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SUMMARY

High performance elements are simple finite elements constructed to deliver engineering accu-

rncy with coarse arbitraxy grids. This paper is part of a series on the variational basis of high-

performance elements, with emphasis on those constructed with the free formulation (FF) a_nd

assumed natural strain (ANS) methods. The present paper studies parametrized variational prin-

ciples that provide a foundation for the FF and ANS methods, as well as for a combination of

both.

1. INTRODUCTION

For 25 years researchers have tried to construct "best" finite element models for problems

in structural mechanics. The quest appeared to be nearly over in the late 1960s when

higher order displacement elements dominated the headlines. But these dements did

not dominatq. _ the marketplace. The overwhelming preference of finite element code users

has been for simple elements that deliver engineering accuracy with coarse meshes. The

search for these "high-performance" (HP) elements began in the early 1970s and by now it

represents art important area of finite element research in solid and structural mechanics.

Many ingeni,)us schemes have been tried: reduced and selective integration, incompatible

modes, mixed and hybrid formulations, stress and strain projections, the free formulation

(FF}, and the assumed natural strain (ANS) method.

The present paper is part of a series [8-12] that studies how several high performance
element construction methods can be embedded within an extended variational framework

that uses parametrized hybrid functionals. The general plan of attack is sketched in Figure

1. Heavy line boxes are those emphasized in the present paper. The extensions, shown on



the left, involve parametrization of the conventional elasticity functionals and treatment

of element interfaces through generalizations of the hybrid approach of Plan [14-16].

The effective construction of HP elements relies on devices, sometimes derisively called

"tricks" or _variational crimes," that do not fit a priori in the classical variational frame-

work. The range of tricks range from innocuous collocation and finite difference constraints

to more drastic remedies such as selective integration. Despite their unconventional na-

ture, tricks are an essential part of the construction of high-performance elements. They

collectively represent a fun-and-games ingredient that keeps the derivation of HP finite

elements as a surprisingly enjoyable task.

The present treatment "decriminalizes" kinematic constraint tricks by adjoining La-

grange multipliers, hence placing the ensemble in a proper variational setting. Placing

formulations within a variational framework has the great advantage of supplying the gen-

eral structure of the matrices and forcing vectors of high performance elements, and of

allowing a systematic derivation of classes of elements by an array of powerful techniques.

Note the reliance of the program of Figure 1 on hybrid functionals. The original

1964 vision c_f Plan [14] is thus seen to acquire a momentous significance. It is perhaps

appropriate to quote here the prediction of another great contributor to finite elements:

7-. H. H. Plan responded to the problem of plate bending by Inventing the

"hybrid formulation", which avoids the problem of slope continuity. He

assumed that the element responds not according to shape functions but

according to element stress fields. These communicate with the outside

world via the boundaries .... Hybrid elements can be the most competitive

and we believe that the future lie in that direction. However, the formula-

tlon Is more complicated. Therefore we advocate that researchers should

try to cajole their formulation Into shape function form, so that users do

not have to struggle. In the form, hybrid elements are no more difficult

to use than the iso-P elements ... Unfortunately at the time of writing

w_ have no uniform technique to achieve this.

B. Irons and S. Ahmad, Techniques of Finite Elements (2980), p. 259

Fulfillment of the prophecy appears to be near.

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The

body is bounded by the surface S, which is decomposed into S : Sd U St. Displacements

are prescribed on Sa whereas surface tractions are prescribed on St. The outward unit

normal on S is denoted by n --- hi.

The three unknown volume fields are displacements u - u_, infinitesimal strains e - e_i ,

and stresses o -= a_j. The problem data include: the body force field b = b_ in V, prescribed

displacements a on S,|, and prescribed surface tractions t, - t_ on St.
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Figure 1 Program of attack for variational formulation of HP elements

The relation:_ between the volume fields are the strain-displacement equations

= _(v. + v%) = D.

the constitutive equations

o:Ee or

and the equilibrium (balance) equations

-diva = D*o = b

or eli = _(ui,i + ui,_) in V,

aLi= Eiiklek! in I/',

or aly, i + bi = O inV,

O)

(2)

(3)



in which D* = -div denotes the adjoint operator of D : t(V + Vr).

The stres:i vector with respect to a direction defined by the unit vector v is denoted as

¢_ : ¢.v, or a_i -- oijvj. On S the surface-traction stress vector is defined as

en -- ¢.n, or onl -" oiin i. (4)

With this definition the traction boundary conditions may be stated as

on - t or a_in i = t, on $_, (5)

and the displacement boundary conditions as

u = a or ul = d_ on Sa. (6)

3. NOTATION

S.1 Field Dc:pendencp

In variational methods of approximation we do not work of course with the exact fields

that satisfy the governing equations (1-3,5-6), but with independent (primary) fields, which

are subject t,) variations, and dependent (secondary, associated, derived) fields, which are

not. The approximation is determined by taking variations with respect to the independent

fields.

An indep,:ndently varied field will be identified by a superposed tilde, for example ft.

A dependent field is identified by writing the independent field symbol as superscript. For

example, if the displacements are independently varied, the derived strain and stress fields

are

e = + vT)a = Da, o"= = EDa. (7)

An advantage of this convention is that u, e and o may be reserved for the ezaet fields.

$._ Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted paren-

theses and square brackets, respectively, around the integrand. For example:

(f)v d--e---t/v f dV, [f]s d_f fs f dS, [f]s_ d--e---ffS f dS, If]st de__tfS f dg.
d t

(s)

If f and g are vector functions, and p and q tensor functions, their inner product over V

is denoted in the usual manner

(f,g)v df=_t/vf.gdV=/vfigidV, (P,q)v d,f.=f/vp.qdV=/vPiiqi.idV,

and similarly for surface integrals, in which case square brackets are used.

4



Figure2. Internal interface example.

8.8 Domain Assertions

The notation

(a = b)v, [a = bls, Ia -- b/s,, [a -" bls,, (10)

is used to assert that the relation a = b is valid at each point of V, S, S,l and St, respectively.

3._ Internal Interfaces

In the following subsections we construct hybrid variational principles in which boundary

displacements d can be varied independently from the internal displacements u. These

displacements play the role of Lagrange multipliers that relax internal displacement con-

tinuity. Variational principles containing pa will be called displacement-generalized, or

d-generalized for short.

The choice of d as independent field is not variationally admissible on Sa or St. We

must therefore extend the definition of boundary to include internal interfaces collectively

designated as Si. Thus

S : Sd U S, U Si. (]l)

On Si neith,:r displacements nor tractions are prescribed. A simple case is illustrated

in Figure 2, in which the interface Si divides V into two subvolumes: V + and V-. An

interface such as Si on Figure 2 has two "sides" called $2 and S[, which identify S_

viewed as boundary of V + and V-, respectively. At smooth points of Si the unit normals

n + and n- point in opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 2 for definiteness.

A volume integral is the sum of integrals over the subvolumes:

(f)v "'_ /w* f dV + Iv- f dV. (12)



An integral over Si includes two contributions:

[g]si def jf S g+dS-k/s g-dS, (13),+ ,-

whereg+ and g- denotes the value of the integrand g on $_+ and Si- , respectively. These

two values may be different if g is discontinuous or involves a projection on the normals.

Following a finite element discretization, the union of interehment boundaries becomes

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form

n=u-e, (14)

where U characterizes the internal energy stored in the body volume and P includes other

contributions such as work of applied loads and energy stored on internal interface_. We

shall call U the generalized strain energy and P the/orcing potential.

It must be pointed out that all functionals considered here include independently varied

displacements. Thus, the class of dual functionals such as the complementary energy are

not included in the following study.

4.1 Volume Integrals

The generalized strain energy has the following structure:

• Ioe eU_ I • lotsU = _j,t(_,,,_)v +jL2(_,_)v +j,3(_,e')v + _/2_(-',fi)t" +323t , Iv + _333t ,e")v

(15)
where Jll through J33 are numerical coefficients. For example, the Hu-Washizu principle

is obtained by setting Jr2 -- -1, Jr3 = 1, 3"22 - 1, all others being zero. The matrix

representation of the general functional (15) and the relations that must exist between the

coefficients are studied in §5.1.

4.e lfybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume in-

tegral (15) with the forcing potential P. Two forms of the forcing potential, calle.d pa

and PC in the sequel, are of interest in the hybrid treatment of interface discontinuities.

The d-generalized (displacement-generalized) forcing potential introduces an independent

boundary displacement field a over Si:

e"(fa, b, gt)=(b,f )v +lLfqs, (16)

The t-generalized (traction generalized) forcing potential introduces an independently var-
ied traction displacement field t over Si:

P'(fi, b,t,) : (b,f)v + [t,6 - dis., + l ,als, + [L,als,. (17)

6



The "conventional" form P_ of the forcing potential is obtained if the interface integral

vanishes and one sets [t = a,,]s. If so pt and pa coalesce into P_, which retains only two

independent fields:

P*(fi, b) = (b, fi)v + [b,_, fi - _l]s, + It, uls,. (18)

4.$ Modified Forcing Potentials

Through vm-ious manipulations and assumptions detailed in [10] the forcing potential pa

may be tram;formed to

P'(a, a,a) = (b,fi)v + [[,als, + [bn,fi -als. (19)

where the all-important surface dislocation integral is taken over S rather than _qi- One of

the assumptions is that displacement boundary conditions (6) are exactly satisfied. This

expression of pd is used in the sequel. A similar technique can be used to modify pt, but

that expression will not be required in what follows.

4._ Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy

with one of the forcing potentials. For example, the d and t generalized versions of the

Hu-Washizu functional are

]15 = uw - e_, n_ = Vw - pt. (20)

where Uw is obtained by setting j22 = j13 -- 1, it2 = -1, others zero, in (15).

5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy (15) can be presented in matrix form as*

0,¢ O.U ) ,..,.2,.3]{.}j22 j23 _ dV.
symm j33 e"

u=_ (a

The symmetric matrix

(2])

ill i,2 i13
J- 3"22 3"23 (22)

symrn j33

characterize,; the volume portion of the variational principle. Using the relations e e = Ee,

a" = EDfi, e _ = E-re, and e" = Off, the above integral may be rewritten in terms of the

independent fields as

[j11E -t jt2l jt3D I fa_f

o-= _ / (a a _) / 1,2I i22E j23ED / _,_e dV.Jv LJisD T j23DrE j33DTEDJ fi

(23)

_j,s(o,,. )v +* To justify the symmetry of J note, for example, that jts(_,e")v = l. - .,

i • o and so on.]Jls(e ,a')V,



5.1 First Variation of Generalized Strain Energy

The first variation of the volume term (15) may he presented as

6u : + - (divo',6 )v + Io:,6 ]s. (24)

where
Ae = jlle ° + Jt2$ + jise",

Ao = j,2_ + i22o" +/2so", (25)

o' = jz3_ + jaa°" + Ja3o".

The last two terms combine with contributions from the variation of P. For example, if

P = P_ the complete variation of II _ = U - Po is

61"[_ = (Ae,6_)v -I- (A., 6_)v - (div 0' + b,6fi)v + [o_- t., 66]s, + -[fi-c],6_,_ls ,. (26)

Using pd or P= does not change the volume terms. The Euler equations corresponding to

pd and pt are studied in [10,11] for a more restrictive form of functionals U.

Since the Euler equations associated with the first two terms are Ao - I) and

Ae = 0, these quantities may be regarded as deviations from stress-balance and strain-

compatibility, respectively. For consistency of the Euhr equations with the field equations

of §2 we mu:;t have Ae : 0, A° : 0 and 0' = o if the assumed stress and strain fields

reduce to the exact ones. Consequently

3"11-{-j12 -4-j13 : O,

j12 + j22 + j23 = O,

J13 + j23 + J33 = I.

(27)

Because of these constraints, the maximum number of independent parameters that define

the entries of J is three.

5.e Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity

are tabulated below. The subscript of J is used the identify the functionals, which are

listed roughly in order of ascending complexity. The fields included in parentheses after

the function;d name are those subject to independent variations.

Potential energy (fi):

J p = . (2s)
0

Stress-displacement Reissner, also called Hellinger-Reissner, (_,fi):

0



Unnamed stress-displacement functional listed in Oden and Reddy [13] (_,fi):

JU-----
1 0 -1
0 0 0

-1 0 2

(30)

Strain-displa£ement Reissner-type [13] (_,ul:

as = -1 . (31)
1

0 -1 1]
aw= -1 I 0 (32)

1 0 0

Hu-Washizu (_, fi, fi):

One-parameler stress-displacement family (b, fi I that includes Up, UR and Uv as special

Jqt =

cases [O,lO,11]:
-`7 0 `7

0 0 0

`7 0 1-`7

(33)

One-paramel,er strain-displacement family (_, fi) that includes Up and Us as special cases

[9]-

[i° °a,9= -/3 p (341
/3 1-/3

Two-parameter strain-displacement family (_,_,fi) that includes Up and U_ as special

cases [9]:

a_ = (1- _)a_ + (1- `7)a_-(1 - _- `7)ap

"-`7(1 -/3) 0 '7(1 --/3) ] (351
= o -/3(1 -'7) /3(1 -'7) J"7(1-/3) /3(1-'7) 1-/3-`7+2/3"7

Three-parameter (a,/3, "7) family (a,_,fi I that includes Uw and Up.y as special cases [9]:

Ja#-, = aJw + (1 - a)J,_,

--'7(1 -/31(1 - a I

a + `7(1-- ,0)(1 - a)

--tr

a-/3(1-`7)(1- a)

/3(1-`7)(1 -a)

a +`7(I -/31(1-- a )

/3(1 -`7)(1 - a)

(I -/3 - _ + 2fl_/)(l - a)

(36)

The last form, which contains three independent parameters, supplies all matrices .I that

satisfy the constraints (21). It yields stress-displacement functionals for tr =/3 = O, strain

displacement functionals for a = `7 = 0, and 3-field functionals otherwise. A graphic

representation of J,p, in (a,/3,'7) space is given in Figure 3.



I Hu-Hashizu

0 Potential Energy

Stress-Dlsplaeement

l ] Reissner

/ Reissner

Figure 3 Graphical representation of the Ja_-1 functionals

5.8 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization of

finite element performance. The determination of "best _ parameters for specific elements

relies on the concept of energy balance. Let //(e) = _(Ee, e}v denote the strain energy

associated with the strain field e. If E is positive definite, U(c) is nonnegative. We may

decompose the generalized strain energy into the following sum of strain energies:

U = J33U(e") + ctU(e a- e) -t- c2U(e- e") + c3U(eU -e*), (37)

where Ue(e _) = Up is the usual strain energy, ct = _(Jix + J22 - 2'3a + I}, c2 = la (--jl, +

J22 + J3o - 1), and co = _(Jix - J22 + J'33 - 1). Equation (37) is equivalent to decomposing
J into the sum of four rank-one matrices:

[i°!lIllil Ii°yl I1°!]J=333 0 +ct -1 1 +c2 1 - +cs 0 0 . (38)
0 0 0 -1 -1 0

Decompositions of this nature can be used to derive energy balanced finite elements by

considering ,dement "patches" under simple load systems. This technique is discus:;ed for

the one-parameter functionals generated by (34) in [5,7,8].

10



6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional H a

for arbitrary ,] are stated. Following usual practice in finite element work, the components

of stresses and strains are arranged as one-dimensional arrays whereas the elastic moduli in

E are arrang(:d as a square symmetric matrix. In the sequel we shall consider an individual

clement of volume V and surface S : S_ U S,l U S_, where S_ is the portion of the boundary

in common with other elements.

6.1 Boundary Displacement Assumption

The boundary displacement assumption is

[,i = Ndvls. (39)

Here matrix Na collects the boundary shape functions for the boundary displacement d

whereas vector v collects the degrees of freedom of the element, also called the connectors.

These boundary displacements must be unique on common element boundaries. This

condition is verified if the displacement of the common boundary portion is uniquely

specified by degrees of freedom located on that boundary. There are no derived fields

associated with d.

6.2 Internal Displacement Assumption

The displacement assumption in the interior of tile element is

(_ = N_q)v , (40)

where matrix N,, collects the internal displacement shape functions and vector q collects

generalized (:oordinates for the internal displacements. The assumed fi need not be con-
tinuous acro:;s interelement boundaries.

The displacement derived fields are

(e _' = DNq = Bq)v, (a" = EBq)v. (41)

To link up with tlle FF and ANS formulations, we proceed to break up the internal

displacement field as follows. The assumed fi is decomposed into rigid body, constant

strain, and higher order displacements:

fi = Nrqr + Ncqc + Nhqh.

Applying the strain operator D = ½(V + V T) to fi we get the associated strain field:

(42)

e" = DNrq, + DNcqc + DNhqh = Brqr + Bcq¢ + Bhqh- (43)

But B_ = DNr vanishes because Nr contains only rigid-body modes. We are also free to

select Bc = IDN_ to be the identity matrix I if the generalized coordinates q¢ are identified

with the mean (volume-averaged) strain values _". Consequently (44) simplifies to

(44)e" = _ + el: = _" + Bhqh,

11



in which

qc =--_'' = (eU)v /v, (Ba)v = 0. (45)

where u -- (1)v is the element volume measure. The second relation is obtained by

integrating (44) over V and noting that qh is arbitrary. It says that the mean value of the

higher-order displacement-derlved strains is zero over the element.

6.3 Stress Assumption

The stress field will be assumed to be constant over the element:

(_ = a)V. (46)

This assumption is sufficient to construct high-performance elements based on the free

formulation [I-I0]. Higher order stress variations are computationally effective if they are

divergence free [I0] but such a requirement makes extension to geometrically nonlinear

problems difficult. The only derived field is

(_ = E-td)v (4r)

6.4 Strain Assumptions

The assumed strain field _ is decomposed into a mean constant strain _ and a higher order

variation:

(_ = _ + Aa)v. (48)

where _ = (e)v/v, A collects higher order strain modes with mean zero value over the
element:

(A)v = 0, (49)

and a collects the corresponding strain parameters. The only derived field is

(a e = E_ = E_ + EAa)v. (5o)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

For simplicity we shall assume that all elastic moduli in E are constant over the element.

Inserting the above assumptions into H a with the forcing potential (19), we obtain a

quadratic algebraic form, which is fairly sparse on account of the conditions (45) and (49).

Making this form stationary yields the finite element equations

i,,_-' i,_,,l o -PY i,,_I- P: -P_ L_
jt2vI j22vE 0 0 jasvI 0 0

0 0 j22Ch 0 0 j2sR T 0
-P, 0 0 0 0 0 0

jjsvl - P. 0 0 0 jssvE 0 0

-Ph 0 jtsR 0 0 jssKqh 0
L 0 0 0 0 0 0

'6''

a

, q,

qh

' O'

o

0

,fu ,

,. (st)

12



where

Kqh = (B_EBh)v = KqT_,, Ch = (ATEA)v = C T, R = (B_,EA)v,

T T :r = [N_.]s,L = [Na.]s, P, = [N.,]s, P_ -[No.Is, P,,

= (N,,b)v, f,, =f. (Syb)v, fq=(S_b)v, fh = T

(52)

in which Na,, denotes the projection of shape functions Na on the exterior normal n, and

similarly for Nr, N_ and Ni,. Coefficient matrix entries that do not depend on the j's

come from the last boundary term in (19).

7.1 The P matrices

Application of the divergence theorem to the work of the mean stress on e" yields

(a,e")v = (a,_ _ + Bhqh)V = l)oTeu q- aT(Bh)Vqh = varY-"

= [a,*,fi]s = [_.,Nrqr + N_" + Nhqh]s = aT(Prqr + Poe" + Phqh).
(53)

Hence Pr = 0, P_ = vI, Ph : 0, and the element equations simplify to

jtlVg -l jl2vI 0 0 (its - 1)vI 0 L T"

jt2vl ja2vE 0 0 j2svI 0 0
0 0 ]a2Ch 0 0 j2aR T 0
0 0 0 0 0 0 0

(its- l)vI j2sVI 0 0 ]ssvE 0 0
0 0 j2sR 0 0 jsaKqh 0

L 0 0 0 0 0 0

@' '0

0

a 0

q, ,=, f#,

e'* fv,,

q_ fqh
v , , f.

(s4)

The simplicity of the P matrices comes from the mean-plus-deviator expression (44) for

e". If this decomposition is not enforced, Pr = 0 but Pc = (Bc)v and Ph = (Bh)v.

8. KINEMATIC CONSTRAINTS

The "tricks" we shall consider here are kinematic constraints that play a key role in the

development of high-performance FF and ANS elements. These are matrix relations be-

tween kinematic quantities that are established independently of the variational equations.

Two types of relations will be studied.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking tile generalized coordinates q and the nodal connectors v were introduced

by Bergan and coworkers in conjunction with the free formulation (FF) of finite eh:ments

[2-3]. For silnplicity we shall assume that the number of freedoms in v and q is the same;

removal of this restriction is discussed in [10]. By collocation of u at the element node

points one easily establishes the relation

v = G_q_ + Gcq_ + Ghqh = Gq, (55)

13



where G is a square transformation matrix that will be assumed to be nonsingular. On

inverting this relation we obtain

q=G -l=Hv, or q= _" = Hc v. (56)

qh Hh

The following relations between L and the above submatrices hold as a consequence of the

individual element test performed in §9.3:

LTCr = 0, LTcc = vl, vHc = L T. (57)

If the decomposition (44) is not enforced, the last two should read LrGc = uB_, a relation

first stated in [3], and P_Hc + PhHh = L T.

8.2 Constraints Between Assumed Higher Order Strains and Boundary Displacements

Constraints linking eh to v are of fundamental importance in the assumed natural strain

(ANS) formulation. The effect of these constraints in a variational framework is analyzed

in some detail in [11-12]. Here we shall simply postulate the following relation between

higher order strains and nodal displacements:

a=Qv. (58)

where Q is generally a rectangular matrix determined by collocation and/or interpolation.

The individual element test in §9.3 requires that Q be orthogonal to Gr and Go:

QG,. = o, QG_ = o. (59)

The constraint (58) still leaves the independently varied mean strain _ to be determined

variationally.

9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a : Qv, qr : Hrv, q_ : H_v : v-tLTv, qh = HhV, through

Lagrange multiplier vectors A,, At, Ac, and Ah, respectively, we get the augmented finite

element equations

j=_vE -t jt2ul 0 0 (jta - 1)vI 0 0 0 0 0 LT

jt2u] j22uE 0 0 J'2suI 0 0 0 0 0 0
0 0 j_2Cs 0 0 j2aR _" -I 0 0 0 0
0 0 0 0 0 0 0 -I 0 0 0

(J'ts - 1)vI j2svI 0 0 jssvE 0 0 0 -I 0 0
0 0 j2aR 0 0 jasKqh 0 0 0 -I 0

0 0 -I 0 0 0 0 0 0 0 Q
0 0 0 -I 0 0 0 0 0 0 H,
0 0 0 0 -I 0 0 0 0 0 u-iL _"

0 0 0 0 0 -I 0 0 0 0 Hh

L 0 0 0 0 0 QT lit v-_L H_ 0

Q

e

It

qr

qs

A°

v

o
o

0

r,,
r+.

= _ fek

0

0

0
o

f.

(6o)
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Condensationof all degrees of freedom except v yields the visible * element stiffness equa-

tions

Kv = (Kb + Kh)V = f (61}

where

Kb = v- 1LEL T,

• T HKh : J33HhKvh h + j23(HTRQ + QTRTHh) + J22QTChQ,

T v-ILTfq_ Hhrfqh.f= f_ + H, fq, + +

(62)

(63)

(64)

Adopting the nomenclature of the free formulation [3], we shall call Kb the basic stiffness

matrix and Kh the higher order stiffness matrix.

9.1 Relation to Previous HP Element Formulations

If J = J, of (33), 3"33 - 1 - % 3"22 = 3"23 = 0, and we recover the scaled free formulation

stiffness equations studied in [5,7,9,10]:

(65)Kh : (1 -- "7) HThKqhHh.

If we take J = Jw of (32), j22 : 1, j33 = j23 = 0 and we obtain

Kh = QTChQ. (66)

This is similar to the stiffness produced by the ANS hybrid variational formulation studied

in [11-12], in which the potential pt was used instead of pa.

But the term with coefficient 3"23 in (63) is new. It may be viewed as coupling the FF

and ANS formulations. It is not known at this time whether (61-64) represents the most

general structure of the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do fq,, fq_ and fqh. If v is known

following a finite element solution of the assembled system, solving the equations (60} for

the internal degrees of freedom yields

= t,-ILTv, d = Er_, a = Qv, qr = H,V, _" = _, qh = Hh V,
(67)

= (J22ChQ+ j33RTHh)v, = 0, = 0, = (j23RQ+ i  K hHh)V.

It is seen that the mean strains _, _" and _" = E-I# agree, and so would the mean

stresses. This is not the case, however, if the body forces are not zero. It is also worthwhile

to mention that a nonzero Lagrange multiplier vector flags a deviation of the associated

fields from the variationally consistent fields that would result on using the unconstrained

FE equations (54) without "tricks _.

* The qualifier visible emphasizes that these are the stiffness equations other elements "see _,

and com_equently are the only ones that matter insofar as computer implementation on a

displacement-based finite element program.
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9.8 The Individual Element Test

To conclude the paper, we investigate the conditions under which HP elements based on

the foregoing general formulation pass the individual element test of Bergan and Hanssen

[1-3]. To carry out the test, assume that the "free floating" element* under zero body

forces is in a constant stress state #o, which of course is also the mean stress. Insert the

following data in the left-hand side vector of (60):

i_=ao--0 _', _=E-_ao, ah=0, q_:arbitrary, e_'=_"=E-_o, qh=0,

Aa=0, Ar=0, A_=0, Ah=0, v--G,-q,.+G_i_"=Grq_+GeE-tao.

(68)
Premultiply by the coefficient matrix, and demand that all terms on the right-hand side

vanish but for f_ = La0. Then the orthogonality conditions in (57) and (59) emerge. This

form of the patch test is very strong, and it may well be that relaxing circumstances can

be found for specific problems such as shells.

10, CONCLUSIONS

The results of the present paper may be summarized as follows.

1. The classical variational principles of linear elasticity may be embedded in a

parametrized matrix form.

2. The elasticity principles with assumed displacements are members of a three-

parameler family.

3. Finite element assumptions for constructing high-performance elements may be con-

veniently investigated on this family.

4. Kinematic constraints established outside the realm of the variational principle may

be incorporated through Lagrange multiplier adjunction.

5. The FF and ANS methods for constructing HP finite elements may be presented

within this variational setting. In addition, combined forms emerge naturally from

the general parametrized principle.

6. The satisfaction of the individual element test yields various orthogonality conditions

that the kinematic constraints should satisfy a priori.

The construction of high performance elements based on a weighted mix of FF and ANS

"ingredients" will be examined in sequel papers, and specific examples given to convey the

power and flexibility of the present methods.
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