
ON-BOARD DEMUX/DEMOD

Abstract

To make satellite channels cost competitive with optical

cables, the use of small, inexpensive earth stations with

reduced antenna size and high powered amplifier (HPA)

power will be needed. This will necessitate the use of high

e.i.r.p, and gain-to-noise temperature ratio (G/T) multibeam

satellites. For a multibeam satellite, on-board switching is

required in order to maintain the needed connectivity
between beams. This switching function can be realized by

either an receive frequency (RF) or a baseband unit. The

baseband switching approach has the additional advantage

of decoupling the up-link and down-link, thus enabling rate

and format conversion as well as improving the link

performance. A baseband switching satellite requires the

demultiplexing and demodulation of the up-link carriers

before they can be switched to their assigned down-link

beams. This paper discusses principles of operation, design

and implementation issues of such an on-board

demultiplexer/demodulator (bulk demodulator) that was

recently built at COMSAT Laboratories.

1. INTRODUCTION

A multiyear effort was undertaken at COMSAT

Laboratories to investigate the on-board demultiplexer/

demodulator concept to determine its feasibility, identify

critical technologies, and assess the potential of developing

these technologies to a level capable of supporting a practi-

cal, cost-effective on-board implementation. An important

part of the effort was a review of the advances that can be

expected to occur in the critical digital component areas in

terms of power, mass, size, speed, and radiation resistivity

of the digital, logic, and memory components from which

the processor is to be fabricated.

A baseline system of the demultiplexer/demodulator

was defined and its performance evaluated by analysis and

computer simulations. A digital implementation was

selected to provide the flexibility that permits the on-board

processor to accommodate different types of multichannel

frequency-division multiple access (FDMA) carriers simply
by changing its computational rules and organization. This

permits the rules and organization of each processor to be
modified to accommodate variations in the number and

bandwidths of carriers over the lifetime of the satellite or to

accommodate different applications of the same type of
satellite.

A block diagram of the overall system and test setup is

shown in Figure 1. The system uses the frequency-domain

filtering approach to demultiplexing and a shared high-

speed coherent demodulator. The fast Fourier transform

(FFT)-based demultiplexer is capable of processing a large

number of carrier types and bit rates. The demultiplexer
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output is fed into an interpolating filter whose task is to

deliver 2 samples per symbol to a shared variable bit rate

digital demodulator that operates on a number of different

carriers in a round-robin fashion. The COMSAT digital

processor performs demultiplexing/demodulation and

associated filtering and control for a number of carriers

occupying a bandwidth of 20 MHz. The architecture used in

this system is very flexible, allowing in-orbit frequency plan

reconfiguration under ground command.

Most of the hardware has been implemented in low-

power complimentary metal-oxide semiconductor (CMOS)

circuitry. Several other important developments contributed
to very substantial reductions in the power, mass, and size

of the processor. An application-specific integrated circuit

(ASIC) gate array chip that performs the interstage reorder-

ing in the FFT pipeline was designed and developed. This

contributed to better than an order of magnitude reduction

in power and mass as compared with a discrete large-scale

integration (LS[) implementation. A method for sharing a

single pipeline inverse FFT processor among the different

carriers was conceived. By interleaving the frequency sam-

pies of those carriers at the input to the inverse FFT ([FFT)

processor and selectively bypassing butterfly operations,
carriers of different bandwidths can be handled simultane-

ously in the shared pipeline. This obviates the need for a

separate IFFT processor for each carrier. A novel PROM-

based approach was implemented for the acquisition section

of the shared digital demodulator, significantly reducing the

required hardware.

The demultiplexer/demodulator presented above has
been constructed and tested at COMSAT Laboratories and is

now operational. System performance evaluation in terms

of bit error rate measurements are presented in this paper.
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2. FREQUENCY DOMAIN FILTERING

An FFT/IFFT frequency-domain filtering architecture

was selected for the demultiplexer. FFT/IFFT frequency-
domain filtering method basically consists of convolving the

composite frequency multiplexed signal with a bank of fil-

ters using an overlap-and-save technique. It computes the
desired linear convolutions in terms of circular convolu-

tions. The circular convolutions are computed by transform-

ing the time-domain quantities to be convolved to the fre-

quency domain, multiplying the resulting frequency coeffi-

cients across the overall spectrum by any desired filter func-

tions and transforming back to the time domain.

Specifically, to obtain carrier k, the frequency multiplexed

signal is transformed to the frequency domain by an FFT,

multiplied by the frequency response of filter k (typically a
square-root Nyquist that serves the double purpose of de-

multiplexing and matched filtering), and the product is then
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transformed back via an IFFT to recover the time-domain
waveform. Therefore, to obtain the individual baseband

signals, the number of inverse transforms to be performed
equals the number of carriers N. To minimize the amount of
computation involved, the IFFT performed on a given
carrier should only cover the frequency band occupied by
that carrier. Thus, different carrier bandwidths will result in
different ]FFT sizes.

Figure 2 summarizes the frequency-domain demulti-
plexing approach. An important consideration here is the
size of the Fourier transform that has to be performed. If the
filter impulse response has L coefficients and 50-percent
overlap is used between blocks, then the size of the Fourier
transform to be performed is 2L. Note that as the overlap be
tween blocks increases, so does the number of computations
per output sample. On the other hand, if the overlap de-
creases, then the size of the Fourier transform, and hence the
memory size, increases. A 50-percent overlap achieves an

almost optimum tradeoff between computational and mem-
ory requirements and is very simple to implement.

A pipeline FFT processor is an efficient way of perform-
ing the needed high-speed, real-time Fourier transforms by
distributing the processing among several computational el-
ements. It has a compact and modular structure and is well
suited for very large-scale integration (VLSI) implementa-
tion. The pipeline processor consists of two building blocks:
butterfly computational elements and delay-switch-delays
(DSDs). The computational elements perform the necessary
butterfly computations of the Cooley Tukey FFT algorithm.
The DSDs consist of shift registers first-in first-out (FIFOs)
and switches. Their function is to present the samples to the
butterfly computational elements at the right place at the
right time.

A radix-2 or a radix-4 implementation may be used for
the FFT/IFFF pipelines. Although the radix-4 butterfly
computations are more involved than those of the radix-2
(three complex multiplications vs one for the radix 2), the
number of butterfly stages is half that required for a radix 2
and they operate at half the speed. Therefore the number of
complex multiplications per second is 25 percent smaller for

a radix-4 implementation. The choice of radix for the FFT is
thus a tradeoff between speed and additional hardware. If
the speed requirement can be satisfied by either implemen-
tation, then radix 2 may be the preferred choice. At the time
the proof-of-concept (POC) model was designed, the radix-4
pipeline, shown in Figure 3, was chosen because of speed
considerations.

As more highly-integrated devices become available,
however, this choice must be reconsidered. A radix-4 but-

terfly chip operating at one speed and a radix-2 butterfly
chip operating at twice the speed can each handle the same
data rate. Thus, the answer to which is best turns to such

factors as package size and power consumption, with con-
sideration of the fact that the radix-2 pipeline requires twice
as many butterflies.

As signal processing chips advance beyond the basic
butterfly operation, the additional functions they include
and the means of controlling them must be considered to

determine whether competing devices are more or less
desirable. For example, one manufacturer may offer on-chip
coefficient memory while another may not. A third may

have coefficient memory that requires more off-chip control
to utilize for our application. Therefore, the best architecture
depends upon the total board area and power consumption
required to perform a complete function (such as an FFT) at
a particular speed.

The FFT pipeline in the POC model is capable of
accepting four complex input samples and providing four
complex output samples during each 11.52-MHz clock
period. Thus, a 256-point FFT is computed every 64 clock
periods or 5.6 _sec. By extending the length of the pipeline,
a 1024-point FFT could he computed every 22 gsec.

A reduction in these times by a factor of approximately
two would be a desirable objective for the near future in
order to double the maximum IF bandwidth to about

40 MHz (which corresponds to a pipeline data rate of 80 x
10acomplex samples/sec.). The long-term goal is an

additional factor-of-two improvement to permit direct
processing of IF bandwidths as great as 80 MHz.

The DSD is one of two key elements used to implement
the pipeline FFT and IFFT processors (the other being the
butterfly arithmetic processor). Due to the complexity (large
amount of hardware) of the circuit, it is more practical to
implement it with ASIC technology. COMSAT Laboratories
has developed this DSD ASIC chip as part of the demulti-
plexer/demodulator program. A detailed description of the
COMSAT developed DSD is now presented.

To implement one complete DSD function, eight ASIC
chips and a small amount of discrete logic integrated
circuits (ICs) are needed. In the FFT processor, one complete
DSD is used between two butterfly elements and its
function is to reorder the samples in its input data streams
appropriately for the butterfly that follows it. The
reordering process is achieved by using two sets of delay
elements and one set of switch elements. The first set of

delay elements are used to shift the input streams
appropriately in time, then the switch elements interchange
the samples in a predetermined fashion, and finally the
second set of delay elements are used to shift the samples
back in time appropriately. The DSD ASIC is hardware-
programmable for the particular stage of the FFT or IFFT
processor in which it is used. Specifically, there are four
possible configurations for the DSD, three of which are for
radix-4 transforms and one for the radix-2 case used in the

IFFT processor. In the radix-2 case, the DSD treats the four
input streams as two groups of two input streams. The DSD
configured for the stage closest to the output of the
processors has the smallest amount of delays and the
highest switching rate.

The functional block diagram of the DSD ASIC is
shown in Figure 4. The number on the right side of the
delay element blocks indicate the delay values associated
with the particular input data stream. For example, the four
inputs X11-X14 always have delay values of 0, the four
inputs X21-X24 can have delay value of 1, 4, 8 or 16 clock
cycles. For any one configuration selected, only one set of
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delay values am used forthe input and output data streams.

For example, ifthe DSD is used in the second to the last

stage of the FFT processor, the delay values 0, 4, 8 and 12

are used. Specifically,the signals XI1-X14 and Y41-Y44

assume the delay value of 0, the signals X21-X24 and Y31-

Y34 assume the delay value of 4, the signals X31-X34 and

Y21-Y24 assume the delay value of 8,and so on.

The switch elements in the DSD perform the function of

routing the incoming signals to the appropriate outputs of

the switch elements. With reference to Figure 5, there are

two configurations for the switch elements, one of them is

the 2-state and the other is the 4-statecase, and they are

used for the radix-2 and radix-4 applications,respectively.

For the 2-statecase, in state '0',the inputs to the DSD go

straight through it,and in state 'I',data streams at ports

INA and INB are interchanged and data streams at ports

INC and IND are interchanged. For the 4-state case, the

situationisslightlymore complicated, and the actions taken

by switch elements in each of the four statesare shown in

Figure 5. For any one of the two switch configurations

selected,the switch elements always go through the same

states.The only differencewhen the DSD isused in different

stage of the b-'b"ror IFF'rprocessors is the rateat which the

statesare switched. Specifically,the DSD closestto the FF-T

processor output has the highest switching rate, and it

switches stateevery clock cycle.The DSD in the preceding

stage switches statesonce every fourclock cycles,and so on.

With referenceto Figure 6 and the functionaldetailsof

the DSD ASIC mentioned above, the implementation de-

scriptionis presented next. The delay elements are imple-

mented using shiftregistersand 4-to-Imultiplexers. For a

particular data stream, the possible delays of the data is

achieved by connecting the outputs of the shiftregisters

from the appropriate output stagesto the inputs of the asso-

ciated 4-to-1 multiplexer, and by selectingone of the four

inputs as the output.

The switch elements are alsoimplemented using 4-to-1

multiplexers, and by selectingthe appropriate inputs, the

data interchange as indicated in Figure 5 can be accom-

plished. The controllerof the DSD ASIC isresponsible for

providing allthe timing and control signalsfor the shifting

and multiplexing operations within the ASIC.

Whereas a single FFT is performed on the composite

frequency-division multiplexing (FDM) signal,the IFF]'sare

performed on an individual carrierbasis.The case of mixed

carrier sizes (narrowband, and wideband) is readily han-

dled by performing inverse transforms of largersizesforthe

wideband carriers.In order to avoid the duplication of

hardware, a common pipeline,capable of performing trans-
forms of various sizesunder software control without the

need for physically adding or removing any modules, is
desirable.

When a pipeline isdedicated to Performing an FFT of a

given size,the number of stages in the pipeline isfixedand

the twiddle factorsof the butterflycomputations, as well as

the switching times and delays of the DSDs are readily

available. The pipeline can be modified to perform trans-

forms of various sizes simultaneously. The needed modifi-

cations are performed dynamically (using a few control sig-

nals) to allow the pipeline to constantly alter its function in
real-time to accommodate the various transformation sizes

required. By properly ordering the input data to the

pipeline and bypassing some arithmetic modules for the

smaller size transforms, any mixture of IFFTs whose sizes

are a power of the pipeline's radix can be performed with-

out requiring any changes to the simple and regular action

of the DSD, as illustrated in Figure 7.

3. INTERPOLATION

Because the FDMA signal consists of asynchronous

carrier transmissions, the samples at the demultiplexer
output must be interpolated before being presented to the

demodulator. The interpolating filter module (IBM) which

connects the demultiplexer output to the demodulator input

Performs two functions. First, it adjusts the number of

samples per symbol for each carrier from an arbitrary value

near two to exactly two. Second, it adjusts the sampling

point for each carrier to coincide with the Peaks and zero

crossings of the signal. It per_rms both functions by means

of adjusting the phase shift of a simple finite impulse

response (FIR) digital filter. The control signals for adjusting

the number of samples per symbol are generated locally and

asynchronously and are added to the accumulated clock

error fed back from the demod to produce a composite

control signal proportional to the instantaneous phase

adjustment for the current sample. This signal is fed to the
FIR filter.

Figure 8 shows the shared control circuitry of the IBM.

The upper part of the diagram shows the circuitry required

to generate the coefficient programmable read-only memory

(PROM) addresses as well as general control signals. Each

carrier address counter keeps track of the location within

the current phase plan used for correcting the number of

samples per symbol. This address is fed to a phase plan

lookup PROM for each type of carrier in use. These PROMs

are shared by different carriers of the same bit rate and

coding scheme. This signal is then added to the output of

the clock error accumulator for each channel and applied to

the coefficient lookup PROMs to obtain the coefficients for

the FIR filter. As a practical matter, the coefficient PROMs

shown are duplicated on the second board to avoid too

many board-to-board connections.

Figure 9 shows the nonshared circuitry of the IFM, i.e.,

circuitry that must be repeated for the I and Q channel. The

shift register, multipliers, and adders constitute the basic
FIR filter circuit. The data buffer and related control

circuitry provide samples on demand to the input of the FIR

filter. This is necessary in cases where the samples in the

shift register must be reused to generate two output

samples. In other cases where the current contents of the
shift register are not required for an output sample the

outputs are simply marked as invalid. This peculiarity

occurs due to the factthatthe number of input samples does

not match the number of output samples.

In itscurrent configuration,the entireIBM occupies two

9Ux440 wirewrap cards and uses predominately high-speed
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CMOS digital logic devices including the LSI Logic I.,64012

multiplier IC and the Logic L4C381 accumulator IC. The

first board contains the shared control circuitry and the I

channel filter while the second board contains the Q channel
filter.

4. DEMODULATOR

The on-board demodulator operates on a multiple set

of quadrature phase shift keying (QPSK) modulated, asyn-

chronous carriers in a TDM format, where the incoming
TDM data packets are typically a fraction of the transmitted

burst. In this manner, the demodulator processes only a few

symbols for a given carrier, stores the results, and preloads

its registers with the appropriate sample values for the up-
coming carrier. The sample rate entered into the demodula-

tor for all carriers is two samples/symbol. Recall that the

sample frequency for all carriers is the same as their symbol

rates after they have been warped in the FDM/TDM con-

version. Symbol timing feedback from the tracking loop to

the preceding interpolating filter places the two samples

into the demodulator at the data-detection and symbol-

transition points. The receive Nyquist data shaping has al-
ready been done in the receive filter module. However, the

sample values at the data-detection points are modulated by

a beat note between the actual incoming center frequency
and the front-end down-conversion local oscillator. A car-

tier-phase rotator, which is effectively a 2 x 2 matrix multi-

plication of the beat modulated I and Q channels, is em-

ployed to remove the beat as follows:

I(_l = I COS(0A' - sin(O) 11 Ii 1co 0)Q

where 0 is the carrier tracking loop output phase estimate.

With a "0101" acquisition preamble in both channels

there is a potential 180 ° ambiguity in the recovered carrier

phase, which is resolved by means of the unique word

(UW). The UW pattern is the same in both channels, so

binary decisions used to increase detection reliability.

There are two phase-locked tracking loops in the de-

modulator for carrier phase and symbol timing. The carrier-

phase tracking is second order to account for frequency off-

sets, whereas the symbol timing is first order and only

tracks slow-varying phases. Multiplier-accumulators

(MACs) are used to implement the digital tracking loops.

The accumulators are preloaded with initial-phase or fre-

quency information, whichever is appropriate, from the ac-

quisition estimator circuitry. In this manner, the phase-

locked tracking loop synchronization in burst mode can be
expedited and more reliable. In terms of the second order

loop parameters, the phase and frequency multiplier gains

for carrier tracking are selected respectively as

K 0 = 2_yVnTs

KAO = (W_s) 2

where _ is the damping ratio, W n is the natural frequency,

and Ts is one symbol time interval. For the first order

symbol timing loop the multiplier gain is

Kx= (WnTs)

Initial estimates for carrier phase and frequency as well

as symbol timing are computed in the acquisition estimate

processor as shown in Figure 10, and briefly described as

follows. Incoming I and Q channel samples are multiplied

by a bipolar alternating sequence to remove the preamble

modulation and averaged to improve their signal-to-noise

(S/N) ratio. This yields four outputs, namely, even and odd
sums in both the I and Q channels. The sums are taken

twice, over the first and second halves of the preamble. The
carrier-phase error may be found from

O=taffl(TQ2+Q2)'45°sgn(IeQe+I°Q°)l_+l_

Similarly, the symbol timing error can be related as

=2_2_ Itan-l[ _+/'-_o2 / 45o[1 -sgn (lelo +QeQo)]}
I

[n both cases, the primary estimate can be found from a

lookup table of the inverse tangent of a ratio of squares, and

the phase ambiguity can be determined from looking up the

sign of a sum of products. Since these computations are only

required at a rate of twice per preamble, common process-
ing elements can be used where the differences between

phase and timing are incorporated into the final value

lookup tables. The final value of the carrier phase at the end

of the preamble is

= 02 + • (P/4), modulo 180 °

where P/2 is half the preamble length.

The carrier frequency offset estimate is determined as

Wo _02 - 01
P/2

Lastly, the timing estimates are averaged as

5. PERFORMANCE

The BER performance of the on-board demultiplexer/

demodulator processor has been measured using the setup

shown in Figure 1. Four modulators are used on the trans-

mit side to generate FDMA/TDMA test signals. All four of

the modulators are capable of variable bit rate operation

and have synthesized carriers so that a wide variety of fre-

quency plans can be generated. The fourth modulator can
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be used as an interfering burst for TDMA measurements.
Noise is added at the 140-MHz IF to the combined modula-

tor signals before processing by the demux/demod. The

BER of any one of the demodulated channels is measured

by the performance monitor by comparing the incoming

data with a stored version of the transmitted data.

Synchronization is provided by the UW detect signal from
the demociulator for the selected channel.

To evaluate the performance of the on-board processor

carriers corresponding to 1.544 Mbit/s with rate 3/4 and

1/2 coding and 2.048 Mbit/s with 3/4 coding were utilized.

As a baseline, the carriers were first processed individually

providing single carrier performance. Next, all three carriers

were generated and supplied to the processor, but the IbM

was set up to process only one of the carriers. This selection
effectively separates the demultiplexing and demodulation

functions of the processor so that implementation degrada-

tions can be isolated to individual subsystems. Finally, all

three signals were allowed to pass through the entire system

with the BER monitor selecting one of the three signals. A
summary of the performance for 1.544 N_oit/s carrier with

rate 3/'4 coding for the three setups is shown in Figure II.

As can be seen from this figure, there is a small amount of
degradation when the three carriers are introduced relative

to the single carrier performance, but very little additional

degradation when all of the signals are being processed by
the [FM and demodulator. This degradation is thought to be

due to a slight nonlinear operation of the demultiplexer

front-end and is being investigated. [n addition, some flar-

ing of the data occurs at the lower error rates {or all of the

curves resultingfrom low-level inter_rence effects.Overall,
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the BER performance data provides validation of both the

o,¢erall demu|tiplexer/demodulator structure and the selec-

tions of bit resolutions made early in the program.

6. CONCLUSIONS AND SUMMARY

An architecture for implementing an on-board flexible

demultipiexer/demodulator was presented. The architec-

ture is based on a frequency domain filtering approach to

demultiplexing an up-link FDMA signal consisting of a mix-

lure of carriers of different bit rates was presented. Specially

designed FFT pipeline processors were used for this pur-
pose. An ASIC chip designed at COMSAT Laboratories as a

critical part of the FFT/'IFFT processor was described. A

digital demodulator architecture that operates on the fnter-

polated demultiplexer output was presented. A survey of

current technology illustrated that for the near future high-
speed low-power digital signal processing ,411 be mainly

based on Si technologies (CMOS and CMOS/silicon-on-

sapphire [SOS]). Based on COMSAT's experience with PC)(:

developments of processors similar to the ones discussed in

this paper, as well as projections of technology, it is esti-

mated that an 80-MHz fully-digital, very-flexible flyable

processor is an achievable goal for the late 1990s. Such a

processor is projected to consume only 25 W and have a
mass under 5 lb.
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Figure 8. Interpolation Filter Control
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Figure 9. Interpolation Filter Computations
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