Gravity and the Geoid in the Nepal Himalaya

NAGW-2704 $p, 41$

Semi Annual Report to NASA Washington
1 January 1992
Roger Bilham
University of Colorado Boulder CO 80309-0216 3034926189

```
(NASA-CR-189523) GRAVITY ANO THE GEOIO IN N92-14560
THF NFPAL HIMALAYA Semiannual Report
(Coloralo Univ.) 41 D CSCL Oes
\begin{tabular}{ll} 
& Uncles \\
034 & \(0 \cap 53217\)
\end{tabular}
```


Uplift and erosion in the Himalaya

Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya.

The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements.

Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate.

We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change in velocity per unit distance of a falling corner-cube in a vacuum. Time is measured with an atomic clock and the unit distance corresponds to the wavelength an iodine stabilised laser. Since both these are known in an absolute sense to 1 part in 10^{10} it is possible to estimate gravity with a precision of $0.1 \mu \mathrm{gal}$. Known systematic errors reduce the measurement to an absolute uncertainty of $6 \mu \mathrm{gal}$. The free air gradient at the point of measurement is typically about $3 \mu \mathrm{gals} / \mathrm{cm}$. At Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4 $\mu \mathrm{gals} / \mathrm{cm}$.

The accompanying report records the experiment that we undertook in the Himalaya in 1991. The site description is provided together with a description of the instrument. The measured value of gravity at Nagarkot is $978494834.7 \pm 6.7 \mu \mathrm{gals}$. It is our intention to remeasure this point in 1993 or 1994.

Publications and reports:
Winester, D., J. Fried, B. Bernard, L. Shrestha, B. N. Shrestha, G. Adiga, R. Bilham and J. Faller (1990)) Absolute Gravity at Nagarkot Geodetic Observatory. pp.30. Archives of His Majesties Government of Nepal, Survey Department.
Jackson, M., S. Barrientos, J. Behr, B. Bernard, R. Bilham, P. Bodin, G. Chitrakar, R. DeConto, L. Denham, J. Faller, J. Fried. D. Kauffman, D. Kayastha, P. Molnar, J. Normandeau, G. Peter, B. Phuyal, T. Pradhananga, B. Sharma, B. Shrestha, K.Shrestha, F. Sigmundsson, B. Stephens, B. Washburn, Wang Wenying, D. Winister, Zhao Guogang. Trans-Himalayan Geodesy, (1991). Eos Trans. Amer. Geophys. Un. 72, 44, 112
Adhikari, K, R Bilham, M Jackson, N Karki, Kayastha, B Phuyal, T Pradhananga, B Sharma, B Shrestha, K Shrestha (1991). Interseismic Himalayan Subsidense: Uplift of Everest, Eos
Trans. Amer. Geophys. Un. 72, 44, 497.

ABSOLUTE GRAVITY

Nagarkot Geodetic Observatory, Nepal March/April 1991

Observations, corrections and results. Gravity ties to Kathmandu and Simira airports.

Dan Winester, Jack Fried and Brent Bernard
National Geodetic Survey, Rockville Md
Laxman Shrestha, Buddhi N. Shrestha and Gajanan Adiga
HMG Survey Department, Dilli Bazar, Nepal Roger Bilham and Jim Faller

University of Colorado, Boulder, CO, 80309

ABSOLUTE GRAVITY, Nagarkot, Nepal 1991

NGS Rockville Md:
Survey of Nepal:
Coordinated by:

Dan Winester, Jack Fried and Brent Bernard
Laxman Shrestha and Gajanan Adiga
Roger Bilham, Jim Faller and Buddhi N. Shrestha

Summary of measurements

The purpose of measuring absolute gravity in the Himalaya was to establish a reference datum for the local gravity network in Nepal and to establish points that may be remeasured to reveal changes of elevation in future years. The original plan was to measure absolute gravity at three locations: in the Greater Himalaya, in the Lesser Himalaya and in the Terrai bordering the northern plains of India. Each absolute gravity point was scheduled to be co-located with a GPS control point so that an independent estimate of vertical deformation might be possible.

The plan we adopted differed in three ways from the above:

1) One absolute-g site only was measured at Nagarkot (FAGS-1). The corrected value of the FAGS-1 indoor point at ground level for the period $3 / 30 / 91-4 / 2 / 91$ is $978494834.7 \pm 6.7 \mu \mathrm{gal}$. The gravity gradient at floor level (zero to 0.43 m) was $4.4194 \mu \mathrm{gal} / \mathrm{cm}$.
2) Relative ties were made to three GPS points: Nagarkot, Kathmandu airport and Simira Airport. The relative differences from FAGS-1 to these points are listed on the next page.

The ties were undertaken using a pair of Model D LaCoste Romberg meters. For Nagarkot the GPS point is less than 10 m from the brick building where GPS measurements were made. The Kathmandu Airport tie was undertaken using road transport (multiple ties over the $33-\mathrm{km}$-long 1.5 hour road linking Nagarkot to the capital). The Simira tie was made by flying several times between Simira and Kathmandu. The Model D gravimeter has just sufficient range to accommodate the gravity variation associated with the vertical change in height between Nagarkot and Kathmandu, and also the latitude change and vertical range combination between Kathmandu and Simira.
3) The limited number of sites suitable for gravity measurements has resulted in no gravity measurements at points suspected to be rising in the Greater and Lesser Himalaya. Simira is south of the Lesser Himalaya and Kathmandu and Nagarkot lie between the Lesser and the Greater Himalaya. Future Model D or Model G gravimeter ties be made from Kathmandu airport to GPS points elsewhere in Nepal are needed to correct this limitation in the 1991 measurements.

A removal truck was used to meet the several hundred pounds of equipment from the plane and to store the packaging at Nagarkot. The power at Nagarkot was found to be unreliable for the gravity measurements as was the portable generator used to provide backup power. Measurements for this reason were spread over a longer period than is usual. Air conditioning was requested for the gravimeter but was found to be unnecessary in Nagarkot. A decision to occupy only one point "absolutely" and the other points using Model D gravimeters was made because:
a) the absolute gravimeter was damaged in transit to Kathmandu or on the road to Nagarkot and might have further been damaged by additional road transport.
b) suitable temperature control from air conditioners was unavailable at the other selected sites, and an air conditioner would have had to have been trucked in from India together with a 15 kw generator.
c) Power outages at Nagarkot reduced the time available for measurements at additional sites.

The new gravity base stations provide a framework for the local Nepal gravity network. It is anticipated that future gravity measurements will extend this network throughout the country. The absolute accuracy of the 1991 measurements is $\pm 6 \mu$ gals or approximately $\pm 1.5 \mathrm{~cm}$ in elevation.

Funding support for the measurements was provided by NASA grant NAGW-2704. A description of the JILA absolute gravimeter follows the observational data.

UNITED STATES DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration national ocean service

ROCKVILLE，MARYLAND 20852
Voast and Geodetic Surver
11 iune 1991

```
[r. Kこeer Eilham
ElREE. LNiv, of Colorado
Eoulder. ここ ふここ心G
```

Lear Fuger：

```
    Enclused are gravity base station descriptions ior eceupied
sites in Nepal. A copr of these will de sent to Euddhi Sinrestna.
The fa|AFkOT FAGS-1 absolute gravity value will be available from
Ur. Feter. The gradients at NAGARKOT FAGS-1 from iloor to as cm
is 0.441;4 meal/m and from iloor to 120 om is 0.43923 meal/m.
Felative to the floor value at NAGARKOT FAGS-1 at the rollowing
gravity transters:
\[
\begin{array}{ll}
\text { NAGAFKOT GPS } & -0.691 \pm 0.002 \mathrm{mgals} \\
\text { KATHMANDU J } & +166.469 \pm 0.005 \\
\text { SIMARA J } & +368.599 \pm 0.017 \\
\text { SIMARA GPS } & +365.706 \pm 0.013
\end{array}
\]
```

Sincerely．

Hational Geodetic Surver．NíG $1 \overline{\mathrm{E}} 1 \mathrm{~N}$

- DESCRIPTION	National Reference Base	KATHMANDU J
corriz Nepal	$\begin{gathered} \text { ZONE (ANCHAL) } \\ \text { Bagmati } \end{gathered}$	\qquad
$\begin{aligned} & \text { DISTRICT (ZILA) } \\ & \text { Kathmandu } \end{aligned}$		027274424
Lisifice 27° $4^{\prime} \quad 50^{\prime \prime} \mathrm{N}$	$\begin{aligned} & \text { Lonstive } \\ & 85^{\circ} 21^{\prime} \\ & \hline \end{aligned}$	W. 14810 C 1332.006 meters
cuitrt siatiom RuF Benchmark Hub	MCDT/soncs HMG Survey Dept.	$\begin{gathered} \text { 1ascelfisom } \\ -- \end{gathered}$
posinion errames (unprocessed) GPS Position (unt	positiom somel UNAVCO	SOUEE DESIGAAITOM $--\quad(4 / 1991)$
ELTAFIOM Eprabics BM Elevation	ERTA830 sooncs HMG Survey Dept.	sonce orsteanilios $--\quad(4 / 1991)$

postitas/bryafion apurss

GEVIT TAN

1 st order levels; Indian MSL; WGS $84 \quad \mathrm{~g}=978661.22 \pm 0.047$ mgals (512 STRE, 1984
drsarfion Station is at Kathmandu's Trebhuvan International Airport. Station is 3.8 km ESE of the Royal Palace. To access from the Tinkune (traffic triangle) on the east side of Kathmandu, go NNE on Meanmoven Road for 2.0 km . Turn east (right) into airport and go 0.3 km to Pass Office under control tower. Get field pass. Go south for 0.3 km , passed International Terminal, to gate to east and airfield. Go 0.2 km along jet parking apron to acce: road to SSW (right). Station is about 62 m SSW of apron, 16 m WNW of WNW edge of taxiway, 10.5 m ESE of center of access road and in the center of a 3 m by 3 m macadam area surround. ed by a white fence. Station is in center of 0.70 m by 0.70 m by 0.36 m deep concrete pit and over 0.030 m wide by 0.025 m tall BM hub and 0.32 m SW of Reference Mark and 1.5 m ESE of witness sign.

Otim starion pesigurions: International Gravity Station

ORthin OF POPR QUALITY

ari on nepe: 5 Apr 1991

DESCRIPIION	Absolute Site	NAGARGOT FAGB-1
conris Nepal	$\begin{gathered} \text { ZONE (ANCHAL) } \\ \text { Bagmati } \end{gathered}$	CIT Nagarkot
DISTRICT (ZILA) Bhaktapur/Kabhre Palanchok		027274134
$\begin{array}{r} \text { Lasigueg } \\ 27^{\circ} 41^{\prime}, 35^{\prime \prime} \mathrm{N} \end{array}$	$\begin{aligned} & \text { Wongrois } \\ & 85^{\circ} 31^{\prime} \\ & \hline \end{aligned}$	$2150.564 \text { meters }$
chitir siation mir 19 mm brass plug	AGET/Scoses NOAA/NGS	Insczifion NFAGB-1 1991
posision ecracicz Scaled from GPS station	rosition sonece UNAVCO \& NOAA/NGS	SOUEE DESIGAAITOM $--\quad(4 / 1991)$
Erririom strabct Disk Elevation	Fivarion somez HMG Survey Dept.	$\begin{gathered} \text { Sounce desigaition } \\ --\quad(4 / 1991) \end{gathered}$

position/Ervation mowrs

GeAvit Taloz

1st order levels; Indian MSL; WGS 84
prscarfion Station is at HMG Survey Department's Geodetical Observatory - Nagarkot. Station is 19.4 airline km east of the Royal Palace in Kathmandu. To access from the Tinkune (traf fic triangle) on east side of Kathmandu, go easterly towards Bhaktapur for 4.7 km . Turn north (left) and go 0.4 km to second turn to east (right). Go easterly up a winding, bumpy road for about 20 km to second guard gate of Nagarkot Army Post. Bear left and go southeas for 2.7 km on dirt road to upper parking lot of Observatory. Station is uphill via footpat to NE in the Timing Room of the Timing and Battery Bldg.(3.7m by 7.5m). Station is 0.93 m SE of NW wall and 2.83 m SW of NE wall of room. Plug is epoxyed flush into the thin concre floor. Contact is Buddhi N. Shrestha, Director General, HMG Survey Dept. at 411-897 in Kathmandu. Site phone is 211-009. FAGB-1 stands for Fundamental Absolute Gravity Base Number 1.

ORIGINA PAGE IS of POOR QUALITY

posirion/CLSATIOM RDuris

GRAVITY Tabor

dst order levels, Indian MSL; WGS-84
DEScantion Station is at HMG Survey Department's Geodetical Observatory - Nagarkot. Station is 19.4 airline km east of the Royal Palace in Kathmandu. To access from the Tinkune (raf tic triangle) on east side of Kathmandu, go easterly towards Bhaktapur for 4.7 km . Turn north (left) and go 0.4 km to second turn to east (right). Go easterly up a winding, bumpy road for about 20 km to second guard gate of Nagarkot Army Post. Bear left and go southeast for 2.7 km on dirt road to upper parking lot of Observatory. Station is uphill via footpath to northeast, 18.5 m SE of Battery $\&$ Timing Bldg's east corner, $4.2 \mathrm{~m} N$ of Doppler station $2.0 \mathrm{~m} N \mathrm{NE}$ of GPS point 89 , in east quadrant of 3.3 m squared concrete pad and in center of 1 m square, isolated, concrete pier inscribed GPS Main Station Nagarkot 1991. Pier goes down about 1 m to weathered rock. Rod goes down 0.3 m and then angles to side. Arrow on pier points north.
otic grafton pesigutions:

ORIGINAL PAGE IS
OF POOR QUALTT
ant er mono: 3 Apr 1991

- OESCRIPIION	Base Station	SIMARA J
Cowrist Nepal	$\begin{aligned} & \text { ZONE (ANCHAL) } \\ & \text { Nari Yani } \end{aligned}$	$\begin{aligned} & \text { CIT } \\ & \text { Simara } \end{aligned}$
$\begin{gathered} \text { DISTRICT (ZILA) } \\ \text { Bara } \end{gathered}$		©
$\begin{array}{r} \text { Mrisoos } \\ 27^{\circ} 09^{\prime} 49^{\prime \prime} \mathrm{N} \end{array}$		131.739 meters
Genvirt starion mui Benchmark Hub	A6ETR/sques HMG Survey Dept.	inscininion
Posistoil emrarict Topo Map 1:50,000	rosirion sorice Surveyor General of India	
-rasion Errames Disk Elevation	Efrarion somez HMG Survey Dept.	source ozsignation $--\quad(1989)$
posistom/[rvation emurks lst order levels;	adj. to WGS 84CLVITत VALDE $g=978863$.	± 0.070 mgals (512 STRE, 198
Descerfrion Station is at the Simara Airport Terminal, Simara, Nepal. Airport is on east sid f Simara and 20 km NNE of Birganj. Station is at SSE corner (field side) of terminal bldg. over brass hub set into concrete sidewalk at ground level. Station is about 0.7 m away frc terminal wall and is below concrete walkway along ESE side of terminal.		

onip grafion besigurions: SIMRA J

Site: \qquad Start date: \qquad End date: \qquad

LAT: \qquad LON: $=74-04$ Elevation: \qquad m

Number of drop sequences Drops per sequence Sequences using red laser. Sequences using blue laser

Comments : Surtem respouso romerti-n was tit? ertik_

sečblems.
comments Katumaudu, Nepal
HMG Survey Nagroket ObSERVatory
March 30,1991 1251z
Nagrokot GPS site Position 4^{25} m to west

$$
\begin{aligned}
& 27^{\circ} 41^{\prime} 34.24^{\prime \prime} \mathrm{N}=27.6928 \mathrm{~N} \\
& 8531^{\prime} 16.30^{\prime \prime} \mathrm{E}=-85.5212 \mathrm{E}
\end{aligned}
$$

ElEvation 2131 meters (height above waspy ellipsoid)
Where to begins? Equipment arrived and took scars to clear customs. Droppen/ss/keitnly pallet split up and both ctrambin cases had merit metal and were Laving oi side. Another containers bad a puncture \rightarrow you act the picture. $2^{1 / 2}$ hove Ride on petaled RoAd to observatory Pumpdown initiated a 1900 coal.
Ion pup on er 0830 Local. 200Hamps. Equip set up was wrot with problems. \#1 optical mount for Pistole joured Loose and required repair. This went ok although reflected interferometer spat somnus to stow more interference by althing cargen/fuzzy This has boon Resolved and reflected spat books good. \#2. Supenspruig malfunction indicated by Rapid dampening (No Rundown) pun an apparent coupling to fiocir through support structure. First investigation was eff level bubbles bevin misadjusted. We could ait correct problem by diddling Levels in various combinations in an Af tempt to hat mass tang freely, So we removed cannister to Look for hoke par 7 s when it

Prepared By_Bernard/Eried/winester
Organization . NOAA/NOS'/NGS

COMMENTS \qquad
became Apparent that the springs main stainless steel tube (corrected to flexures) had bean mistreated. The safety devices which were installed Last spring have 4 sot screws with a 4 mil gap to the steed tube protecting the spring and what it Looked bike was that the spring had been bounded a number of tries resultiris in esligtat bead of the tube so that now it contacted the set screws. We proceeded to back the screws ont costumes 4 mils and tested the unit to satisfaction. \#3 Power here is a Nightmare. Just about ane thing twats turned on causes the ss Elgar to note lock on The voltage and frequency, We have overcome this short of AN all out power Failure whet Apparently can occur. We will water this canpully \# Grounding: Buedingtas an open ground. Last riata While setting isp wist about even, thing I touctied olive ne a jolt includivia the Batzor Turbo Pump which is uncroutided. Faxed this by stripping the paint an a tinct feed pipe for wiring and connected A grounding bolt between pipe and Electronic chassite \#5 Radio
 When Radio teleptare transmitting dropper is out of control. To solve this we laid no more calls and turned the amplifier off! Nicequach? \#6 Heat? What treat. we have a generator a treater but mo adapter to go from a us

Prepared By_Bernard/Eried/Winester Organization . NOAA/NOS'/NGS

COMMENTS
Extension cord to a german plug Solution will arrive tomaroow morniric. from kathmandu. Building is a very solid brick timing House on A pare mia schist. 12" concrete floor $\omega /$ a metal door and Last night the temp one y varied 2°, So for taming I I will check the equip 0 02:00 Local to mater sural is ok $\# 6$ All tree of us have got the stampct bug but ace copping.
March 30, 1991 1300z fiestsot bequr-moritorinig drop on scope but every time a drop t Trigpens the Elgar Loses Lock. Turned scope eff. Residuals Look very reasonable. \# Looks good so fie. SS Looks stable. Vacuum and Fredtrarouati toldiuc up. Cumamulative effect of 3 pumpdowas without tret tape is that the Average vacuum pressure has Risen. Still well within operational Limits but will rochire teat possibly ir Hawaii. Wind outside tais picked up and we will submit wa records which the collect 50 m from the station to submit with the data.
Distrubance sons approximately $2 / 3$ rds through first set caused by of the Nepalue gaurd Next door opening and closivig twa trave metal da nz which doesa't clown to smoitrle' to crock if I was still tore atrenwisa sot moles excellent
\qquad
\qquad - NOAA/NOS'/NGS

COMMENTS \qquad
Adjusted ss Levels after Set \# 1. Each bubble had drifted almost 1 diameter:
Marcti31, 19910530 Local first le sets complete. Temperature surprisingly, stable. Lat eq 'Rain and fog outside. - $0023 z$ SERious cloud burst overhead N/ 1 mean Liatitricig bolt. Not Even a brown out of power surprisingly, Systemal was perfect chamade in Ref. Ht must be due to bad tape Reading. No adjustment to tripod was made. Temperature probe Reading $1.5^{\circ} \mathrm{C}$ tinges that calibrated thermometer. Yesterday the Radio transmitter signal was also Affectinic the themmococople by causing Erratic readings. correction Should be uniform for first 6 sets, we will contrive to update.

Gravity readings from hast might are excellent 4 sigma's for sits $3-6$ below 10 microgals. Set \#9 Temp. stertima to fluctuate with in observation tolerances (10:89 Local). Skies startivig to clear. Sets proceeding without incidents
ioskincal - Complete power out - Tremsfered Frequency / Volt mates to Topaz's to water power drain. will stat downand save data and equpmint if rucensary UPS voltage as loss ل17vac a. 1110 ل 13 VAC a UPS power to System. IUPS For Ton pump only. well that was it ll:1z Local the whole system crested. I turned off eves, thicigi ups to pimp still Rumbaing. Got to po.

Next Page

Prepared By \qquad Bernard/Ecied/winester Organization NOAA/NOS'/NGS

COMMENTS
Neprokot Observatory Cont'n
$0645 z$ I225Local March 31, 1991
Re-initiallized system. Suved DDT Dnta for set \#10 (emprox 190 drois) to file called" $\mathrm{Mag}^{\prime \prime}$. System whs qood tut temperature has Risen asclouds are treaking. Bicause of this I believe that the haser has Locked it a lower teater curremt and Retuen than cycle it up to .300 mps As we did L_ng AcO befoce the $10-12$ tr stabilizing pariad I will beave it Alate. The reasan beiric that it was off only 1 trour and its temp is already stable - the decreased curkent is the expected rosponse to the indrease in temp. will begin next sut on original absenvation stodule. Set \# 11 Poper Failure aqaire otrite Rodecer i I were attemptine to wire up cand start the jerenator in the evertof A power feilure. To iate Naton! System down anpin. Geronator now Runمing, powerend up waiting to relock spriaq ened Losen: Geranater will Require Refulling eveng 2 to 3 towes current
PAAN is to oparate until we trave 18 sets (19) is the datalooks good-very good and to problems erre manny.

Prepared By_Bernard/Eried/Winester Organization . NOAA/NOS'/NGS

COMMENTS
Nagrokat observatory
March 31, 1991 started Set \# 3 cos $\sim 1006 z$ on qeresator power. baser is not Appreciating this on off activity Telockinig as act and drifting down to $18 t$ A often 70 drops. Thus generator theyue supplied us with is a piece of strit and Almost dues every 10 minutes cauluia the epa to switch of 1 and sirice the topaz's taverit Rectaraed from this morning them rot inkely to bold the system for Long. Abs the perenator is injecting a lot of Noise into the data which in my opinion is ven y undesirable. The power has bean of for oven an how now and if it doesn't come back on soon I'll be pissed. In Firing Blue set run w/twe qunerator or had a considerablig higher sigina of 60 mierogal but still a very Bearable value considering other sites wive visited durionctras trip.
11067 Generator Died and lips unable to maintain system. Every thin shut off Restarted it to erectreuqe UPS buti't died Again. Thundesstom has moved n arid were palling it girts until. the man poweris poturoed. Ounplucaed writ 'c ground to sopeopond equipment' setting up battery to Pun ion pump os were uncertain os to bow Long the cups will pun the pump.

COMMENTS \qquad Nagrokot Observatory contain
April 1,1991 Began the End restart. spent all day recharging batteries to keep the Ion pump aud GPs receivers up while the power Remained out. Power came up around 1800 Local And I Was able to beginots.
Power capability at this site is at the veryedae of opontioral togumements Example. Tuna the scope on to fix the frimiqe signal find the current draw w/ EVERything on causes the liPs totricpien As the power to the Elgar dropsout. Fun ind games.
ه100 z Anat April $z, 1991$ LAst 6 sets stained a offset of 210 microgals from odrlier sets which following a dediametes adjustment of the Interfecometien verticality rabid the red value by 7 micro gals. Difficulty io Leveling the interferometer is I believe related to the pistole alyective berate collumation which was upset dutine cargo transport. last Nights initial check Revealed 2 reflected spots and one stationary. I chose the prightest spot to collumanate but tries morning that spot trad drifted. Sorry the dates not perfectly streamline but I think that explains it.
 Inside $24^{\circ} \mathrm{C}$ outside $19^{\circ} \mathrm{C}$ - openers jook. aron sit - Teieptome Transmitter ias deft corrected by accident and seriously affected a number of Drops \rightarrow the athiset (Last Brats). Dempunature is Also very tick and the Lase is at the ed ge of unlocking. More activity than durian the previous 20 sets is

Prepared By Bernard/Fried/Winester Organization - NOAA/NOS $/ \mathrm{NGS}$

$$
\text { PAGE } 8 \text { OF }
$$ coments Nagrikot Cobservatary Cont'm aparuut cothe ss trace manked by spikes. Thly 3 more sets to go. Jack. \& I decided to stanf susteme down wi/ al sets unden ow belt. The tempencture became pbocrnally bigh and The Lasen was about to worock.

System $/$ OK - still_ Extra eeflected spot in the Alcotal pool. Must cteck this with cteor when We arpive in Hawair and do A guek cteck of the collumnation. \qquad
\qquad
\qquad \square
 ——_-_ \longrightarrow.
\qquad —__ ._ C.
 —_-_

GRAVITY SET DISTRIBUTION

aakath91. 889

Final Processed set means.

$$
3 \text { STD errors for error bars }
$$

Scatter due To Field operators have Trouble selling system correctly with damaged interferometer.

time (2.65 days)

NGS
ABSOLUTE GRAVITY OBSERVATIONS From akkath91.089
This drop set has been previously processed for: three sigma acceptance limit gravitational tide correction

DROP SET MEANS SUMMARY

drop set	num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$	mean grav (ugal)			sd mean (ugal)	sd obs (ugal)
\# 1	250	RED	910330152056	978	494	428.8	. 9	14.6
\# 2	247	BLUE	910330172055	978	494	409.3	. 5	8.6
\# 3	249	RED	910330192056	978	494	427.7	. 6	9.0
\# 4	248	BLUE	910330212101	978	494	404.1	. 5	8.1
\# 5	249	RED	910330232055	978	494	423.6	. 5	8.0
\# 6	246	BLUE	910331012055	978	494	402.7	. 6	9.7
\# 7	248	RED	910331032056	978	494	424.7	. 9	13.7
\# 8	234	RED	910331072101	978	494	425.9	. 9	13.6
\# 9	234	RED	910401142106	978	494	416.2	1.1	16.1
\# 10	237	BLUE	910401162101	978	494	397.7	. 7	10.2
\# 11	250	RED	910401182100	978	494	415.6	. 5	8.2
\# 12	248	BLUE	910401202055	978	494	395.1	. 5	8.3
\# 13	247	RED	910401222055	978	494	413.2	. 4	6.8
\# 14	236	BLUE	910402002100	978	494	394.3	. 6	8.9
\# 15	242	RED	910402022055	978	494	418.4	. 6	9.7
\# 16	246	BLUE	910402042110	978	494	399.9	1.0	16.2
\# 17	215	RED	910402062136	978	494	419.8	2.0	28.6

[^0]NGS ABSOLUTE GRAVITY OBSERVATIONS From aakath91.089 This drop set has been previously processed for: three sigma acceptance limit gravitational tide correction

DROP SET MEANS SUMMARY
OFFSET CORRECTED

drop set	num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$	mean (ugal)	grav 1)		dual al)
\# 1	250	RED	910330152056	978	494	419.1	8.7
\# 2	247	BLUE	910330172055	978	494	418.9	8.6
\# 3	249	RED	910330192056	978	494	418.1	7.7
\# 4	248	BLUE	910330212101	978	494	413.8	3.4
\# 5	249	RED	910330232055	978	494	413.9	3.5
\# 6	246	BLUE	910331012055	978	494	412.4	2.0
\# 7	248	RED	910331032056	978	494	415.1	4.7
\# 8	234	RED	910331072101	978	494	416.3	5.9
\# 9	234	RED	910401142106	978	494	406.5	-3.9
\# 10	237	BLUE	910401162101	978	494	407.4	-3.0
\# 11	250	RED	910401182100	978	494	405.9	-4.5
\# 12	248	BLUE	910401202055	978	494	404.8	-5.6
\# 13	247	RED	910401222055	978	494	403.5	-6.9
\# 14	236	BLUE	910402002100	978	494	404.0	-6.4
\# 15	242	RED	910402022055	978	494	408.7	-1.7
\# 16	246	BLUE	910402042110	978	494	409.6	-. 8
\# 17	215	RED	910402062136	978	494	410.1	-. 3

average of weighted red and blue means $=4410.4$ s.d. mean $=5.5$ average standard deviation of observation $=11.7$

NGS ABSOLUTE GRAVITY OBSERVATIONS From aakath91.089 This drop set has been previously processed for:
gravitational tide correction
DROP SET MEANS SUMMARY OFFSET CORRECTED

	t	num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$	mean (ugal)	$\begin{aligned} & \text { grav } \\ & \text { i) } \end{aligned}$		dual al)
\#	1	250	RED	910330152056	978	494	419.7	8.8
\#	2	250	BLUE	910330172055	978	494	418.7	7.8
\#	3	250	RED	910330192056	978	494	418.6	7.7
\#	4	250	BLUE	910330212101	978	494	413.4	2.6
\#	5	250	RED	910330232055	978	494	414.4	3.6
\#	6	250	BLUE	910331012055	978	494	411.8	1.0
\#	7	250	RED	910331032056	978	494	415.7	4.9
\#	8	250	RED	910331072101	978	494	416.1	5.2
\#	9	250	RED	910401142106	978	494	403.9	-6.9
\#	10	250	BLUE	910401162101	978	494	406.9	-4.0
\#	11	250	RED	910401182100	978	494	406.5	-4.3
\#	12	250	BLUE	910401202055	978	494	404.5	-6.4
\#	13	250	RED	910401222055	978	494	403.8	-7.0
\#	14	250	BLUE	910402002100	978	494	403.2	-7.6
\#	15	250	RED	910402022055	978	494	408.8	-2.0
	16	250	BLUE	910402042110	978	494	410.1	-. 8
\#	17	250	RED	910402062136	978	494	411.8	. 9

average of weighted red and blue means $=4410.9$ s.d. mean $=5.8$ average standard deviation of observation $=20.1$

DROP SET MEANS SUMMARY

	cop	num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$		an ugal)		sd mean (ugal)	sd obs (ugal)
\#	1	250	RED	910330152056	978	494	430.6	. 9	14.6
\#	2	247	BLUE	910330172055	978	494	411.0	. 5	8.6
\#	3	249	RED	910330192056	978	494	429.3	. 6	9.0
\#	4	248	BLUE	910330212101	978	494	405.4	. 5	8.1
\#	5	249	RED	910330232055	978	494	425.0	. 5	8.0
\#	6	246	BLUE	910331012055	978	494	404.4	. 6	9.7
\#	7	248	RED	910331032056	978	494	426.8	. 9	13.7
\#	8	234	RED	910331072101	978	494	427.6	. 9	13.6
\#	9	234	RED	910401142106	978	494	417.2	1.1	16.1
\#	10	237	BLUE	910401162101	978	494	399.0	. 7	10.2
\#	11	250	RED	910401182100	978	494	416.9	. 5	8.2
\#	12	248	BLUE	910401202055	978	494	396.3	. 5	8.3
\#	13	247	RED	910401222055	978	494	414.2	. 4	6.8
\#	14	236	BLUE	910402002100	978	494	395.6	. 6	8.9
	15	242	RED	910402022055	978	494	420.1	. 6	9.7
	16	246	BLUE	910402042110	978	494	401.8	1.0	16.2
	17	215	RED	910402062136	978	494	421.4	2.0	28.6

[^1]average standard deviation of observation $=11.7$

NGS ABSOLUTE GRAVITY OBSERVATIONS From aakath91.089 This drop set has been previously processed for: three sigma acceptance limit gravitational tide correction local atmospheric pressure correction

DROP SET MEANS SUMMARY OFFSET CORRECTED

	rop	num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$	(ugal)	grav)		dual (al)
\#	1	250	RED	910330152056	978	494	420.9	9.1
\#	2	247	BLUE	910330172055	978	494	420.7	8.9
\#	3	249	RED	910330192056	978	494	419.6	7.8
\#	4	248	BLUE	910330212101	978	494	415.1	3.3
\#	5	249	RED	910330232055	978	494	415.3	3.5
\#	6	246	BLUE	910331012055	978	494	414.0	2.2
\#	7	248	RED	910331032056	978	494	417.2	5.4
\#	8	234	RED	910331072101	978	494	417.9	6.1
*	9	234	RED	910401142106	978	494	407.5	-4.3
\#	10	237	BLUE	910401162101	978	494	408.6	-3.2
\#	11	250	RED	910401182100	978	494	407.2	-4.6
\#	12	248	BLUE	910401202055	978	494	406.0	-5.8
\#	13	247	RED	910401222055	978	494	404.5	-7.3
\#	14	236	BLUE	910402002100	978	494	405.3	-6.6
\#	15	242	RED	910402022055	978	494	410.4	-1.4
\#	16	246	BLUE	910402042110	978	494	411.5	-. 3
\#	17	215	RED	910402062136	978	494	411.8	. 0

average of weighted red and blue means $=4411.8$ s.d. mean $=5.7$ average standard deviation of observation $=11.7$

NGS ABSOLUTE GRAVITY OBSERVATIONS From aakath91.089 This drop set has been previously processed for: three sigma acceptance limit gravitational tide correction local atmospheric pressure correction ocean loading correction
DROP SET MEANS SUMMARY
OFFSET CORRECTED

drop set		num of drops	laser mode	$\begin{gathered} \text { mean } \\ \text { date/time } \end{gathered}$	mean grav (ugal)		$\begin{gathered} \text { residual } \\ \text { (ugal) } \end{gathered}$	
\#	1	250	RED	910330152056	978	494	419.6	7.7
\#	2	247	BLUE	910330172055	978	494	419.5	7.6
\#	3	249	RED	910330192056	978	494	419.4	7.4
\#	4	248	BLUE	910330212101	978	494	416.2	4.3
\#	5	249	RED	910330232055	978	494	416.6	4.6
\#	6	246	BLUE	910331012055	978	494	414.6	2.6
\#	7	248	RED	910331032056	978	494	416.5	4.5
\#	8	234	RED	910331072101	978	494	417.5	5.5
\#	9	234	RED	910401142106	978	494	407.2	-4.7
\#	10	237	BLUE	910401162101	978	494	407.4	-4.5
\#	11	250	RED	910401182100	978	494	405.9	-6.0
\#	12	248	BLUE	910401202055	978	494	406.0	-6.0
\#	13	247	RED	910401222055	978	494	405.7	-6.3
\#	14	236	BLUE	910402002100	978	494	406.8	-5.1
\#	15	242	RED	910402022055	978	494	411.0	-1.0
\#	16	246	BLUE	910402042110	978	494	410.9	-1.1
\#	17	215	RED	910402062136	978	494	410.6	-1.4

average of weighted red and blue means $=4412.0 \mathrm{~s} . \mathrm{d}$. mean $=5.5$ average standard deviation of observation $=11.7$

Journal of geophysical research, vol. 91, wo. b9, pajes 9145-714n, augisst in, foab ${ }^{\circ}$

ABSOLUTE GRAVITY: A RECONNAISSANCE TOOL FOR STUDYING VERTILAL CRUSTAL MITIUNS

T. N. Niebauer, J. K. Hoskins, ${ }^{l}$ and J. F. Faller
Joint Institute for Laboratory Astrophysics, National Bureau of Standards and Uaiversity of Coluradn, Boulder

Abstract. A major effort is under way to develop highly portable absolute gravimeters having an ultimate accuracy of $3-5 \mu \mathrm{Gal}$, an accuracy which translates into a height sensitivity of several centimeters. We are just finishing the construction of six such units. Measurements at the Joinc Institute for Laboratory Astrophysics with one of these new instruments agree well with the earlier measurements made in 1981 and 1982 with a previous generation instrument. Recent measurements at the International bureau of Weights and Measures in Sevres, France, as a part of an international intercomparison of absolute gravimeters, also show good agreement with the other instruments.

Measurement of the absolute value of the freefall acceleration " g " has long been a matter of scientific interest. Present-day methods of measuring the absolute value of g employ ballistic systems involving either direct free-fall or symmetrical rise-and-fall methods. The earliest such measurements employed the direct free-fall method and geometrical optics to determine the position of the dropped object as a function of time. More recently, laser interferometry has been used almost exclusively.

A major effort to develop a new generation of high-precision absolute gravimeters is in the final stages at the Joint Institute for Lahoratory Ascrophysics (JILA) located at the University of Colorado in Boulder, Colorado. These gravimeters interferometrically measure the position of a free-falling object as a function of time and thereby permit the determination of the free-fall acceleration. This paper will discuss the use of absolute gravity for the study of vertical motions, the status of the JILA absolute gravity instruments, and the advantages and nearterm prospects of using them for this purpose.

Traditionally, vertical height information has been derived mainly from leveling data. However, even using automated leveling systems, the cost per kilometer ia high, from $\$ 350 / \mathrm{km}$ to rerun an existing line to between $\$ 500$ and $\$ 600 / \mathrm{km}$ to run a new line (G. J. Mitchell, private communtcation, 1986). A number of extraterrestrial cechniques and systems also exist for measuring vertical movements of the earth's surface such as laser satellite ranging, very long baseline interferometry, and using ground recelvers together

[^2]Copyright 1986 by che American Geophysical Union.
Paper number 5B5687.
0148-0227/86/005B-5687S05.00
with the NAVSTAR global positioning system satellites. These methods are now capable of achieving the interesting accuractes of between 1 and 3 cm and are therefore likely to play an increasingly important role in decermining veritical motions. Their costs are still high; but these custs, particularly those associated with the global positioning satellite system approach, should soon be lowered.

Gravity measurements, both relative and absolute, given sufficient measurenent prectsion, provide a comparatively inexpensive way to look for vertical crustal movements. A $1-\mathrm{cm}$ vertical cruscal motion would resulc in a gravity change of approximately $3 \mu \mathrm{Gal}$ were no change in the Local mass distribution to occur. The actual change in gravity observed in connection with a 1-cur vertical displacement will generally be 23 uGal but can be outside this range fur some crustal movement mechanisms [Jachens, $197 \mathrm{ga,b}$]. To differentiate, however, between subsurface density changes and vertical height changes, one must use one of the geometrical geodetic systems. Gravity does, however, provide an excellent and low cost reconnaissance tool with which to gather large amounts of preliminary data which then, for those areas in whlch gravity changes are occurring, can be checked and interpreted in combination with the other (geometrical) vertical data. If vertical motions are subsequently confirmed by other means, the observed gravity changes can help to determine the inechanism responsible for the motions.

In using sravity measurements as a reconnaissance tool to louk for vertical inovements, absolute gravicy measurements have a number of advantages over relative gravity measurements: the most important of these being that absolute gravity is a "point technique." A single measurement produces a gravicy value, in some sense a measure of the distance from the center of the earth, which depends only on the basic standards of length and tine. Kelative gravity measurements (as well as conventional leveling techniques) must necessarily be tied to a (presumed) stable external reference point which complicates the measurement process and inevitably raises questions about the stabllity of that refereace point over the appropriate time frame. In a relative gravimeter (see, for example Clark [1984]), the spring, whose length is essentially the measured parameter, displays secular creep as well as episodic changes in its length. Vihtations encountered while transporting these devices and stresses due to clamping only serve to exacerbate these problems. In addition, nonlinearities in the adjusting screw and its associated lever reduction mechanlsm have to be carefully callbrated if their eftects are to be removed. In practice, the measurement precision depends on the par-

Fig. 1. Block diagram of free-fall method.
ticular instrument used, the station-to-station distance, and also on the gravity difference. Without special precautions, relative gravimeters typically reach precisions of between ± 30 and $\pm 100 \mu \mathrm{Gal}$ for a single measurement of a given difference in gravity. Extreme care is required to reduce this error to the ± 5 to $\pm 10 \mu \mathrm{Gal}$ range [Torge, 1985].

By contrast, the accuracy of absolute freefall instruments depends mainly on the reproducibility of the basic standards of length and time, and a stabllized laser provides the length standard and an atomic (rubidium) clock provides the time standard. The absolute wavelength of the laser and the frequency of the atomic clock can easily be measured directly in the laboratory. The drifts in these "standards" are low enough so that they can be used for months with negliyible error contributions at the parts in 10^{9} level of accuracy. Further, these "standarda" are less subject to the ordinary vibration in transit, environmental temperature, etc., problems which have proven difficult with traditional relative gravimeters at the microgal level of sensitivity.

Modern-day absolute gravity instruments have been developed and inproved over the past 30 years through the utilization of available
technology. In practice, they all measure the position of a freely faliling mass as a function of time (with exquisite sensitivity) and from that motion determine the value of g (Figure l). Two types of free-fall instruments have been developed: the first utilizes simple free fall, and the second uses an up-and-down trajectory fraller and Sakuma, 1986). In each case, g la determined by fitting a quadratic expression to the measured trajectory. In practice, a Michelson-type laser Interferometer ta used to sense the position of the falling object during its fall. The dropped object containa a cube corner (a special type of optical mirtor that reflects the laser itrecty back, independent of the cube's exact orientation). The occurrence times of the zero crossing of the fringes then provide the necesary information with which to calculate g.

The firat laser interferometric g measurements were made in 1962 by J. E. Faller using an early commercially available He-Ne laser in what had been designed as a white-light-fringe g apparatus. The first portable laser interferometer absolute gravimeter was developed by J. 1. Hammond and J. E. Faller at JILA and Wesleyan University with support fron the Air Force Geophysics Laboratory (AFGL). With chis apparatus, which had an accuracy of $50 \mu \mathrm{Gal}$, data were taken at eight

[^0]: 10 dropsets weighted mean of red mode observations $=4420.1$
 5.7

 7 dropsets weighted mean of blue mode observations $=4400.7 \quad 5.3$ average of weighted red and blue means $=4410.4 \quad 5.5$
 average standard deviation of observation $=11.7$

[^1]: 10 dropsets weighted mean of red mode observations $=4421.5$
 7 dropsets weighted mean of blue mode observations $=4402.1$
 5.5 average of weighted red and blue means $=4411.8$ 5.7

[^2]: ${ }^{1}$ Now at Northrup Corporation, Hawthorne, California.

