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VARIATIONAL FORMULATION OF HIGH PERFORMANCE FINITE
ELEMENTS: PARAMETRIZED VARIATIONAL PRINCIPLES

CARLOS A. FELIPPA

CARMELLO MILITELLO

Department of Aerospace Engincering Sciences
and Center for Space Structures and Controls
University of Colorado
Boulder, Colorado 80309-0429, USA

SUMMARY

High performance elements are simple finite elements consiructed to deliver engineering accu-
racy with coarse arbitrary grids. This paper is part of a series on the variational basis of high-
performance clements, with emphasis on those constructed with the free formulation (FF) and
assumed natural strain (ANS) methods. The present paper studies parametrized variational prin-
ciples that provide a foundation for the FF and ANS methods, as well as for a combination of

both.

1. INTRODUCTION

For 25 years researchers have tried to construct “best” finite element models for problems
in structural mechanics. The quest appeared to be nearly over in the late 1960s when
higher order displacement elements dominated the headlines. But these elements did
not dominate the marketplace. The overwhelming preference of finite element code users
has been for simple elements that deliver engineering accuracy with coarse meshes. The
search for these “high-performance” (HP) elements began in the early 1970s and by now it
represents an important area of finite element rescarch in solid and structural mechanics.
Many ingenious schemes have been tried: reduced and selective integration, incompatible
modes, mixed and hybrid formulations, stress and strain projections, the free formulation
(FF), and the assumed natural strain (ANS) method.

The present paper is part of a series {8-12] that studies how several high performance
clement construction methods can be embedded within an extended variational framework
that uses parametrized hybrid functionals. The general plan of attack is sketched in Figure
1. Heavy line boxes are those emphasized in the present paper. The extensions, shown on
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the left, involve parametrization of the conventional elasticity functionals and treatment
of element interfaces through generalizations of the hybrid approach of Pian [14-16).

The effective construction of HP elements relies on devices, sometimes derisively called
“tricks” or “variational crimes,” that do not fit a priors in the classical variational frame-
work. The range of tricks range from innocuous collocation and finite difference constraints
to more drastic remedies such as selective integration. Despite their unconventional na-
ture, tricks are an essential part of the construction of high-performance elements. They
collectively represent a fun-and-games ingredient that keeps the derivation of HP finite
elements as a surprisingly enjoyable task.

The prescnt treatment “decriminalizes” kinematic constraint tricks by adjoining La-
grange multipliers, hence placing the ensemble in a proper variational setting. Placing
formulations within a variational framework has the great advantage of supplying the gen-
eral structure of the matrices and forcing vectors of high performance elements, and of
allowing a systematic derivation of classes of elements by an array of powerful techniques.

Note the reliance of the program of Figure 1 on hybrid functionals. The original
1964 vision of Pian [14] is thus seen to acquire a momentous significance. It is perhaps
appropriate to quote here the prediction of another great contributor to finite elements:

T. H. H. Plan responded to the problem of plate bending by Inventing the
“hybrid formulation”, which avolds the problem of slope continulty. He
assumed that the element responds not according to shape functions but
according to element stress fields. These communicate with the outslde
world via the boundarles .... Hybrid elements can be the most competitive
and we belleve that the future lle In that direction. However, the formula-
tlon Is more complicated. Therefore we advocate that researchers should
try to cajole thelr formulation Into shape function form, so that users do
nct have to struggle. In the form, hybrid elements are no more difficult
to use than the Iso-P elements ... Unfortunately at the time of writing
we have no unlform technique to achleve this.

B. lrons and S. Ahmad, Technlques of Finlte Elements (1980), p. 159

Fulfillment of the prophecy appears to be near.

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The
body is bounded by the surface S, which is decomposed into S : SqU S,. Displacements
are prescribed on Sy whereas surface tractions are prescribed on S;. The outward unit
normal on S is denoted by n = n;.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = ¢;;,
and stresses ¢ = 0;;. The problem data include: the body force field b = b; in V, prescribed

displacements d on S., and prescribed surface tractions t = {; on S,.
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The relation:; between the volume fields are the strain-displacement equations
e= %(Vu + VTu) = Du or e = %(u;',- +u;;) inV,

the constitutive equations

c=Le or oij = Eijren in'V,
and the equilibrium (balance) equations
—dive=D%0c=b or oij;+b:=0 inV,

(1)

(2)

(3)



in which D* = —div denotes the adjoint operator of D = 3(V + V7).

The stress vector with respect to a direction defined by the unit vector v is denoted as
0, = 0.V, OF 0,; = 0;;v;. On S the surface-traction stress vector is defined as

o, =o.n, or 0On; = Oi;ny. (4)
With this definition the traction boundary conditions may be stated as
o,=t or oynj=% on S, (5)

and the displacement boundary conditions as

~

u=d or u=d on Sy. (6)

3. NOTATION

8.1 Field Dependency

In variationial methods of approximation we do not work of course with the exact fields
that satisfy the governing equations (1-3,5-6), but with independent (primary) fields, which
are subject to variations, and dependent (secondary, associated, derived) fields, which are
not. The approximation is delermined by taking variations with respect to the independent

fields.

An independently varied field will be identified by a superposed tilde, for example u.
A dependent field is identified by writing the independent field symbol as superscript. For
example, if the displacements are independently varied, the derived strain and stress fields

are
e* = L(V+VT)i=Di, o"=Ee"=EDi. (7)

An advantage of this convention is that u, e and ¢ may be reserved for the ezact fields.

8.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted paren-
theses and square brackets, respectively, around the integrand. For example:

[ 1av, 15 [ ras. (fls. [ 145 s ¥ [ 1as. @

If f and g are vector functions, and p and q tensor functions, their inner product over V
is denoted in the usual manner

def de
oy 2 [ tsav = [ faav,  @ay ¥ [ paav = [ pissav. @
v v v v
and similarly for surface integrals, in which case square brackets are used.
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Figure 2. Internal interface example.

8.8 Domain Asserlions

The notation
(a = b)V’ [a = b]S9 [a = blsu [a = b]SH (10)

is used to assert that the relation a = b is valid at each point of V, S, §,; and S;, respectively.

8.4 Internal Interfaces

In the following subsections we construct hybrid variatsonal principles in which boundary
displacements d can be varied independently from the internal displacements u. These
displacements play the role of Lagrange multipliers that relax internal displacement con-
tinuity. Variational principles containing P¢ will be called displacement-generalized, or
d-generalized for short.

The choice of d as independent field is not variationally admissible on S; or S;. We
must therefore extend the definition of boundary to include internal interfaces collectively
designated as S;. Thus ,

S:5US US;. (11)

On S; neither displacements nor tractions are prescribed. A simple case is illustrated
in Figure 2, in which the interface S; divides V into two subvolumes: V* and V™. An
interface such as S; on Figure 2 has two “sides” called S‘-'" and S;, which identify S;
viewed as boundary of V+ and V ~, respectively. At smooth points of S; the unit normals
nt and n™ point in opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 2 for definiteness.
A volume integral is the sum of integrals over the subvolumes:

(fy & /‘/+de+ v_fdv. (12)
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An integral over S; includes two contributions:

lols, & /+g+ dS+/ g~ dS, (13)
s; ST

where g* and g~ denotes the value of the integrand g on S‘f" and S, respectively. These
two values may be different if g is discontinuous or involves a projection on the normals.
Following a finite element discretization, the union of interelement boundaries becomes
S;.
4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form
N=U-P, (14)

where U characterizes the internal energy stored in the body volume and P includes other
contributions such as work of applied loads and energy stored on internal interfaces. We
shall call U the generalized strain energy and P the forcing potential.

It must be pointed out that all functionals considered here include sndependently varied
displacements. Thus, the class of dual functionals such as the complementary energy are
not included in the following study.

4.1 Volume Integrals

The generalized strain energy has the following structure:

U = 11,0 +512(5,€)v + 713(,€%)v + 3722(0°%,8)v + J2s (0, e%)v + 1daa(0",e")v

(15)
where 7;; through jas are numerical coefficients. For example, the Hu-Washizu principle
is obtained by setting ji2 = —1, fis = 1, J22 = 1, all others being zero. The matrix
representation of the general functional (15) and the relations that must exist between the
coefficients are studied in §5.1.

{.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume in-
tegral (15) with the forcing potential P. Two forms of the forcing potential, called P4
and P! in the sequel, are of interest in the hybrid treatment of interface discontinuities.
The d-generalized (displacemgnt-generalized) forcing potential introduces an independent

boundary displacement field d over S;:
P4, 5,d) = (b, i)y + [, & — d]s, + [£,]s, + [3n, 11 —d]s,. (16)

The t-generalized (traction gengralized) forcing potential introduces an independently var-
ied traction displaccment field t over S;:

P‘(ﬁ,&,{) = (b,ﬁ)v + [Eaﬁ - a]sd + [i,ﬁ]st + {E'ﬁls-" (17)
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The “conventional” form P° of the forcing potential is obtained if the interface integral
vanishes and one sets [t = 0,,]s. If so P* and P4 coalesce into P¢, which retains only two
independent fields:

P°(i,5) = (b,li)y + [3n,8 — d]s, + [E,8]s,. (18)

4.8 Modified Forcing Potentials

Through various manipulations and assumptions detailed in [10] the forcing potential Pd
may be transformed to

Pi(d,5,d) = (b,ii)y + [E,d]s, + (5,8 — d]s. ‘ (19)

where the all-important surface dislocation integral is taken over S rather than S;. One of
the assumptions is that displacement boundary conditions (6) are exactly satisfied. This
expression of P% is used in the sequel. A similar technique can be used to modify Pt, but
that expression will not be required in what follows.

4.4 Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy
with one of the forcing potentials. For example, the d and t generalized versions of the
Hu-Washizu functional are

My, = Uy — P4, T} = Uy — P (20)
where Uy is obtained by setting ja2 = j13 = 1, ji2 = —1, others zero, in (15).

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy (15) can be presented in matrix form as*

. i Juu iz Jis e’
U=3 / (¢ o° o%) J22 323 e  dv. (21)
v symm J33 e*

The symmetric matrix
Jn Jiz N3
J= J22  J2s (22)
symm Jas
characterizes the volume portion of the variational principle. Using the relations o° = Ee,
o® = EDii, e¢ = E !¢, and e* = Dil, the above integral may be rewritten in terms of the
independent fields as

juE™! FITY 713D o
U=3 / (6 & )| jiul  jnE  j»ED & o dv. (23)
v j1sDT  j»DTE j,DTED | | i
* To justify the symmetry of J note, for example, that jis(7,e*)v = 271s(6,¢%)v +

371s(e”,0")v, and so on.



5.1 First Variation of Generalized Strain Energy

The first variation of the volume term (15) may be presented as
U = (Ae,&&)v + (Ad, se)y — (diV o, 5ﬁ)v -+ [6:‘,5\1]5'. (24)
where ) e
Ae = ji1€% + j12€ + 13¢ 7,
AG = j120 + J220° + j2s0™, (25)
o' = j130 + J230° + jaao".
The last two terms combine with contributions from the variation of P. For example, if
P = P° the complete variation of II®* =U — P is

§TIC = (Ae,&&)v + (Aa, Gé)v - (div o' +b, Jﬁ)v + [0:; — f’,, Jﬁ]s‘ + —[fl - &,G&n]s‘. (26)
Using PY or P* does not change the volume terms. The Euler equations corresponding to

P4 and Pt are studied in [10,11] for a more restrictive form of functionals U.

Since the Euler equations associated with the first two terms are Aec = 0 and
Ae = 0, these quantities may be regarded as deviations from stress-balance and strain-
compatibility, respectively. For consistency of the Euler equations with the field equations
of §2 we must have Ae =0, Ag =0 and o' = o if the assumed stress and strain fields

reduce to the exact ones. Consequently

Jittn2e+ns=0
Jiz+ 322+ 323 =0, (27)
JiatJas+tisa=1

Because of these constraints, the maximum number of independent parameters that define
the entries of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity
are tabulated below. The subscript of J is used the identify the functionals, which are
listed roughly in order of ascending complexity. The fields included in parentheses after
the functionil name are those subject to independent variations.

Potential encrgy (0):

0
of. (28)
1

0 1
0o of. (29)
00



Unnamed stress-displacement functional listed in Oden and Reddy [13] (4, d):

1 0 -1
Jy=|0 0 of. (30)
-1 0 2
Strain-displacement Reissner-lype [13] (&, @):
0 00
Js=[0 -1 1 (31)
0 10
Hu-Washizu (7,é,1):
0 -1 1
Jw=|-1 1 0o]. (32)
1 00

One-parameler stress-displacement family (7,1) that includes Up, Ur and Uy as special
cases [9,10,11]:

-y 0 7
3,=|l0 o o |. (33)
v 0 1-79
One-paramet.er strain-displacement family (&, ) that includes Up and Us as special cases
[9]:
0O o 0
Jg=10 -8 g |. (34)
0 g 1-p

Two-parameter strain-displacement family (4,8,1) that includes Ug and U, as special
cases [9]:
Joy =(1=B) I, + (1= - (1-B-NIp

[—‘7(1 - B) o 7(1 - B) (35)
= 0 -B(1-1) B(1—1) .
y(1-8) B(l—-v) 1-B-v+2B7

Three-parameter (a, 8, ¥) family (,8,1) that includes Uy and Up, as special cases [9):

Japy = aJw + (1 - a)Jﬁ,
-v(1 - B)(1 - a) —a a+~(1—-p)(1-a) (36)
= —a a-p(1-9)(1-a) (1 —7)(1-«) :
at+tv(1-F)(1-a) B1-4)(1-a) (1-B-7+247)(1-4q)

The last forin, which contains three independent parameters, supplies all matrices J that
satisfy the constraints (21). It yields stress-displacement functionals for « = § = 0, strain
displacement functionals for @ = 4 = 0, and 3-field functionals otherwise. A graphic
representation of J,g, in (a, 3,7) space is given in Figure 3.
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Figure 3  Graphical representation of the Jag, functionals

5.8 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization of

finite element performance. The determination of “best” parameters for specific elements
relies on the concept of energy balance. Let U(e) = 1(Ee,€)v denote the strain energy
associated with the strain field e. If E is positive definite, U(e) is nonnegative. We may
decompose the generalized strain energy into the following sum of strain energies:

U = jasli(e¥) + crli(e” — &) + call(& — e") + cali(e®™ — e’), (37)

where Up(e®) = Up is the usual strain energy, ¢ = 2tz —Jaa+ 1),e2=3(-su +
joz +Jss — 1), and c3 = (i —Ja2tJaa— 1). Equation (37) is equivalent to decomposing
J into the sum of four rank-one matrices:

0 0O 1 -1 0 o o0 O 1 0 -1
J=333|0 0 O| +er |1 1 0f+c2]0 1 -1]+es 0 0 Of. (38)
0 01 o 00 0o -1 1 -1 0 1

Decompositions of this nature can be used to derive energy balanced finite elements by
considering clement “patches” under simple load systems. This technique is discussed for
the one-parameter functionals generated by (34) in {5,7,8].
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6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional mn4
for arbitrary J are stated. Following usual practice in finite element work, the components
of stresses and strains are arranged as one-dimensional arrays whereas the elastic moduli in
E are arranged as a square symmetric matrix. In the sequel we shall consider an individual
element of volume V and surface S : S; U S;US;, where S; is the portion of the boundary
in common with other elements.

6.1 Boundary Displacement Assumption

The boundary displacement assumption is
[& = Ny4 V]s. (39)

Here matrix N4 collects the boundary shape functions for the boundary displacement d
whereas vector v collects the degrees of freedom of the element, also called the connectors.
These boundary displacements must be unique on common element boundaries. This
condition is verified if the displacement of the common boundary portion is uniquely
specified by degrees of freedom located on that boundary. There are no derived fields
associated with d.

6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

(ﬁ = NuQ)V ’ (40)

where matrix N, collects the internal displacement shape functions and vector q collects
generalized coordinates for the internal displacements. The assumed 1 need not be con-
tinuous across interelement boundaries.

The displacement derived fields are
(e“ = DNq = Bq)v, (0" = EBq)v. (41)

To link up with the FF and ANS formulations, we proceed to break up the internal
displacement. field as follows. The assumed @ is decomposed into rigid body, constant
strain, and higher order displacements:

i1 = N,q, + N.q. + N,q,. (42)
Applying the strain operator D = %(V + V7T) to G we get the associated strain field:
e* =DN,q, + DN.q, + DN,q, = B,q, + B.q, + B.q,,. (43)

But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to
select B, = DN, to be the identity matrix I if the generalized coordinates q, are identified
with the mean (volume-averaged) strain values @*. Consequently (44) simplifies to

e" =g" + ey =" + Bug,, (44)
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in which
q,=8&"= (e*)v [v, (Ba)v =0. (45)

where v = (1)v is the element volume measure. The second relation is obtained by
integrating (44) over V and noting that q,, is arbitrary. It says that the mean value of the
higher-order displacement-derived strains is zero over the element.

6.8 Stress Assumption

The stress field will be assumed to be constant over the element:

(6 =o)v. (46)

This assumption is sufficient to construct high-performance elements based on the free
formulation [1-10]. Higher order stress variations are computationally effective if they are
divergence free [10] but such a requirement makes extension to geometrically nonlinear
problems difficult. The only derived field is

(& =E"'a)y (47)

6.4 Strain Assumptions

The assumed strain field & is decomposed into a mean constant strain & and a higher order
variation:

(@ =e+ Aa)y. (48)
where @ = (&)v /v, A collects higher order strain modes with mean zero value over the
element:

(A)V =0, (49)

and a collects the corresponding strain parameters. The only derived field is

(o° = Eé = E& + EAa)y. (50)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

For simplicity we shall assume that all elastic moduli in E are constant over the element.
Inserting the above assumptions into ¢ with the forcing potential (19), we obtain a
quadratic algebraic form, which is fairly sparse on account of the conditions (45) and (49).
Making this form stationary yields the finite element equations

i jqu—l jmvl 0 —P‘,r Jlva—Pz‘ Pz‘ LT- ( O ) r 0 )
jmvl jngE 0 0 Jasvl ) 0 e 0
0 0 jggCh 0 0 jg;R 0 a 0
-P, 0 0 o 0 () 0|{aq }={Ff . (51)
Jisvl — Py (1] 0 0 jasvE 0 0 é" fou
—'Ph 0 j]gR 0 0 jsquh 0 q, fq}.
L L 0 0 0 0 0 01 \ v \ f, )




where

K. = (BTEB,)v =K%, Cun=(ATEA)y =C", R =(BLEA)v, |
L=[NL]s, P,=[NT]s, Pc=[N]s, Pu=[Nils, (52)
f, = (NTb)y, f,=(NTb)y, fu=(Nib)y, f,=[Njt]s,.
in which Ny,. denotes the projection of shape functions N4 on the exterior normal n, and

similarly for N,, N, and N,. Coefficient matrix entries that do not depend on the 3’s
come from the last boundary term in (19).

7.1 The P matrices
Application of the divergence theorem to the work of the mean stress on e* yields

Téu

(53)

(3,e%)y = (7,8" + Brq,)v = vd’e" + 3" (Ba)vq, = vo
= [—m ﬁ]s = IamNrQr + N.&" + Nth]S = ET(PT(L- + P& + Pth)'

Hence P, = 0, P, = vl, P, = 0, and the element equations simplify to

[ juvE™" gl 0 0 (jis—1)vl 0 LTy ( &) (0 )
jmul J22vE 0 0 Jasvl 0 0 € 0
0 0 juuCh O 0 7sRT 0 a 0
0 0 0o o0 o 0 0 |<q p=<{"f,}. (54)
(J'ls d l)UI jggvl 0 0 jsavE 0 0 é“ fqu
0 0 jasR O 0 73K O q, fon
| L 0 0 0 0 0 01 \ v ) \ £, J

The simplicity of the P matrices comes from the mean-plus-deviator expression (44) for
e*. If this decomposition is not enforced, P, = 0 but P, = (B.)y and P, = (B,)v.

8. KINEMATIC CONSTRAINTS

The “tricks” we shall consider here are kinematic constraints that play a key role in the
development of high-performance FF and ANS elements. These are matrix relations be-
tween kinematic quantities that are established independently of the variational equations.
Two types of relations will be studied.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q and the nodal connectors v were introduced

by Bergan and coworkers in conjunction with the free formulation (FF) of finite elcments
[2-3]. For siinplicity we shall assume that the number of freedoms in v and ¢ is the same;
removal of this restriction is discussed in [10]. By collocation of u at the element node
points one easily establishes the relation

vV = Grq,- + GCQC + Gllqh = GQ’ (55)
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where G is a square transformation matrix that will be assumed to be nonsingular. On
inverting this relation we obtain

q, H,
q=G ! =Hy, or g=+¢ & »=|Hc|V. (56)
qn H;

The following relations between L and the above submatrices hold as a consequence of the
individual element test performed in §9.3:

TG, =0, LTG,=vl, vH.=L". (57)

If the decomposition (44) is not enforced, the last two should read LT G, = vB,, a relation
first stated in [3], and PoH, + PpH, = L7,

8.2 Conslraints Between Assumed Higher Order Strains and Boundary Displacements

Constraints linking &, to v are of fundamental importance in the assumed natural strain
(ANS) formulation. The effect of these constraints in a variational framework is analyzed
in some detail in [11-12]. Here we shall simply postulate the following relation between
higher order strains and nodal displacements:

a=Qv. (58)

where Q is generally a rectangular matrix determined by collocation and/or interpolation.
The individual element test in §9.3 requires that Q be orthogonal to G, and Gg:

QG,=0, QG.=0. (59)

The constraint (58) still leaves the independently varied mean strain @ to be determined
variationally.

9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a = Qv, q, = H,v,q,=H,v= v LTy, q;, = Hyv, through
Lagrange multiplier vectors A, A,, X,, and ), respectively, we get the augmented finite
element equiitions

- juvE™! juavl 0 0 (is—1)vI 06 0 0 0 0 L™ 1 (¢ ) (0 )
jva ngUE 0 0 jgavl o o 0 0 0 0 € (1]
0 0 j2aCh O 0 jsRT -1 0 0 o0 O a 0
0 0 o o 0 o o -1 o o O q,
(j13 - I)UI jzsvl 0 0 jsng 0 0 0 -1 0 0 é“ L fq.‘
0 0 jzaR 0 0 jaqu)., ) 0 0 . | 0 { q; = f,,h }
0 o -1 o 0 o 0 0 0 0 Q A 0
0 0 o -1 0 o 0 0 0 0 H, A, 0
0 0 o o -1 o o0 0 0 o0 v'LT A 0
0 0 0o o 0 -I 0 0o O o0 H, An 0
. A 0 0o 0 0 o QTHTvvI'LHf o J | v ] | £,
(60)
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Condensation of all degrees of freedom except v yiclds the visible * element stiffness equa-
tions

Kv=(K,+Kp)v=f (61)
where
K, = v !LEL7, (62)
Kp = jasHF K Hy, + 722(HERQ + QTRTH,,) + j22Q7 C1Q, (63)
f=1f, + H f,, + v LTf,, + H} . (64)

Adopting the nomenclature of the free formulation [3], we shall call K, the basic stiffness
matriz and K, the higher order stiffness matriz.

9.1 Relation to Previous HP Element Formulations

IfJ =J, of (33), jas = 1 — 9, jaz = j2a = 0, and we recover the scaled free formulation
stiffness equations studied in [5,7,9,10]:

K, =(1-7)HIK,H,. (65)
If we take J = Jw of (32), j22 = 1, a3 = j23 = 0 and we obtain

Kh = QTChQ' (66)

This is similar to the stiffness produced by the ANS hybrid variational formulation studied
in [11-12], in which the potential P* was used instead of P4.

But the term with coefficient 23 in (63) is new. It may be viewed as coupling the FF
and ANS formulations. It is not known at this time whether (61-64) represents the most
general structure of the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do f,,, f,; and fy,,. If v is known
following a finite element solution of the assembled system, solving the equations (60) for
the internal degrees of freedom yields

e=v LTy, #=Ee, a=Qv, q,=H,v, 8" =8, gq,=H,v,

o : . ) (67)
Ao = (J22ChQ + 73aRTHL)V, A, =0, A, =0, A, = (j22RQ+ jasKgnHp)v.

It is seen that the mean strains &, &* and &° = E~'5 agree, and so would the mean
stresses. This is not the case, however, if the body forces are not zero. It is also worthwhile
to mention that a nonzero Lagrange multiplier vector flags a deviation of the associated
fields from the variationally consistent fields that would result on using the unconstrained
FE equations (54) without “tricks”.

* The qualifier visible emphasizes that these are the stiffness equations other elements “see”,
and consequently are the only ones that matter insofar as computer implementation on a
displacement-based finite element program.
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9.8 The Individual Element Test

To conclude the paper, we investigate the conditions under which HP elements based on
the foregoing general formulation pass the individual element test of Bergan and Hanssen
[1-3]. To carry out the test, assume that the “free floating” element* under zero body
forces is in a conslant stress state oo, which of course is also the mean stress. Insert the
following data in the left-hand side vector of (60):

o

I
Q

o =0, &= E lop, ap=0, q,= arbitrary, e* =@&"= E " la,, q, =0,
A, =0, A, =0, A =0, A =0, v=G.q, +G2"=6G.q + G.E la;.

-}

(68)
Premultiply by the coefficient matrix, and demand that all terms on the right-hand side
vanish but for f, = Lao. Then the orthogonality conditions in (57) and (59) emerge. This
form of the patch test is very strong, and it may well be that relaxing circumstances can
be found for specific problems such as shells.

10. CONCLUSIONS

The results of the present paper may be summarized as follows.

1. The classical variational principles of linear elasticity may be embedded in a
parametrized matrix form.

2. The elasticity principles with assumed displacements are members of a three-
parameter family.

3. Finite element assumptions for constructing high-performance elements may be con-
veniently investigated on this family.

4. Kinematic constraints established outside the realm of the variational principle may
be incorporated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing HP finite elements may be presented
within this variational setting. In addition, combined forms emerge naturally from
the gencral parametrized principle.

6. The satisfaction of the individual element test yields various orthogonality conditions
that the kinematic constraints should satisfy a prior.

The construction of high performance elements based on a weighted mix of FF and ANS
“ingredients” will be examined in sequel papers, and specific examples given to convey the
power and flexibility of the present methods.
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