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Abstract

Fault tolerance in future processing and switching
communication satellites is addressed by demonstrating
new methods for detecting hardware failures in the first
major subsystem, the multichannel demultiplexer. An
efficient method for demultiplexing frequency slotted
channels employs multirate filter banks which contain fast
Fourier transform processing. All numerical processing is
performed at a lower rate commensurate with the small
bandwidth of each baseband channel. The integrity of the
demultiplexing operations is protected by using real
number convolutional codes to compute comparable parity
values which detect errors at the data sample level. High-
rate, systematic convolutional codes produce parity values
at a much reduced rate, and protection is achieved by
generating parity values in two ways and comparing them.
Parity values corresponding to each output channel are
generated in parallel by a subsystem, operating even slower
and in parallel with the demultiplexer that is virtually
identical to the original structure. These parity calculations
may be time-shared with the same processing resources
because they are so similar.

(1) This research was supported by NASA Lewis Research
Center through grant NAG-3-1166 and the National Science
Foundation through grant MIP-9002664.

Introduction

The new generation of sophisticated processing and
switching communication satellites with their extensive
digital processing capabilities will be more susceptible to
temporary and permanent electronic failures. An overview
of a typical sateUite's subsystems is given in Figure 1.

This paper will concentrate on the demultiplixer subsystem
to demonstrate the general principles of fault tolerance
needed in implementations that process multiple channels
with shared resources. Each subsequent subsystem will
have specialized features requiring variations on these fault
tolerance techniques. The basic philosophy is still
applicable though. Continuing work is addressing the
other subsystems.

Data channels in communication systems are easily
combined according to frequency division multiplexing
(FDM). This method is particularly useful because
frequency selectivity is all that is required to extract
individual channels from the overall signal constellation.
Many satellite communication systems employ this

method of multiplexing since there is no requirement for
common timing synchronization between data channels.
This approach is even more appealing from a hardware
implementation viewpoint because very efficient
demultiplexer realizations, called polyphase multirate filter
banks, are available [1-3].

The basic demultiplexing philosophy envisions a
narrow band filter extracting each channel from the
multiplexed signals. N multiplexed channels, each with

relative bandwidth fB' are combined into an FDM signal,

and the corresponding demultiplexer employs an idealized
narrow band filter with Z transform transfer function H(Z),
shifted in frequency, to separate the band of frequencies
corresponding to a channel. The uniform baseband filter is

effectively shifted to each respective band by the scaling
phasors, and the output channel only produces samples at a

rate 1/N th of the input sampling rate [4]. Generally, the
uniform filter represented by H(Z) has a finite impulse

response (FIR) configuration with the attendant advantage
of linear phase [5].

The uniform filter banks can be realized by defining
certain segments of the baseband filter's transfer function
and then using the outputs from these shorter filters as
simultaneous inputs to a discrete Fourier transform
operation [1,4]. This approach to demultiplexing is
outlined in Figure 2, where a fast Fourier transform (FFT)
algorithm realizes the discrete Fourier transform. The
relationship between the new shorter segmented filters

H(r)(z), r = 0, 1..... N-l, and the original baseband filter

H(Z), will be summarized later. The most important
feature of Figure 2 is its slower sampling rate applied
BEFORE the filtering and FFT operations, permitting the
digital hardware implementing these functions to operate at

a data rate I/N th that of the input data sampling rate.

Nevertheless, the input is still sampled at a suitably high
rate commensurate with its wider bandwidth.

There are situations where this efficient form of

demultiplexer must be highly reliable. Yet, the very
efficient sharing of processing resources makes this form
extremely sensitive to even simple failures which can

easily contaminate many data channels simultaneously.
For example, the new generation of switching and data
processing satellites take advantage of these forms of
demultiplexers.

There are several considerations when incorporating
fault tolerance in such a demultiplexer system. The first
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important consideration is the detection of failures, whether
they are permanent or temporary and transient. Once
inaccurate performance is detected, the failed subunit must
be identified and located (diagnosis). Finally, ff the failures
persist, the system must be reconfigured so that adequate
performance is still achieved. The work presented here
concentrates on the first aspect, fault detection. For,
without an indication of improper operation, the other
aspects of fault tolerance cannot be invoked.

An emerging alternate method of fault tolerance,
termed by some Algorithm-Based Fault Tolerance (ABb'T),
views the algorithmic operations and the data sample flow

as the important items to protect regardless of the
underlying hardware realization. The first use of this
technique was in protecting matrix operations [9], and there
have been many other applications investigated [10-17].
Most research has been directed to protecting linear
algorithms.

The fundamental approach in ABFT employs real
number error-detecting codes to define parity values
associated with a group of data samples. These codes can
be either block or convolutional codes [18-20]. In either
case, the original processing algorithm is combined with
the parity generation process, generally leading to a
composite, efficient, simplified parity generation algorithm
that produces independent parity values which are associated
with the output data. Then comparable parity values are
computed direcdy from the original processing algorithm's
output data. The respective parity values, one from each
set but computed in different ways, should be identical,
except possibly for some small round-off error differences
since they are evaluated in two dissimilar ways. Errors are
detected when the respective parity values differ
significantly. This type of fault tolerance will be applied
to protecting the demultiplexer.

Basics of Filter Banks

An analysis bank of filters will be examined where

each of the L transfer functions H o (Z), HI(Z )..... HL.I(Z )

bandlimit their respective signal outputs so that each may
be sampled at a rate 1/N of the input rate. This general
setting is depicted in Figure 3a. The L transfer functions

will be assumed FIR types, for the purposes of the
exposition. Each of the L filter paths can be analyzed
separately and the generic situation is isolated in Figure 3b,
for further development. The Z transform quantities shown
in these figures employ the two-side Z transform. Infinite
limits in the summations are included in its definition

below, even though only a finite number of nonzero terms
appear for the FIR filter case.

The impulse response {hp(m)}, corresponding to the
transfer function H(Z), is segmented into N subsequences
and the weighting operation separated into N parallel
convolutions.The N parallel convolutions employ

segmented impulse responses related to the original pth

channel impulse response in the following way.

yp(r) = (r - u) x(uN + v)
v=0 u

= _1 [--_-_**h(v)(a)x(rv---0u -u) N-v]',
(la)

h(V)(a)p = hp(aN+v) ; v=0,1 ..... N-1 (lb)
a=0,+l,+2 ....

where r in (la) = 0, +1, +2 .... The same number of
operations are performed in this approach, but each parallel
self-contained path can operate at a rate reduced by factor N.
The ability to use a slower processing rate in each disjoint
parallel path provides a serial-to-parallel tradeoff.

Demultiplexers can be viewed as a special form of
Figure 3a, wherein L = N and the N transfer functions are
constrained to be related to one common baseband transfer

function H(Z). It is easy to demonstrate the effects of the
-fs pr

scaling phase sequence {eJN-- }r----o._--is to shift the filter

response [1]. Under these conditions, the output of the pth

filter path may be written in terms of the input weighted
by segments of the impulse response and scaled by a
phasor.

yp(r) = _ e j'-ff h(-V)(r-u)x(uN+v) (2)
v=0 tu=-**

The final summation over index variable v in

equation (2) is equivalent to forming the pth discrete

Fourier transform coefficient for the N outputs of the

segmented impulse response filters {h(-V)(r)} N-1.
v=0

Furthermore, the only change needed to get an output for a

different output, say {Ym(r)}, is to modify the scaling

• fs raviN-1f j--
coefficients, [e N Iv=0' affecting the outer sum. The

same segmented impulse response filters are employed, but
the scaling values change. Thus Figure 2 represents the
general case where an FFT form of a discrete Fourier
transform is applied to the respective outputs of the
segmented filter functions. All N channel outputs of the
demultiplexer are obtained simultaneously.

Real Convolutional Codes

Convolutional codes have been defined traditionally
over finite field alphabets [21, 22], but recent research
results show how they may be extended to systems using
either integer or real arithmetic [18, 20, 14]. Nevertheless,
the basic approach to convolutional codes remains the
same, particularly with regard to a matrix description of the
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encoding and parity checking functions. Only systematic
forms of convolutional codes will be considered primarily
because the normal rdtering operations are not altered and
such forms are automatically noncatastrophic [22]. Only
the detecting capabilities of such codes are used; any
correcting operations could easily exceed the original
processing requirements.

The encoding matrix for a systematic convolutional
code, G, has a block-type format involving ra fundamental
finite sized matrices whose dimensions are related to the

rate and number of parity check positions in the code. The
parameter m determines the conslzaint length of the code.

G

'% c,,,
o co c,._,
0 0

0 0 I I

0 0

I I I G O

I C o

{ I I _ 0

0

I I I I I

_

% -

-- i (3)

G 1 _

0 m

I I

Thekxn submatrices Gj, j = 0, l ..... m, have distinctive
forms and divide into two types.

GO = (I { PO) ; I, k x k Identity Matrix

P0, k x (n - k) Parity - Check Matrix (4a)

Gj=(ol p!)pj;O.k× k, k x (n - k)

Zero Matrix

Parity - Check Matrix (4b)

The entries in the parity check submatrices Pi may be

either 0 or 1 even for the real Marshal code case [18, 20],

or in the more general case, real numbers [14, 23].

The parity positions are a function of possibly M =

(m + l)k input samples through the action of the Pj parts

of each Gj. The stack of these parity weighting values will

be denoted by an {Mx(n-k)} matrix Q with respective

columns { qr }" The (n - k) parity position associated with

the input v--'fflues are obtained by the weighing action of

columns qr" Each parity value may be viewed as the

output of _ FIR f'dter, described notationally using the Z

transform of column qe :

M-1

Qc(Z) = E q(M-l-j) z-l, (3")

j=O

where c = 0, 1,2 ..... (n-k- 1).
Real convolutional codes can also be imbued with a

distance structure similar to the usual one applied to finite

field symbol codes. It is possible to define a metric in
terms of a real Hamming weight.

High rate convolutional codes with only one parity
channel will be used for protecting output data channels
emanating from a demultiplexer. Binary-based codes, for
which there exist tables of high performance codes [24],

will be chosen. In particular, a rate K/(K+I) systematic
convolutional code is defined by a single parity weight
filter, equations (5). A single parity value for every K
input sample is produced by sampling an FIR filter with
transfer function denoted by Q(Z). The data flow normally
and are simultaneously tapped to this FIR parity filter,
Q(Z). A convenient view of the parity production process
is shown in Figure 4. The data flow normally and are
simultaneously tapped to this FIR parity filter, Q(Z). The
downsampling symbol _,K indicates that after every K data

samples, one parity value is produced.

Composite Filtering and Parity
Generation

This section develops methods for combining the
parity generation operations with filter banks, such as
shown in Figure 3, forming a cascaded system, depicted in
Figure 5. A generic channel with signal value notation
overlaid is presented in the middle of this figure. The

output of the t th filter, Ht(Z ), is denoted by Yt(Z) _ {Yt(r)}.

The parity output {Pt(a)}, after downsampling by factor K,

may be written in terms of the tth channel signal {Yt(r)},

which in turn can be expressed using segments of the
filter's impulse response.

N-I +**

Pt(a) = _ _x(uN+v) g_V)(aK-u) (6a)
V=0 u=-_

The composite weighting functions {g(tV)(r)} contain every

N th sample of the filter weighting, properly offset by index
V.

+.a

g_V)(s) = _q(r)ht((s-r)N-v ) , (6b)

where v = 0, 1..... N-1. The output sample index a is

scaled by K in the argument of gttV)(") inside the definition

of Pt(a), equation (6a), while it is further scaled by N in

this definition, equation (6b). The net effect has the input

data weighted by values every Nth point, in steps of KN

with respect to the data indices. The Z transform of the
composite impulse responses, equation (6b), will be

denoted by Gt(v)(z).

The real savings in computing the respective channel
parities occur for the case of uniform filters at the critically
sampled rate, L -- N. With the filter bank as in Figure 2,
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theoutputsofeachHt(Z)arescaledbyacomplexphasoras
inequation(2). This translates the parity channel output

Pt(a) into a modified equations (6).

N-1 +** . fs

Pt(a)= _ _[x(uN+v)eJ-N-tV]g(V)(ak-u) (7)
v=0 U=--,:_

The uniform filter weighting function g(V)(s) is defined

similarly to equation (6b). The complex roots of unity are
functions only of the outer index v, and, when all N
channels are considered, the complete set of parity values
may be calculated by a DFT operation, as described earlier
with regard to the polyphase multirate filter banks. The
calculation rate is reduced by a factor KN, even though the
individual composite channels accept data at intervals of N.

Protecting a Polyphase Filter
Demultiplexing System

The parity values are calculated in two ways, one by a
parallel composite parity generation process as described in
the last section. The second comparable parity values are
computed directly from the channel's demultiplexed outpuL
The first set of parities are calculated according to equations
(6) employing the composite weighting. The other parity
estimates are computed directly from the individual channel
outputs using the parity weighting Q(Z). These two

versions of Pt(a), labeled pt'(a) and pt"(a) are compared in a

totally self-checking comparator. The combined protection
system is detailed for generic channels r in Figure 6;
identical calculations for each of the N outputs would be
made.

The full details of this generalized version of a totally
self-checking equality checker [7] are contained in a book
chapter [25]. The threshold value A in this comparator is
selected to allow small differences between the two

versions of comparable parity samples, accounting for
roundoff noise discrepancies arising because they are
computed by different subsystems. The parity weight

filters, G(V)(z) blocks in Figure 6, combine the effects of

Q(Z) and H(Z). However, the computational rate is reduced
further by a factor of K, making this scheme an efficient
protection approach. Since each channel compares a pair of

parity values every Kth output value, errors are detected

with a latency of at most K output samples. The detecting
capability of the code is sometimes specified in terms of
the minimum distance for a constraint length.

Conclusions and Future Work

This paper has demonstrated how real convolutional
codes can be employed efficiently for protecting
demultiplexer filter banks. Each demultiplexer output
channel has two forms of low rate parity calculation
associated with it. One value is computed directly from the
output using an FIR parity filter dictated by the structure of
a real convolutional code. The memory in the parity filter

is determined by the constraint length of the code while its
very favorable downsampled processing rate is governed by
the code rate. The other parity value is computed in
parallel with the normal processing by a composite filter
operating at a reduced rate as govemed by the convolutional
code choice. These parallel parity calculations can be
implemented very efficiently by a polyphase multirate filter
bank, virtually identical with the main demultiplexer bank,
except operating at a much lower rate.

Research is continuing on the fault tolerance aspects
of other subsystems shown in Figure 1. The control
sections inherent in each subassembly are not always
visible to the system designer. The data level protection
techniques promoted in this paper provide coverage for
many control action failures. However, there are control
steps that are not directly covered, for example, those
actions associated with parity comparison results or
reconfiguration decisions. There are evolving techniques
that can be applied at the microcode level employing
embedded checks recomputed by a small hardware monitor
at run time and compared [26-27].

The demodulators are very difficult to protect because
of their internal phase and timing tracking loops. On the
other hand, the forward error correctors (FEC) directly
following contain redundancy checks. These devices
generally use convolutional codes and implement the
Viterbi Algorithm [21-22]. Hardware failures in a channel
demodulator appear as channel errors to the respective FEC
devices. Hence, if an individual FEC subassembly is fault-
free, any errors detected by it lead to suspecting failures in
the preceding DEMOD unit. This is a "sandwich"
approach to fault tolerance. If succeeding and preceding

units are fault-free and errors are detected by the protected
succeeding unit, the item in the middle of the "sandwich"
suspect. Work is progressing on introducing data level
fault tolerance in Viterbi algorithm type decoders, primarily
by attaching real parities to groups of path metrics [21-22].
Again, the principle of algorithm-based fault tolerance is

used. Real parity values are computed and recomputed and
then compared.
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