Analyzing, and Fabricating

Space Structures

FINAL REPORT

GRANTOR-NASA AMES RESEARCH CENTER

GRANTEE-CALIFORNIA POLYTECHNIC STATE UNIVERSITY
 GRANT NUMBER NAG2-637

November 15, 1989 - December 31, 1991

Principal Investigator
Faysal A. Kolkailah, Ph.D., P.E. Professor of Aeronautical Engineering

California Polytechnic State University San Luis Obispo, CA 93407

```
(NASA-CR-189516) MATERIAL PROPERTY FOR
                                    N92-14119
EESISNING, ANALYZING, GNO FABRICATING SPACF
STkUCTUPES final feport, ls fov. 1989 - 31
nec. lpal (California polytechnic Stats unclas
Univ.) 143: coch 11063%?

\title{
ABSTRACT \\ Material Property for Designing, Analyzing, and Fabricating Space Structures
}

\author{
Faysal A. Kolkailah, Ph.D., P.E.
}

The objective of the first task of this study was to perform an analytical study of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite/epoxy composite projectile that will achieve hypervelocity of \(6-10 \mathrm{Km} / \mathrm{s}\).

For the second task of this study, the objective was to determine the feasibility of dialectics to monitor cure of graphite/epoxies. Several panels were fabricated, cured, and tested at Cal Poly and the astronautics lab with encouraging results of monitoring the cure of graphite/epoxies.

As to the third task of this study, the objective was to determine the optimum cure process for large structures. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.

\section*{ACKNOWLEDGEMENTS}

I would like to thank the Edwards Air Force Astronautic Laboratory for sponsorship of the research. Also, I wish to express my thanks to Ames Research Center for their directional and administrative help and support.

I would like to take this opportunity to express my deep gratitude to Mr. Gelhausen and both Mr. Jim Wanchek and Mr. Jim Koury for their technical support and help during the course of this research effort.

\section*{INTRODUCTION}

Composites are the preferred materials for future high performance structures. While isotropic materials such as steel, aluminum, and titanium are useful for specific purposes, organic and metallic composites may be used for a wide range of applications. to achieve the higher performances of composites, several tedious mathematical calculations must be accomplished. Computers are ideally suited to perform these calculations.

However, the fact that engineers have little practical experience designing and building composite structures in a major concern. this problem arises from a lack of funds at universities for expansion of facilities to include composite laboratories in the curricula and an insufficient number of qualified instructors. If future engineers do not become familiar with composites in college than they will have little reason to use composites in future designs. In carrying out the tasks of this study, the participating students are given a unique opportunity for valuable handson experience.

\section*{OBJECTIVE}

The objective of this project is to determine material properties for advanced materials applicable to space structures. The properties of these materials will be employed in designing, analyzing, and fabricating composite structures at the Astronautics Laboratory (AL) at Edwards Air Force Base.

\section*{TASK I}

AN OPTIMUM DESIGN ANALYSIS OF COMPOSITE PROJECTILE

\title{
An Optimum Design of Composite Projectile
}

\author{
A Thesis \\ Presented to the Faculty of California Polytechnic State University San Luis Obispo
}

\section*{In Partial Fulfillment \\ of the Requirements for the Degree of Master of Science in Aeronautical Engineering}
by
Thomas D. Kim
October 1990

\section*{APPROVAL PAGE}


\title{
ABSTRACT AN OPTIMUM DESIGN OF COMPOSITE PROJECTILE
}

\author{
Thomas Dong-Hyup Kim
}

October 1990

The subject of this study is to apply the finite element analysis and the micro-macromechanic analysis to an optimum design technique for the mutilayered graphite/epoxy composite projectile that will achieve hypervelocity of \(6-10 \mathrm{~km} / \mathrm{s}\).

The optimum design technique used in this study depends on the internal pressure, external body force induced on the projectile, the angle of the lay ups, and the materials. These dependent relations are used to calculate the optimum radii, the required minimum thickness of the projectile, and the minimum number of lay ups.

The micro-macromechanic (Mic-Mac) analysis enables designer to calculate readily the stresses, strains, and displacements in each layers during the firing of the projectiles. In Mic-Mac analysis, laminated plate theory is used and the projectile is designed as a pressure vessel. The Mic-Mac analysis did not provide an accurate stress/strain values. However, this technique is useful in preliminary design process, since the analysis determines the approximated values.

The finite element analysis (FEA) code TEXGAP2D was employed for the analysis of two dimensional projectile model. The FEA code translated the loads, boundary conditions, and material specifications from the finite element pre- and post-processor code called the PATRAN. Combined use of PATRAN and TEXGAP2D obtained an accurate structural analysis of a projectile. Assumptions were made to simplify both the projectile model and the loads. Analysis of the type and degree of complexity described in this study is continued in the research community and no experimental data are present at this time. Results from an analyses are presented which illustrate the method.

\section*{ACKNOWLEDGEMENTS}

This author sincerely thanks professor Faysal A. Kolkailah and Mr. James L. Koury for their assistance and guidance throughout the course of his undergraduate/graduate studies and through the completion of this thesis.

The author would like to acknowledge the efforts and appreciation of the staff of the Composite Materials Laboratory and the Design Evaluations Group at the Air Force Astronautics Laboratory for assisting the development of the projectiles.

The author would like to thank the Aeronautical Engineering Department at California Polytechnic State University, San Luis Obispo for the support and making him a better person. The author would like to thank anyone whom he didn't mentioned here.

This work is dedicated to my family and my girlfriend Tamlyn. Without their understanding and support this opportunity could never have occurred.

\section*{TABLE OF CONTENTS}
Page
List of Tables ..... VII
List of Figures ..... VIII
Chapter
1. Introduction
A. Background ..... 1
B. Objective ..... 2
C. The Problem ..... 3
D. Finite Element Analysis ..... 4
2. Method of Analysis
A. Introduction ..... 5
B. GENLAM Program ..... 5
C. Micro-Macromechanic Analysis ..... 5
D. PATRAN Analysis ..... 10
E. TEXGAP2D Finite Element Analysis ..... 12
3. Analysis Results
A. Introduction ..... 14
B. Mic-Mac Results ..... 14
C. PATRAN and TEXGAP2D Results ..... 18
4. Conclusion and Recommendations ..... 33
Appendixes
A. Method of Projectile Fabrication ..... 35
B. Equations of Laminate Plate Theory ..... 37
C. Tables of Mic-Mac Analysis ..... 44
D. Tables of LAMRANK Analysis ..... 49
E. TEXGAP2D Analysis Data ..... 52
Glossary ..... 86
Bibliography ..... 89

\section*{TABLES}
Table ..... page
1. The Lamination Module ..... 7
2. The Strength Analysis Module ..... 7
3. The Stress Analysis Module ..... 8
4. The Micromechanics Module ..... 9
5. Comparison of Various Composite Materials ..... 15
6. Stress Analysis Data of 5 mm Dome Projectile ..... 30
7. Stress Analysis Data of 8 mm Dome Projectile ..... 31
8. Stress Analysis Data of 10.0 mm Dome Projectile ..... 32
9. Micro-Macromechanic Analysis Data ..... 44
10. LAMRANK Data ..... 59
11. TEXGAP2D Analysis Data ..... 52

\section*{FIGURES}

\section*{Figure}
page
1. The Railgun Configuration ------------------------------------1

3. Configuration of the Closed End Cylinder ----...-............. 6

5. Axial Stresses versus Ply angles ---------....................-- 15
6. Ultimate Stress versus Ply angles ...........-........----------- 16
7. Stress versus Thickness at Ply Angles of \(\pm 54.5\) degrees 17
8. Strength ratio versus Thickness at \(\pm 54.5\) degrees \(-\cdots---17\)
9. Model with Boundary Conditions ---------------------------- 19
10. Projectile with 2.6 mm Dome Thickness ............................ 18

12. Contour Plot of 2.6 mm Dome Projectile \(----------------\quad 20\)
13. Close Up View of the 2.6 mm Dome Section ------------- 21
14. Close Up View of the Contour Plot at the Dome --------- 21
15. Stress Analysis of 2.6 mm Dome with Pressure Loading 22
16. Stress Analysis of 2.6 mm Dome with Body Force Load- 22
17. Projectile with 5.0 mm Dome Thickness ------------------- 23
18. Stress Analysis of 5.0 mm Dome Projectile - -------------- 24
19. Close Up View of 5.0 mm Dome Section ------------------ 24
20. Projectile with 8.0 mm Dome Thickness \(----------------\quad 25\)
21. Stress Analysis of 8.0 mm Dome Projectile --------------- 26
22. Projectile with 10.0 mm Dome Thickness ----------------- 27
23. Stress Analysis of 10.0 mm Dome Projectile ------------ 28
24. Stresses Versus Weight ..... 29
25. Gravity Acceleration Versus Pressure ..... 29
26. Mandrel Configuration ..... 35

\section*{CHAPTER 1}

\section*{INTRODUCTION}

\section*{Background}

The goal of a research on electromagnetic launchers (railgun) is to develop an electromagnetic means of accelerating substantial masses or perhaps tightly bound group of particles to the hypervelocity regime. The definition of hypervelocity is understood as a velocity substantially greater than that achievable with conventional propellants ( \(>2 \mathrm{~km} / \mathrm{s}\) ).

The principle of the railgun is shown in Figure-1.


FIGURE 1 THE RAILGUN CONFIGURATION

The current flowing in the rails produce a magnetic flux density between the rails and this magnetic field interacts with the current flowing in the foil attached back of the projectile. Then high amount of current (0.5-2.0 mega-amps) causes a deflagration of an electrically heated aluminum
foil which turns into plasma causing rapidly expanding hot gases giving initial driving force.

Rashleigh and Marshall's pioneering paper on the railgun in 1978 reported a velocity of \(5.7 \mathrm{~km} / \mathrm{s}\) for \(2.5-\mathrm{g}\) projectile. The reliable operation of a plasma-armature railgun today is limited to about \(6.5 \mathrm{~km} / \mathrm{s}\). Two experiments have reported achieving \(8 \mathrm{~km} / \mathrm{s}\) with gram size projectile, but this performance is generally erratic for reasons which are not well understood. The projectile used in those experiments consist of polycarbonate (Lexan). The current record velocity for a railgun is about \(10 \mathrm{~km} / \mathrm{s}\) achieved in one test with an expendable launcher using a gram size particle.

The emerging high modulus, high strength composite materials are proposed by Air Force for the construction of projectile. It is known that the use of composite materials improves performance and offers a significant amount of material savings up to \(25 \%\) over that of metal (isotropic) materials such as the aluminum. However, to take full advantage in the use of orthotropic properties of the composite materials, a reliable design method based on accurate stress analysis with the use of an appropriate failure criterion is required.

Current research being done at the Eglin Air Force Base, Florida and Sparta Inc. of San Diego, California emphasizes the need for the lightweight projectile that can withstand enormous loads and pressures. The understanding of the plasma conditions inside the barrel and the material characteristics are some of the critical area that needs to be better understood.

\section*{Objective}

The objective of this study is to perform an optimum design analysis of a projectile that will survive the initial given pressures and loads. This design will assist in the construction of a composite projectile that will achieve hypervelocity of \(6-10 \mathrm{~km} / \mathrm{s}\).

This is first time that composite material is considered for the use as a projectile. The design will be based on micro-macromechanic analysis, modeling and pre/post processing by PATRAN code, and the finite element analysis code of TEXGAP2D. The finite element method is a
proven technique for using computers to predict a wide variety of structural behaviors.

The assumptions used for this analysis include the following:
- Uniform base pressure distribution
- Axisymmetric loading
- Perfectly constrained at rails during launch
- Friction effects neglected
- No tumbling after exit from barrel

\section*{The Problem}

In 1989, a group of researchers at the Eglin Air Force Base, Florida and the Air Force Astronautics Laboratory, California designed and fabricated composite projectile that was experimented. The figure describing the projectile is shown below. The projectile was 130 mm long and had diameter of 82 mm . The material used was T300 Graphite/ Epoxy. The railgun used for this experiment had 5 meter long barrel with in bore diameter of 56 mm . The electrical current used for the firing of the projectile was \(750,000-1.0\) million amperes, creating the base pressure of 30-40 ksi and the external body force of 500,000-600,000 g's..


FIGURE 2 PROJECTILE CONFIGURATION

The projectile was preaccelerated with gaseous helium at velocity of \(1.0 \mathrm{~km} / \mathrm{s}\) before the current was switched on. At that instant time of the given current, the deflagration of the aluminum foil behind the projectile created a massive pressure which the dome section of the projectile was
assumed to be blown off. Initially, the body section of the projectile reached velocity of approximately \(4.7 \mathrm{~km} / \mathrm{s}\) inside the railgun barrel. As the projectile reached the exit muzzle, the velocity declined to zero. Later it was concluded that the barrel and the projectile was fluctuating causing the velocity to decrease rapidly.

This study is to analyze the structure of the projectile that had the failure and proceed to design projectile that will survive the next firing coming up in 1991.

\section*{Finite Element Analysis}

Modeling of the projectile was performed using PATRAN computer applications. A projectile model is generated using grids, lines, arcs, and patches. The type of element employed is a two dimensional quadrilateral elements. The finite element analysis parameters such as forces, loads, and boundary conditions are inserted at any stages of modelling process. Once the model has been completed, it is transferred to decoder module of any finite element analysis code such as TEXGAP, NASTRAN, ABAQUS,...etc. The decoder takes graphical information produced by PATRAN and creates the input neutral file that will be used by the analysis module. The geometry of the model is checked while enabling the user to define material and element properties associated with the projectile model.

After creating and decoding the neutral file by PATRAN, the model is ready to be processed by employing TEXGAP2D or any other finite element analysis processors. TEXGAP2D FEA processor calculates stresses and displacements of the loaded model. Completed error free analysis of the model is then translated back to PATRAN for the visualization. The effects of the stresses on a model can be displayed graphically using many different stress criteria and visual display options. More detailed description of PATRAN and TEXGAP codes are listed in Chapter 2.

\section*{CHAPTER 2}

\section*{METHOD OF ANALYSIS}

\section*{Introduction}

Analysis performed in this study was first obtained by the laminated plate theory with the use of computer program called GENLAM and spreadsheet analysis of micro-macromechanics.

In order to determine the accurate stress concentration of the projectile structure and find the possible failure sites, the finite element code TEXGAP2D was used for the analysis. The mesh generation of finite element model was performed by the use of PATRAN modelling code. The finite element code CS/NASTRAN was initially used with only few successes due to the difficulty of interfacing and translating with PATRAN code. The details of the computer codes are described below.

\section*{GENLAM Program}

The GENLAM computer program was developed by the Think Composites of Dayton, Ohio. In GENLAM, the coefficients in the governing differential equations are calculated using the laminated plate theory (LPT) listed in Appendix B. After the boundary value problem has been solved the LPT is used to calculate the strain and the stress state in the plate. However, in many instances the in-plane loads and the moments are known in statically determinant problems. The LPT can then be used directly to calculate the stress in the plate. Therefore, GENLAM calculates the stress values at the top and bottom of each ply.

\section*{Micro-Macromechanic Analysis (Mic-Mac)}

The integrated micro-macromechanics analysis was performed using spreadsheet based on Microsoft Excel. This program was also developed by Think Composites of Dayton, Ohio. Input of the ply angle,
thickness, pressure, axial force, and safety factor determines the stresses and strains. The analysis employed in this analysis does not consider buckling, or the interlaminar failures. The assumption such as uniform pressure distribution and drag is neglected in this analysis.

In this analysis, filament wound pressure vessel (projectile) is assumed to have adjacent ( \(\pm \beta\) ) angle lay ups and that adjacent ( \(\pm \beta\) ) lay ups act as an orthotropic unit. Projectile can be made up with several of such orthotropic units wound one over another as in Figure-3 below. It is assumed that the length ( L ) of the projectile is such that the longitudinal bending deformation due to the end closures of the vessel is limited to only small end portions of the projectile compared to the overall length. The projectile is subject to axisymmetric internal pressure and external body force.


FIGURE 3 CONFIGURATION OF THE CLOSED END CYLINDER

The Mic-Mac program is then applied to the problem solving. The program is divided into four distinguishing parts.
- Lamination module
- Strength analysis module
- Stress analysis module
- Micromechanics module

In lamination module Table 1 next page, the ply material is identified and up to four ply angles of any value can be selected in any order.

TABLE 1 THE LAMINATION MODULE
\begin{tabular}{|c|r|r|r|r|c|c|c|c|}
\hline A & \multicolumn{1}{c|}{ B } & \multicolumn{1}{c|}{ C } & \multicolumn{1}{c|}{ D } & \multicolumn{1}{c|}{ E } & F & G & H & I \\
\hline READ ME & Theta 1 & Theta 2 & Theta 3 & Theta 4 & & & & \\
\hline [ply angle] & 0.0 & 90.0 & 54.5 & -54.5 & [repeat] & h, \# & h, E-3 & [Rotate] \\
\hline [ply\#] & 0 & 0 & 1 & 1 & 67.0 & 134.0 & 660.0 & 0.00 \\
\hline
\end{tabular}

The number of plies in each ply group is arbitrary. Being limited to symmetric laminates, the total number of plies is twice the sum of the ply group. In choosing the ply angle for this analysis, trial and error was performed in order to find the desired ply angles.

The strength analysis module Table 2, computes both intact and degraded plies. This calculates the in-plane strength with and without considering residual stress resulting from the lamination of a multidirectional composite. Quadratic failure criterion is used.

TABLE 2 THE STRENGTH ANALYSIS MODULE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & I \\
\hline R/intact & \#\#\#\# & \(\# \# \# \#\) & 0.99 & 0.99 & R/FPF & 0.99 & safety & 1.50 \\
\hline R/degraded & \#\#\#\#\# & \(\# \# \# \# \#\) & 2.59 & 2.59 & R/LPF & 2.59 & R/lim & 1.73 \\
\hline & & & & & R/ult & 2.59 & R/lim & 0.99 \\
\hline
\end{tabular}

The maximum laminate stress and strain at first-ply-failure (FPF) or last-ply-failure (LPF) is simply the resulting laminate stress or strain multiplied by the strength ratio. The lowest strength ratio determines the ply group that would fail first, which is the FPF of the laminate. The ultimate of the laminate is the higher of the FPF and LPF. This is valid if we limit loading to the monotonic, proportional type only; i.e., no unloading and reloading. Safety margin of 1.5 is used in the analysis.

A design limit is defined as the lower FPF and LPF divided by safety margin. With this definition, limit is always equal to or lower than FPF. Defining another limit çalled limit*, which equals ultimate divided by safety margin. At limit* matrix cracking is tolerated.

The stress analysis module of Table 3 on next page, the length and diameter of the cylinder is plotted. There are three possible loads: an axial force in tension or compression, internal or external pressure, and a
torque applied along the cylinder axis. For this analysis, an axial force was assumed to be that of an impact force caused by the exploding foil behind the projectile.

TABLE 3 THE STRESS ANALYSIS MODULE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & 1 \\
\hline \multicolumn{4}{|c|}{size, \(m\) or in \(\partial L, \partial \mathrm{D}, \mathrm{E}-3\)} & \(<\mathrm{Sg}>\) & <sg>lim & <sg>lim* & <sg>ult & \{ \(\left.E^{\circ}\right\}\) \\
\hline [Length] & 5.00 & 19.51 & 1 & 65. & 65. & 113. & 169. & 2.8 \\
\hline [Diameter] & 3.60 & 25.79 & 2 & 128. & 127. & 221. & 332. & 7.5 \\
\hline \multicolumn{2}{|l|}{Angle of twist, deg} & 0.00 & 6 & 0. & 0. & 0. & 0. & 6.9 \\
\hline & & & & & & & & \\
\hline & [Load] & \multicolumn{2}{|l|}{[Load] lim} & <ep>E-3 & <ep>lim & <ep>lim* & <ep>ult & E^U/E \\
\hline Axial load F & 10.00 & 9.94 & 1 & 3.90 & 3.88 & 6.73 & 10.10 & 0.33 \\
\hline Pressure P & 47.00 & 46.71 & 2 & 7.16 & 7.12 & 12.36 & 18.54 & 0.41 \\
\hline Torque & 0.00 & 0.00 & 6 & 0.00 & 0.00 & 0.00 & 0.00 & 0.98 \\
\hline
\end{tabular}

This axial force is calculated from the Lorentz Force equation.
\[
\begin{equation*}
\mathrm{F}=\frac{1}{2} \mathrm{~L} \times \mathrm{I}^{2} \tag{1}
\end{equation*}
\]
where \(L\) is the inductance and the \(I\) is the current. All loads can be applied simultaneously.

The laminate stress induced from the combined loads can be calculated using the in-plane stress equations below.
\[
\begin{align*}
& \sigma_{1}^{0}=\frac{\mathrm{PD}}{4 \mathrm{~h}}+\frac{\mathrm{F}}{\pi \mathrm{Dh}}  \tag{2}\\
& \sigma_{2}^{0}=\frac{\mathrm{PD}}{2 \mathrm{~h}} \tag{3}
\end{align*}
\]
where \(P\) is the pressure, \(D\) is the diameter of the cylinder, \(h\) is the thickness, and the \(F\) is the axial force.
The resulting strains are calculated from the in-plane stress-strain relation
\[
\begin{equation*}
\left\{\epsilon^{0}\right\}=\left[\mathbf{a}^{*}\right]\left\{\sigma^{0}\right\} \tag{4}
\end{equation*}
\]
where \(\mathrm{a}^{*}\) is the normalized compliance matrices and it is obtained as follows:
\[
\begin{equation*}
[\mathrm{A}]=\int_{\frac{-\mathrm{h}}{2}}^{\frac{\mathrm{h}}{2}}[\mathrm{Q}] \mathrm{dz} \tag{5}
\end{equation*}
\]
and
\[
\begin{equation*}
\left[\mathrm{A}^{*}\right]=\frac{[\mathrm{A}]}{\mathrm{h}} \tag{6}
\end{equation*}
\]
obtaining,
\[
\begin{equation*}
\left[a^{*}\right]=\left[A^{*}\right]^{-1} \tag{7}
\end{equation*}
\]
where \([A]\) is the in-plane stiffness and \(A^{*}\) is the normalized in-plane stiffness. \([\mathrm{Q}]\) is the on-axis plane stress stiffness which can be computed from the engineering constants as follows:
\[
[Q]=\left[\begin{array}{ccc}
\frac{E_{X}}{1-\gamma_{X} \gamma_{Y}} & \gamma_{X} Q_{Y Y} & 0  \tag{8}\\
\gamma_{Y} Q_{Y Y} & \frac{E_{Y}}{1-\gamma_{X} \gamma_{Y}} & 0 \\
0 & 0 & E_{S}
\end{array}\right]
\]
where \(\mathrm{Q} 12=\mathrm{Q} 21, \mathrm{Q} 16=\mathrm{Q} 61=0, \mathrm{Q} 26=\mathrm{Q} 62=0\) and E is the Young's Modulus and \(\gamma\) is the Poission's ratio. The growths in length due to the applied loads can be found using the displacement equation below.
\[
\partial \mathrm{L}=\mathrm{L} \epsilon_{1}^{0}
\]
where L is the length. Finally the stresses and strains at limit, limit* and ultimate are the resulting stress and strain multiplied by the corresponding strength ratios.

The micromechanics module Table 4 lists the principal laminate stiffness component and the loss of each component due to matrix degradation.

TABLE 4 THE MICROMECHANICS MODULE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G & H & 1 \\
\hline & T opr & c, moist & vol/f & Em & Efx & Xm & Xfx & Em/Em \({ }^{\circ}\) \\
\hline Baseline & 71.6 & 0.005 & 0.66 & 0.49 & 45 & 8.1 & 770 & 0.30 \\
\hline [Modified] & 71.6 & 0.005 & 0.66 & 0.49 & 45 & 8.1 & 770 & 0.30 \\
\hline Mod/Base & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline Mod-Base & 0.0 & 0.000 & Hot/Wet & 0.49 & 45 & 8.1 & 770 & \\
\hline
\end{tabular}

If the degradation factor is lower than 0.3, the loss of laminate stiffness is expected to be lowered. Also listed are the thermal and moisture expansion coefficients of the laminate. This could be an important factor when the material is exposed to slowly changing environments for long period of time, or if it is subjected to suddenly changing environments for short time period such as in plasma conditions.

\section*{PATRAN Analysis}

Mesh generation of finite element analysis was performed by PATRAN code developed by the PDA Engineering of Costa Mesa, California. PATRAN function is the ability to construct, view, analyze, and understand the nature and behavior of an object. The result is to optimize the design. PATRAN is split into four major areas or phases of concern:
- Geometric Modeling
- Analysis Modeling
- Analysis
- Postprocessing

In Geometric Modeling involves creation of an accurate solid or generation of a continuous geometry surface model of a structure. This is the development of a set of mathematically defined regions which closely approximate the physical object. Grids, lines, and patches are used to create the model.

The Analysis Modeling is the creation of finite elements and their loading environments based upon this geometric model. This is where the model can be subdivided into any required density for finite element model generation. This phase is analysis dependent and there may be several finite element models generated from one geometry model. The loads and material properties are assigned in this phase. Boundary conditions are inserted in this phase as well. Model is constrained in radial direction and the external body force (acceleration of gravity) is simply obtained from the equation below.
\[
\text { Gee }=\frac{\text { Total applied force }}{\text { Mass of projectile }}=\frac{\mathrm{PA}}{\mathrm{M}_{\mathrm{p}}}
\]

For isotropic material properties the PATRAN command is as follows:
PMAT, mat, ISO, ym, , n, r, a
where "mat" is the material identification, "ym" is the Young's modulus, " \(n\) " is the Poisson's ratio, " \(r\) " is the mass density, and " \(a\) " is the coefficient of thermal expansion. The shear modulus field and all additional fields are ignored by the translator.

The PATRAN command for generating nodes is as follows:
GFEG, id-LPH, Gtype, mesh,,,,spc-list
where "id-LPH" is the identification number of nodes, "Gtype" is defined as structural node, "spc-list" is the single point constraint number.

The PATRAN command for generating elements is as follows:
CFEG, id-LPH, QUAD/8/7,,prop-id
where"QUAD/8/7" element type produces an axisymmetrical 8-node quadratic element, and "prop-id" is the property identification.

The PATRAN command to set boundary condition is as follows:
DFEG, id-LPH, option,load, set-id
where "option" is the either Pressure, Force, or Displacement, "load" is the amount of load applied on the model.

An analysis of its behaviors can be performed, once a completely described finite element model has been developed in conjunction with its properties and loads. PATRAN reads finite element analysis code performed by the TEXGAP2D and converts analysis results output from analysis program into files which can be read and translated by PATRAN.

In Postprocessing phase, the graphics oriented interpretation of the analysis results are displayed. The stress concentration, displacements, and the deformed geometry is colored and displayed visually. Many plot options are listed in this phase such as contour, fringe, and deformed or undeformed model is plotted. Figure 4 is the representation of the finite element generated by the PATRAN.


FIGURE 4 FINITE ELEMENT MODEL

\section*{IEXGAP2D Finite Element Analysis}

The finite element analysis code TEXGAP2D developed by ANATECH International Corporation was used to analyze the model. The Air Force Astronautics Laboratory, California has funded the development of the TEXGAP program over the last decade in order to provide for the accurate determination of stresses and deformation fields in various areas.

TEXGAP2D is a finite element program for the analysis of static, twodimensional, linear elastic plane or axisymmetric bodies. The TEXGAP FEA was performed using the VAX/VMS on a Ethernet network system. Computer terminals Tektronix model 4109A and model 4207 was used to input and analyze the data..

TEXGAP2D contains the provision for calculating, along user prescribed sets of element boundaries, displacement and traction data files. These files can be used to calculate boundary data used in a subsequent solution of a portion of the original model. TEXGAP uses many built in subroutines. After displacements have been calculated in one of the routines, the strains and the stresses are calculated in routine called STRESS.

TEXGAP employ solution of simultaneous equations by elimination. A brief review of the basic technique used in programming equation solver is discussed below.

Let the simultaneous equations be represented as:
\[
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } i=1,2, \ldots n \tag{9}
\end{equation*}
\]
where \(\mathrm{a}_{\mathrm{ij}}\) are the stiffness coefficients, \(\mathrm{b}_{\mathrm{i}}\) the nodal point forces and \(\mathrm{x}_{\mathrm{j}}\) the unknown, and \(n\) is the total number of degree of freedoms (DOF). The standard elimination procedure is to solve for \(x_{1}\) in terms of \(x_{2}, x_{3}, \ldots x_{n}\) from the first equation. It is important to use the first equation to eliminate the first unknown because no re-ordering (pivoting) is necessary. Solving the first equation for \(x_{1}\) gives
\[
\begin{equation*}
x_{1}=\frac{1}{a_{11}}\left(b_{1}-\sum_{j=2}^{n} a_{1 j} x_{j}\right) \tag{10}
\end{equation*}
\]

This equation (10) is now substituted for \(\mathrm{j}=2\) through \(\mathrm{j}=\mathrm{n}\)
\[
\begin{equation*}
b_{i}=\frac{a_{i 1}}{a_{11}}\left(b_{1}-\sum_{j=2}^{n} a_{1 j} x_{j}\right)+\sum_{j=2}^{n} a_{i j} x_{j} \tag{11}
\end{equation*}
\]
and collecting
\[
\begin{equation*}
\sum_{j=2}^{n}\left(a_{i j}-\frac{a_{i 1} a_{1 j}}{a_{11}}\right) x_{j}=b_{i}-\frac{a_{i 1}}{a_{11}} b_{1} \quad \text { for } i=2,3, \ldots n \tag{12}
\end{equation*}
\]

Thus, the order of the system of equations is reduced from size \(n\) to \(n-1\). After \(n-1\) such eliminations, the equations are reduced to an upper triangular from that permits solution for the unknowns by backsubstitution. This direct Gaussian elimination is straight forward code in Fortran language. The code does not take advantage of either the symmetry or the banded nature of the equilibrium equations generated by finite element methods.

The following is the TEXGAP2D input deck that is to calculate the stresses and strains.
\$ PROJECTILE
AXISYMMETRIC
SETUP, 311, DEF, 20
*EXTERNAL
BODY, FORCE, 32000
SOLVE
STRESS, 2
TRANSLATE
STOP
As can be seen the input deck is quiet short, but this can be representative of a very complex problem. It is assumed that all the setup information is contained in the external file including the material properties.

\section*{CHAPTER 3}

\section*{ANALYSIS RESULTS}

\section*{Introduction}

The four different axisymmetrical projectile models with various thicknesses were analyzed by PATRAN and TEXGAP2D. The first model investigated was made and fired in 1989 without much successful results. The next three models are proposed design concept that are analyzed and one of the model is to be constructed for the firing in 1991.

The material used for these investigations were an isotropic carbon fibers with the Young's Modulus of \(25 \times 10^{6} \mathrm{psi}\), Possion's ratio of 0.3 , and the density of \(0.064 \mathrm{lb} / \mathrm{in}^{3}\). The effects of stress concentration and failure analysis of the projectile is evaluated.

As mentioned earlier, Mic-Mac analysis was used to get approximated values. The material considered in this analysis was the IM6/Epoxy (Carbon fiber). This material has high axial ply stiffness and axial ply strength when compared with other composite materials as listed in Table 5 next page. With this material and the axial force, internal pressure, length, and diameter are inserted into Mic-Mac program to be analyzed. The program then calculates the stresses, strains, and the strength ratios at various thicknesses. Various Mic-Mac analysis are shown in Table 9 in Appendix \(C\).

\section*{Mic-Mac Results}

With a given data of outside diameter ( \(\leq 3.66\) inches) and pressure ( 47 ksi ), Mic-Mac analysis demonstrated that the optimum design of a projectile is accomplished by choosing an optimum lay up angles of \(\pm 54.5\) degrees and a thickness of 0.6600 inches. This resulted in highest ultimate stress (burst pressure) of 169 ksi and in-plane stress limit was 65 ksi. A comparison of the various lay up angles with the stress is shown in Figure 5 and Figure 6 in Page 15 thru 16.

TABLE 5 COMPARISON OF VARIOUS COMPOSITE MATERIALS
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & CFRP & CFRP & KPRP & GFRP & CFRTP \\
\hline FIBER & IM6 & T300 & KEV 49 & E-GLASS & AS4 \\
\hline MATRIX & EPOXY & EPOXY & EPOXY & EPOXY & PEEK \\
\hline \multicolumn{6}{|l|}{ENGINEERING CONSTANTS, MSI OR DIMENSIONLESS} \\
\hline Ex & 29.46 & 26.27 & 11.03 & 5.6 & 19.45 \\
\hline Ey & 1.626 & 1.49 & 0.08 & 1.2 & 1.27 \\
\hline Es & 1.22 & 1.04 & 0.33 & 0.6 & 0.74 \\
\hline nu/x & 0.32 & 0.28 & 0.34 & 0.26 & 0.28 \\
\hline V/I & 0.66 & 0.7 & 0.6 & 0.45 & 0.66 \\
\hline rho & 1.6 & 1.6 & 1.46 & 1.8 & 1.6 \\
\hline ho, E-6 in & 4925 & 4925 & 4925 & 4925 & 4925 \\
\hline \multicolumn{6}{|l|}{PLY STIFFNESS, KSI} \\
\hline QxX & 29.63 & 26.39 & 11.12 & 5.68 & 19.55 \\
\hline Qyy & 1.63 & 1.5 & 0.8 & 1.22 & 1.3 \\
\hline Qxy & 0.52 & 0.42 & 0.27 & 0.32 & 0.36 \\
\hline Qss & 1.22 & 1.04 & 0.33 & 0.6 & 0.74 \\
\hline \multicolumn{6}{|l|}{PLY STRENGTH, KSI} \\
\hline X & 507.98 & 218 & 203 & 154 & 309 \\
\hline X' & 223.51 & 218 & 34 & 89 & 160 \\
\hline Y & 8.13 & 6 & 2 & 4 & 12 \\
\hline \(Y\) & 21.77 & 36 & 8 & 17 & 29 \\
\hline S & 14.22 & 10 & 5 & 10 & 23 \\
\hline
\end{tabular}


FIGURE 5 STRESS VS. PLY ANGLES

From the Figure 7 shows a minimum thickness of 0.6600 inches, the in-plane stress was 65 ksi which was equal to the in-plane stress limit. This resulted in strength/ stress ratio of \(R=1.0\). This ratio determines that possible failure will occur in the first ply. If \(R\) value falls below \(R \leq 1.0\), the applied stress has exceeded the strength. But, if \(R>1.0\), then applied stress can be increased. This figure is illustrated in page 17.

Figure 8 shown in page 17 is the Strength Ratio versus the Thickness. At thickness of 0.3448 inches, the strength/stress ratio (R) value was R/FPF \(=0.52\). This determines that the applied stress has exceeded the strength by a factor of 1.92 and the first-ply-failure (FPF) is most likely to occur.


The last-ply-failure (LPF) is not likely even at this load due to the strength ratio for the last-ply-failure is \(R / L P F=1.35\). If the \(R / L P F=1.0\), the total destruction of the projectile is evident. At thickness of 0.7880 inches, the strength ratio was R/FPF \(=1.19\) and the applied stress can increase by a factor of 1.19 before the first ply-failure occurs. Analyzing the data and the figures, it was determined that at the thickness of 0.6600 inches, the in-plane longitudinal (axial) stress based on the strength of material was calculated to be 65 ksi which equals to the inplane longitudinal stress at the design limit. At this stress limit of 65 ksi ,


FIGURE 7 STRESS VS. THICKNESS AT PLY ANGLES OF \(\pm 54.5\) DEGREES


FIGURE 8 STRENGTH RATIO VS. THICKNESS AT \(\pm 54.5\) DEGREES
the strength ratio was \(R / L P F=1.0\). This is where the first-ply-failure is starting to occur. If this value becomes \(R<1.0\), the applied load should be decreased. The length value had no effective changes in either the stresses or the strains. This is due to the fact that the length effects only angle of twist under torque. Since no torque was applied to the vessel, all the values stayed constant. The stresses and strains discussed at limit, limit* and ultimate are the resulting stress and strain multiplied by
the corresponding strength ratios. From this analysis, recommends that the thickness should not be less than 0.6600 inches which is considered an optimum thickness for the given conditions. However, the values obtained were averaged over the entire pressure vessel. These results should be used as an approximated values for the initial design process. In this analysis, the stress concentration and the exact failure regions were not available to be determined.

\section*{PATRAN and TEXGAP Results}

All of the results of TEXGAP2D are given in Tables 6 thru 8 at the end of the Chapter 3 and and in Appendix E. Figure 9 shows the internal body force of 50 ksi and external body force ( \(G\) loading) of \(1 \times 10^{6}\) gees and radially constrained projectile model generated by the PATRAN. Figures 10 thru 14 represent analyzed results of axisymmetrically loaded projectile performed by TEXGAP. The dimension of the projectile has 79 mm length, 2.6 mm dome thickness and 5 mm body thickness.


FIGURE 10 PROJECTILE WITH 2.6 mm DOME THICKNESS

Results shows the highest stress concentrations and bending moments at the regions of the dome section. The maximum stress of 2198 ksi was located at the middle section of the dome as indicated by the spectrum analyzer. The minimum stress (compressive) of -309 ksi did cause the buckling and bending of the projectiles body and the dome section. These stresses shown by the figure are results of the internal pressure loading and the external body force. Thus, as noted in the test firing in 1989, the dome section of the projectile is most likely to have failed causing the destruction of the dome.




FIGURE 14 CLOSE UP VIEN OF THE CONTOUR PLOT AT THE DOME


Analyzing individual loads on the projectile, Figure 15 shows only the pressure loading of 50 ksi acting on the projectile. The maximum stress of 406 ksi and minimum stress of -91.1 ksi was located at the dome. It is noted that pressure loading caused most of its stress concentration at the bottom end of the projectile with average stress of 157 ksi . Also at the location of the dome/body interface had large amount of stresses (50.9) ksi resulting the buckling of the mid body section of the model.

Figure 16 shows the results obtained only by the external body force of \(1 . \times 10^{6}\) gees. The maximum stress of 729 ksi was located in small portion of the dome and the minimum stress of -329 ksi was also at the dome section. Large stress concentration was located at the dome and the end section of the projectile. External body force resulted in higher stress than the pressure loading. Combine loading of the forces yield almost three fold increase in stresses. It was noted that by decreasing the both loads on the projectile by half of the original value also decreased the stress by half.

Figure 17 below shows the projectile with dome thickness of 5.0 mm .


FIGURE 17 PROJECTILE WITH 5.0 mm DOME THICKNESS
Figure 18 and Figure 19 shows the results of the TEXGAP plotted by the PATRAN. Most of the stress concentrations was located at the dome




ORIGINAL PAGE :
with the maximum stress of 715 ksi and minimum stress of -238 ksi . The possible failure sites are easily viewed by the figures. Even at the thickness of 10 mm , the mid-body section is under compressive force which will cause the buckling. The buckling of the dome and the body caused by the large bending moments closely follow previous pattern displayed by the Figure 11. Overall, stress decreased more than \(60 \%\) when compared with the Figure 11.

Figure 20 shows the projectile with the dome thickness of 8 mm .


FIGURE 20 PROJECTILE WITH 8 mm DOME THICKNESS

Figure 21 is the plotted results of TEXGAP2D. It is interesting to note that the high stress concentration is located not at the dome section, but on the body section of the projectile. The highest stress of 1188 ksi was located at very small point near the body/bore rider interface. This stress migrated down well into the body section causing high stresses along the way. Although high stresses of 344 ksi was present at the front portion of the dome, the rest parts had moderate stress of 103 ksi . The lowest stress of -380 ksi was located at the dome/bore rider section. This is the part where the buckling would likely to occur. Therefore, this projectile has good chance of surviving the firing. The only major concern is the high weight of 393.5 grams which is an increase of \(16.9 \%\) compared with 5.0 mm dome projectile. However, at same time, the stress has decreased by \(36 \%\).


FIGURE 21 STRESS ANALYSIS OF 8.0 mm DOME PROJECTILE
\(-3 i \mathrm{H}\)


ORGIVAL PAGE IS


ORIGYMA: TAGE IS
OF POOR QUALITY

Figure 22 shows the projectile with dome thickness of 10 mm and Figure 23 is the plotted result of the TEXGAP2D analysis. This projectile has a uniform thickness of 10 mm at the dome and the body of the projectile. The weight is increased \(28.3 \%\) when compared with projectile of Figure 17. The high stress concentration was located at the bottom section of the dome/body interface. At that point, the maximum stress of 444 ksi was recorded. The minimum stress of -93.3 ksi was located at the center portion of the dome. This projectile would probably have survived the test firing. The projectile shows very little buckling at the dome and at the mid-body section. The stress has decreased by \(47.1 \%\) when compared with the projectile with 5 mm dome. This is illustrated in the Figure 24 in page 29 along with the Figure 25 which describes the effects of the pressure loading. Increase of the pressure resulted in the increase of the gravity acceleration and stresses.


FIGURE 22 PROJECTILE WITH 10 mm DOME THICKNESS


ORIGINAL PACE is OF POOR OURE!


ORIGINAL PREE is


FIGURE 24 STRESSES VERSUS WEIGHT


FIGURE 25 GRAVITY ACCELERATION VERSUS PRESSURE

\section*{TABLE 6 STRESS ANALYSIS DATA OF 5 mm DOME PROJECTILE}
585ER-90 TEXGAP84-2D VERSION

\section*{ASISEEMBQRIC PROBLEM}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{5}{|c|}{projectile} \\
\hline \multirow[t]{4}{*}{LARGEST AND MATERIAL = Z} & \multirow[t]{4}{*}{\begin{tabular}{cc} 
SMALLEST STRESSES \\
\\
10 & QUANTITY \\
ELEM MINIMUM \\
& SIGR
\end{tabular}} & \multicolumn{3}{|l|}{and Strains by material} & \multirow[b]{2}{*}{MAXIMUM} & \multirow[b]{2}{*}{R} \\
\hline & & R & 2 & ELEM & & \\
\hline & & & & & 8. \(223 \mathrm{E}+02\) & \(3.588 \mathrm{E}+00\) \\
\hline & & \(3.496 \mathrm{E}+00\) & 9.382E+01 & 90 & \(8.223 \mathrm{E}+02\) & \(3.588 E+00\) \\
\hline \(9.884 \mathrm{E}+01\) & \[
\begin{gathered}
91-1.144 \mathrm{E}+03 \\
\mathrm{SIGZ}
\end{gathered}
\] & \(0.000 \mathrm{E}+00\) & \(9.650 E+01\) & 88 & \(6.900 \mathrm{E}+02\) & \(1.963 \mathrm{E}+01\) \\
\hline \(9.076 \mathrm{E}+01\) & \[
\begin{gathered}
108-7.845 \mathrm{E}+02 \\
\text { SIGT }
\end{gathered}
\] & 2.562E+01 & \(8.940 \mathrm{E}+01\) & 119 & \(6.775 \mathrm{E}+02\) & \(3.588 \mathrm{E}+00\) \\
\hline \(9.884 \mathrm{E}+01\) & \(91-1.082 \mathrm{E}+03\) & 1.920E+01 & \(8.806 \mathrm{E}+01\) & 110 & \(6.439 \mathrm{E}+02\) & \(2.562 \mathrm{E}+01\) \\
\hline \(8.940 \mathrm{E}+01\) & \[
\begin{gathered}
119-5.297 \mathrm{E}+02 \\
\text { TAURT }
\end{gathered}
\] & 3.615E+01 & \(6.124 E+01\) & 154 & \(0.000 \mathrm{E}+00\) & \(3.615 \mathrm{E}+01\) \\
\hline \(6.124 \mathrm{E}+01\) & \(154 \quad 0.000 \mathrm{E}+00\) & \(3.615 \mathrm{E}+01\) & \(6.124 \mathrm{E}+01\) & 154 & \(0.000 \mathrm{E}+00\) & \(3.615 \mathrm{E}+01\) \\
\hline \(6.124 E+01\) & \(154 \quad \begin{gathered}0.000 \mathrm{E}+00 \\ \text { SIGI }\end{gathered}\) & 2.562E+01 & 8.940E+01 & 119 & \(9.206 \mathrm{E}+02\) & \(1.920 \mathrm{E}+01\) \\
\hline \(8.806 \mathrm{E}+01\) & \[
\begin{gathered}
114-4.345 E+02 \\
\text { SIG2 }
\end{gathered}
\] & 2.812E+01 & 8.702E+01 & 119 & \(2.238 \mathrm{E}+02\) & \(1.920 \mathrm{E}+01\) \\
\hline \(8.806 \mathrm{E}+01\) & \[
\begin{gathered}
110-1.450 \mathrm{E}+03 \\
\mathrm{SIG} 3
\end{gathered}
\] & \(2.562 \mathrm{E}+01\) & \(8.940 \mathrm{E}+01\) & 119 & \(6.775 \mathrm{E}+02\) & \(3.588 \mathrm{E}+00\) \\
\hline \(9.884 \mathrm{E}+01\) & \[
91-1.082 \mathrm{E}+03
\] & \(0.000 \mathrm{E}+00\) & \(9.900 \mathrm{E}+01\) & 87 & \(7.427 \mathrm{E}+02\) & 4.025E+01 \\
\hline \(1.674 \mathrm{E}+01\) & \[
27 \begin{gathered}
2.196 \mathrm{E}+00 \\
\mathrm{EPSR}
\end{gathered}
\] & 3.496E+00 & 9.382E+01 & 90 & 2.790E-05 & \(3.588 \mathrm{E}+00\) \\
\hline \(9.884 \mathrm{E}+01\) & \[
\begin{gathered}
91-3.333 \mathrm{E}-05 \\
\text { EPSZ }
\end{gathered}
\] & \(0.000 \mathrm{E}+00\) & \(9.775 \mathrm{E}+01\) & 87 & 3.279E-05 & \(1.963 \mathrm{E}+01\) \\
\hline \(9.076 E+01\) & \[
\begin{gathered}
108-3.655 \mathrm{E}-05 \\
\text { EPST }
\end{gathered}
\] & \(1.636 \mathrm{E}+01\) & 8.981E+01 & 110 & 2.821E-05 & \(3.588 \mathrm{E}+00\) \\
\hline \(9.884 \mathrm{E}+01\) & \[
\begin{gathered}
91-3.007 \mathrm{E}-05 \\
\text { GAMRZ }
\end{gathered}
\] & \(1.920 \mathrm{E}+01\) & \(8.806 \mathrm{E}+01\) & 110 & 6.696E-05 & \(2.562 \mathrm{E}+01\) \\
\hline \(8.940 \mathrm{E}+01\) & \[
\begin{gathered}
119-5.509 \mathrm{E}-05 \\
\text { GAMRT }
\end{gathered}
\] & 3.615E+01 & \(6.124 \mathrm{E}+01\) & 154 & \(0.000 \mathrm{E}+00\) & \(3.615 \mathrm{E}+01\) \\
\hline \(6.124 E+01\) & \[
\begin{gathered}
154 \quad 0.000 \mathrm{E}+00 \\
\mathrm{GAMZT}
\end{gathered}
\] & \(3.615 \mathrm{E}+01\) & \(6.124 E+01\) & 154 & \(0.000 \mathrm{E}+00\) & \(3.615 \mathrm{E}+01\) \\
\hline \(6.124 \mathrm{E}+01\) & \[
154 \begin{gathered}
0.000 \mathrm{E}+00 \\
\text { EPSI }
\end{gathered}
\] & \(0.000 \mathrm{E}+00\) & \(9.900 \mathrm{E}+01\) & 87 & \(3.767 \mathrm{E}-05\) & \(1.941 E+01\) \\
\hline \(8.941 \mathrm{E}+01\) & \[
\begin{gathered}
113-1.330 \mathrm{E}-05 \\
\text { EPS2 }
\end{gathered}
\] & \(1.762 \mathrm{E}+00\) & 9.521E+01 & 90 & -1.017E-06 & \(1.920 \mathrm{E}+01\) \\
\hline \(8.806 E+01\) & \[
\begin{gathered}
110-5.873 \mathrm{E}-05 \\
\text { EPS }
\end{gathered}
\] & 1.636E+01 & \(8.981 \mathrm{E}+01\) & 110 & 2.821E-05 & \(3.588 E+00\) \\
\hline \(9.884 E+01\) & \[
\begin{array}{r}
91-3.007 \mathrm{E}-05 \\
\text { GAMMAX }
\end{array}
\] & \(0.000 \mathrm{E}+00\) & 9.900E+01 & 87 & \(7.725 \mathrm{E}-05\) & 4.025E+01 \\
\hline . 6 & 27 2.284E-07 & & & & & \\
\hline
\end{tabular}

TIME IN STRESS \(=7.140 E+00\) SECONDS
TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION)
GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE
GENERATED PATRAN DISPLACEMENT NEUTRAL FILE
TIME IN TRANSLATE \(=1.150 \mathrm{E}+00 \mathrm{SECOND}\)

\section*{TABLE 7 STRESS ANALYSIS DATA OF 8 mm DOME PROJECTILE}
\[
T E X G A P 84-2 D D \text { VERSION }
\]

318EGG－90

> projectile

LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MATERIAL＝ & 10 & QUANTETY & R & \(z\) & ELEM & MEXIMUM & R \\
\hline Z & こここM & \[
\begin{gathered}
\text { MINIMUM } \\
\text { SIGR }
\end{gathered}
\] & 4．200E＋01 & \(5.800 \mathrm{E}+01\) & 77 & 4．853E＋02 & 4．200E－01 \\
\hline \(6.000 E+01\) & 77 & \[
\begin{gathered}
-1.348 \mathrm{E} \div 03 \\
5 \mathrm{IGZ}
\end{gathered}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & 1．720ミャ03 & \(4.2005+01\) \\
\hline \(5.000 \mathrm{E} \div 01\) & 73 & \[
\begin{gathered}
-7.686 E+02 \\
\text { SIGT }
\end{gathered}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & \(6.650 E+02\) & \(4.200 \Xi \div 01\) \\
\hline \(6.0005 \div 01\) & 77 & \[
\begin{gathered}
-5.746 E+02 \\
\text { TAURZ }
\end{gathered}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & \(6.685 \mathrm{E}+02\) & 4．400E \(\div 01\) \\
\hline \(6.000 \mathrm{E}+01\) & 182 & \[
\begin{gathered}
-6.891 \Xi+02 \\
\text { TAURT }
\end{gathered}
\] & 4．600E＋01 & \(1.000 E+00\) & 183 & \(0.000 E+00\) & 4．600E－01 \\
\hline \(1.000 \mathrm{E} \div 00\) & 183 & \[
\begin{gathered}
0.000 E \div 00 \\
\text { TAUZT }
\end{gathered}
\] & 4．600E＋01 & 1．000E \(\div 00\) & 183 & \(0.000 \mathrm{E} \div 00\) & \(4.600 \equiv \div 01\) \\
\hline \(1.000 \mathrm{E}+00\) & 183 & \[
\begin{gathered}
0.000 \mathrm{E}+00 \\
5 \mathrm{I} \mathrm{G} 1
\end{gathered}
\] & 4．400ET01 & \(5.800 E+01\) & 82 & \(1.969 \pm+03\) & \(4.200 \equiv \div 01\) \\
\hline \(6.000 E+01\) & 77 & \[
\begin{gathered}
-5.322 E+02 \\
\text { SIG2 }
\end{gathered}
\] & \(2.589 E+01\) & 9．307E +01 & 33 & \(1.753 \mathrm{E} \div 02\) & 4．200ミ -01 \\
\hline \(6.000 E+01\) & 77 & \[
\begin{gathered}
-1.514 E+03 \\
\text { SIC3 }
\end{gathered}
\] & \(4.400 \mathrm{E}+01\) & \(5.800 E+01\) & 82 & \(5.6505 \div 02\) & \(4.200 \Xi \div 01\) \\
\hline \(6.000 E+01\) & 77 & \[
\begin{array}{r}
-5.746 \mathrm{E}+02 \\
\text { TAUMAX }
\end{array}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & \(1.0195 \div 03\) & 3．797E 01 \\
\hline \(5.164 \mathrm{E}+01\) & 74 & \[
\begin{gathered}
4.175 E+00 \\
\text { EDSR }
\end{gathered}
\] & 4．200E＋01 & \(5.800 E+01\) & 77 & 2．167Eー05 & \(4.2005 \div 01\) \\
\hline \(6.000 \mathrm{E}+01\) & 77 & \[
\begin{gathered}
-3.867 E-05 \\
E 巳 S 2
\end{gathered}
\] & 4．400E＋01 & \(5.800 E+01\) & 82 & \(5.864 E-05\) & 4．200E -01 \\
\hline \(5.800 \mathrm{E}+01\) & 77 & \[
\begin{gathered}
-2.086 E-05 \\
\text { EPST }
\end{gathered}
\] & \(3.400 E+01\) & 2．558E＋01 & 141 & 1．684E－05 & \(0.000 \Xi \div 00\) \\
\hline \(9.400 \mathrm{E}+01\) & 4 & \[
\begin{gathered}
-7.414 E-06 \\
\text { GMMR2 }
\end{gathered}
\] & 4．400E＋01 & \(5.800 E+01\) & 82 & \(6.9525-05\) & 4．400E＋01 \\
\hline \(6.000 E+01\) & 182 & \[
\begin{array}{r}
-7.167 E-05 \\
\text { GAMRT }
\end{array}
\] & \(4.600 \mathrm{E} \div 01\) & \(1.000 \mathrm{E}+00\) & 183 & \(0.000 E+00\) & \(4.500 \equiv-01\) \\
\hline \(1.000 \mathrm{E}+00\) & 183 & \[
\begin{gathered}
0.000 E \div 00 \\
\text { GAMZT }
\end{gathered}
\] & \(4.600 \mathrm{E}+01\) & 1．000E－00 & 183 & \(0.0005+00\) & \(4.600 \equiv \div 01\) \\
\hline \(1.000 \mathrm{E}+00\) & 183 & \[
\begin{gathered}
0.000 \mathrm{E} \div 00 \\
\text { EPS }
\end{gathered}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & 7．163E－05 & \(3.500 \equiv \div 01\) \\
\hline \(2.263 \mathrm{E}+01\) & 141 & \[
\begin{gathered}
-5.380 E-06 \\
\text { EPS } 2
\end{gathered}
\] & \(2.646 \mathrm{E}+01\) & 8．441E＋01 & 40 & 2．308Eー06 & 4．200E－01 \\
\hline \(6.000 E+01\) & 77 & \[
\begin{gathered}
-4.727 \mathrm{E}-05 \\
\text { EPS }
\end{gathered}
\] & \(3.400 E+01\) & 2．558E＋01 & 141 & 1．684E－05 & \(0.000 E-00\) \\
\hline \(9.400 \mathrm{E}+01\) & 4 & \[
\begin{array}{r}
-7.414 \mathrm{E}-06 \\
\text { GAMMAX }
\end{array}
\] & 4．400E＋01 & \(5.800 \mathrm{E}+01\) & 82 & \(1.060 \mathrm{E}-04\) & 3.797 － 01 \\
\hline \(6.164 \mathrm{E}+01\) & 74 & 4．344E－07 & & & & & \\
\hline
\end{tabular}

TIME IN STRESS \(=7.500 E+00\) SECONDS

TEXGAP2D TO PATRAN TRANSLATION（RESULTS EROM STRESS OPTION）
GENERATED DATRAN STRESS／STRAIN NEUTRAL FILE
GENERATED PATRAN DISPLACEMENT NEUTRAL FILE
TIME IN TRANSEATE \(=9.500 \mathrm{E}-01\) SECONDS

TABLE 8 STRESS ANALYSIS DATA OF 10.0 mm DOME PROJECTILE

\section*{485二P－90}

\author{
TEXGAP84－2D
}

VERSION
projectile
LARGEST AND SMALLEST STRESSES AND STRAINS BY MATERIAL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline MATERIAL＝ & 10 & QUANTITY & R & Z & ELEM & MAXITUM & R \\
\hline 2 & ELEM & \[
\begin{aligned}
& \text { MINIMUM } \\
& \text { SIGR }
\end{aligned}
\] & 1．111E＋01 & \(1.026 \mathrm{E}+02\) & 68 & \(4.284 \mathrm{E}+02\) & \(3.900 E+01\) \\
\hline \(0.000 \mathrm{E}+00\) & 158 & \[
\begin{gathered}
-2.131 E \div 02 \\
\text { SIGZ }
\end{gathered}
\] & \(3.388 \mathrm{E}+01\) & \(6.293 E+01\) & 1 & \(5.590 \mathrm{E}+02\) & \(2.0965+01\) \\
\hline \(8.677 E+01\) & 45 & \[
\begin{gathered}
-3.475 E+02 \\
\text { SIGT }
\end{gathered}
\] & \(3.650 \mathrm{E}+01\) & \(2.000 E+00\) & 157 & \(4.652 E+02\) & \(3.047 E+01\) \\
\hline \(8.010 E+01\) & 30 & \[
\begin{gathered}
-1.461 E+02 \\
\text { TAURZ }
\end{gathered}
\] & \(0.000 E+00\) & \(1.015 \mathrm{E}+02\) & 75 & 1． \(862 \mathrm{E}+02\) & 4．150E＋01 \\
\hline \(6.000 \mathrm{E}+01\) & 3 & \[
\begin{gathered}
-2.368 \mathrm{E}+02 \\
\text { TAURT }
\end{gathered}
\] & 4．500E＋01 & \(2.000 E+00\) & 162 & \(0.000 \mathrm{E}+00\) & \(4.500 E+01\) \\
\hline \(2.000 \mathrm{E}+00\) & 162 & \[
\begin{gathered}
0.000 E+00 \\
\text { TAUZT }
\end{gathered}
\] & 4．500E＋01 & \(2.000 \mathrm{E}+00\) & 162 & \(0.000 \mathrm{E}+00\) & \(4.500 E+01\) \\
\hline \(2.000 E+00\) & 162 & \[
\begin{gathered}
0.000 E+00 \\
\text { SIGI }
\end{gathered}
\] & \(3.388 \mathrm{E}+01\) ． & \(6.293 \mathrm{E}+01\) & 1 & \(5.678 \mathrm{E}+02\) & 4．400玉＋01 \\
\hline \(2.000 E+00\) & 84 & \[
\begin{gathered}
-2.009 E+02 \\
\text { SIG2 }
\end{gathered}
\] & \(9.845 \mathrm{E}+00\) & \(9.775 \mathrm{E}+01\) & 62 & \(2.054 \mathrm{E}+02\) & \(3.9005 \div 01\) \\
\hline \(0.000 E+00\) & 159 & \[
\begin{gathered}
-3.859 \mathrm{E}+02 \\
\text { SIG3 }
\end{gathered}
\] & \(3.650 E+01\) & \(2.000 \mathrm{E}+00\) & 157 & \(4.6525+02\) & \(3.047 \Xi \div 01\) \\
\hline \(8.010 \mathrm{E}+01\) & 30 & \[
\begin{array}{r}
-1.461 E+02 \\
\text { TAUMAX }
\end{array}
\] & \(3.3515+01\) & \(6.580 E+01\) & 9 & \(2.839 \mathrm{E}+02\) & 4．400E＋01 \\
\hline \(7.895 \mathrm{E}+00\) & 88 & \[
\begin{gathered}
5.078 E+00 \\
E P S R
\end{gathered}
\] & \(1.111 E+01\) & \(1.026 \mathrm{E}+02\) & 68 & 1．345E－05 & \(3.4005+01\) \\
\hline \(0.000 \mathrm{E}+00\) & 157 & \[
\begin{gathered}
-1.127 E-05 \\
\text { EPSZ }
\end{gathered}
\] & \(3.388 \mathrm{E}+01\) & \(6.293 \mathrm{E}+01\) & 1 & \(2.005 \mathrm{E}-05\) & \(1.128 \mathrm{E}+01\) \\
\hline \(9.208 \mathrm{E}+01\) & 61 & \[
\begin{gathered}
-1.187 \mathrm{E}-05 \\
\text { EPST }
\end{gathered}
\] & \(3.400 E+01\) & \(0.000 \mathrm{E}+00\) & 157 & 1．678E－05 & 3.533 ＋01 \\
\hline \(6.921 \mathrm{E}+01\) & 9 & \begin{tabular}{l}
\[
-3.435 E-06
\] \\
GAMRZ
\end{tabular} & \(0.000 \mathrm{E}+00\) & \(1.015 \mathrm{E}+02\) & 75 & 1．93フミー05 & 4．150E +01 \\
\hline \(6.000 \mathrm{E}+01\) & 3 & \[
\begin{gathered}
-2.462 E-05 \\
\text { GAMRT }
\end{gathered}
\] & 4．500E＋01 & \(2.000 \mathrm{E}+00\) & 162 & \(0.000 E+00\) & 4．500E＋01 \\
\hline \(2.000 \mathrm{E}+00\) & 162 & \[
\begin{gathered}
0.000 E+00 \\
\text { GAMZT }
\end{gathered}
\] & \(4.500 E+01\) & \(2.000 \mathrm{E}+00\) & 162 & \(0.000 \mathrm{E}+00\) & \(4.500 \Xi+01\) \\
\hline \(2.000 \mathrm{E}+00\) & 162 & \[
\begin{gathered}
0.000 \mathrm{E}+00 \\
\text { EPSI }
\end{gathered}
\] & \(3.388 \mathrm{E}+01\) & \(6.293 \mathrm{E}+01\) & 1 & 2．051E－05 & 4．400E＋01 \\
\hline \(2.000 \mathrm{E}+00\) & 84 & \[
\begin{gathered}
-6.539 E-06 \\
E P S 2
\end{gathered}
\] & \(2.683 \mathrm{E}+01\) & 8．475E＋01 & 37 & 2．771E－06 & \(3.9005+01\) \\
\hline \(0.000 \mathrm{E}+00\) & 159 & \[
\begin{gathered}
-1.721 E-05 \\
\text { EPS } 3
\end{gathered}
\] & \(3.400 \mathrm{E}+01\) & \(0.000 \mathrm{E}+00\) & 157 & 1．678E－05 & 3．533E＋01 \\
\hline \(6.921 E+01\) & 9 & \begin{tabular}{l}
\[
-3.435 E-06
\] \\
GAMIAX
\end{tabular} & \(3.351 E+01\) & \(6.580 \mathrm{E}+01\) & 9 & 2．952E－05 & 4．400E＋01 \\
\hline \(7.895 E+00\) & 88 & 5．281E－07 & & & & & \\
\hline
\end{tabular}

TIME IN STRESS \(\quad=7.270 E+00\) SECONDS

TEXGAP2D TO PATRAN TRANSLATION（RESULTS FROM STRESS OPTION）
GENERATED PATRAN STRESS／STRAIN NEUTRAL FILE
GENERATED PATRAN DISPLACEMENT NEUTRAL FILE
TIME IN TRANSLATE
\(=1.180 E+00\) SECONDS

\section*{CHAPTER 4}

\section*{CONCLUSION AND RECOMMENDATION}

In this study, the finite element analysis approach to modeling was successfully employed to produce an optimum design of a composite projectile. The computer programs Micro/Macromechanic analysis and GENLAM were useful for preliminary design calculations since these programs gave approximated values. The uses of modeling code PATRAN and finite element analysis code of TEXGAP2D could be valuable tools for any designer to have. This analysis verified the failure of the projectile that was fired in 1989 testing. The cause was the failure of the dome section due to the presence of high stress concentrations and buckling due to large bending moments.

From the three new design analyses presented in this study, the projectile with 8 mm dome thickness would be adequate enough to survive the firing conditions. The analysis showed that the stress was evenly distributed throughout the dome section where the main concern of the failure is located.

The projectile with 5.0 mm dome thickness had \(60 \%\) decrease in the stress concentration when compared with the projectile with 2.6 mm dome thickness. Even with this decrease in stress, the analysis still showed high stresses at the dome and followed similar patterns of buckling. However, the projectile has fairly good chance of surviving the firing. The projectile with 10 mm dome thickness would definitely survive the firing. This projectile showed small stress concentrations when compared with all of the other designs. The only disadvantage is the high weight it possesses.

The results shown illustrate that the complete loading environment produces a stress field that are easily understood. Another benefit from the analyses of this study is the visualization of the stress concentrations.

The various effective boundary constraints resulted in different stresses in addition to bending moments. This presented difficulties
choosing the placement of the constraints. The best results were obtained when the projectile was constrained radial direction at the bottom edges of the dome and one other point at the bottom end of the projectile body.

The present code has some limitations such as it is good for the linear static analysis for the elastic regions and high loading conditions are not possible. In the future analysis, it is strongly recommended that 3 -dimensional nonlinear analysis should be performed using orthotropic property conditions. One possible code that is recommended is the "DYNA 3-D" code. Finally, a better understanding of the plasma reaction, drag and the hypervelocity effects of the projectile inside the railgun is needed.

\section*{APPENDIXA}

\section*{METHOD OF PROJECTILE FABRICATION}

The mandrel for the projectile was designed to be used for the layup of the projectile. Figure 26 shows the configuration.


FIGURE 26 CONFIGURATION OF THE PROJECTILE MANDREL

This mandrel is made from an aluminum rod. The mandrel is then cleaned and polished with wax for 15 minutes. After the wax has been dried for another 15 minutes, the process is repeated up to 5 more coatings of wax. Finally, the mandrel is sprayed with releasing agent to deter against sticking with the composite material.

The following layup of the projectile was performed using Kevlar cloth and graphite/epoxy materials. First, the Kevlar cloth is covered over the mandrel and it is hand stretched past the tangent point of the dome/body intersection. Excess materials are then cut to exact specification. Secondly, the mandrel with first layup is taken to the tumble winder where graphite/epoxy toe is used for the filament winding of the body section. This process is repeated until the material has reached the designed goal.

After the layup, the part is ready for the bagging. The part is first bagged with release film followed by breather cloth to absorb the moisture and then bagging film. The air flow tube is inserted to check for the leaks and to pump the air out. Finally, the finished bagged part is put into autoclave to be cured for 3 hours at temperature of 300 degree Fahrenheit.

\section*{APPENDIX B}

\section*{EQUATIONS OF LAMINATED PLATE THEORY}

Lorentz Force \(=\frac{1}{2}\) Inductance (L) \(\times\) Current \((1)^{2}--(1.1)\)
In-plane stresses are:
\(\sigma_{1}^{\circ}=\frac{P D}{4 h}+\frac{F}{\pi D h}\)
\(\sigma_{2}^{\circ}=\frac{P D}{2 h}\)
\(\sigma_{6}^{0}=\frac{2 T}{2 \Pi D^{2} h}\)
In-plane strain is
\(\left\{E^{0}\right\}=\left[a^{*}\right]\left\{\sigma^{0}\right\}\)
where
\[
\begin{align*}
& {[A]=\int_{-h / 2}^{h / 2}[Q] d z}  \tag{2.2}\\
& {\left[A^{*}\right]=\frac{\left[A^{*}\right]}{h}}  \tag{2.3}\\
& {\left[a^{*}\right]=\left[A^{*}\right]^{-1}} \tag{2.4}
\end{align*}
\]

The displacement or changes in lengths are
\[
\begin{equation*}
\partial L=L E_{1}^{\circ} \tag{3.1}
\end{equation*}
\]

The on-axis plane stress stiffness and compliance of a unidirectional ply can be computed from the engineering constants as follows:
\[
\begin{align*}
& {[Q]=\left[\begin{array}{ccc}
\frac{E_{x}}{1-v_{x} v_{y}} & v_{y} Q_{y y} & 0 \\
v_{y} Q_{x x} & \frac{E_{x}}{1-v_{x} v_{y}} & 0 \\
0 & 0 & E_{3}
\end{array}\right]}  \tag{4.1}\\
& \text { where, } Q_{12}=Q_{21}, Q_{16}=Q_{61}=Q_{26}=Q_{62}=0
\end{align*}
\]
\([\sim]=\left[\begin{array}{ccc}\frac{1}{E_{x}} & \frac{-v_{y}}{E_{y}} & 0 \\ \frac{v_{y}}{E_{x}} & \frac{1}{E_{y}} & 0 \\ 0 & 0 & \frac{1}{E_{s}}\end{array}\right]\)
where, \(s_{12}=s_{21}, s_{16}=s_{61}=s_{26}=s_{62}=0\)

Using the figure below to define the in-plne stress, stress resultant, and laminate stiffness by integration:

\[
\begin{align*}
& \mathbf{N}_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} d z \\
& M_{x}=\int_{-h / 2}^{h / 2} \sigma_{x} z d z \tag{5.1}
\end{align*}
\]
rewriting to obtain equation 5.2
\(\left\{\begin{array}{l}N_{x} \\ N_{y} \\ N_{x y}\end{array}\right\}=\int_{-h / 2}^{-h / 2}\left\{\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\} d z=\sum_{k=1}^{n} \int_{-a_{k-1}}^{\theta_{k}}\left[\begin{array}{l}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\} d z\)
\[
\begin{align*}
& \left.+\int_{o_{k-1}-1}^{o_{k}}\left[\begin{array}{l}
k_{x} \\
k_{x} \\
k y y
\end{array}\right\} z d z\right) \tag{5.3}
\end{align*}
\]

Finally obtain Equation 5.4
\(\left\{\begin{array}{l}N_{X} \\ N_{Y} \\ N_{X Y}\end{array}\right\}=\left[\begin{array}{lll}\bar{A}_{11} & \bar{A}_{12} & \bar{A}_{16} \\ \bar{A}_{21} & \bar{A}_{22} & \bar{A}_{26} \\ \bar{A}_{31} & \bar{A}_{32} & \bar{A}_{33}\end{array}\right]\left[\begin{array}{l}E_{x}^{0} \\ E_{y}^{\circ} \\ \gamma_{x y}^{0}\end{array}\right]+\left[\begin{array}{lll}\bar{B}_{11} & \bar{B}_{12} & \bar{B}_{16} \\ \bar{B}_{21} & \bar{B}_{22} & \bar{B}_{26} \\ \bar{B}_{31} & \bar{B}_{32} & \bar{B}_{33}\end{array}\right]\left\{\begin{array}{l}k_{x} \\ k_{y} \\ k_{x y}\end{array}\right]\)
WHERE
\[
\begin{aligned}
& A_{i j}=\sum_{k=1}^{n}\left(\bar{Q}_{i j}\right)_{k}\left(a_{k}-a_{k-1}\right) \\
& B_{i j}=\sum_{k=1}^{n}\left(\bar{Q}_{i j}\right)_{k}\left(a_{k}^{2}-a_{k-1}^{2}\right)
\end{aligned}
\]

The strain-stress relations for an axisymmetric muti-layered cylinder (Figur e-3) in cylinderical coordinates are given by:
\[
\begin{aligned}
& \epsilon_{r}^{(k)}=S_{r r}^{(k)} \sigma_{r}^{(k)}+S_{r \theta}^{(k)} \sigma_{\theta}^{(k)}+S_{r z}^{(k)} \sigma_{z}^{(k)} \\
& \epsilon_{\theta}^{(k)}=S_{r \theta}^{(k)} \sigma_{r}^{(k)}+S_{\theta \theta}^{(k)} \sigma_{\theta}^{(k)}+S_{\theta z}^{(k)} \sigma_{z}^{(k)} \\
& \epsilon_{z}^{(k)}=S_{r z}^{(k)} \sigma_{r}^{(k)}+S_{\theta z}^{(k)} \sigma_{\theta}^{(k)}+S_{z z}^{(k)} \sigma_{z}^{(k)}
\end{aligned}
\]

Where \(S_{i j}{ }^{(k)}(i j=r, \theta, z)\) are components of the compliance matrix. The superscript \(k\) refers to the \(k\)-th layer.

The strain in z-direction is assumed to be constant ( \(\epsilon_{z}^{(k)}=\epsilon_{z}^{0}\) ) Then strain-stress relations modify to
\[
\begin{aligned}
& \epsilon_{r}^{(k)}=\beta_{r r}^{(k)} \sigma_{r}^{(k)}+\beta_{r \theta}^{(k)} \sigma_{\theta}^{(k)}+v_{r z}^{(k)} \epsilon_{z}^{0} \\
& \epsilon_{\theta}^{(k)}=\beta_{r \theta}^{(k)} \sigma_{r}^{(k)}+\beta_{\theta \theta}^{(k)} \sigma_{\theta}^{(k)}+v_{z \theta}^{(k)} \epsilon_{z}^{0}
\end{aligned}
\]
where \(B_{i j}{ }^{(k)}=S_{i j}{ }^{(k)}-S_{i z}{ }^{(k)} S_{j z}{ }^{(k)} / S_{z z}{ }^{(k)}, \quad(i j=r, \theta)\)
\[
v_{i z}^{(k)}=S_{i z}^{(k)} / S_{z z}^{(k)}, \quad(i j=r, \theta)
\]

The radial, \(\sigma_{r}^{(k)}\), and hoop, \(\sigma_{\theta}^{(k)}\), stresses are
\[
\begin{align*}
\sigma_{r}^{(k)} & =A_{k}\left[\left(r / a_{k}\right)^{g(k)-1}-\left(a_{k} / r\right)^{g(k)+1}\right]+B_{k}\left[-\left(r / a_{k}\right)^{g(k)-1}\right. \\
& \left.+c_{k}^{2 g(k)}\left(r / a_{k}\right)^{g(k)+1}\right] \tag{6.1}
\end{align*}
\]
\[
\begin{align*}
\sigma_{\theta}^{(k)} & =A_{k} g(k)\left[\left(r / a_{k}\right)^{g(k)-1}-\left(\varepsilon_{k} / r\right)^{g(k)+1}\right]-B_{k} g(k)\left[-\left(r / a_{k}\right)^{g(k)-1}\right. \\
& \left.+c_{k}{ }^{2 g(k)}\left(\varepsilon_{k} / r\right)^{g(k)+1}\right] \tag{6.2}
\end{align*}
\]
and
\[
\begin{equation*}
\sigma_{z}^{(k)}=\left(\epsilon_{z}^{0}-S_{r z}^{(k)} \sigma_{r}^{(k)}-S_{\theta z}^{(k)} \sigma_{\theta}^{(k)}\right) /+S_{z z}^{(k)} \tag{6.3}
\end{equation*}
\]
where
\[
\begin{aligned}
& A_{k}=\left(q^{(k-1)} c_{k} g(k)+1\right) /\left(1-c_{k}^{2 g(k)}\right) \\
& B_{k}=q^{(k)} /\left(1-c_{k} 2 g(k)\right) \\
& c_{k}=8_{k-1} / \theta_{k} \\
& g(k)=\left[B_{r r}^{(k)} / B_{\theta \theta}(k)\right]^{1 / 2}
\end{aligned}
\]

To determine \(\epsilon_{z}^{0}\), the axial stress,
\[
\begin{equation*}
\sum_{k=1}^{n} 2 \pi \int_{a_{k-1}}^{\theta_{k}} \sigma_{2}^{(k)} r d r=\pi\left(q^{(i)}-q^{(e)}\right) a^{2}+F \tag{6.4}
\end{equation*}
\]

Substituting \(\sigma_{z}^{(k)}\) from Equation 6.3 and the expressions for \(\sigma_{r}^{(k)}\) and \(\sigma_{8}^{(k)}\) from Eq 6-1 and 6-2 into equation 6-4 and performing the integration, the expression for \(\epsilon_{z}^{0}\) is given by:
\[
\epsilon_{z}^{0}=\left[\left(q^{(i)}-q^{(e)}\right) a^{2}+F / \pi-\sum_{k=1}^{n}\left(q^{(k-1)} \partial_{k}+q^{(k)} \mu_{k}\right)\right] / \Delta
\]
where
\[
\begin{aligned}
& \partial_{k}=-2\left[a_{k} c_{k}^{g(k)+1}\left(S_{r z}^{(k)}+g(k) S_{\theta Z}^{(k)}\right)\left(a_{k}-c_{k}^{(k)} a_{k-1}\right) /(1+g(k))\right. \\
& \left.-a_{k-1}\left(S_{r z}^{(k)}-g(k) S_{\theta}{ }^{(k)}\right)\left(a_{k} c_{k}^{(k)} a_{k-1}\right) /(1+g(k))\right] /\left\{S_{z z}^{(k)}\left(1-c_{k}^{2 g(k)}\right)\right\} \\
& \mu_{k}=-2\left[a_{k}\left(S_{r z}^{(k)}+g(k) S_{\theta Z}^{(k)}\right)\left(a_{k}-c_{k}^{g(k)} a_{k-1}\right) /\left(1+g(k)+\theta_{k-1} c_{k}^{g(k)}\left(S_{r z}^{(k)}\right.\right.\right. \\
& \left.\left.-g(k) S_{\theta Z}{ }^{(k)}\right)\left(a_{k} c_{k}{ }^{(k)} a_{k-1}\right) /(1-g(k))\right] /\left\{S_{z Z}{ }^{(k)}\left(1-c_{k}{ }^{2 g(k)}\right)\right\}
\end{aligned}
\]
and
\[
\Delta=\sum_{k=1}^{n}\left(\theta_{k}^{2}-\theta_{k-1}^{2}\right) / S_{z z}^{(k)}
\]

\section*{APPENDIX C}

TABLE 9 MICRO-MACROMECHANIC ANALYSIS DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & D & \(E\) & \(F\) & G & H & 1 \\
\hline 1 & \multicolumn{8}{|l|}{MIC-MAC/CYLIN VESSEL: [[theta/\#], . . .\}total |Ply mat:|IM6/ep[Eng]} & \\
\hline 2 & READ ME & Theta 11 & Theta 2 & Theta 3 & Theta 41 & & & & \\
\hline 3 & [Diy angle] & 0.01 & 90.01 & 54.5 & -54.51 & [repeatl & h. \# & h. E-3 & [Rotate] \\
\hline 4 & [ply\#] & 01 & 01 & 1 & 11 & 67.0 & 134.01 & 660.0 & 0.00 \\
\hline 5 & & & & & I & & & & \\
\hline 6 & R/intact & \#\#\#\#\#1 & \#\#\#\#\#1 & 0.99 & 0.991 & R/FPF & 0.991 & safetr & 1.50 \\
\hline 7 & R/dearaded & \#\#\#\#\#1 & \#\#\#\#\#| & 2.59 & 2.591 & R/LPF| & 2.591 & R/lim' & 1.73 \\
\hline 8 & & & & & & Puult & 2.59 & R/lim & 0.99 \\
\hline 9 & size, & m or in & 2L. \(\partial \mathrm{D} . \mathrm{E}-3\) & & <Sg> & <so>lim & <sg>lim* & <sa>ult & \{ \(E^{\circ}\) \} lim \\
\hline 10 & [Length] & 5.00 & 19.51 & 1 & 65.1 & 65.1 & 113.1 & 169. & 2.8 \\
\hline 11 & [Diameter] & 3.60 & 25.79 & 2 & 128. & 127. & 221. & 332. & 7.5 \\
\hline 12 & \multicolumn{3}{|l|}{Angle of wist.deg 0.001} & 6 & 0. & 0.1 & 0.1 & 0.1 & 6.9 \\
\hline 13 & & & & & \(\because\) & & & & \\
\hline 14 & & \multicolumn{3}{|l|}{[Load] [Load] lim} & <ep>E-3 & <ep>lim & <en> \({ }^{\text {a }}\) + \({ }^{+1}\) & <ep>ult & \(E^{\wedge} \mathrm{u} / \mathrm{E}^{\wedge}\) \\
\hline 15 & Axial load F & 10.00 & 9.94 & 1 & 3.90 & 3.88 & 6.731 & 10.10 & 0.33 \\
\hline 16 & Pressure P & 47.00 & 46.71 & 2 & 7.16 & 7.12 & 12.36 & 18.54 & 0.41 \\
\hline 17 & Torque & 0.00 & 0.00 & 6 & 0.001 & 0.001 & 0.00 & 0.001 & 0.98 \\
\hline 18 & & & & & & & & & \\
\hline 19 & & T oor 1 & c.moist & vol/f & Em & Efx & Xm & Xfx & Em/Em \({ }^{\circ}\) \\
\hline 20 & Baseline & 71.6 & 0.0051 & 0.66 & 0.491 & 45 & 8.11 & 770 & 0.30 \\
\hline 21 & [Modified] & 71.6 & 0.005 & 0.661 & 0.491 & 451 & 8.11 & 770 & 0.30 \\
\hline 22 & Mod/Base & 1.000 & 1.000 & 1.0001 & 1.0001 & 1.0001 & 1.0001 & 1.000 & 1.000 \\
\hline 23 & Mod-Base & 0.0 & 0.0001 & Hot/Wet & 0.491 & 45 & 8.11 & 770 & \\
\hline 24 & & & & & & & & & \\
\hline 25 & & & & & & & & & \\
\hline 26 & & & & & & & & & \\
\hline 27 & \multicolumn{4}{|l|}{Ply data linked to Ply Data File:} & & & & & \\
\hline 28 & |M6/eolEng & 29.463 & 1.6255 & 0.32 & 1.21921 & 0.4935 & 251.61 & 320 & \\
\hline 29 & 507.98258 & 223.51 & 8.1277 & 21.771 & 14.2241 & 1.2 & 71.6 & 0.005 & \\
\hline 30 & -0.5 & 4925 & 0.66 & 1.6 & 0.5161 & 0.5 & 0.2 & 0.9 & \\
\hline 31 & -0.166667 & 15.611 & 0 & 0.6 & 0.3161 & 0.004 & 0.004 & 3600 & \\
\hline 32 & 11.371 & 55.861 & 0.906 & 1.61 & 01 & 0 & 01 & 0 & \\
\hline 33 & & & & & & & & & \\
\hline 34 & & & & & & & , & & \\
\hline 35 & & & & & & & 1 & & \\
\hline 36 & & & & & & & 1 & & \\
\hline 37 & & & & & & & 1 & & \\
\hline 38 & & & & & & & I ! & & \\
\hline 39 & & & & & & & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(J\) & K & L & M & N & 0 & P & Q \\
\hline 1 & \multicolumn{3}{|l|}{INTACT PLY DATA MODULE} & & \multicolumn{3}{|l|}{Temperature deg and moisture} & \\
\hline 2 & 1M6/ep[Eng & & & & [1] opr & 72 & 72 & 1.00 \\
\hline 3 & \multicolumn{4}{|l|}{Rigid body rotation of the entire laminate, il} & [c],wet & 0.005 & 0.005 & 1.00 \\
\hline 4 & Stiffness & Baseline & Modified & Mod/B & T cure & 252 & 252 & 1.00 \\
\hline 5 & Ex,GPa & 29.46 & 29.46 & 1.001 & \(T\) glass & 320 & 320 & 1.00 \\
\hline 6 & Ey.GPa & 1.631 & 1.63 & 1.00 & T \({ }^{\text {- }}\) & 1.00 & 1.00 & 1.00 \\
\hline 7 & \(\mathrm{nu} / \mathrm{x}\) & 0.32 ! & 0.32 & 1.00 & del T & -180 & -180 & 1.00 \\
\hline 8 & Es.GPa & 1.22 & 1.22 & 1.00 & & & & \\
\hline 9 & ho.E.6m & 4925 & 4925 & 1.001 & hermal ex & sion. E-6 & & \\
\hline 10 & \multicolumn{2}{|l|}{Micromechanics data} & & & alph/x & -0.17 & -0.17 & 1.00 \\
\hline 11 & vol/f & 0.66 & 0.66 & 1.00 & alph/y & 15.61 & 15.61 & 1.00 \\
\hline 12 & Efx & 451 & 45 & \multicolumn{3}{|l|}{\(1.00 \mid\) Moisture expansion./c|} & & \\
\hline 13 & En & 0.491 & 0.49 & 1.00 & beta/x & 0.00 & 0.00 & 1.00 \\
\hline 14 & otaly & 0.521 & 0.52 & 1.00 & beta/y & 0.60 & 0.60 & 1.00 \\
\hline 15 & \(v * 1 y\) & 0.27 & 0.27 & 1.00 & & & & \\
\hline 16 & Efy,GPa & 4.171 & 4.17 & \multicolumn{4}{|l|}{1.00 Ply \& consti strengths, MPa} & \\
\hline 17 & eta/s & 0.32 & 0.32 & 1.001 & \(X\) & 508 & 508 & 1.00 \\
\hline 18 & \(v \cdot / s\) & 0.161 & 0.16 & 1.00 & \(X^{\prime}\) & 224 & 224 & 1.00 \\
\hline 19 & Gfx.GPa & 15.85 & 15.85 & 1.00 & \(Y\) & 81 & 8 & 1.00 \\
\hline 20 & & - & & & \(Y^{\prime}\) & 22 & 22 & 1.00 \\
\hline 21 & \multicolumn{3}{|l|}{Plane stress stiffness. GPa} & & S & 14 & 14 & 1.00 \\
\hline 22 & Qxx & 29.63 & 29.63 & 1.001 & [Fxy*] & -0.50 & -0.50 & 1.00 \\
\hline 23 & Qyy & 1.631 & 1.63 & 1.00 & [ Xf ] & 770 & 770 & 1.00 \\
\hline 24 & Qxy & 0.52 & 0.52 & 1.00 & [ Xm ] & 8 & 8 & 1.00 \\
\hline 25 & Oss & 1.22 ! & 1.22 & 1.001 & & & & \\
\hline 26 & \multicolumn{3}{|l|}{Linear combinations, GPa} & \multicolumn{4}{|l|}{Strength parameters. \(\mathrm{Pa}^{\wedge} .18\)} & \\
\hline 27 & U1 & 12.46 & 12.46 & 1.001 & FXX & 8.81 & 8.81 & 1.00 \\
\hline 28 & U2 & 14.001 & 14.00 & 1.00 & Fyy & 5651.44 & 5651.44 & 1.00 \\
\hline 29 & U3 & 3.171 & 3.17 & 1.00 & Fxy & -111.55 & -111.55 & 1.00 \\
\hline 30 & U4 & 3.691 & 3.69 & 1.001 & Fss & 4942.95 & 4942.95 & 1.00 \\
\hline 31 & U5=G/iso & 4.391 & 4.39 & 1.00 & Fx,E-9 & -2.51 & -2.51 & 1.00 \\
\hline 32 & \multicolumn{3}{|l|}{Quasi-isotrodic constants} & & Fy.E-9 & 77.10 & 77.10 & 1.00 \\
\hline 33 & E.GPa & 11.37 & 11.37 & 1.001 & Gxx & 5821 & 5821 & 1.00 \\
\hline 34 & nu & 0.301 & 0.30 & 1.001 & Gyy & 14915 & 14915 & 1.00 \\
\hline 35 & & 1 & & & Gxy & .464 & -464 & 1.00 \\
\hline 36 & Density & 1.601 & 1.60 & 1.001 & Gss & 73471 & 7347 & 1.00 \\
\hline 37 & rho/m & 1.20 & 1.20 & 1.001 & GX & -34 & . 34 & 1.00 \\
\hline 38 & rholf & 1.81 if & 1.81 & 1.001 & Gy & 125 & 125 & 1.00 \\
\hline 39 & & & & " & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & R & S & \(T\) & U & V & W & X \\
\hline 1 & \multicolumn{6}{|l|}{INTACT LAMINATE MODULUS MODULE - elastic and hygrothermal constants} & \\
\hline 2 & & & & & & & \\
\hline 3 & [Angle] & theta/1 & theta/2 & theta/3 & theta/4 & & \\
\hline 4 & [theta] & 0.01 & 90.0 & 54.5 & -54.5 & [REP]] & \\
\hline 5 & [\#/grp] & 0.01 & 0.0 & 1.0 & 1.0 & 67 & \\
\hline 6 & 2X, rad & 0.001 & 3.141 & 1.90 & -1.90 & h/r.\# & \\
\hline 7 & 4X, rad & 0.00 & 6.28 & 3.80 & -3.80 & 2.0 & \\
\hline 8 & & & & & & & \\
\hline 9 & Top \(z^{*}\) & 1.00 & 1.001 & 1.00 & 0.50 & & \\
\hline 10 & Bott \(\mathrm{z}^{*}\) & 1.001 & 1.00 & 0.50 & 0.00 & & \\
\hline 11 & del( \(z^{*}\) ) & 0.00 & 0.00 & 0.50 & 0.50 & h & \\
\hline 12 & & 1 & & . & & 0.660 & \\
\hline 13 & & & & & & & \\
\hline 14 & Stiff & 101/1 & [Q]/2 & [Q]/3 & [Q]/4 & [A] & [A.] \\
\hline 15 & 11 & 29.63 & 1.63 & 5.41 & 5.41 & \(4 \mathrm{E}+00\) & 5.41 \\
\hline 16 & 22 & 1.63 & 29.63 & 14.53 & 14.53 & \(1 E+01\) & 14.53 \\
\hline 17 & \(21=12\) & 0.52 & 0.52 & 6.19 & 6.19 & \(4 \mathrm{E}+00\) & 6.19 \\
\hline 18 & 66 & 1.22 & 1.22 & 6.88 & 6.88 & \(5 \mathrm{E}+00\) & 6.88 \\
\hline 19 & \(61=16\) & 0.001 & 0.00 & 4.671 & -4.67 & \(0 E+00\) & 0.00 \\
\hline 20 & \(62=26\) & 0.001 & 0.00 & 8.571 & -8.57 & \(0 \mathrm{E}+001\) & 0.00 \\
\hline 21 & & & & & |A] & \(8 \mathrm{E}+011\) & \\
\hline 22 & Comol & [a] & & [a'] & & Eio & \\
\hline 23 & 11 & 5E.011 & & 4E-011 & & 2.78 & \\
\hline 24 & 22 & 2E.011 & & 1E-011 & & 7.451 & \\
\hline 25 & \(21=12\) & -2E-011 & & -2E-011 & & 0.431 & \\
\hline 26 & 66 & 2E-011 & & 1E-011 & & 6.881 & \\
\hline 27 & \(61=16\) & OE+00 & & \(0 \mathrm{E}+001\) & & 0.00 & \\
\hline 28 & \(62=26\) & \(0 \mathrm{E}+00\) & & OE+00l & & 0.001 & \\
\hline 29 & & & & & & & \\
\hline 30 & Nonmechan & stress and & train & & & \(V \cdot / \mathrm{iA}\) & \\
\hline 31 & \(V * 11 A\) & 0.001 & 0.00 & -0.16 & -0.16 & -0.33 & \\
\hline 32 & \(V / 3 \mathrm{~A}\) & 0.001 & 0.00 & 0.47 & -0.47 & 0.001 & \\
\hline 33 & & DAn/T & \(\mathrm{p}^{\wedge} \mathrm{n} / \mathrm{c}\) & \(\operatorname{sig}^{\wedge} n / T\) & \(\operatorname{sig}^{\wedge} n / \mathrm{c}\) & aloha 0 & beta 0 \\
\hline 34 & 1 & 1E-051 & 6E-011 & 2E-05 & 8E-011 & \(5 \mathrm{E}+00 \mathrm{l}\) & 2E-01 \\
\hline 35 & 2 & -1E-05 & -3E-011 & 1E-05 & 5E-01 & \(-1 E+00\) & -4E-02 \\
\hline 36 & 6 & \(\operatorname{sig}^{\wedge} n 0\) & eos^n 0 & OE+OO & \(0 \mathrm{E}+00\) & \(0 E+00\) & \(0 \mathrm{E}+00\) \\
\hline 37 & 1 & 5E-041 & 8E-05 & e/x & 3E-05 & & \\
\hline 38 & 2 & 8E-041 & 2E-05 & e/y & 2E-04 & & \\
\hline 39 & 6 & OE+001 & \(0 \mathrm{E}+00\) & e/s & \(0 \mathrm{E}+00\) & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(Y\) & \(Z\) & A A & AB & \(A C\) & AD & AE \\
\hline 1 & \multicolumn{3}{|l|}{STRENGTH ANALYSIS MODULE I -} & & & & \\
\hline 2 & theta & 0.0 & 90.0 & 54.5 & . 54.5 & [r] & [2c] \\
\hline 3 & \#/group & 0.0 & 0.0 & 1.0 & 1.0 & 67 & 0.0 \\
\hline 4 & 2Xtheta & \#DIVIO! & \#DIVIO! & 1.9 & . 1.9 & h & 7E-01 \\
\hline 5 & & & & & & & \\
\hline 6 & \multicolumn{3}{|l|}{ToD laminate loads \& strains} & & & & \\
\hline 7 & & \multicolumn{2}{|l|}{\(\mathrm{Ni}, \mathrm{MN} / \mathrm{m}\) or kip/in} & eps 0.E-3 & & (p.q.r)eps & \(\mid \mathrm{n}-\mathrm{ol}\) \\
\hline 8 & 1 & \(4.3 E+01\) & & \(3.9 \mathrm{E}+00\) & & po & \(5.5 E+00\) \\
\hline 9 & 2 & \(8.5 E+01\) & & \(7.2 \mathrm{E}+00\) & & 90 & \(-1.6 E+00\) \\
\hline 10 & 6 & \(0.0 \mathrm{E}+00\) & & \(0.0 E+00\) & & 10 & \(0.0 E+00\) \\
\hline 11 & & & & & & & \\
\hline 12 & \multicolumn{2}{|l|}{On-axis epsilons} & & & & & \\
\hline 13 & epsx 0 & \#DIVIO! & \#DIVIO! & \(6.1 E+001\) & \multicolumn{2}{|l|}{\(6.1 E+00\)} & \\
\hline 14 & eosy 0 & \#DIVIO! & \#DIVIO! & \(5.0 E+00\) & \multicolumn{2}{|l|}{\(5.0 E+00\)} & \\
\hline 15 & edss 0 & \#DIVIo! & \#DIVIO! & \(3.1 E+00\) & \multicolumn{2}{|l|}{\(-3.1 E+00\)} & \\
\hline 16 & & & & & & & \\
\hline 17 & & & & & & & \\
\hline 18 & & & & & & & \\
\hline 19 & & & & & & & \\
\hline 20 & & <sig> & p.q.r \(<\) sig \(>\) & <eps> & & & \\
\hline 21 & 1 & \(6.5 E+011\) & 9.7E+01 & \(3.9 \mathrm{E}+001\) & & & \\
\hline 22 & 2 & \(1.3 E+02\) & -3.1E+01 & \(7.2 \mathrm{E}+001\) & & & \\
\hline 23 & 6 & \(0.0 E+001\) & \(0.0 E+00\) & \(0.0 \mathrm{E}+001\) & & & \\
\hline 24 & !sigl. eps! & 1.1E+02 & \(3.1 \mathrm{E}+01\) & \(8.2 \mathrm{E}+001\) & & & \\
\hline 25 & & max |sigl & \(1.1 E+02\) & max leps & \(8.2 \mathrm{E}+00\) & \(-4 n u+n u^{\wedge} 21\) & \\
\hline 26 & & |sigl guad & 8388.2838 & \(1+n u^{\wedge} 2\) & 1.0876793 & -0.0967491 & \\
\hline 27 & & Q-iso & Al 2024 & SS 304 & Netting analy & sis: \(\pi / 4\) | & \\
\hline 28 & E.GPa & 11.4 & 69.0 & 210.01 & [0] & 0.001 & 1 \\
\hline 29 & X.MPa & 56 & 200 & 4001 & [90] & 0.00 & 1 \\
\hline 30 & rho & 1.601 & 2.70 & 7.80 & [45] & 0.00 & 0 \\
\hline 31 & \(\mathrm{R}=\mathrm{X} / 1\) sigl & 0.5031 & 1.801 & 3.6031 & [-45] & 0.00 & 0 \\
\hline 32 & rel rio & 1.001 & 1.69 & 4.88 & \# plies & 0.001 & 2 \\
\hline 33 & eps/iso & \(9.87 E+001\) & \(1.67 \mathrm{E}+001\) & 5.50E-011 & & 1 & \\
\hline 34 & rel stiff & 1.210 & 0.205 & 0.0671 & Netting analv & is: off-axis & cross-oly \\
\hline 35 & spec stiff & 1.210 & 0.346 & 0.329 & N 1/101 & \(8.5 E+01\) & 3.382E-05 \\
\hline 36 & spec R & 0.501 & 1.067 & 0.739 & N 11/190] & \(4.3 E+011\) & 1.726E-05 \\
\hline 37 & & & & & thetalo & 01 & 1.00 \\
\hline 38 & & . & & 1 & 1 & & 1.00 \\
\hline 39 & & & & & 1 & . 1 & 2 \\
\hline
\end{tabular}

\section*{APPENDIX D}

\section*{TABLE 10 LAMRANK DATA}


Absolute laminate compliance matrix \(\mid a b l\) |bd|

Intact Matcrials
\(0.5371 \mathrm{E}-06-0.2288 \mathrm{E}-06-0.1185 \mathrm{E}-08\)
-0.2288E-06 0.2002E-06-0.1404E-08
-0.1185E-08 -0.1404E-08 0.2169E-06
\(-0.2008 \mathrm{E}-11 \quad 0.4905 \mathrm{E}-12 \quad 0.9514 \mathrm{E}-13\) \(0.4904 \mathrm{E}-12-0.1232 \mathrm{E}-12 \quad 0.9903 \mathrm{E}-13\) \(0.1005 E-12 \quad 0.9735 E-13-0.1051 E-12\)

Degraded Matcrials
0.1754E-05-0.8401E-06-0.1312E-08
-0.8401E-06 0.5142E-06 -0.1619E-08 \(-0.1312 \mathrm{E}-08-0.1619 \mathrm{E}-08 \quad 0.2224 \mathrm{E}-06\)
\(-0.6037 \mathrm{E}-11 \quad 0.2644 \mathrm{E}-11 \quad 0.8743 \mathrm{E}-13\)
\(0.2644 \mathrm{E}-11-0.1400 \mathrm{E}-11 \quad 0.1314 \mathrm{E}-12\)
\(0.9042 \mathrm{E}-13 \quad 0.1295 \mathrm{E}-12-0.5959 \mathrm{E}-12\)
\[
\begin{array}{rrr}
-0.2008 \mathrm{E}-11 & 0.4904 \mathrm{E}-12 & 0.1005 \mathrm{E}-12 \\
0.4905 \mathrm{E}-12 & -0.1232 \mathrm{E}-12 & 0.9735 \mathrm{E}-13 \\
0.9514 \mathrm{E}-13 & 0.9903 \mathrm{E}-13 & -0.1051 \mathrm{E}-12
\end{array}
\]
0.1436E-04-0.6116E-05-0.4752E-07 \(-0.6116 \mathrm{E}-05 \quad 0.5352 \mathrm{E}-05 \quad-0.5630 \mathrm{E}-07\) \(-0.4752 \mathrm{E}-07-0.5630 \mathrm{E}-07 \quad 0.5799 \mathrm{E}-05\)
```

-0.6037E-11 0.2644E-11 0.9042E-13
$0.2644 \mathrm{E}-11-0.1400 \mathrm{E}-11 \quad 0.1295 \mathrm{E}-12$
$0.8743 \mathrm{E}-13 \quad 0.1314 \mathrm{E}-12-0.5959 \mathrm{E}-12$

```
\(0.4688 \mathrm{E}-04-0.2246 \mathrm{E}-04-0.5261 \mathrm{E}-07\)
-0.2246E-04 \(0.1375 \mathrm{E}-04-0.6491 \mathrm{E}-07\)
\(-0.5261 \mathrm{E}-07-0.6491 \mathrm{E}-07 \quad 0.5947 \mathrm{E}-05\)

Normalized laminate stiffness matrix \(\left|A^{*} B^{*}\right|\) (msi)
| \(3 \mathrm{~B}^{*}\) D*|
\begin{tabular}{rccrrr}
\multicolumn{5}{c}{ Intact Matcrials } \\
5.4144 & 6.1877 & .0696 & 0.0000 & 0.0000 & 0.0000 \\
6.1877 & 14.5266 & .1278 & 0.0000 & 0.0000 & 0.0000 \\
.0696 & .1278 & 6.8831 & 0.0000 & 0.0000 & 0.0000 \\
& & & & & \\
0.0000 & 0.0000 & 0.0000 & 5.4144 & 6.1876 & .1045 \\
0.0000 & 0.0000 & 0.0000 & 6.1876 & 14.5266 & .1918 \\
0.0000 & 0.0000 & 0.0000 & .1045 & .1918 & 6.8831
\end{tabular}

Degraded Matcrials
\begin{tabular}{cccccc}
3.9136 & 6.3934 & .0696 & 0.0000 & 0.0000 & 0.0000 \\
6.3934 & 13.3470 & .1348 & 0.0000 & 0.0000 & 0.0000 \\
.0696 & .1348 & 6.7125 & 0.0000 & 0.0000 & 0.0000 \\
& & & & & \\
& & & & \\
0.0000 & 0.0000 & 0.0000 & & 6.9136 & 6.3934 \\
0.0000 & 0.0000 & 0.0000 & .1044 & 13.3470 & .2022 \\
0.0000 & 0.0000 & 0.0000 & & .1044 & .2022
\end{tabular}

Normalized laminate compliance matrix \(\left|a^{*} b^{*} / 3\right| 1 /\left(10^{* *} 9 \mathrm{psi}\right)\) \(\left|b^{*} t d^{*}\right|\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Intact Matcrials} \\
\hline 359.8779 & -153.2842 & -. 7940 & -. 0002 & 0.0000 & 0.0000 \\
\hline -153.2841 & 134.1394 & -. 9407 & 0.0000 & 0.0000 & 0.0000 \\
\hline -. 7940 & -. 94071 & 145.3090 & 0.0000 & 0.0000 & 0.0000 \\
\hline -. 0005 & . 0001 & 0.0000 & 359.8839 - & -153.2781 & -1.1911 \\
\hline . 0001 & 0.0000 & 0.0000 & -153.2781 13 & 134.1473 & -1.4112 \\
\hline 0.0000 & 0.0000 & 0.0000 & -1.1911 & -1.4112 & 145.3413 \\
\hline \multicolumn{6}{|c|}{Degraded Matcrials} \\
\hline 1175.0280 & -562.8461 & \(1-.8788\) & -. 0005 & . 00020 & 0.0000 \\
\hline -562.8461 & 344.5452 & -1.0844 & . 0002 & -. 00010 & 0.0000 \\
\hline -. 8788 & -1.0844 & 149.0075 & 0.0000 0. & 0.0000 0.00 & 0.0000 \\
\hline -. 0014 & . 0006 & 0.0000 & 1175.0450 & -562.8431 & -1.3185 \\
\hline . 0006 & -. 0003 & 0.0000 & -562.8432 & 344.5575 & -1.6269 \\
\hline 0.0000 & 0.0000 & -. 0001 & -1.3185 & -1.6269 & (149.0460 \\
\hline
\end{tabular}


\section*{Load Case No 1 (Intact Matcrials)}


\section*{APPENDIX E}

\section*{TABLE 11 TEXGAP2D ANALYSIS DATA}


DIRECT LIST OF TRANSLATED DATA
\begin{tabular}{|c|c|c|}
\hline POINT, & 11, & 6,0.215378E+02,0.614960E+02 \\
\hline POINT, & 12, & 6,0.202844E+02,0.614355E+02 \\
\hline POINT, & 13. & \(6,0.260000 \mathrm{E}+02,0.610000 \mathrm{E}+02\) \\
\hline POINT, & 14, & 6,0.253092E+02,0.609591E+02 \\
\hline POINT, & 15, & \(6,0.246184 \mathrm{E}+02,0.609182 \mathrm{E}+02\) \\
\hline POINT, & 16, & 6,0.239276E+02,0.608773E+02 \\
\hline POINT, & 17, & \(6,0.232368 \mathrm{E}+02,0.608364 \mathrm{E}+02\) \\
\hline POINT, & 18, & 6,0.225459E+02,0.607955E+02 \\
\hline POINT, & 19, & \(6,0.218551 \mathrm{E}+02,0.607546 \mathrm{E}+02\) \\
\hline POINT, & 20, & 6,0.204735E+02,0.606728E+02 \\
\hline POINT, & 1, & 7,0.211643E+02,0.607137E+02 \\
\hline POINT, & 2, & 7,0.260000E+02,0.601667E+02 \\
\hline POINT, & 3. & 7,0.246585E+02,0.601009E+02 \\
\hline POINT, & 4, & 7,0.233170E+02,0.600351E+02 \\
\hline POINT, & 5, & 7,0.219755E+02,0.599694E+02 \\
\hline POINT, & 6 , & 7,0.206340E+02,0.599036E+02 \\
\hline POINT, & 7. & 7,0.260000E+02,0.593333E+02 \\
\hline POINT, & 8, & \(7,0.253457 \mathrm{E}+02,0.593078 \mathrm{E}+02\) \\
\hline POINT, & 9. & \(7,0.246914 \mathrm{E}+02,0.592824 \mathrm{E}+02\) \\
\hline POINT, & 10, & 7,0.240371E+02,0.592569E+02 \\
\hline POINT, & 11, & 7,0.233828E+02,0.592314E+02 \\
\hline POINT, & 12, & \(7,0.227284 \mathrm{E}+02,0.592059 \mathrm{E}+02\) \\
\hline POINT, & 13, & 7,0.220741E+02,0.591804E+02 \\
\hline POINT, & 14. & 7,0.207655E+02,0.591294E+02 \\
\hline POINT, & 15, & 7,0.214198E+02,0.591549E+02 \\
\hline POINT, & 16. & \(7,0.260000 \mathrm{E}+02,0.585000 \mathrm{E}+02\) \\
\hline POINT, & 17. & \(7,0.247170 \mathrm{E}+02,0.584628 \mathrm{E}+02\) \\
\hline POINT, & 18, & \(7,0.234340 \mathrm{E}+02,0.584256 \mathrm{E}+02\) \\
\hline POINT, & 19, & \(7,0.221510 \mathrm{E}+02,0.583884 \mathrm{E}+02\) \\
\hline POINT, & 20, & 7,0.208680E \(+02,0.583512 \mathrm{E}+02\) \\
\hline POINT, & 1, & 8, 0.260000E \(+02,0.576667 \mathrm{E}+02\) \\
\hline POINT, & 2, & 8, 0.253677E+02,0.576545E+02 \\
\hline POINT, & 3. & 8, \(0.247353 \mathrm{E}+02,0.576424 \mathrm{E}+02\) \\
\hline POINT, & 4. & \(8,0.241030 \mathrm{E}+02,0.576303 \mathrm{E}+02\) \\
\hline POINT, & 5, & 8, \(0.234706 \mathrm{E}+02,0.576182 \mathrm{E}+02\) \\
\hline POINT, & 6, & 8, 0.228383E+02,0.576060E+02 \\
\hline POINT, & 7. & 8,0.222059E+02, 0.575939E+02 \\
\hline POINT, & 8. & 8, 0.209412E+02, 0.575697E+02 \\
\hline POINT, & 9. & \(8,0.215736 \mathrm{E}+02,0.575818 \mathrm{E}+02\) \\
\hline POINT, & 10. & \(8,0.260000 \mathrm{E}+02,0.568333 \mathrm{E}+02\) \\
\hline POINT, & 11. & \(8,0.247463 \mathrm{E}+02,0.568214 \mathrm{E}+02\) \\
\hline POINT, & 12, & 8, 0.234926E+02,0.568095E+02 \\
\hline POINT, & 13. & 8, 0.222390E+02,0.567976E+02 \\
\hline POINT, & 14, & 8,0.209853E+02,0.567856E+02 \\
\hline POINT, & 15, & 8,0.253750E+02,0.560000E+02 \\
\hline POINT, & 16. & \(8,0.260000 \mathrm{E}+02,0.560000 \mathrm{E}+02\) \\
\hline POINT, & 17, & 8,0.247500E+02,0.560000E+02 \\
\hline POINT, & 18, & 8, 0.241250E+02,0.560000E+02 \\
\hline POIN & 19, & B, \(0.235000 \mathrm{E}+02,0.560000 \mathrm{E}+02\) \\
\hline POINT, & 20, & 8,0.228750E+02,0.560000E+02 \\
\hline POINT, & 1. & \(9,0.222500 \mathrm{E}+02,0.560000 \mathrm{E}+02\) \\
\hline POINT, & 2, & 9,0.210000E+02,0.560000E+02 \\
\hline POINT, & 3, & 9,0.216250E +02,0.560000E+02 \\
\hline POINT, & 4, & 9,0.247500E+02,0.553333E+02 \\
\hline POINT, & 5. & 9,0.260000E \(+02,0.553333 \mathrm{E}+02\) \\
\hline POIN & & \\
\hline
\end{tabular}

DIRECT LIST OF TRANSLATED DATA
\begin{tabular}{|c|c|c|}
\hline POINT, & 15, & 3,0.154378E \\
\hline POINT, & 16, & 3,0.148196E+02,0.708797E+02 \\
\hline POINT, & 17, & 3,0.190497E+02,0.699328E+02 \\
\hline POINT, & 18, & \(3,0.187164 \mathrm{E}+02,0.698335 \mathrm{E}+02\) \\
\hline POINT, & 19, & \(3,0.183830 \mathrm{E}+02,0.697343 \mathrm{E}+02\) \\
\hline POINT, & 20. & 3,0.180497E+02,0.696350E+02 \\
\hline POINT, & 1, & 4, 0.177164E+02,0.695358E+02 \\
\hline POINT, & 2, & 4, 0.173831E+02,0.694365E+02 \\
\hline POINT, & 3. & 4, 0.170497E +02,0.693372E+02 \\
\hline POINT, & 4. & \(4,0.163831 \mathrm{E}+02,0.691387 \mathrm{E}+02\) \\
\hline POINT, & 5. & 4, 0.167164E+02,0.692380E+02 \\
\hline POINT, & 6. & 4, 0.205733E+02,0.675641E+02 \\
\hline POINT, & 7. & 4, 0.198718E+02,0.674720E+02 \\
\hline POINT, & 8. & 4,0.191703E+02,0.673799E+02 \\
\hline POINT, & 9. & \(4,0.184681 \mathrm{E}+02,0.672888 \mathrm{E}+02\) \\
\hline POINT, & 10. & \(4,0.177666 \mathrm{E}+02,0.671966 \mathrm{E}+02\) \\
\hline POINT, & 11. & \(4,0.218036 \mathrm{E}+02,0.650312 \mathrm{E}+02\) \\
\hline POINT, & 12, & 4, 0.214432E+02, 0.650412E+02 \\
\hline POINT, & 13. & \(4,0.210828 \mathrm{E}+02,0.650513 \mathrm{E}+02\) \\
\hline POI & 14. & \(4,0.207224 \mathrm{E}+02,0.650613 \mathrm{E}+02\) \\
\hline POINT, & 15. & \(4,0.203620 \mathrm{E}+02,0.650713 \mathrm{E}+02\) \\
\hline OI & 16. & 4,0.200016E+02, 0.650814E+02 \\
\hline I & 17. & 4,0.196412E+02, 0.650914E+02 \\
\hline POINT, & 18. & 4,0.189204E+02,0.651115E+02 \\
\hline POINT, & 19. & \(4,0.192808 \mathrm{E}+02,0.651014 \mathrm{E}+02\) \\
\hline Oint, & 20. & 4,0.225030E+02, 0.643593E+02 \\
\hline OiNT, & 1, & \(5,0.216893 \mathrm{E}+02,0.643688 \mathrm{E}+02\) \\
\hline OINT, & 2, & \(5,0.208745 \mathrm{E}+02,0.643796 \mathrm{E}+02\) \\
\hline POINT, & 3. & \(5,0.200610 \mathrm{E}+02,0.643891 \mathrm{E}+02\) \\
\hline POINT, & 4, & 5,0.192480E \(+02,0.643972 \mathrm{E}+02\) \\
\hline POINT, & 5, & 5,0.232024E+02,0.636875E+02 \\
\hline POINT, & 6. & \(5,0.227457 \mathrm{E}+02,0.636855 \mathrm{E}+02\) \\
\hline POINT, & 7. & \(5,0.222889 \mathrm{E}+02,0.636835 \mathrm{E}+02\) \\
\hline POINT, & 8, & \(5,0.218322 \mathrm{E}+02,0.636816 \mathrm{E}+02\) \\
\hline POINT, & 9. & \(5,0.213755 \mathrm{E}+02,0.636796 \mathrm{E}+02\) \\
\hline POINT, & 10. & 5,0.209187E+02,0.636776E+02 \\
\hline POINT, & 11. & \(5,0.204620 \mathrm{E}+02,0.636757 \mathrm{E}+02\) \\
\hline POI & 12. & \(5,0.195485 \mathrm{E}+02,0.636717 \mathrm{E}+02\) \\
\hline POINT, & 13. & \(5,0.200053 \mathrm{E}+02,0.636737 \mathrm{E}+02\) \\
\hline POINT, & 14, & \(5,0.239018 \mathrm{E}+02,0.630156 \mathrm{E}+02\) \\
\hline POINT, & 15, & \(5,0.228806 \mathrm{E}+02,0.629970 \mathrm{E}+02\) \\
\hline POINT, & 16, & \(5,0.218608 \mathrm{E}+02,0.629771 \mathrm{E}+02\) \\
\hline OiNT, & 17, & \(5,0.208409 \mathrm{E}+02,0.629571 \mathrm{E}+02\) \\
\hline OINT, & 18, & \(5,0.198216 \mathrm{E}+02,0.629357 \mathrm{E}+02\) \\
\hline OINT, & 19, & \(5,0.246012 \mathrm{E}+02,0.623437 \mathrm{E}+02\) \\
\hline POINT, & 20. & \(5,0.240344 \mathrm{E}+02,0.623245 \mathrm{E}+02\) \\
\hline POINT, & 1. & \(6,0.234676 \mathrm{E}+02,0.623053 \mathrm{E}+02\) \\
\hline POINT, & 2, & \(6,0.229009 \mathrm{E}+02,0.622861 \mathrm{E}+02\) \\
\hline POINT, & 3. & \(6,0.223341 \mathrm{E}+02,0.622669 \mathrm{E}+02\) \\
\hline POINT, & 4. & \(6,0.217673 \mathrm{E}+02,0.622477 \mathrm{E}+02\) \\
\hline POINT, & 5. & \(6,0.212005 \mathrm{E}+02,0.622285 \mathrm{E}+02\) \\
\hline POINT, & 6, & \(6,0.200670 \mathrm{E}+02,0.621901 \mathrm{E}+02\) \\
\hline POINT, & 7. & \(6,0.206337 E+02,0.622093 E+02\) \\
\hline POINT, & 8, & \(6,0.253006 \mathrm{E}+02,0.616719 \mathrm{E}+02\) \\
\hline POINT, & 9. & \(6,0.240454 \mathrm{E}+02,0.616141 \mathrm{E}+02\) \\
\hline POINT & 10, & \(6,0.227916 \mathrm{E}+02,0.615551 \mathrm{E}+02\) \\
\hline
\end{tabular}

DIRECT LIST OF TRANSLATED DATA
```

POINT, 7. 9,0.266667E+02,0.5600000E+02
POINT, 8, 9,0.266667E+02,0.553333E+02
POINT, 9, 9,0.235000E+02,0.553333E+02
POINT, 10, 9,0.222500E E+02,0.553333E+02
POINT, 11, 9,0.210000E+02,0.553333E+02
POINT, 12, 9,0.270000EE+02,0.560000E+02
POINT, 13, 9,0.273333E+02,0.560000E+02
POINT, 14, 9,0.273333E+02,0.553333E+02
POINT, 15, 9,0.280000EE+02,0.560000E+02
POINT, 16, 9,0.276667E+02,0.560000E +02
POINT, 17, 9,0.280000E+02,0.553333E+02
POINT, 18, 9,0.280000E+02,0.546667E+02
POINT, 19, 9,0.276667E+02,0.546667E+02
POINT, 20, 9,0.280000E+02,0.540000E+02
POINT, 1, 10,0.280000E +02,0.533333E+02
POINT, 2, 10,0.276667E+02,0.533333E+02
POINT, 3, 10,0.280000E+02,0.520000E+02
POINT, 4, 10,0.276667E+02,0.520000E+02
POINT, 5, 10,0.280000E +02,0.526667E+02
POINT, 6, 10,0.253750E+02,0.546667E+02
POINT, 7, 10,0.247500E+02,0.546667E+02
POINT, B, 10,0.260000E +02,0.546667E+02
POINT, 9, 10,0.263333E+02;0.546667E+02
POINT, 10, 10,0.266667E +02,0.546667E+02
POINT, 11, 10,0.241250E+02,0.546667E+02
POINT, 12, 10,0.235000E+02,0.546667E+02
POINT, 13, 10,0.228750E+02,0.546667E+02
POINT, 14, 10,0.222500E+02,0.546667E+02
POINT, 15, 10,0.210000E+02,0.546667E+02
POINT, 16, 10,0.216250E+02,0.546667E+02
POINT, 17, 10,0.270000E +02,0.546667E+02
POINT, 18, 10,0.273333E+02,0.546667E+02
POINT, 19, 10,0.273333E+02,0.540000E+02
POINT, 20, 10,0.273333E+02,0.533333E+02
POINT, 1, 11,0.273333E+02,0.520000E+02
POINT, 2, 11,0.273333E+02,0.526667E+02
POINT, 3, 11,0.247500E+02,0.540000E+02
POINT, 4, 11,0.260000E E 02,0.540000E+02
POINT, 5, 11,0.235000EE+02,0.540000E+02
POINT, 6, 11,0.266667E+02,0.540000E+02
POINT, 7, 11,0.270000EE+02,0.533333E+02
POINT, 8, 11,0.222500E E+02,0.540000E+02
POINT, 9, 11,0.210000E+02,0.540000E+02
POINT, 10, 11,0.270000E+02,0.520000E+02
POINT, 11, 11,0.253750E+02,0.533333E+02
POINT, 12, 11,0.247500EE+02,0.533333E+02
POINT, 13, 11,0.260000EE+02,0.533333E+02
POINT, 14, 11,0.241250E+02,0.533333E+02
POINT, 15, 11,0.235000EE+02,0.533333E+02
POINT, 16, 11,0.263333E+02,0.533333E+02
POINT, 17, 11,0.266667E+02,0.533333E+02
POINT, 18, 11,0.228750E+02,0.533333E+02
POINT, 19, 11,0.222500E+02,0.533333E+02
POINT, 20, 11,0.210000E+02,0.533333E+02
POINT, 1, 12,0.216250E+02,0.533333E+02
POINT, 2; 12,0.266667E+02,0.520000E+02

```

DIRECT LIST OF TRANSLATED DATA
\begin{tabular}{|c|c|}
\hline r, & 3, 12,0.266667E \(+02,0.526667\) \\
\hline POINT, & 4, 12,0.247500E+02,0.526667E+02 \\
\hline POINT, & \(5,12,0.260000 \mathrm{E}+02,0.526667 \mathrm{E}+02\) \\
\hline POINT, & \(6,12,0.235000 \mathrm{E}+02,0.526667 \mathrm{E}+02\) \\
\hline POINT, & 7, 12,0.263333E+02,0.520000E+02 \\
\hline POINT, & 8, 12,0.222500E+02,0.526667E+02 \\
\hline POINT, & 9, 12,0.210000E \\
\hline POINT, & \(10,12,0.253750 \mathrm{E}+02,0.520000 \mathrm{E}+02\) \\
\hline POINT, & \(11,12,0.260000 \mathrm{E}+02,0.520000 \mathrm{E}+02\) \\
\hline POINT, & 12, 12,0.247500E \(+02,0.520000 \mathrm{E}+02\) \\
\hline POINT, & 13, 12,0.241250E \(+02,0.520000 \mathrm{E}+02\) \\
\hline OIN & \(14,12,0.235000 \mathrm{E}+02,0.520000 \mathrm{E}+02\) \\
\hline POIN & 15, 12,0.228750E+02,0.520000E+02 \\
\hline POINT, & 16, 12,0.2225000 \(+02,0.520000 \mathrm{E}+02\) \\
\hline POINT, & 17, 12,0.2100000E+02 \\
\hline POINT, & 18, 12,0.216250E+02 \\
\hline POINT, & 19, 12,0.260000E+02 \\
\hline POINT, & 20, 12,0.247500E+02 \\
\hline POINT, & 1, 13,0.235000E \\
\hline POINT, & 2, 13,0.222500E \\
\hline OI & \(3,13,0.210000 \mathrm{E}+02,0.493333 \mathrm{E}+02\) \\
\hline POINT, & 4, 13 \\
\hline POINT, & \(5,13,0.253750 \mathrm{E}+02,0.466667 \mathrm{E}+02\) \\
\hline POINT, & \(6,13,0.247500 \mathrm{E}+02,0.466667 \mathrm{E}+02\) \\
\hline POINT, & 7, 13,0.241250E+02,0.466667E+02 \\
\hline POINT, & 8, 13,0.235000E+02,0.466667E+02 \\
\hline POINT, & 9, 13,0.228750E+02,0.466667E+02 \\
\hline PO & 10, 13,0.222500E \(+02,0.466667 \mathrm{E}+02\) \\
\hline POI & \(11,13,0.210000 \mathrm{E}+02,0.466667 \mathrm{E}+02\) \\
\hline POI & \(12,13,0.216250 \mathrm{E}+02,0.466667 \mathrm{E}+02\) \\
\hline POINT, & \(13,13,0.260000 \mathrm{E}+02,0.440000 \mathrm{E}+02\) \\
\hline POINT, & \(14,13,0.247500 \mathrm{E}+02,0.440000 \mathrm{E}+02\) \\
\hline POINT, & 15, 13,0.235000E+02,0.440000E+02 \\
\hline POINT, & 16, 13,0.222500E+02, \(0.440000 \mathrm{E}+02\) \\
\hline POINT, & 17, 13,0.210000E \(+02,0.440000 \mathrm{E}+02\) \\
\hline POINT, & \(18,13,0.260000 \mathrm{E}+02,0.413333 \mathrm{E}+02\) \\
\hline POINT, & 19, 13,0.253750E+02,0.413333E+02 \\
\hline POINT, & 20, 13,0.247500E+02,0.413333E+02 \\
\hline POINT, & 1, 14,0.241250E+02,0.413333E+02 \\
\hline POINT, & \(2,14,0.235000 \mathrm{E}+02,0.413333 \mathrm{E}+02\) \\
\hline POINT, & \(3,14,0.228750 \mathrm{E}+02,0.413333 \mathrm{E}+02\) \\
\hline POINT, & 4, 14,0.222500E+02,0.413333E+02 \\
\hline POINT, & \(5,14,0.210000 \mathrm{E}+02,0.413333 \mathrm{E}+02\) \\
\hline POINT, & 6, 14,0.216250E+02,0.413333E+02 \\
\hline POINT, & 7, 14,0.260000E+02,0.386667E+02 \\
\hline POINT, & 8, 14,0.247500E+02,0.386667E+02 \\
\hline POINT, & 9, 14,0.235000E+02,0.386667E+02 \\
\hline POINT, &  \\
\hline POINT, & \(11,14,0.210000 \mathrm{E}+02,0.386667 \mathrm{E}+02\) \\
\hline POINT, & 12, 14,0.260000E \(+02,0.360000 \mathrm{E}+02\) \\
\hline POINT, & \(13,14,0.253750 \mathrm{E}+02,0.360000 \mathrm{E}+02\) \\
\hline POINT, POINT, & 14, 14,0.247250 \(15,14,0.2412502,0.360000 \mathrm{E}+02\) \\
\hline POINT, & 16, 14, 0.235000E+02,0.360000E +02 \\
\hline POINT, & 17, 14,0.228750E+02,0.360000E +02 \\
\hline POINT, & 18, 14,0.222500E+02,0.360000E+02 \\
\hline
\end{tabular}

\section*{DIRECT LIST OF TRANSLATED DATA}

POINT, 19, 14, 0.210000E+02,0.360000E +02
POINT, \(20,14,0.216250 \mathrm{E}+02,0.360000 \mathrm{E}+02\)
POINT, 1, \(15,0.260000 \mathrm{E}+02,0.333333 \mathrm{E}+02\)
POINT, 2, 15,0.247500E+02,0.333333E+02
POINT, \(3,15,0.235000 \mathrm{E}+02,0.333333 \mathrm{E}+02\)
POINT, 4, 15,0.222500E \(+02,0.333333 \mathrm{E}+02\)
POINT, \(\quad 5,15,0.210000 \mathrm{E}+02,0.333333 \mathrm{E}+02\)
POINT, 6, 15,0.260000E \(+02,0.306667 \mathrm{E}+02\)
POINT, 7, 15,0.253750E+02,0.306667E+02
POINT, 8, 15,0.247500E+02,0.306667E+02
POINT, \(9,15,0.241250 \mathrm{E}+02,0.306667 \mathrm{E}+02\)
POINT, \(10,15,0.235000 \mathrm{E}+02,0.306667 \mathrm{E}+02\)
POINT, 11, 15,0.228750E+02,0.306667E+02
POINT, 12, 15,0.222500E+02,0.306667E+02
POINT, 13, 15,0.210000E+02,0.306667E +02
POINT, 14, 15,0.216250E+02,0.306667E+02
POINT, 15, 15,0.260000E+02,0.280000E+02
POINT, 16, 15,0.247500E \(+02,0.280000 \mathrm{E}+02\)
POINT, 17, \(15,0.235000 \mathrm{E}+02,0.280000 \mathrm{E}+02\)
POINT, 18, 15,0.222500E \(+02,0.280000 \mathrm{E}+02\)
POINT, 19, \(15,0.210000 \mathrm{E}+02,0.280000 \mathrm{E}+02\)
POINT, 20, 15,0.260000E+02,0.253333E+02
POINT, \(1,16,0.253750 \mathrm{E}+02,0.253333 \mathrm{E}+02\)
POINT, \(2,16,0.247500 \mathrm{E}+02,0.253333 \mathrm{E}+02\)
POINT, \(3,16,0.241250 \mathrm{E}+02,0.253333 \mathrm{E}+02\)
POINT, \(4,16,0.235000 \mathrm{E}+02,0.253333 \mathrm{E}+02\)
POINT, \(5,16,0.228750 \mathrm{E}+02,0.253333 \mathrm{E}+02\)
POINT, 6, 16,0.222500E \(+02,0.253333 \mathrm{E}+02\)
POINT, 7, 16,0.210000E+02,0.253333E+02
POINT, 8', 16,0.216250E+02,0.253333E+02
POINT, 9, 16,0.260000E+02,0.226667E+02
POINT, 10', 16,0.247500E+02,0.226667E+02
POINT, 11, 16,0.235000E \(+02,0.226667 \mathrm{E}+02\)
POINT, \(12,16,0.222500 E+02,0.226667 E+02\)
POINT, 13, 16,0.210000E+02,0.226667E+02
POINT, 14; 16,0.260000E \(+02,0.200000 \mathrm{E}+02\)
POINT, 15, 16,0.253750E+02,0.200000E+02
POINT, 16, 16,0.247500E+02,0.200000E+02
POINT, 17, 16,0.241250E+02,0.200000E+02
POINT, 18, \(16,0.235000 \mathrm{E}+02,0.200000 \mathrm{E}+02\)
POINT, 19, 16,0.228750E+02,0.200000E+02
POINT, \(20,16,0.222500 \mathrm{E}+02,0.200000 \mathrm{E}+02\)
POINT, \(1,17,0.210000 \mathrm{E}+02,0.200000 \mathrm{E}+02\)
POINT, \(2,17,0.216250 \mathrm{E}+02,0.200000 \mathrm{E}+02\)
POINT, \(\quad 3,17,0.260000 \mathrm{E}+02,0.173333 \mathrm{E}+02\)
POINT, \(\quad 4,17,0.247500 \mathrm{E}+02,0.173333 \mathrm{E}+02\)
POINT, \(\quad 5,17,0.235000 \mathrm{E}+02,0.173333 \mathrm{E}+02\)
POINT, \(6,17,0.222500 \mathrm{E}+02,0.173333 \mathrm{E}+02\)
POINT, 7, 17,0.210000E \(+02,0.173333 \mathrm{E}+02\)
POINT, \(8,17,0.280000 \mathrm{E}+02,0.400000 \mathrm{E}+01\)
POINT, 9, 17, 0.280000E+02,0.333334E+01
POINT, 10, 17,0.276667E+02,0.400000E+01
POINT, 11, 17,0.280000E \(+02,0.266666 \mathrm{E}+01\)
POINT, 12, 17,0.276667E+02,0.266666E+01
POINT, 13, 17,0.280000E \(+02,0.200000 \mathrm{E}+01\)
POINT, 14, 17,0.280000E \(+02,0.133334 \mathrm{E}+01\)

DIRECT LIST OF TRANSLATED DATA
POINT, \(15,17,0.276667 \mathrm{E}+02,0.133334 \mathrm{E}+01\) POINT, 16, 17,0.280000E+02,0.000000E +00 POINT, 17, 17,0.276667E+02,0.000000E +00 POINT, 18, 17,0.280000E+02,0.666664E+00 POINT, \(19,17,0.260000 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(20,17,0.253750 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(1,18,0.247500 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(2, ~ 18,0.241250 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(3,18,0.235000 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(4,18,0.228750 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, \(5,18,0.222500 \mathrm{E}+02,0.146667 \mathrm{E}+02\) POINT, 6, 18,0.210000E+02,0.146667E 02 POINT, 7, 18,0.216250E+02,0.146667E +02 POINT, \(\quad 8\) ' \(18,0.273333 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, 9, 18,0.273333E+02, 0.333334E +01 POINT, 10, 18,0.273333E+02,0.266666E+01 POINT, 11, 18,0.273333E+02,0.200000E+01 POINT, 12, 18,0.273333E+02, 0.133334E +01 POINT, \(13,18,0.273333 \mathrm{E}+02,0.000000 \mathrm{E}+00\) POINT, \(14,18,0.273333 \mathrm{E}+02,0.666664 \mathrm{E}+00\) POINT, 15, 18,0.260000E+02,0.120000EE+02 POINT, \(16,18,0.247500 \mathrm{E}+02,0.120000 \mathrm{E}+02\) POINT, 17, 18,0.235000E+02,0.120000E +02 POINT, \(18,18,0.222500 E+02,0.120000 E+02\) POINT, 19, 18,0.210000E \(+02,0.120000 \mathrm{E}+02\) POINT, \(20,18,0.270000 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, \(1,19,0.270000 \mathrm{E}+02,0.266666 \mathrm{E}+01\) POINT, \(2,19,0.270000 \mathrm{E}+02,0.133334 \mathrm{E}+01\) POINT, \(3,19,0.270000 \mathrm{E}+02,0.000000 \mathrm{E}+00\) POINT, \(4 ; 19,0.260000 \mathrm{E}+02,0.933333 \mathrm{E}+01\) POINT, \(\quad 5,19,0.253750 \mathrm{E}+02,0.933333 \mathrm{E}+01\) POINT, 6, 19,0.247500E+02,0.933333E+01 POINT, 7, 19,0.241250E+02,0.933333E+01 POINT, \(8,19,0.235000 \mathrm{E}+02,0.933332 \mathrm{E}+01\) POINT, \(\quad 9,19,0.228750 \mathrm{E}+02,0.933332 \mathrm{E}+01\) POINT, 10, 19, 0.222500E \(+02,0.933333 \mathrm{E}+01\) POINT, 11, 19,0.210000E+02,0.933333E+01 POINT, 12, 19,0.216250E+02,0.933333E+01 POINT, 13, 19,0.266667E+02,0.400000E+01 POINT, 14, 19,0.266667E+02,0.333334E+01 POINT, 15, 19,0.266667E+02,0.266666E+01 POINT, 16, 19,0.266667E+02,0.200000E+01 POINT, 17, 19,0.266667E+02,0.133334E+01 POINT, 18, 19,0.266667E+02, 0.000000E+00 POINT, 19, 19,0.266667E+02,0.666664E +00 POINT, 20, 19,0.260000E \(+02,0.666666 \mathrm{E}+01\) POINT, \(1,20,0.247500 \mathrm{E}+02,0.666666 \mathrm{E}+01\) POINT, \(2,20,0.235000 \mathrm{E}+02,0.666666 \mathrm{E}+01\) POINT, \(3,20,0.222500 \mathrm{E}+02,0.666666 \mathrm{E}+01\) POINT, 4, 20,0.210000E \(+02,0.666666 E+01\) POINT, \(5,20,0.263333 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, \(6,20,0.263333 \mathrm{E}+02,0.266666 \mathrm{E}+01\) POINT, 7, \(20,0.263333 \mathrm{E}+02,0.133334 \mathrm{E}+01\) POINT, \(\quad 8^{\prime}, 20,0.263333 \mathrm{E}+02,0.000000 \mathrm{E}+00\) POINT, 9, \(20,0.253750 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, 10, 20,0.260000E+02,0.400000E+01

\section*{DIRECT LIST OF TRANSLATED DATA}

POINT, 11, 20,0.247500E+02,0.400000E +01 POINT, 12, \(20,0.241250 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, 13, 20, 0.235000E+02,0.400000E +01 POINT, 14, 20,0.228750E \(+02,0.400000 \mathrm{E}+01\) POINT, \(15,20,0.222500 \mathrm{E}+02,0.400000 \mathrm{E}+01\) POINT, 16, 20,0.210000E \(+02,0.400000 \mathrm{E}+01\) POINT, 17, 20,0.216250E \(+02,0.400000 \mathrm{E}+01\) POINT, 18, 20,0.260000E+02,0.333334E +01 POINT, 19, 20,0.260000E+02,0.266666E+01 POINT, 20, 20,0.260000E+02,0.200000E+01 POINT, 1, 21,0.260000E+02,0.133334E+01 POINT, 2, 21,0.260000E \(+02,0.000000 E+00\) POINT, \(3,21,0.260000 E+02,0.666664 E+00\) POINT, \(4,21,0.247500 E+02,0.333334 E+01\) POINT, 5, 21,0.253750E+02,0.266666E+01 POINT, 6, 21,0.235000E+02,0.333334E+01 POINT, 7, 21,0.222500E \(+02,0.333334 E+01\) POINT, \(8,21,0.210000 \mathrm{E}+02,0.333334 \mathrm{E}+01\) POINT, 9, 21,0.253750E+02,0.133334E+01 POINT, 10, 21,0.253750E+02,0.000000E +00 POINT, 11, 21,0.247500E \(+02,0.266666 \mathrm{E}+01\) POINT, 12, 21, 0.241250E+02,0.266666E +01 POINT, 13, 21,0.235000E \(+02,0.266666 E+01\) POINT, 14, 21,0.228750E+02, 0.266666E+01 POINT, 15, 21,0.222500E \(+02,0.266666 E+01\) POINT, 16, \(21,0.210000 \mathrm{E}+02,0.266666 \mathrm{E}+01\) POINT, 17, 21,0.216250E+02,0.266666E+01 POINT, 18, \(21,0.247500 E+02,0.200000 \mathrm{E}+01\) POINT, 19, 21,0.247500E+02, 0.133334E+01 POINT, 20, 21,0.247500E+02,0.000000E +00 POINT, \(1,22,0.247500 E+02,0.666664 E+00\) POINT, 2, 22,0.235000E+02,0.200000E+01 POINT, \(\quad 3,22,0.241250 E+02,0.133334 E+01\) POINT, 4, \(22,0.222500 \mathrm{E}+02,0.200000 \mathrm{E}+01\) POINT, \(\quad 5,22,0.210000 \mathrm{E}+02,0.200000 \mathrm{E}+01\) POINT, 6, \(22,0.210000 E+02,0.133334 E+01\) POINT, 7, 22,0.216250E+02,0.133334E+01 POINT, \(8,22,0.241250 E+02,0.000000 E+00\) POINT, 9, \(22,0.210000 \mathrm{E}+02,0.000000 \mathrm{E}+00\) POINT, \(10,22,0.210000 \mathrm{E}+02,0.666664 \mathrm{E}+00\) POINT, \(11,22,0.216250 \mathrm{E}+02,0.000000 \mathrm{E}+00\) POINT, 12, 22,0.235000E+02,0.133334E+01 POINT, 13, 22,0.228750E+02,0.133334E+01 POINT, 14, 22,0.222500E+02,0.133334E+01 POINT, 15, 22,0.235000E \(+02,0.000000 \mathrm{E}+00\) POINT, \(16,22,0.235000 E+02,0.666664 E+00\) POINT, 17, \(22,0.222500 E+02,0.000000 E+00\) POINT, 18, \(22,0.222500 \mathrm{E}+02,0.666664 \mathrm{E}+00\) POINT, 19, 22,0.228750E+02,0.000000E +00 END, GRID
QQ,CS24, BULLET, \(1,1,4,1,17,1,15,1,2,1,5,1,16,1,3,1\) 1, 1, \(1,1,19,1,17\) QQ,CS24,BULLET, \(\quad 7,1,10,1,1,12,19\), QQ, CS24, BULLET, \(10,1,12,1,2,2, \frac{1}{2}, 2,13,1,14, \frac{1}{2}, 3,2,11, \frac{1}{2}\)


\section*{DIRECT LIST OF TRANSLATED DATA}

```

QQ,,BULLET, 6, 15, 8, 15, 2, 16, 20, 15, 7, 15, 16, 15, 1, 16, 15, 15
QQ,,BULLET, 8, 15, 10, 15, 4, 16, 2, 16, 9, 15, 17, 15, 3, 16, 16, 15
QQ,,BULLET, 10, 15, 12, 15, 6, 16, 4, 16, 11, 15, 18, 15, 5, 16, 17, 15
QQ,,BULLET, 12, 15, 13, 15, 7, 16, 6', 16, 14, 15, 19, 15, 8, 16, 18, 15
QQ, BULTET, 20, 15, 2, 16, 16, 16, 14, 16, 1, 16, 10, 16, 15, 16, 9, 16
QQ,,BULLET, 2, 16, 4, 16, 18, 16, 16, 16, 3,, 16, 11, 16, 17, 16, 10, 16
QQ,,BULLET, 4, 16, 6, 16, 20, 16, 18, 16, 5, 16, 12, 16, 19, 16, 11, 16

```

\section*{DIRECT LIST OF TRANSLATED DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline QQ, , BULLET, & 6. 16, & 7, 16, & & , 17, & 20, & 16, & 8 , & 16, & 13, & 16, & 2 & 17. & & & \\
\hline QQ, ,BULLET, 1 & 14, 16 & 16, 16, & & 1.18, & 19 & 17. & 15. & 16. & 4. & 17. & 20, & 17. & 3. & 17 & \\
\hline QQ, BULLET, 1 & 16, 16 & 18, 16, & & 3, 18, & & 18 & 17. & 16 & 5 & 17 & 2 & 18. & 4 & & \\
\hline QQ, BULLET, 1 & 18, 16 & 20, 16, & & , 18, & 3 & 18 & 19 & 16, & 6 & 17, & 4 & 18, & 5 & & \\
\hline QQ, BULLET, 20 & 20, 16, & 1, 17, & & , 18, & 5 & 18. & 2. & 17. & 7. & 17 & 7 & 18. & 6 & 17 & \\
\hline QQ, BULLET, 1 & 19, 17, & 1, 18, & & , 19, & 4 & 19. & 20 & 17 & 16, & 18, & 5 & 19. & 15 & 18 & \\
\hline QQ, BULLET, & 1, 18 & 3, 18, & 8 & , 19, & 6 & 19. & 2 & 18 & 17, & 18, & 7 & 19. & 16 & 18 & \\
\hline QQ, , BULLET, & 3, 18, & 5, 18, & 10 & , 19, & 8 & 19. & 4 & 18, & 18, & 18 & 9 & 19, & 17 & 18 & \\
\hline QQ, , BULLET, & 5, 18, & 6, 18, & 11 & 19. & 10 & 19 & & 18 & 19 & 18 & 12 & 19, & 18 & 18 & \\
\hline QQ, , BULLET, & 4. 19 & 6.19 & 11 & 20 & 10 & 20 & 5 & 19, & 1 & 20 & 9 & 20. & 20 & 19 & \\
\hline QQ, BULLET, & 6, 19, & 8, 19, & 13 & 20 & 11 & 20. & 7 & 19, & 2 & 20 & 12, & 20. & 1 & 20 & \\
\hline QQ, , BULLET, & 8, 19 & 10, 19, & 15 & 20 & 13. & 20, & & 19, & 3 & 20 & 14 & 20. & 2 & 20 & \\
\hline QQ, BULLET, 10 & 10, 19 & 11, 19 & 16 & 20 & 15 & 20. & 12 & 19, & 4 & 20 & 17 & 20. & 3 & 20 & \\
\hline QQ, BULLET, 10 & 10, 20 & 11, 20. & 11 & 21, & 19 & 20, & 9. & 20, & 4 & 21 & 5 & 21. & 18, & 20 & \\
\hline QQ, BULLET, 1 & 11, 20 & 13, 20, & 13 & , 21 & 11 & 21. & 12 & 20, & 6 & 21 & 12 & 21. & 4 & 21 & \\
\hline QQ, BULLET, 1 & 13, 20 & 15, 20, & & 21 & 13 & 21 & 14 & 20. & 7 & 21 & 14 & 21, & 6 & 21 & \\
\hline QQ, BULLET, 15 & 15, 20 & 16, 20, & 16 & 21, & 15. & 21. & 17 & 20. & 8. & 21 & 17. & 21. & 7. & 21 & \\
\hline QQ, ,BULLET, 1 & 19, 20 , & 11, 21, & 19 & 21 & 1. & 21. & 5 & 21, & 18. & 21 & 9 & 21 & 20, & 20 & \\
\hline QQ, ,BULLET, 1 & 11, 21 & 13, 21 & 12 & 22, & 19 & 21 & 12 & 21 & 2 & 22 & 3 & 22, & 18. & 21 & \\
\hline QQ, BULLET, 1 & 13, 21, & 15, 21 & 14 & 22, & 12. & 22, & 14, & 21, & 4 & 22, & 13, & 22, & 2 & 22 & \\
\hline QQ, BULLET, 1 & 15, 21. & 16. 21 & 6 & 22, & 14. & 22, & 17. & 21, & 5. & 22, & 7. & 22, & 4 & 22 & \\
\hline QQ., BULLET, & 1, 21 & 19. 21 & 20 & 21 & 2. & 21, & 9 & 21, & 1 & 22, & 10. & 21, & 3, & 21 & \\
\hline QQ, ,BULLET, 1 & 19, 21 & 12. 22. & 15. & , 22, & 20. & 21. & 3 & 22, & 16, & 22, & 8. & 22. & 1. & 22 & \\
\hline QQ, , BULLET, 1 & 12, 22 & 14, 22, & 17. & . 22. & 15. & 22. & 13, & 22, & 18, & 22. & 19. & 22. & 16, & 22 & \\
\hline QQ, BULLET, 1 & 14, 22, & 6. 22, & 9. & , 22, & 17. & 22. & 7. & 22, & 10, & 22. & 11. & 22. & 18. & 22 & \\
\hline QQ, , BULLET, 1 & 16. 8, & 17. 8, & 7. & , 10, & 8. & 10. & 15, & 8 , & 4 & 9 & 6 & 10. & 5. & 9 & \\
\hline QQ, BULLET, 1 & 17, 8, & 19. 8, & 12 & , 10, & 7. & 10. & 18, & 8 & 9 & 9 & 11 & 10. & 4 & 9 & \\
\hline QQ, BULLET, 1 & 19, 8, & 1, 9, & 14. & , 10 , & 12, & 10. & 20. & 8, & 10, & 9. & 13. & 10. & 9. & 9 & \\
\hline QQ, CS13, BULLE & ET, 1, & 9. 2, & & , 15 & 10, & 14. & 10. & 3, & 9, & 11. & 9. & 16. & 10. & 10, & 9 \\
\hline QQ, , BULLET, & 8, 10, & 7. 10, & 12 & 11 & 13. & 11, & 6. & 10. & 3 & 11, & 11 & 11. & 4. & 11 & \\
\hline QQ, , BULLET, & 7, 10, & 12, 10, & 15. & 11 & 12 & 11 & 11. & 10. & 5, & 11, & 14. & 11, & 3. & 11 & \\
\hline QQ, BULLET, 1 & 12, 10, & 14, 10, & 19. & 11 & 15. & 11. & 13, & 10, & 8 , & 11, & 18, & 11, & 5. & 11 & \\
\hline QQ, CS13, BULLE & ET, 14, & 10, 15, & 10. & 20 & 11 & 19 & 11 & 16. & 10, & 9, & 11. & 1. & 12, & 8. & 11 \\
\hline QQ, , BULLET, I & 13, 11, & 12, 11, & 12. & 12, & 11, & 12, & 11 & 11. & 4 & 12, & 10. & 12, & & 12 & \\
\hline QQ, , BULLET, 1 & 12, 11, & 15, 11, & 14. & 12. & 12, & 12, & 14 & 11, & 6 & 12, & 13. & 12, & & 12 & \\
\hline QQ, BULLET, 1 & 15, 11 & 19, 11 & 16. & 12, & 14 & 12. & 18, & 11 & 8. & 12 & 15, & 12. & & & \\
\hline QQ, CS13, BULLE & ET, 19 & 11, 20, & 11. & 17. & 12, & 16. & 12, & 1 & 12, & 9. & 12, & 18. & 12, & 8. & 12 \\
\hline QQ, BULLET, 1 & 15, 9, & 13. 9. & 18, & 10. & 18, & 9, & 16. & 9 & 14. & 9. & 19, & 9. & 17. & 9 & \\
\hline QQ, , BuLLET, 1 & 13, 9, & 7, 9, & 10. & 10. & 18, & 10, & 12, & 9. & 8. & 9. & & & 14, & 9 & \\
\hline  & 7, 9, & 16, B, & 8. & , 10, & 10, & 10. & 6. & 9. & 5. & 9. & 9. & 10, & 8. & 9 & \\
\hline QQ, , BULLET, 1 & 18, 9, & 18, 10 & 20. & , 10, & 1. & 10, & 19, & 9. & 19. & 10, & 2, & 10, & 20, & 9 & \\
\hline QQ, , BULLET, 1 & 18, 10, & 10, 10, & 17. & 11, & 20. & 10, & 17. & 10. & 6. & 11 , & 7. & 11, & 19. & 10 & \\
\hline QQ, , BULLET, 1 & 10, 10, & 8, 10 & 13, & 11, & 17. & 11. & 9 , & 10, & 4 & 11 & 16, & 11, & & 11 & \\
\hline QQ, , BULLET, & 1, 10 , & 20, 10, & 1, & 11, & 3. & 10, & 2, & 10, & 2, & 11 & 4. & 10, & 5. & 10 & \\
\hline QQ, , BULLET, 2 & 20, 10. & 17, 11, & 2. & , 12, & 1. & 11, & 7. & 11, & 3. & 12, & 10, & 11, & 2, & 11 & \\
\hline QQ, , BULLET, 1 & 17, 11, & 13, 11, & 11, & , 12, & 2. & 12. & 16. & 11, & 5. & 12. & 7. & 12, & 3. & 12 & \\
\hline QQ, , BULLET, 1 & 10, 20. & 19, 20, & 15. & 19. & 13, & 19 & 18 & 20, & 6 & 20. & 14. & 19, & 5. & 20 & \\
\hline QQ, , BULLET, 1 & 19, 20. & 1, 21, & 17, & 19. & 15 & 19 & 20. & 20, & 7. & 20, & 16. & 19, & 6, & 20 & \\
\hline QQ, , BULLET, & 1, 21, & 2, 21, & 18. & 19. & 17. & 19. & 3. & 21, & 8. & 20, & 19. & 19, & 7. & 20 & \\
\hline QQ, , BULLET, 1 & 13, 19, & 15, 19, & 10. & , 18 , & 8. & 18, & 14 & 19, & 1 & 19, & & 18. & & 18 & \\
\hline QQ, , BULLET, 1 & 15, 19, & 17, 19, & 12, & , 18, & 10, & 18 , & 16. & 19, & 2 & 19, & 11 & 18, & 1. & 19 & \\
\hline QQ, , BULLET, 1 & 17, 19, & 18, 19, & 13 & 18 , & 12, & 18 , & 19. & 19. & 3 , & 19, & 14. & 18, & 2, & 19 & \\
\hline QQ, , BULLET, & 8, 18, & 10, 18, & 11, & 17. & & 17. & 9 & 18 & 12, & 17. & & 17, & 10, & 17 & \\
\hline QQ, , BULLET, 1 & 10, 18, & 12. 18, & & & & & & 18. & 15, & 17. & 13, & 17. & 12, & 17 & \\
\hline QQ, BULLET, 1 & 12, 18, & 13, 18, & 16 & 17 & 14. & 17 & 14 & 18, & 17 & 17 & 18 & 17 & 15 & 17 & \\
\hline BC, PRESSURE, & 10,1 & 2,0. & 000 & \(00 E+02\) & 0.2 & 500 & \(0 \mathrm{E}+\) & & & & & & & & \\
\hline
\end{tabular}

\section*{DIRECT LIST OF TRANSLATED DATA}


TEXGAP84-2D
projectile

ELEMENT DATA
ELEMENT NODE



PAGE 3







PAGE 6
projectile

ELEMENT DATA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 21.625 & 36.000 & & 6 & 5,15 & \[
21.000
\] & \[
\begin{aligned}
& 33.33 \\
& 625
\end{aligned}
\] & 30.667 & 8 & 4,15 \\
\hline 22.250 & 33.333 & & & & & & & & \\
\hline 61 & QQ & 10 & & 1 & 6,15 & 26.000 & 30.667 & 2 & 8.15 \\
\hline 24.750 & 30.667 & & 3 & 2,16 & 24.750 & 25.33 & & & \\
\hline & & & & 4 & 20,15 & 26.000 & 25.333 & 5 & 7,15 \\
\hline 25.375 & 30.667 & & 6 & 16,15 & 24.750 & 28.00 & & & \\
\hline & & & & 7 & 1,16 & 25.375 & 25.333 & 8 & 15,15 \\
\hline 26.000 & 28.000 & & & & & & & & \\
\hline 62 & QQ & 10 & & 1 & 8,15 & 24.750 & 30.667 & 2 & 10,15 \\
\hline 23.500 & 30.667 & & 3 & 4,16 & 23.500 & 25.33 & & & \\
\hline & & & & 17.15 & 2,16 & 24.750 & 25.333 & 5 & 9,15 \\
\hline 24.125 & 30.667 & & 6 & \[
\begin{gathered}
17,15 \\
7
\end{gathered}
\] & \[
3,16^{23.500}
\] & \[
\begin{aligned}
& 28.00 \\
& 24.125
\end{aligned}
\] & 25.333 & 8 & 16,15 \\
\hline 24.750 & 28.000 & & & & & & & & \\
\hline 63 & QQ & 10 & & 1 & 10,15 & 23.500 & 30.667 & 2 & 12,15 \\
\hline 22.250 & 30.667 & & 3 & 6,16 & 22.250 & 25.33 & & & \\
\hline & & & & 4 & 4,16 & 23.500 & 25.333 & 5 & 11,15 \\
\hline 22.875 & 30.667 & & 6 & 18,15 & 22.250 & 28.00 & & & \\
\hline & & & & 7 & 5,16 & 22.875 & 25.333 & 8 & 17,15 \\
\hline 23.500 & 28.000 & & & & & & & & \\
\hline 64 & QQ & 10 & & 1 & 12,15 & 22.250 & 30.667 & 2 & 13,15 \\
\hline 21.000 & 30.667 & & 3 & 7,16 & 21.000 & 25.33 & & & \\
\hline & & & & 4 & 6,16 & 22.250 & 25.333 & 5 & 14,15 \\
\hline 21.625 & 30.667 & & 6 & 19,15 & 21.000 & 28.00 & & & \\
\hline & & & & 7 & 8,16 & 21.625 & 25.333 & 8 & 18,15 \\
\hline 22.250 & 28.000 & & & & & & & & \\
\hline 65 & QQ & 10 & & 1 & 20,15 & 26.000 & 25.333 & 2 & 2,16 \\
\hline 24.750 & 25.333 & & 3 & 16,16 & 24.750 & 20.00 & & & \\
\hline & & & & 4 & 14,16 & 26.000 & 20.000 & 5 & 1,16 \\
\hline 25.375 & 25.333 & & 6 & 10,16 & 24.750 & 22.66 & & & \\
\hline & & & & 7 & 15,16 & 25.375 & 20.000 & 8 & 9,16 \\
\hline 26.000 & 22.667 & & & & & & & & \\
\hline
\end{tabular}
projectile

ELEMENT DATA


NODE
NO. I,J

24,16
\(5 \quad 3,16\)
\(8 \quad 10,16\)

2 6,16
\(5 \quad 5,16\)
\(8 \quad 11,16\)
\(2 \quad 7,16\)
5 8,16
\(8 \quad 12,16\)
\(2 \quad 16.16\)
\(5 \quad 15,16\)
\(8 \quad 3,17\)

2 18,16
\(5 \quad 17,16\)
\(8 \quad 4,17\)
\(2 \quad 20.16\)
\(5 \quad 19,16\)
\(8 \quad 5,17\)
\(2 \quad 1,17\)
\(5 \quad 2,17\)
\(8 \quad 6,17\)

21,18
\(5 \quad 20.17\)




ELEMENT DATA

ELEMENT


NODE

No. I, J
\begin{tabular}{ll}
2 & 6,22 \\
5 & 7,22 \\
8 & 18,22 \\
2 & 17,8 \\
5 & 15,8 \\
8 & 5,9
\end{tabular}
\(2 \quad 19,8\)
518,8
\(8 \quad 4,9\)

21,9
\(5 \quad 20,8\)
\(8 \quad 9,9\)
\(2 \quad 2,9\)
53,9
\(8 \quad 10,9\)

2 7,10
\(5 \quad 6,10\)
84,11

212,10
511,10
\(8 \quad 3,11\)

2 14,10
\(5 \quad 13.10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 22.875 & 54.667 & & 6 & 8,11 & & 54. & & & \\
\hline & & & & 7 & 18,11 & 22.875 & 53.333 & 8 & 5,11 \\
\hline 23.500 & 54.000 & & & & & & & & \\
\hline 100 & QQ & 10 & & 1 & 14,10 & 22.250 & 54.667 & 2 & 15,10 \\
\hline 21.000 & 54.667 & & 3 & 20,11 & & 53. & & & \\
\hline & & & & 4 & 19,11 & 22.250 & 53.333 & 5 & 16,10 \\
\hline 21.625 & 54.667 & & 6 & 9,11 & & 54. & & & \\
\hline & & & & 7 & 1,12 & 21.625 & 53.333 & 8 & 8,11 \\
\hline 22.250 & 54.000 & & & & & & & & \\
\hline 101 & QQ & 10 & & 1 & 13,11 & 26.000 & 53.333 & 2 & 12,11 \\
\hline 24.750 & 53.333 & & 3 & 12,12 & & 52. & & & \\
\hline & & & & 4 & 11,12 & 26.000 & 52.000 & 5 & 11,11 \\
\hline 25.375 & 53.333 & & 6 & 4,12 & & 52. & & & \\
\hline & & & & 7 & 10,12 & 25.375 & 52.000 & 8 & 5,12 \\
\hline 26.000 & 52.667 & & & & & & & & \\
\hline 102 & QQ & 10 & & 1 & 12,11 & 24.750 & 53.333 & 2 & 15,11 \\
\hline 23.500 & 53.333 & & 3 & 14,12 & & 52. & & & \\
\hline & & & & 4 & 12,12 & 24.750 & 52.000 & 5 & 14,11 \\
\hline 24.125 & 53.333 & & 6 & 6,12 & & 52. & & & \\
\hline & & & & 7 & 13,12 & 24.125 & 52.000 & 8 & 4,12 \\
\hline 24.750 & 52.667 & & & & & & & & \\
\hline 103 & QQ & 10 & & 1 & 15,11 & 23.500 & 53.333 & 2 & 19,11 \\
\hline 22.250 & 53.333 & & 3 & 16,12 & & 52. & & & \\
\hline & & & & 4 & 14,12 & 23.500 & 52.000 & 5 & 18,11 \\
\hline 22.875 & 53.333 & & 6 & 8,12 & & 52. & & & \\
\hline & & & & 7 & 15,12 & 22.875 & 52.000 & 8 & 6,12 \\
\hline 23.500 & 52.667 & & & & & & & & \\
\hline 104 & QQ & 10 & & 1 & 19,11 & 22.250 & 53.333 & 2 & 20,11 \\
\hline 21.000 & 53.333 & & 3 & 17,12 & & 52. & & & \\
\hline & & & & 4 & 16,12 & 22.250 & 52.000 & 5 & 1,12 \\
\hline 21.625 & 53.333 & & 6 & 9,12 & & 52. & & & \\
\hline 22.250 & 52.667 & & & 7 & 18,12 & 21.625 & 52.000 & 8 & 8,12 \\
\hline
\end{tabular}

TEXGAP84-2D
VERSION

PAGE 10




BOUNDARY CONDITIONS
\(0.0000 \mathrm{E}+00\)
\(0.0000 E+00\)
\(0.0000 \mathrm{E}+00\)
\(0.0000 \mathrm{E}+00\)
\(0.0000 \mathrm{E}+00\)
\(0.0000 \mathrm{E}+00\)


ELEMENT
\begin{tabular}{ll}
\(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
0.00 & \(0.0000 \mathrm{E}+00\) \\
0.02
\end{tabular}
\begin{tabular}{lrllllll}
\(0.0000 \mathrm{E}+00\) & 19 & 21 & SLOPE & 3 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & & & SHEAR & 3 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 12 & 22 & SLOPE & 3 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & & & SHEAR & 3 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 14 & 22 & SLOPE & 3 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & & & SHEAR & 3 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & & & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 1 & 9 & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 14 & 10 & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 19 & 11 & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 17 & 19 & SLOPE & 2 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & & & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & 12 & 18 & SLOPE & 2 & \(0.0000 \mathrm{E}+00\) & \(0.0000 \mathrm{E}+00\) \\
\(0.0000 \mathrm{E}+00\) & & & PRESSURE & 2 & \(0.2500 \mathrm{E}+02\) & \(0.2500 \mathrm{E}+02\) \\
\(0.0000 \mathrm{E}+00\) & & & & & & &
\end{tabular}

RANGE OF I AN J VALUES AND COORDINATES FOUND DURING ELEMENT DEFINITION
```

IMIN = 1 JMIN = 1 IMAX = 20 JMAX = 22
RMIN = 0.0000E+00 ZMIN = 0.0000E+00 RMAX = 2.8000E+01 ZMAX = 7.9600E
+01
TIME IN SETUP = 1.980E+00 SECONDS
BODY FORCES:
ACELR = 0.000E+00 ACELZ = 1.610E+04 ACELT = 0.000E+00 OMEGA = 0.000E+
00
FORMKF: JPRINT = 3 INCT = 0 TREF = -1.000E+00
TIME IN FORMKF = 2.280E+00 SECONDS
TIME IN ZIPP = 4.240E+00 SECONDS

```


TIME IN STRESS \(=5.410 \mathrm{E}+00\) SECONDS

TEXGAP2D TO PATRAN TRANSLATION (RESULTS FROM STRESS OPTION)
GENERATED PATRAN STRESS/STRAIN NEUTRAL FILE
GENERATED PATRAN DISPLACEMENT NEUTRAL FILE
TIME IN TRANSLATE
\(=8.700 \mathrm{E}-01\) SECONDS
TIME IN STOP
\(=1.831 \mathrm{E}+01\) SECONDS

\section*{GLOSSARY and SYMBOLS}

Axial Load (F): Applied load (Impact Force) in MN or kip.
Baseline: Reference temp and moisture content, and micro mechanical data, back calculated from experimentally determined ply data.

CFRP: Graphite fiber reinforced plastic.
\(\mathrm{C}_{\text {moist }}\) : Moisture concentration in absolute value.
Delamination: Debonding process primarily resulting from unfavorable Interlaminar stresses.

Degradation: Loss of property due to aging, corrosion, and repeated or sustained stress.
<ep>: In-plane strain (Geometric measurement of deformation).
\(\mathrm{E}_{\mathrm{fx}}\) : Fiber longitudinal Young's modulus in msi.
\(E_{m}\) : Matrix Young's modulus in GPa or msi.
\(E_{m} / E^{0} m\) : Matrix degradation factor required for the last-ply-failure prediction.
\(\left\{E^{O}\right\}\) Lim: Effective in-plane engineering constants.
\(E^{4} / E^{1}\) : Ratio of the effective engineering constant at design ultimate over limit. These ratios indicate laminate stiffness degradation due to matrix/interface cracking.

FPF: first ply failure.
GFRP: Glass fiber reinforced plastic.
h\#: Total thickness including core in number of plies.
h, E-3: Total thickness in mm or inches.
Isotropy: Property that is not directionally dependent. Strength and stiffness remain the same for all orientations of the coordinate axis.

Laminate: Plate consisting of layers of uni or multidirectional plies of one or more composite materials.

Layup (B): Ply stacking sequence or ply orientations of laminate.
Length: Length of pressure vessel. This length affects only the angle of twist under torque.

LFP: Last ply failure.
Limit: The lower ply failure divided by safety margins.
Limit*: Ultimate divided by safety margin.
Mandrel: Male mold used for filament winding.
Macromechanics: Structural behavior of composite laminates using the laminated plate theory. The fiber and matrix within each ply are smeared and no longer identifiable.

Micromechanics: Calculation of the effective ply properties as functions of the fiber and matrix properties.
[Modified]: User defined modification.
Ply Angle: The first group is the outermost; i.e, the ply angles run from the outer surface toward the mid-plane.

Ply \#: Number of plies for each ply angle or ply group.
Pressure ( P ): Internal or external pressure in ksi.
Q: Reduced stiffness matrix.
R/Degraded: Strength/Stress ratio of each ply group using degraded matrix.

Railgun: Electromagnectic launcher.
R/FPF: Lowest strength ratio for intact matrix is first-ply-failure.
R/Intact: Strength/Stress ratio for each ply group using an intact matrix (no matrix/interface cracks).

R/Lim: Strength ratio at limit \(=\) Min (FPF,Lim*).
R/lim*: Strength ratio based on ultimate \(=\) Ulit/Safety.

R/LPF: Lowest strength ratio for degraded matrix is last-ply-failure.
R/Ult: Strength ratio at ultimate \(=\) Max (FPF,LPF).
Repeat: Repeated sublaminates.
Rotate: Rigid body rotation of entire laminate (degree).
Safety: Factor of safety.
<sg>: In-plane membrane stress, based on strength of materials.
<sg> Lim: In-plane stress at design limit based on a chosen safety margin.
<sg> Lim*: In-plane stress at ultimate-based limit based on a chosen safety margin.
<sg> Ult: In-plane stress at ultimate.
Stiffness: Ratio between the applied stress and the resulting strain.
\(T_{\text {opr: }}\) : Operating temperature in degree C or F .
Vol/f: Fiber volume fraction in absolute value.
\(X_{m}\) : Matrix strength in ksi or MPa.
\(X_{f x}\) : Fiber longitudinal strength in ksi.
Young's Modulus: The slope of a stress-strain curve under uniaxial test.
\(\gamma\) : Poission's ratio

\section*{BIBLIOGRAPHY}

Tsai, Stephen W. Composite Design. 3rd ed. Dayton: Think Composites, 1987.

Egeland, Alv. "Birkeland's Electromagnetic Gun: A historical Review." IEEE Transactions on Plasma Science. Vol. 17, No. 2 (April 1989): 73-82.

Rashleigh, S. C. and Marshall, R. A. "Electromagnetic acceleration of macro particles to high velocities," Journal of Applied Physics. Vol. 49, (April 1978): 2540-2542.

Thornhill, L. D., Batteh, J. H., and Littrell, D. M. "Scaling Study for the Performance of Railgun Armatures." EEEE Transactions on Plasma Science. Vol. 17, No. 3 (April 1989): 409-421.

Zukas, Jonas A. and Greszczuk, Longin B. Impact Dynamics. New York: John Wiley and Sons, Inc., 1982.

Shigley, Josesph E. Mechanical Engineering Design. New York: McGraw-Hill Book Company, 1977.

Davies, G. A. Structural Impact and Crashworthiness. New York: Elsevier Applied Science Publishers, 1984.

Zucrow, Maurice and Hoffman, Joe Gas Dynamics. New York: John Wiley and Sons, Inc., 1976.

Fung, Y. C. Continuum Mechanics. New Jersey: Prentice-Hall, Inc., 1977.

Patran Plus User's Manual, Version 2.4, PDA Engineering, Costa Mesa, CA, 1989.

TEXGAP2D User's Manual, ANATECH International Corp, La Jolla, CA, 1987.

TASK II
DIALECTICS FOR GRAPHITE/EPOXIES

\begin{abstract}
The purpose of this task of the study was to determine the feasibility of dialectics to monitor cure of graphite/epoxies. Several panels were fabricated, cured and tested. Dialectics were used to monitor the results. Encouraging results of monitoring the care of graphite/epoxies were obtained.
\end{abstract}

\section*{RESULTS AND CONCLUSIONS}

A separate report was submitted to the Astronautics Lab (Mr. Jim Koury). No copy available.

TASK III

\section*{STUDY FOR THE OPTIMUM CURE PROCESS FOR LARGE STRUCTURES}

\section*{INTRODUCTION}

The field of composite materials is growing at a rapid rate. Research into the subject always discovers something new and exciting. Engineering majors coming into the workforce will encounter composite structures on at least one occasion. Therefore, an engineering degree would not be complete without at least touching on the subject of composite materials. This is the purpose of Aero 410-Structural Analysis, even further and in-depth analysis is done in Aero 412-Composite Structural Analysis.

A composite is a material composed of two or more different types of material fused together or bonded together to create a material that has the better property of both materials. Another definition of a composite is a material made up of the same basic material, but in different forms. Such as Carbon-Carbon plies, which consist of carbon fibers imbedded into a matrix of carbon.

Another type of composite is the laminate. A laminate consists of layers of material, lamina, bonded together to combine the best aspects of the constituent layers to create a material superior to the lamina by itself. An example is laminated glass. Glass is brittle, but resistant to surface scratches, plexiglass is flexible and strong yet scratches very easily. Thus if we sheathed a layer of plexiglass between two layers of glass, we have a material which is resistant to scratches yet still stronger than brittle glass. The laminate in this experiment is a carbon-carbon build-up with each layer oriented into different directions.

\section*{TEST DESCRIPTION}

To begin this experiment, specimens were needed. It was then up to the student to build their own layers of composite material. The material used in this experiment was donated by the Astronautics Laboratory at Edwards Air Force Base, Edwards, Ca. The CarbonCarbon material was readily available on a spool. Using a straight-edge and a sharp knife, pieces were cut from the roll of material to used in stacking out laminate. Many different orientations were used, \(0^{\circ}, 30^{\circ}\), \(45^{\circ}, 60^{\circ}, 90^{\circ}\). After the plies were cut, they were stacked together in a symmetric fashion about the center plane. Stacking symmetrically reduced the tendancy for the laminate to flex when cured. After the plies were stacked, the composite was cured with one of three cycles. Cycle I was curing at \(300^{\circ} \mathrm{F}\) under 80 lbs of force for 4 hours, then cooling to \(85^{\circ} \mathrm{F}\). Cycle II cured the composite at \(350^{\circ} \mathrm{F}\) under 85 lbs of force for 3.5 hours then cooling to \(90^{\circ} \mathrm{F}\). Cycle III had a curing cycle at \(400^{\circ} \mathrm{F}\) under 90 lbs of force for 3 hours then coolin to \(85^{\circ} \mathrm{F}\). After curing, the laminates were sent to the lab for cutting and strain gage installation.

After the specimens were cut, the strain gages installed, and tabs epoxied on, we were ready to test. An Instron loading machine was used to apply a tensile load to the specimens. An IBM PC was used in conjuction with several strain indicators to collect data. The IBM was able to take the signal from the strain indicators and convert the signal into a digital form so that the computer could interpret what was goin on. The PC however, only collected strain versus time values. To obtain load, the strip chart on the Instron Controller was used. The strip chart would graph load versus time. With these two plots, it was possible to obtain stress vs. strain correlations by using the time factor as a basis for both tests.

\section*{SAMPLE CALCULATIONS}

Calculation of stress versus strain

\section*{Step 1:}

Take maximum load and divide by \(2810 / 56.5=49.73\)
number of squares to obtain load Assume \(50 \mathrm{lbs} /\) increment per increment.

\section*{Step 2:}

Determine time unit per
increment. If paper rate \(=\)
\(5 \mathrm{in} / \mathrm{min}\), then 1.2 seconds per
increment. If \(10 \mathrm{in} / \mathrm{min}\), then 0.6
seconds per increment.
Step 3:
Determine total time from start to failure of specimen.

\section*{Step 4:}

Compare this time to strain versus time graph from the IBM PC. Check for correlation.

\section*{Step 5:}

Break the time span into several At time \(=12\) seconds, segments and take strain and load
at these times. (Strain must be
converted from mV to \(\mathrm{in} / \mathrm{in}\) )

\section*{Step 6:}

Determine Stress based on Load

\section*{Step 7:}

Plot Stress vs Strain, then use a best fit line to determine ' \(E\) '

Paper rate was \(5 \mathrm{in} / \mathrm{min}\), thus 1.2 seconds per increment.
( \(\mathrm{N} \#\) of increments)x(1.2s/inc)
\(=24.1 \times 1.2=28.92\) seconds

Time from Strain vs. Time was about 27 seconds. Thus the Strain vs. Time started taking data after loading had begun. In this case, data will be correlated based on \(t=27 \mathrm{sec}\) on strain vs. time and \(t=29 \mathrm{sec}\) on load vs. time. These two times can be used as reference points in correlation of the data.

Load \(=1455 \mathrm{lbs}\),
Strain \(=0.00671 \mathrm{in} / \mathrm{in}\)

Load/Area = Stress
\(1455 \mathrm{lbs} /\left(1.42^{\prime \prime}\right)\left(0.024^{\prime \prime}\right)=42.6 \mathrm{ksi}\)

Using CricketGRAPH, points were plotted and equation of line made. See Figures 1 thru 9.

\section*{SAMPLE CALCULATIONS}

Calculation of Theoretical Values:

\section*{Note:}

Because of the large number of test cases with laminates of so many layers, a fortran program was developed to expedite the process of obtaining the \(\mathrm{A}, \mathrm{B}\), and D matrices. A listing is provided in the appendix. Also there is no ' \(E\) ' for the laminate, only the ' \(A\) ' matrix. With the 'A' matrix, \(N x, N y, N x y\) can be found as a function of strain by the relation:
\[
\left|\begin{array}{c}
\mathrm{N}_{\mathrm{x}} \\
\mathrm{~N}_{\mathrm{y}} \\
\mathrm{~N}_{\mathrm{xy}}
\end{array}\right|=\left|\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{13} \\
\mathrm{~A}_{21} & A_{22} & A_{23} \\
\mathrm{~A}_{31} & \mathrm{~A}_{32} & A_{33}
\end{array}\right|\left|\begin{array}{c}
\varepsilon_{x}^{\mathrm{o}} \\
\varepsilon_{y}^{0} \\
\gamma_{\mathrm{xy}}^{0}
\end{array}\right|
\]

For symmetrical laminates, as in this experiment, A13 and A23 are zero, thus shear strain is not taken into account.

\section*{Step 1:}

Since Ny is zero, solve for \(\varepsilon y\) in terms of \(\varepsilon x\).
\[
\begin{aligned}
& 0=A 21 \varepsilon x+A 22 \varepsilon y \\
& \varepsilon y=-(A 21 / A 22) \varepsilon x
\end{aligned}
\]

\section*{Step 2:}

Solve for \(\mathrm{Nx}_{\mathrm{x}}\) in terms of \(\varepsilon x\).
\[
\begin{aligned}
& N_{x}=A 11 \varepsilon x+A 21(-(A 21 / A 22) \varepsilon x) \\
& N x=A 11 \varepsilon x-A 21(A 21 / A 22) \varepsilon x \\
& N_{x}=(A 11-A 212 / A 22) \varepsilon x
\end{aligned}
\]

\section*{Step 3:}

Since \(N_{x} / t\) is essentially stress of the structure, a plot is made of Since several of the load cases were the same, only 6 \(\mathrm{Nx} / \mathrm{t}\) vs. Ex and compared to Stress vs. Strain.
comparisons were made. See Figures 10 thru 15.

\section*{SAMPLE CALCULATIONS}

Error Analysis

\section*{Step 1:}

Using step 3 above, \(\mathrm{N}_{\mathrm{x}}\) was \(\quad \sigma\)-theoretical \(=\mathrm{Nx} / \mathrm{t}\) calculated. By dividing \(N x\) by \(t\), the thickness of the specimen, the 'stress' is obtained.

\section*{Step 2:}

If we use correlating values of ex from the experimental calculations and the theoretical calculations, we can compare the experimental and theoretical values of stress.

\section*{Step 3:}
\(\sigma\)-theoretical compares with \(\sigma\) experimental as determined from the graphs.
\[
\% \text { Error }=\frac{\text { |actual }- \text { theoretical } \mid}{\text { theoretical }}(100)
\] standard equation is used.

RESULTS

\section*{Load Case 1}
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 4 \\
Orientation \(=\) & {\([0.90] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 2810 lbs \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0.00073 & 7354.23 & 8912.16 & \(17.48 \%\) \\
0.00257 & 29416.9 & 31541.9 & \(6.74 \%\) \\
0.00380 & 42631.1 & 46620.3 & \(8.56 \%\) \\
0.00671 & 70583.1 & 82268.9 & \(14.20 \%\) \\
0.00783 & 82332.3 & 95986.5 & \(14.23 \%\) \\
\hline
\end{tabular}

\section*{Load Case 2}
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 6 \\
Orientation \(=\) & {\([0.90,0] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 2675 lbs \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0 & 0 & 0 & \(0.00 \%\) \\
0.00179 & 12925.2 & 23477 & \(44.95 \%\) \\
0.00246 & 21768.7 & 32264.5 & \(32.53 \%\) \\
0.00336 & 29932 & 44068.6 & \(32.08 \%\) \\
0.00425 & 38775.5 & 55741.5 & \(30.44 \%\) \\
0.00582 & 58503.4 & 76333.1 & \(23.36 \%\) \\
0.00716 & 70748.3 & 93908.1 & \(24.66 \%\) \\
\hline
\end{tabular}

Load Case 3
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 48 \\
Orientation \(=\) & {\([0.90,0,90] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 4500 lbs \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0.00179 & 21602.9 & 21943.3 & \(1.55 \%\) \\
0.00224 & 35104.8 & 27459.7 & \(27.84 \%\) \\
0.00334 & 48606.6 & 40944.4 & \(18.71 \%\) \\
0.00447 & 64268.7 & 54796.9 & \(17.29 \%\) \\
0.00604 & 94512.9 & 74043.2 & \(27.65 \%\) \\
\hline
\end{tabular}

Load Case 4
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 6 \\
Orientation \(=\) & {\([-45,45,-45] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 945 lbs \\
& Horizontal \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in 2\()\)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
\(\left(\mathrm{N}_{\mathrm{x}} / \mathrm{t}\right)\)
\end{tabular} & \% Error \\
\hline \hline 0.00268 & 6650.9 & -2887.3 & \(130.35 \%\) \\
0.00358 & 10109.4 & -3856.9 & \(218.86 \%\) \\
0.00515 & 12917.5 & -5548.4 & \(132.82 \%\) \\
0.00783 & 17292.3 & -8435.7 & \(104.99 \%\) \\
\hline
\end{tabular}

\section*{Load Case 5}
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 4 \\
Orientation \(=\) & {\([45,-45] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 675 lbs \\
& Vertical \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0.00034 & 940.242 & \(-1 E+06\) & \(100.08 \%\) \\
0.00134 & 4701.21 & \(-5 E+06\) & \(100.10 \%\) \\
0.00291 & 10342.7 & \(-1 E+07\) & \(100.10 \%\) \\
0.00447 & 14291.7 & \(-2 E+07\) & \(100.09 \%\) \\
0.00615 & 17864.6 & \(-2 E+07\) & \(100.08 \%\) \\
0.00750 & 19745.1 & \(-3 E+07\) & \(100.07 \%\) \\
\hline
\end{tabular}

Load Case 6
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 4 \\
Orientation \(=\) & {\([-45,45] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 360 lbs \\
& Horizontal \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0 & 0 & 0 & \(0.00 \%\) \\
0.00224 & 6944.44 & -2413.3 & \(187.76 \%\) \\
0.00492 & 9548.61 & -5300.6 & \(80.14 \%\) \\
0.00738 & 13020.8 & -7951 & \(63.76 \%\) \\
0.01 & 13888.9 & -10774 & \(28.92 \%\) \\
0.0104 & 13888.9 & -11205 & \(23.96 \%\) \\
0.0104 & 13020.8 & -11205 & \(16.21 \%\) \\
\hline
\end{tabular}

\section*{Load Case 7}
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 4 \\
Orientation \(=\) & {\([0.90] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 3150 lbs \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx \(/ \mathrm{t})\)
\end{tabular} & \% Error \\
\hline \hline 0.00201 & 0 & 24682.9 & \(100.00 \%\) \\
0.00280 & 9861.93 & 34281.8 & \(71.23 \%\) \\
0.00392 & 28599.6 & 47994.5 & \(40.41 \%\) \\
0.00481 & 45364.9 & 58964.6 & \(23.06 \%\) \\
0.00582 & 58185.4 & 71306.1 & \(18.40 \%\) \\
0.00873 & 74950.7 & 106959 & \(29.93 \%\) \\
0.01130 & 89743.6 & 138498 & \(35.20 \%\) \\
\hline
\end{tabular}

\section*{Load Case 8}
\begin{tabular}{rc|}
\hline \# Layers \(=\) & 6 \\
Orientation \(=\) & {\([0.90,0] \mathrm{s}\)} \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 2875 lbs \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx/t)
\end{tabular} & \% Error \\
\hline \hline 0.00213 & 0 & 27875.2 & \(100.00 \%\) \\
0.00246 & 7022.87 & 32276.6 & \(78.24 \%\) \\
0.00280 & 18435 & 36677.9 & \(49.74 \%\) \\
0.00291 & 27213.6 & 38145.1 & \(28.66 \%\) \\
0.00347 & 36870 & 45480.6 & \(18.93 \%\) \\
0.00470 & 58816.2 & 61618.9 & \(4.55 \%\) \\
\hline
\end{tabular}
\begin{tabular}{rc|} 
\# Layers \(=\) & 8 \\
Orientation \(=\) & \\
Cycle \(=\) & II \\
Ultimate Load \(=\) & 6650 lbs \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|}
\hline \begin{tabular}{c} 
Strain Reading \\
(in/in)
\end{tabular} & \begin{tabular}{c} 
Stress \\
Reading \\
(lbs/in2)
\end{tabular} & \begin{tabular}{c} 
Theoretical \\
'Stress' \\
(Nx \(/ \mathrm{t})\)
\end{tabular} & \% Error \\
\hline \hline 0.00195 & 0 & 23904.7 & \(100.00 \%\) \\
0.00252 & 6666.67 & 30853.6 & \(78.39 \%\) \\
0.00392 & 18750 & 47994.5 & \(60.93 \%\) \\
0.00475 & 30208.3 & 58279 & \(48.17 \%\) \\
0.00531 & 42708.3 & 65135.4 & \(34.43 \%\) \\
0.00643 & 59375 & 78848.1 & \(24.70 \%\) \\
\hline
\end{tabular}

\section*{CONCLUSION}

The experiment proved that composite materials definitely have value and are worth looking into for high strength/low weight applications.

For composites made with fibers and resin, the best performance is when the fibers are aligned parallel with the load direction and increasing strength is gained from increasing layer thickness.

Also cooking method II, which has a slightly lower temperature and pressure, but longer cook time, seems to give better performance than either of the other cooking methods and is the most reliable.

Overall, the experiment was very educational, constructive, and well worth the time.

\section*{APPENDIX: TABLES AND FIGURES}








Strain 3






Figure 13

Strain 7


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test & Area \(=\) & 0.03413 & & Info & & \\
\hline 1 & Load & Stress & Strain & Layers & 4 & Strain \\
\hline 2.4 & 251 & 7354.23 & 0.00073 & Dir & [0,90]s & 0.00073 \\
\hline 7.2 & 1004 & 29416.9 & 0.00257 & Cycle & 2 & 0.00257 \\
\hline 12 & 1455 & 42631.1 & 0.00380 & Ult Load & 2810 & 0.00380 \\
\hline 24 & 2409 & 70583.: & 0.00671 & & & 0.00671 \\
\hline 28.9 & 2810 & 82332.3 & 0.00783 & & & 0.00783 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test=2 & \[
\begin{aligned}
& \text { Area } \\
& \text { Loge }
\end{aligned}
\] & \begin{tabular}{l}
\[
0.03675
\] \\
Stress
\end{tabular} & Strain & \[
\begin{aligned}
& \text { Info } \\
& \text { Lepers }
\end{aligned}
\] & 6 & Strain \\
\hline 0 & 0 & 0 & 0 & Dir & [0,90]s & 0 \\
\hline 5 & 475 & 12925.2 & 0.00179 & Cycle & 2 & 0.00179 \\
\hline 10 & 800 & 21768.7 & 0.00246 & ult Load & 2675 & 0.00245 \\
\hline 15 & 1100 & 29932 & 0.00336 & & & 0.00336 \\
\hline 20 & 1425 & 38775.5 & 0.00425 & & & 0.00425 \\
\hline 35 & 2150 & 58503.4 & 0.00582 & & & 0.00582 \\
\hline 35 & 2500 & 70748.3 & 0.00716 & & & 0.00716 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test*3 & Area \(=\) & 0.04629 & & Info & & \\
\hline ! & Load & Stress & Strain & Layers & 8 & Strain \\
\hline 6 & 1000 & 21602.9 & 0.00179 & Dir & [0,90]s & 0.00179 \\
\hline 12 & 1625 & 35104.8 & 0.00224 & Cycle & 2 & 0.00224 \\
\hline 13 & 2250 & 48606.6 & 0.00334 & Ult. Load & 4500 & 0.00334 \\
\hline 24 & 2975 & 64268.7 & 0.00447 & & & 0.00447 \\
\hline 36 & 4375 & 94512.9 & 0.00604 & & & 0.00604 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\text { Test* } 4
\] & \[
\begin{aligned}
& \text { Area }= \\
& \text { Load }
\end{aligned}
\] & \[
0.03393
\]
Stress & Strain & Info Layer & 6 & Strain \\
\hline 4 & 225 & 6650.9 & 0.00268 & Dir & [-45,45] & 0.00268 \\
\hline 6 & 342 & 10109.4 & 0.00358 & Cycle & 2 & 0.00358 \\
\hline 9 & 437 & 12917.5 & 0.00515 & Ult. Load & 945 & 0.00515 \\
\hline 12 & 585 & 17292.3 & 0.00783 & Horizontal & & 0.00783 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tect 5 & Area \(=\) & 0.02393 & & \(\ln 90\) & & \\
\hline : & logd & Stress & Strain & Lagers & 4 & Strain \\
\hline 1 & 22.5 & 940.242 & 0.00034 & Dir & [45, -45] & 0.00034 \\
\hline 3 & 112.5 & 4701.21 & 0.00134 & Cycle & 2 & 0.00134 \\
\hline 6 & 247.5 & 10342.7 & 0.00291 & Ult. Load & 675 & 0.00291 \\
\hline 9 & 342 & 14291.7 & 0.00447 & Yertical & & 0.00447 \\
\hline 12 & 427.5 & 17864.6 & 0.00615 & & & 0.00615 \\
\hline 14 & 472.5 & 19745.1 & 0.00750 & & & 0.00750 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Test*6 & Area \(=\) Load & \[
\begin{aligned}
& 0.02592 \\
& \text { Stress }
\end{aligned}
\] & Strain & \begin{tabular}{l}
Info \\
Layers
\end{tabular} & Strain \\
\hline 0 & 0 & 0 & 0 & Dir [45,-45] & 0 \\
\hline 4 & 180 & 6944.44 & 0.00224 & Cycle 2 & 0.00224 \\
\hline 6 & 247.5 & \(\underline{0548.61 ~}\) & 0.00492 & Ult. Load 360 & 0.00492 \\
\hline 10 & 337.5 & 13020.8 & 0.00738 & Horizontal & 0.00738 \\
\hline 14 & 360 & 13888.9 & 0.01 & & 0.01 \\
\hline 16 & 360 & 13888.9 & 0.0104 & & 0.0104 \\
\hline 24 & 337.5 & 13020.8 & 0.0104 & & 0.0104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Test }=7 \\
& t
\end{aligned}
\] & \[
\begin{aligned}
& \text { Area }= \\
& \text { Load }
\end{aligned}
\] & 0.02535
Stress & Strain \\
\hline 0 & 0 & 0 & 0.00201 \\
\hline 2 & 250 & 9861.93 & 0.00280 \\
\hline 6 & 725 & 28599.6 & 0.00392 \\
\hline 10 & 1150 & 45364.9 & 0.00481 \\
\hline 1.4 & 1475 & 58185.4 & 0.00582 \\
\hline 18 & 1900 & 74950.7 & 0.00873 \\
\hline 22 & 2275 & 89743.6 & 0.01130 \\
\hline
\end{tabular}
\begin{tabular}{|lr|c|}
\hline Info & & \\
Lagers & 4 & Strain \\
Dir & {\([45,-45\)} & 0.00201 \\
Cycle & 2 & 0.00280 \\
Ult. Load & 3150 & 0.00392 \\
\hline & & 0.00481 \\
& & 0.00582 \\
& 0.00873 \\
& & 0.01130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Test* } \\
& t
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Area = \\
load
\end{tabular}} & \multicolumn{2}{|l|}{0.0356} & \multicolumn{2}{|l|}{Info} & \\
\hline & & stress & Strain & Layers & 6 & Strain \\
\hline 0 & 0 & 0 & 0.00213 & Dir & [0,90,0] & 0.00213 \\
\hline 2 & 250 & 7022.87 & 0.00246 & Cycle & 2 & 0.00246 \\
\hline 6 & 655.25 & 18435 & 0.00280 & Ult. Load & 2875 & 0.00280 \\
\hline 10 & 968.75 & 27213.6 & 0.00291 & & & 0.00291 \\
\hline 14 & 1312.5 & 36870 & 0.00347 & & & 0.00347 \\
\hline 20 & 20937 & 58816.2 & 0.00470 & & & 0.00470 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test*lc & Area \(=\) & 0.024 & & Info & & \\
\hline \(t\) & Load & Stress & Strain & Layers & 4 & Strain \\
\hline 0 & 0 & 0 & 0.00195 & Dir & [0,90]s & 0.00195 \\
\hline 2 & 160 & 6666.67 & 0.00252 & Cycle & 2 & 0.00252 \\
\hline 6 & 450 & 18750 & 0.00392 & Ult. Load & 2980 & 0.00392 \\
\hline 10 & 725 & 30208.3 & 0.00475 & & & 0.00475 \\
\hline 14 & 1025 & 42708.3 & 0.00531 & & & 0.00531 \\
\hline 20 & 1425 & 59375 & 0.00643 & & & 0.00643 \\
\hline
\end{tabular}```

