purpose of Aero 410-Structural Analysis, even further and in-depth analysis is done in Aero 412-Composite Structural Analysis.

A composite is a material composed of two or more different types of material fused together or bonded together to create a material that has the better property of both materials. Another definition of a composite is a material made up of the same basic material, but in different forms. Such as Carbon-Carbon plies, which consist of carbon fibers imbedded into a matrix of carbon.

Another type of composite is the laminate. A laminate consists of layers of material, lamina, bonded together to combine the best aspects of the constituent layers to create a material superior to the lamina by itself. An example is laminated glass. Glass is brittle, but resistant to surface scratches, plexiglass is flexible and strong yet scratches very easily. Thus if we sheathed a layer of plexiglass between two layers of glass, we have a material which is resistant to scratches yet still stronger than brittle glass. The laminate in this experiment is a carbon-carbon build-up with each layer oriented into different directions.

TEST DESCRIPTION

To begin this experiment, specimens were needed. It was then up to the student to build their own layers of composite material. The material used in this experiment was donated by the Astronautics Laboratory at Edwards Air Force Base, Edwards, Ca. The Carbon-Carbon material was readily available on a spool. Using a straight-edge and a sharp knife, pieces were cut from the roll of material to used in stacking out laminate. Many different orientations were used, 0°, 30°, 45°, 60°, 90°. After the plies were cut, they were stacked together in a symmetric fashion about the center plane. Stacking symmetrically reduced the tendancy for the laminate to flex when cured. After the plies were stacked, the composite was cured with one of three cycles. Cycle I was curing at 300°F under 80lbs of force for 4 hours, then cooling to 85°F. Cycle II cured the composite at 350°F under 85lbs of force for 3.5 hours then cooling to 90°F. Cycle III had a curing cycle at 400°F under 90lbs of force for 3 hours then coolin to 85°F. After curing, the laminates were sent to the lab for cutting and strain gage installation.

After the specimens were cut, the strain gages installed, and tabs epoxied on, we were ready to test. An Instron loading machine was used to apply a tensile load to the specimens. An IBM PC was used in conjuction with several strain indicators to collect data. The IBM was able to take the signal from the strain indicators and convert the signal into a digital form so that the computer could interpret what was goin on. The PC however, only collected strain versus time values. To obtain load, the strip chart on the Instron Controller was used. The strip chart would graph load versus time. With these two plots, it was possible to obtain stress vs. strain correlations by using the time factor as a basis for both tests.

SAMPLE CALCULATIONS

Calculation of stress versus strain

<u>Step 1:</u>

Take maximum load and divide by 2810 / 56.5 = 49.73 number of squares to obtain load Assume 50 lbs / increment per increment.

Step 2:

Step 3:

Step 4:

Determine time unit per increment. If paper rate = 5in/min, then 1.2 seconds per increment. If 10in/min, then 0.6 seconds per increment.

Determine total time from start

versus time graph from the IBM

to failure of specimen.

Compare this time to strain

PC. Check for correlation.

Paper rate was 5 in/min, thus 1.2 seconds per increment.

(N# of increments)x(1.2s/inc) = 24.1 x 1.2 = 28.92 seconds

Time from Strain vs. Time was about 27 seconds. Thus the Strain vs. Time started taking data after loading had begun. In this case, data will be correlated based on t=27 sec on strain vs. time and t = 29 sec on load vs. time. These two times can be used as reference points in correlation of the data.

Step 5:

Break the time span into several At time = 12 seconds. segments and take strain and load Load = 1455 lbs, at these times. (Strain must be Strain = 0.00671 in/in converted from mV to in/in) Step 6: Determine Stress based on Load Load/Area = Stress1455 lbs/(1.42")(0.024")=42.6ksi <u>Step 7:</u> Plot Stress vs Strain, then use a Using CricketGRAPH, points were best fit line to determine 'E' plotted and equation of line made. See Figures 1 thru 9.

SAMPLE CALCULATIONS

Calculation of Theoretical Values:

Note:

Because of the large number of test cases with laminates of so many layers, a fortran program was developed to expedite the process of obtaining the A, B, and D matrices. A listing is provided in the appendix. Also there is no 'E' for the laminate, only the 'A' matrix. With the 'A' matrix, N_x, N_y, N_{xy} can be found as a function of strain by the relation:

N _x		A ₁₁	A ₁₂	A ₁₃	ϵ_x^o
Ny	=	A ₂₁	A ₂₂	A ₂₃	ε _y
N _{xy}		A ₃₁	A ₃₂	A ₃₃	γ_{xy}^{o}

For symmetrical laminates, as in this experiment, A13 and A23 are zero, thus shear strain is not taken into account.

<u>Step 1:</u>

Since Ny is zero, solve for εy in	$0 = A_{21}\varepsilon_x + A_{22}\varepsilon_y$
terms of ex.	$\varepsilon_y = -(A_{21}/A_{22})\varepsilon_x$

<u>Step 2:</u>

Solve for Nx in terms of εx .	$Nx = A_{11}\varepsilon_x + A_{21}(-(A_{21}/A_{22})\varepsilon_x)$
	$N_x = A_{11}\epsilon_x - A_{21}(A_{21}/A_{22})\epsilon_x$
	$Nx = (A_{11} - A_{21}^2 / A_{22}) \epsilon_x$
<u>Step 3:</u>	
Since Nx/t is essentially stress of	Since several of the load cases
the structure, a plot is made of	were the same, only 6
Nx/t vs. ex and compared to Stress	comparisons were made. See
vs. Strain.	Figures 10 thru 15.

SAMPLE CALCULATIONS

Error Analysis

<u>Step 1:</u>

Using step 3 above, Nx was calculated. By dividing Nx by t, the thickness of the specimen, the 'stress' is obtained.

Step 2:

If we use correlating values of ex from the experimental calculations and the theoretical calculations, we can compare the experimental and theoretical values of stress. σ -theoretical = Nx/t

 σ -theoretical compares with σ experimental as determined from the graphs.

<u>Step 3:</u>

To obtain a percent error, a standard equation is used.

% Error = $\frac{|actual - theoretical|}{theoretical}$ (100)

RESULTS

# Layers =	4
Orientation =	[0.90]s
Cycle =	II
Ultimate Load =	2810 lbs

Strain Reading	Stress	Theoretical	% Error
(in/in)	Reading	'Stress'	
	(lbs/in ²)	(Nx/t)	
0.00073	7354.23	8912.16	17.48%
0.00257	29416.9	31541.9	6.74%
0.00380	42631.1	46620.3	8.56%
0.00671	70583.1	82268.9	14.20%
0.00783	82332.3	95986.5	14.23%

Load Case 2

# Layers =	6
Orientation =	[0.90,0]s
Cycle =	II
Ultimate Load =	2675 lbs

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0	0	0	0.00%
0.00179	12925.2	23477	44.95%
0.00246	21768.7	32264.5	32.53%
0.00336	29932	44068.6	32.08%
0.00425	38775.5	55741.5	30.44%
0.00582	58503.4	76333.1	23.36%
0.00716	70748.3	93908.1	24.66%

# Layers =	48
Orientation =	[0.90,0,90]s
Cycle =	II
Ultimate Load =	4500 lbs

Strain Reading	Stress	Theoretical	% Error
(111/11)	(lbs/in ²)	(Nx/t)	
0.00179	21602.9	21943.3	1.55%
0.00224	35104.8	27459.7	27.84%
0.00334	48606.6	40944.4	18.71%
0.00447	64268.7	54796.9	17.29%
0.00604	94512.9	74043.2	27.65%

Load Case 4

54

# Layers =	6
Orientation =	[-45,45,-45]s
Cycle =	II
Ultimate Load =	945 lbs
	Horizontal

Strain Reading	Stress	Theoretical	% Error
(in/in)	Reading	'Stress'	
	(lbs/in ²)	(Nx/t)	
0.00268	6650.9	-2887.3	130.35%
0.00358	10109.4	-3856.9	218.86%
0.00515	12917.5	-5548.4	132.82%
0.00783	17292.3	-8435.7	104.99%

# Layers =	4
Orientation =	[45,-45]s
Cycle =	II
Ultimate Load =	675 lbs
	Vertical

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0.00034	940.242	-1E+06	100.08%
0.00134	4701.21	-5E+06	100.10%
0.00291	10342.7	-1E+07	100.10%
0.00447	14291.7	-2E+07	100.09%
0.00615	17864.6	-2E+07	100.08%
0.00750	19745.1	-3E+07	100.07%

Load Case 6

4

# Layers =	4
Orientation =	[-45,45]s
Cycle =	II
Ultimate Load =	360 lbs
	Horizontal

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0	0	0	0.00%
0.00224	6944.44	-2413.3	187.76%
0.00492	9548.61	-5300.6	80.14%
0.00738	13020.8	-7951	63.76%
0.01	13888.9	-10774	28.92%
0.0104	13888.9	-11205	23.96%
0.0104	13020.8	-11205	16.21%

# Layers =	4
Orientation =	[0.90]s
Cycle =	II
Ultimate Load =	3150 lbs

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0.00201	0	24682.9	100.00%
0.00280	9861.93	34281.8	71.23%
0.00392	28599.6	47994.5	40.41%
0.00481	45364.9	58964.6	23.06%
0.00582	58185.4	71306.1	18.40%
0.00873	74950.7	106959	29.93%
0.01130	89743.6	138498	35.20%

Load Case 8

# Layers =	6
Orientation =	[0.90,0]s
Cycle =	II
Ultimate Load =	2875 lbs

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0.00213	0	27875.2	100.00%
0.00246	7022.87	32276.6	78.24%
0.00280	18435	36677.9	49.74%
0.00291	27213.6	38145.1	28.66%
0.00347	36870	45480.6	18.93%
0.00470	58816.2	61618.9	4.55%

PRECEDING PAGE BLANK NOT FILMED

Load Case 10

# Layers =	8
Orientation =	[0.90,0,90]s
Cycle =	II
Ultimate Load =	6650 lbs

Strain Reading (in/in)	Stress Reading (lbs/in ²)	Theoretical 'Stress' (Nx/t)	% Error
0.00195	0	23904.7	100.00%
0.00252	6666.67	30853.6	78.39%
0.00392	18750	47994.5	60.93%
0.00475	30208.3	58279	48.17%
0.00531	42708.3	65135.4	34.43%
0.00643	59375	78848.1	24.70%

CONCLUSION

The experiment proved that composite materials definitely have value and are worth looking into for high strength/low weight applications.

For composites made with fibers and resin, the best performance is when the fibers are aligned parallel with the load direction and increasing strength is gained from increasing layer thickness.

Also cooking method II, which has a slightly lower temperature and pressure, but longer cook time, seems to give better performance than either of the other cooking methods and is the most reliable.

Overall, the experiment was very educational, constructive, and well worth the time.

APPENDIX: TABLES AND FIGURES

Matrices 2 1	for Load Case t	t 1 75811-44	
	70611.44	311490.75	-19.691
ľ	70.95	-19.69	1366153.871
E := +	, ÖÖ	()()	,001
a a	100	, OQ	.001
ţ	.00	. OČ	,00 i
ja un t	17.35	3,54	, ()() (
	D.54	12.60	, ÓÚ (
1	. ()([*])	,00	65.581
*******	******	*************	*
Matrices	for Load Case #	₹ 2	
A == 1	500362.44	110717.14	20.851
	110717.14	434709.81	-19.611
	20.85	-19.61	2049230.751
8 = 1	()()	.00	,001
	, QQ	.00	,001
1	,()()	.00	,001
<u>D</u> = 1	55.61	11.96	.001
]	11,96	45.37	.001
	,00	.00	221.321
***** ***	*************	***********	÷
Matrices	for Load Case #	ŧ 0	
A = I	623381.50	147622.86	41,70)
1	147622.86	623381.56	-39.391
ŧ	41,70	-39.39	2732307.501
8 = 1	.00	00	- na l
1		A 14114	+ U U I
	"O()	.00	.001
-	.00 .00	.00 .00	.001 .001 .001
1	.00 .00	.00 .00	.001 .001 .001
	.00 .00 129.14	.00 .00 28.34	.001 .001 .001
	.00 .00 129.1 <i>4</i> 38.34	.00 .00 28.34 110.24	.001 .001 .001 .017 .001
1 1 1	.00 .00 129.14 18.34 .01	.00 .00 28.34 110.24 .00	.001 .001 .001 .011 .001 .001
[.00 .00 129.14 29.34 .01	.00 .00 28.34 110.24 .00	.001 .001 .001 .001 .001 .001
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 .00 179.14 39.34 .01 ***********************************	.00 .00 28.34 110.24 .00	.001 .001 .001 .001 .001 524.601 *
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 .00 109.14 09.34 .01 for Load Case * (288082.75	.00 .00 28.34 110.24 .00 **********************************	.001 .001 .001 .001 524.501 * -(5407.861
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 .00 129.14 28.34 .01 for Load Case * (286082.75 -1750130.50 .14407.54	.00 .00 28.34 110.24 .00 **********************************	.001 .001 .001 .001 524.501 * -(5407.861 309598.211
1 	.00 .00 179.14 19.34 .01 ***********************************	.00 .00 28.34 110.24 .00 4 4 -1760130.50 2338391.50 203598.81	.001 .001 .001 .001 .001 .001 524.601 * * -(6407.861 303598.211 178412.177
1 	.00 .00 129.14 18.34 .01 ***********************************	.00 .00 28.34 110.24 .00 -1760130.50 2338391.50 203598.81	.001 .001 .001 .001 .001 .001 524.601 * -16407.861 302598.211 178412.171
↓ 「 マ ↓ 「 マ ★ ★ ★ ★ ★ ★ ★ 「 二 マ ★ ★ ★ ★ ★ ★ ★ 「 二 マ ★ ★ ★ ★ ★ ★ ★ ★ 「 二 マ ★ ★ ★ ★ ★ ★ ★ ★ 「 二 マ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	.00 .00 129.14 28.34 .01 for Load Case * (296082.75 -1750130.50 -16407.86	.00 .00 28.34 110.24 .00 -1760130.50 2333391.50 203598.81 .00	.001 .001 .001 .001 .001 .001 524.601 * * -(6407.861 309598.211 178412.177
1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 .00 129.14 38.34 .01 for Load Case # (28a082.75 -1750130.50 -16407.86 .00 .00	.00 .00 .28.34 110.24 .00 -1760130.50 2338391.50 203598.81 .00 .00	.001 .001 .001 .001 .001 524.601 * -(6407.861 303598.211 178412.177 .001 .001
	.00 .00 129.14 19.34 .01 ************* for Load Case * (286082.75 -1750130.50 -16407.86	.00 .00 .00 .28.34 .110.24 .00 .00 .00 .00 .00 .00 .00 .00	.001 .001 .001 .001 .001 524.601 * * +(6407.861 303598.211 178412.177 .001 .001 .001
	.00 .00 179.14 19.34 .01 ************** for Load Case * (288082.75 -1750130.50 -16407.56 .00 .00 .00	.00 .00 .00 28.34 110.24 .00 -1760130.50 2338391.50 203598.81 .00 .00 .00	.001 .001 .001 .001 .001 524.601 * -16407.861 303598.211 178412.177 .001 .001 .001
	.00 .00 129.14 19.34 .01 ************** for Load Case * (280082.75 -1750120.50 -16407.86 .00 .00 .00 .00	.00 .00 .00 28.34 110.24 .00 -1750130.50 203598.81 .00 .00 .00 .00	.001 .001 .001 .001 .001 .001 524.601 * -(6407.867 .001 .001 .001 .001 .001 .001
	.00 .00 129.14 18.34 .01 for Load Case * (296082.75 -1750130.50 -16407.86 .00 .00 .00 .00 .00 .00	.00 .00 .28.34 110.24 .00 -1760130.50 2338391.50 203598.81 .00 .00 .00 .00 .00 .00 .00	.001 .001 .001 .001 .001 .001 .001 524.601 * -(6407.867 307598.211 178412.177 .001 .001 .001 .001
	.00 .00 129.14 39.34 .01 for Load Case * (296082.75 .1750130.50 .1750130.50 .100 .00 .00 .00 .00 .00 .00	.00 .00 .28.34 110.24 .00 -1760130.50 2338391.50 203598.81 .00 .00 .00 .00 .00 .00 .00 .00 .00	.001 .001 .001 .001 .001 .001 524.601 * -(6407.861 309398.211 176412.177 .001 .001 .001 .001 .001 .001

_

÷.

ORIGINAL PAGE IS OF POOR QUALITY

	857388.54	-1173420.50	. (j.) I
	-1173420.50	1558927.75	,001
	, ()()	• ((()	118941.461
2 =	i	.00	, 00 (
	: 	$\frac{1}{2}\left(\left[1 \right] \right)$,00t
	.00	.00	.001
· · •	41,15	· 54.32	1.15!
	-56.32	74,83	-21.861
	1.18	-21.86	5.711
्र हे हो हे सन्दर्भ के	******************	*****************	****
- 1875-1973 - Aliana	LEES 100 LOAD L: / JETTOD E/	356 8 5 1177473 EA	66 L
		-1173420.30 1550007 75	.001
	1 71175420.00	1000727.7.70	1100A1 AL
	• • • • • • • • • • • • • • • • • • •	∎ hai d	110/41.401
ъ <u>н</u>	, 00	.00	. 00 t
	.00	.00	.001
	.00	.00	.001
() =	41.15	-56.32	-1.181
	-56.32	74.83	21.861
	-1.18	21.86	5.711
****	******	*****	****
Matri	ices for Load Ca	ise # 7	
<u> </u>	311690.78	73811.44	20,85!
	73811.44	311690.75	-19.691
	20.85	-19.69	1366153.871
			0.01
	:	.00	.001
	i "UU. i ()O	.00, 00	. 1A74
	· · · · · · · · · · · · · · · · · · ·	a 1,23,7	.001
-,	17 37	<i>-</i> -	00 L
		17 AO	001
	.00	.00	45.581
- 2 - 4	· * * * * * * * * * * * * * * * * * * *	***************	€ ₹₹
in _e tur j	ces for Load Ca	asa # 5	
	500362.44	(10717.14	20.851
	110717.14	434709.81	-19.51!
	20.85	-19.41	2049230.751
2. 1	.00	.00	.001
	.00	.(.()	.001
	(jt)		" ("I() (
	·	; (-	in the second
	1.401 1	2	1993)
	e e Turin. Turin	1	101 - 100 - 1 ***
ن وه مرب م	് മംഗ്ര് കോക്കും എം		الشا ت: ا المركب ۲۰۰۰ ۲۰۰۱ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰
a gira	in na shekara ta	4 an # 9	
 			41,701

÷

ORIGINAL PAGE IS OF POOR QUALITY

1	4 <u>1</u> ,?0	-39.39	2732307.50;
8 = 1	.00	,00	,001
1	, () ()	•OO	.001
ł	.00	.00	.001
D = I	127.14	28.34	.014
5 4	28.34	110.24	.001
i		•00	524.601
}***** ****	* **************** ***	***********	×
Matrices	for Load Case	井 10	
$\Delta = 1$	311590.78	73811.44	20.851
ł	73811.44	311690.75	-19.691
Ţ	20.85	-19.69	1366153.871
H = 1	, ŌŎ	.00	,001
Ĩ	.00	.00	.001
ł	, ()()	.00	.001
D or I	17 32	0.54	.001
	9 R.5	10 AO	1001
:	9 • 27 00	14.00	1001 25 501
********	2023 **********		

;

ORIGINAL PAGE IS OF POOR QUALITY

2 558115

÷

c

Strain 5

Figure 5

211466 5

9 550115

ą

Strain 8

÷

Strain 1

211466 5

.

ŧ,

Test #1	Area =	0.03413		Info		
<u>*</u>	Load	Stress	Strain	Layers	4	Strain
2.4	251	7354.23	0.00073	Dir	[0,90]s	0.00073
7.2	1004	29416.9	0.00257	Cycle	2	0.00257
12	1455	42631.1	0.00380	Ult. Load	2810	0.00380
24	2409	70583.1	0.00671			0.00671
28.8	2810	82332.3	0.00783			0.00783
/* ** *****				-		
Test#2	Area =	0.03675		Info		
<u>+</u>	Load	Stress	Strain	Layers	6	Strain
0	0	ŋ	0	Dir	[0,90]s	0
5	475	12925.2	0.00179	Cycle	2	0.00179
10	800	21768.7	0.00246	Ult. Load	2675	0.00246
15	1100	29932	0.00336			0.00336
20	1425	38775.5	0.00425			0.00425
30	2150	58503.4	0.00582			0.00582
35	2600	70748.3	0.00716			0.00716
				-		
Test#3	Area =	0.04629		Info		
1	Load	Stress	Strain	Layers	8	Strain
6	1000	21602.9	0.00179	Dir	[0,90]s	0.00179
12	1625	35104.8	0.00224	Cycle	2	0.00224
18	2250	48606.6	0.00334	Ult. Load	4500	0.00334
24	2975	64268.7	0.00447			0.00447
36	4375	94512.9	0.00604			0.00604
				-		
Test#4	Area =	0.03383		Info		
t	Load	Stress	Strain	Layers	6	Strain
4	225	6650.9	0.00268	Dir	[-45,45]	0.00268
5	342	10109.4	0.00358	Cycle	2	0.00358
8	437	12917.5	0.00515	Ult. Load	945	0.00515
12	585	17292.3	0.00783	Horizonta	1	0.00783

•

Test#5	Агея -	0.02393		Info		
, 1992 - 199 (†	- bonn	Strace	Strain	lauere	Λ	Strain
1 1	2000	040 242	0.00034	Dir	145 - 45	0 00034
ा भ	1125	A701.21	0.00034	Cucle	140, 40) 2	0.00134
	2475	103427	0.00134	Ult Load	£	0.00104
i 0	241.J 7.49	1/0042.7	0.00291	Vortical	C I U	0.00291
10	242 1975	178676	0.00447	YCICICUI		0.00615
12	427.3	10745 1	0.00013			0.00015
i 4	472.J	1974J.1	0.007.00	ł		0.00730
Test#6	Årea -	0.02592	<u>**</u>	Info		
1	Load -	Stress	Strain	Lauers	4	Strain
0	<u>)</u>	0	0	Dir	4545	0
4	180	6944.44	0.00224	Cucle	2	0.00224
6	247.5	9548.61	0.00492	Ult. Load	360	0.00492
10	337.5	13020.8	0.00738	Horizontal		0.00738
14	360	13888.9	0.01			0.01
16	360	13888.9	0.0104			0.0104
24	337.5	13020.8	0.0104			0.0104
[1		
Test*7	Area =	0.02535		Info		
Test*7 t	Area = Load	0.02535 Stress	Strain	Info Layers	4	Strain
Test#7 t 0	Area = Load 0	0.02535 Stress 0	Strain 0.00201	Info Layers Dir	4 [45,-45]	Strain 0.00201
Test#7 t 2	Area = Lead 0 250	0.02535 Stress 0 9861.93	Strain 0.00201 0.00280	Info Layers Dir Cycle	4 [45,-45] 2	Strain 0.00201 0.00280
Test#7 t 0 2 6	Area = Load 0 250 725	0.02535 Stress 0 9861.93 28599.6	Strain 0.00201 0.00280 0.00392	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392
Test#7 t 0 2 6 10	Area = Load 0 250 725 1150	0.02535 Stress 0 9861.93 28599.6 45364.9	Strain 0.00201 0.00280 0.00392 0.00481	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481
Test*7 t 2 6 10 14	Area = Load 0 250 725 1150 1475	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4	Strain 0.00201 0.00280 0.00392 0.00481 0.00582	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582
Test#7 t 2 6 10 14 18	Area = Load 0 250 725 1150 1475 1900	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873
Test#7 t 0 2 6 10 14 18 22	Area = Load 0 250 725 1150 1475 1900 2275	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130
Test*7 t 0 2 6 10 14 18 22	Area = Load 0 250 725 1150 1475 1900 2275	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130	Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130
Test*7 t 0 2 6 10 14 18 22 Test*8	Area = Load 0 250 725 1150 1475 1900 2275 Area =	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130	Info Layers Dir Cycle Ult. Load Info	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130
Test*7 t 0 2 6 10 14 18 22 Test*8 t	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0.0356 Stress	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain	Info Layers Dir Cycle Ult. Load Info Layers	4 [45,-45] 2 3150	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain
Test*7 t 0 2 6 10 14 18 22 Test*8 t 0	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load 0	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0.0356 Stress 0	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213	Info Layers Dir Cycle Ult. Load Ult. Load Layers Dir	4 [45,-45] 2 3150 [0,90,0]	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213
Test*7 t 0 2 6 10 14 18 22 Test*8 t 0 2	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load 0 250	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0.0356 Stress 0 7022.87	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246	Info Layers Dir Cycle Ult. Load Ult. Load Layers Dir Cycle	4 [45,-45] 2 3150 [0,90,0] 2	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246
Test#7 t 0 2 6 10 14 18 22 Test#8 t 0 2 6	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load 0 250 656.25	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0.0356 Stress 0 7022.87 18435	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280	Info Layers Dir Cycle Ult. Load Ult. Load Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150 [0,90,0] 2 2875	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280
Test*7 t 0 2 6 10 14 18 22 Test*8 t 0 2 6 10	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load 0 250 656.25 968.75	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0.0356 Stress 0 7022.87 18435 27213.6	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280 0.00291	Info Layers Dir Cycle Ult. Load Info Layers Dir Cycle Ult. Load	4 [45,-45] 2 3150 [0,90,0] 2 2875	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280 0.00291
Test*7 t 0 2 6 10 14 18 22 Test*8 t 0 2 6 10 14	Area = Load 0 250 725 1150 1475 1900 2275 Area = Load 0 250 656.25 968.75 1312.5	0.02535 Stress 0 9861.93 28599.6 45364.9 58185.4 74950.7 89743.6 0 0.0356 Stress 0 7022.87 18435 27213.6 36870	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280 0.00291 0.00347	Info Layers Dir Cycle Ult. Load Ult. Load Dir Cycle Ult. Load	4 [45,-45] 2 3150 6 [0,90,0] 2 2875	Strain 0.00201 0.00280 0.00392 0.00481 0.00582 0.00873 0.01130 Strain 0.00213 0.00246 0.00280 0.00291 0.00347

÷
Test#10	Area =	0.024		Info		
1	Load	Stress	Strain	Layers	4	Strain
0	0	0	0.00195	Dir	[0,90]s	0.00195
2	160	6666.67	0.00252	Cycle	2	0.00252
6	450	18750	0.00392	Ult. Load	2980	0.00392
10	725	30208.3	0.00475			0.00475
14	1025	42708.3	0.00531			0.00531
20	1425	59375	0.00643			0.00643

.

_

Ţ