
Ada and Software

Management in NASA:

Assessment and

Recommendations

March 1989

i

I

Ill

(NASA-TM-103298) Ada AND SOFTWARE

MANAGEMENT IN NASA: ASSESSMENT AND

RECOMMENDATIONS (NASA) 70 p CSCL 09B

G3/61

N92-14504

Unclas

0276903

N/ A
National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

https://ntrs.nasa.gov/search.jsp?R=19920005386 2020-03-17T14:16:40+00:00Z

J_

ADA AND SOFTWARE MANAGEMENT

IN NASA:

ASSESSMENT AND RECOMMENDATIONS

A Report to the Information Resources Management Council

by the

Ada and Software Management Assessment Working Group

March 1989

National Aeronautics and Space Administration

Goddard Space Flight Center

Greenbelt, MD 20771

WORKING GROUP MEMBERS

Frank E. McGarry, Chair

Goddard Space Flight Center

Robert A. Carlson

Ames Research Center

Edward S. Chevers

Johnson Space Center

John L. Feagan
Lewis Research Center

Donald W. Sova

NASA Headquarters, Code QR

John W. Wolfsberger

Marshall Space Flight Center

Arthur I. Zygielbaum

Jet Propulsion Laboratory

Additionally, the following advisors made significant contributions:

Michael R. Gardner 1

Computer Sciences Corporation

Jody M. Steinbacher

Jet Propulsion Laboratory

Keiji Tasaki

Goddard Space Flight Center

Susan Voigt

Langley Research Center

+Michael R. Gardner was also responsible for the full editing and integration of all por-
tions of the report generated by other working group members.

ii

FOREWORD

The National Aeronautics and Space Administration (NASA)

Information Resources Management (IRM) Council was established (1) to

coordinate agency-wide programmatic, operational, and institutional

requirements through the development of IRM policies and initiatives and

(2) to respond on an agency basis to relevant policies, regulations, and

statutes issued by the executive and legislative branches of the federal

government.

At its March 1988 meeting, members of the IRM Council expressed

concern that NASA may not have the infrastructure (standards, policies,
and internal organizations) necessary to support the use of Ada for major

NASA software projects. Members also observed that the agency has no

coordinated strategy for applying its experiences with Ada to subsequent

projects.

The Council, therefore, recommended that its chairman appoint a

group "to assess the agency's ongoing and planned Ada activities and the

infrastructure supporting software management and the Ada activities
(present and projected)." Accordingly, Chairman Noel Hinners established

an intercenter Ada and Software Management Assessment Working Group

(ASMAWG) and directed it to "review the agency's software management

programs and present an Ada implementation and use strategy appropriate

for NASA over the next 5 years" (Hinners, 27 June 1988).

The ASMAWG consists of seven members and four advisors,

representing a broad spectrum of agency organizations and activities. To

assess NASA practices and plans, the working group reviewed many

programs; studied previous reports on these topics; interviewed many
software engineers employed by NASA, support contractors, and other

organizations; and analyzed the current NASA infrastructure supporting the

software development process. The products of the ASMAWG activities

consist of this report and a 5-year plan for NASA (McGarry et ai., April

1989). The plan describes steps toward the adoption of effective software

engineering practices and technologies. _. _. _7/£
/Frank E. McGarry

Chair, ASMAWG

iii

EXECUTIVE SUMMARY

INTRODUCTION

Recent NASA missions have required software systems that are larger,

more complex, and more critical than NASA software systems of the past.

The Ada programming language and the software methods and support en-

vironments associated with it are seen as potential breakthroughs in meeting

NASA's software requirements.

OBJECTIVES AND SCOPE

This report presents the findings of a study by the Ada and Software

Management Assessment Working Group (ASMAWG). The study was char-

tered to perform three tasks:

• "Assess the agency's ongoing and planned Ada activities"

Assess "the infrastructure [standards, policies, and internal or-

ganizations] supporting software management and the Ada activi-
ties"

"Present an Ada implementation and use strategy appropriate for

NASA over the next 5 years" (Hinners, 27 June 1988)

FINDINGS

The following statements summarize this report's findings concerning

NASA's current use of Ada and software engineering technology:

• Ada is an appropriate vehicle to support the evolution to improved

software practices in NASA.

• Although NASA offers courses in Ada and software engineering,

the training programs are not adequate to accomplish a transition
to Ada.

• NASA has very little experience with Ada, and current plans do

not provide for building an experience base adequate to meet ex-

isting commitments for the use of Ada.

• NASA Ada projects have often selected or developed sophisticated

tools and methods; but software reuse is still in a rudimentary
state.

v PRECEDING PAGE BLANK NOT Fi'LMED

Executive Summary

NASA software management has been weak in two areas pertinent
to this report: agency-level planning for the use of state-of-the-art

software engineering practices (e.g., Ada) and project-level man-
agement of software risks, including those associated with Ada.

NASA does not have an adequate set of agency-level standards

and internal organizations to provide direction in software engi-
neering and to support the evolution to new software technologies
such as Ada.

Although NASA has sponsored extensive research in software en-

gineering, some of which has dealt with Ada-related technology,

the agency has not had a broad, coordinated program of research,
experimentation, and pilot projects.

NASA does not have an adequate program of collection and use
of metric data about the software development process.

RECOMMENDATIONS

Based on the findings of this report, the following statements summa-

rize the recommendations for a transition to improved software engineering
in NASA:

NASA should adopt Ada as its standard programming language.

NASA should establish a Software Engineering and Ada Imple-
mentation Task Force.

NASA should develop and adopt tailorable standards for software
development, management, and assurance.

NASA should evolve toward a common software support environ-
ment.

• Each center should develop a plan for evolving to Ada.

• The Software Engineering and Ada Implementation Task Force

should ensure the development and implementation of an agency-
wide core curriculum in software engineering and Ada. Each cen-

ter should adapt the core curriculum to its specific needs.

• For any "critical" project, management should be required to de-

velop and implement a written risk management plan.

• NASA should establish an Ada incentive program for its software
contractors.

vi

Executive Summary

The Office of Aeronautics and Space Technology (Code R) should

plan and coordinate agency-wide software research and develop-

ment, more of which should support Ada.

NASA should establish an agency-wide program to collect and use
software metrics.

NASA should establish a Software Process Engineering Task

Force to support the evaluation and improvement of the agency's

software acquisition and in-house development processes.

vii

m

B

_E

Table of Contents

1 -- Introduction .. 1-1

1.1 Objectives and Scope 1-1

1.2 Sources of Information 1-2

1.3 Organization of This Report 1-2

2 -- Software Development in NASA Today 2-1

2.1 Size and Cost of NASA Software 2-1

2.2 The Changing Role of Software 2-3

2.3 The Growth of NASA Software 2-4

3 -- The Promises of Ada 3-1

3.1 3-1

3.2 3-1

3.3 3-3

3.4 3-4

3.5 3-4

4 -- A Model for Transition to Ada 4-1

Software Engineering and the Software Crisis

The Inception of Ada

Support for Software Engineering

Support for Reuse

Advantages of a Common Language

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Building a Knowledge Base 4-2

Building an Experience Base 4-5

Tools, Methods, and Reusable Components 4-6

Management 4-7

Infrastructure 4-9

Research and Development 4-10

Measurement and Assessment 4-11

5 -- Ada and Software Engineering in NASA 5-1

5.1 Building a Knowledge Base 5-1

5.2 Building an Experience Base 5-2

ix PRECEDING PAGE BLANK NOT FILMED

Table of Contents (Cont'd)

Section

5.3

5.4

5.5

5.6

5.7

5 (Cont'd)

Tools, Methods, and Reusable Components 5-4

Management 5-5

Infrastructure 5-6

Research and Development 5-8

Measurement and Assessment 5-11

6 -- Findings ... 6-1

6.1 Appropriateness of Ada 6-1

6.2 Knowledge Base 6-3

6.3 Experience Base 6-5

6.4 Tools, Methods, and Reusable Components 6-5

6.5 Management 6-6

6.6 Infrastructure 6-7

6.7 Research and Development 6-9

6.8 Measurement and Assessment 6-9

7 -- Recommendations 7-1

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Ada Adoption 7-1

Software Engineering and Ada Implementation Task
Force ... 7-2

Policies and Standards 7-3

Software Development Environments 7-3

Transition Planning 7-4

Training .. 7-4

Risk Management 7-5

Contractor Incentives 7-5

Coordination of Research and Development 7-6

x

Table of Contents (Cont'd)

Section 7 (Cont'd)

7.10 Software Measurement Program 7-6

7.11 Software Process Engineering Task Force 7-7

Appendix -- Persons Consulted A-1

References ... R-1

Glossary of Acronyms G-1

Figure

2-1

6-1

6-2

6-3

List of Illustrations

Estimated Growth in Software Demand: Manned

Spaceflight Program 2-5

Reuse Trends 6-3

Productivity Trends 6-3

Error-Rate Trends 6-4

List of Tables

Table

2-1

2-2

Shuttle Software 2-2

Mission Support Software 2-3

xi

_L

RZ

mL_

Z

wi

I
=,

z

L

1 -- Introduction

Software has become a pervasive part of the modern world. Most or-

ganizations, whether corporate or governmental, are highly dependent upon
information systems that are orchestrated through complex software sys-
tems.

In the National Aeronautics and Space Administration (NASA), soft-

ware has been a key element in nearly every project. However, in recent

years, both the criticality and complexity of NASA software have been in-

creasing at rates that demand new, more effective software development

approaches; otherwise, the software element of a project may cause its fail-
ure.

NASA's success in accomplishing the first steps in the exploration of
space is testimony to the agency's ability to produce large quantities of

complex, reliable, real-time software. But new initiatives involved in the

Space Station Freedom Program (SSFP), the exploration of Mars and the

Moon, and the exploration of the Earth from space require software whose

size and complexity are orders of magnitude greater than existing NASA

software. The agency's continued success hinges to a large extent on meet-

ing the challenge of developing that software.

One major software technology that has evolved over the past few

years is the Ada programming language. This language and the software

methods and support environments associated with it are seen as potential

breakthroughs in NASA's approach to software.

1.1 Objectives and Scope

This report presents the findings of a study that the Ada and Software
Management Assessment Working Group (ASMAWG) undertook at the re-

quest of the NASA Information Resources Management (IRM) Council. The

study was chartered to perform three tasks:

• "Assess the agency's ongoing and planned Ada activities"

Assess "the infrastructure [standards, policies, and internal or-

ganizations] supporting software management and the Ada activi-
ties"

"Present an Ada implementation and use strategy appropriate for

NASA over the next 5 years" (Hinners, 27 June 1988)

1-1

1 -- Introduction

The report summarizes the results of the working group's effort and pre-

sents recommendations about the incorporation of effective software engi-

neering technologies into NASA's software development processes. In
particular, the report describes the implications of Ada and then presents

recommendations about the extent to which the language is appropriate for
NASA and about how the agency should use it.

The working group also produced a 5-year plan for NASA (McGarry et

al., April 1989), which defines specific steps for implementing the recom-

mendations presented in Section 7 of this report.

1.2 Sources of Information

1.3

This report is based on information from four sources:

1. Dbcussions and interviews. The ASMAWG held personal discus-
sions with software engineers and Ada experts employed by many

NASA centers, support contractors, and other organizations. The

persons consulted are listed in the Appendix.

Review of completed studies and reports. NASA and other agencies

have carried out Ada studies over the past 3 years. The ASMAWG

reviewed key reports to determine their relevance to the present
study. These studies and reports are included in the list of refer-
ences.

Analysis of results of Ada development efforts. The ASMAWG identi-

fied and analyzed the results of ongoing and completed projects

that used Ada as the primary programming language. The group

collected and analyzed information on cost, reliability, quality,
other software characteristics, and lessons learned.

Review of the current NASA infrastructure. The ASMAWG studied

current NASA policies, standards, and internal organizations sup-
porting software development.

Organization of This Report

.

,

,

The remainder of this report is organized as follows:

Section 2 describes the growing size, complexity, and criticality of

software systems that NASA develops or acquires.

Section 3 discusses the Ada programming language and its poten-

tial benefits to an organization that requires large, reliable soft-
ware systems.

1-2

1 -- Introduction

Q Section 4 presents a model of how an organization that acquires
or develops software can evolve to the use of Ada and state-of-the-

art software engineering.

Section 5 describes NASA's current use of Ada and current prac-

tice in software engineering.

Section 6 presents findings on the extent to which NASA con-
forms to and falls short of Section 4's model for transition to Ada

and state-of-the-art software engineering.

Section 7 contains recommendations for NASA in light of the
findings.

1-3

2 -- Software Development in NASA Today

NASA computer software, which has always been a vital element of

the agency's programs, is now growing in criticality, size, and complexity at
an accelerated rate.

2.1 Size and Cost of NASA Software

The development, purchase, and maintenance of software
for NASA require more than 20 percent of the total NASA

budget.

Our estimate is that NASA and its contractors probably develop be-

tween 15 and 20 million new source lines of code (SLOC) per year, at an

annual cost of about $1 billion. Across the agency, the annual cost of build-

ing new software exceeds 10 percent of the total NASA budget; and the cost

of routine maintenance, together with the purchase of commercial off-the-

shelf software and the building of special-purpose software (such as per-

sonal computer software, special scientific computing software, and
institutional support software), probably exceeds another 10 percent of the

total NASA budget.1

Software is a critical component and a significant cost element of

nearly all NASA projects. The software required to support the first shuttle
launch exceeded 20 million SLOC and cost more than $1.2 billion (see

Table 2-1). The additional recurring cost for the shuttle flight software

alone exceeds $30 million per year. The recurring cost is driven by the

many changes required for each new shuttle launch and by the frequent

recertification required for the software.

NASA requires both flight and ground software to carry out its mis-

sions. The flight software is the most expensive (per SLOC) to build and to
maintain because of the extremely high reliability required. For typical mis-

sion support in NASA, approximately 2 to 3 million new SLOC are re-
quired. Some large projects, such as the shuttle, require up to 25 million

SLOC. Typically, the flight code is between 5 and 10 thousand SLOC, and

1 These estimates were derived from a detailed analysis of several major components at
Goddard Space Flight Center (GSFC) and Lewis Research Center (LeRC) and by
review of the NASA Information Technology Systems Plan.

2-1

2 -- Software Development in NASA Today

the rest is nonembedded ground software1 (see Table 2-2). For the shuttle,

the flight software was approximately 580 thousand SLOC, and the ground

software exceeded 23 million SLOC (see Table 2-1).

Table 2-1. Shuttle Software

Function Flight/Ground Size (KSLOC)* Languages
F/G

Flight Planning
- Design G 4,700 FORTRAN
- Crew Activity G 57 FORTRAN
- Remote Manipulation G 22 FORTRAN

System

Flight Readiness
- S/W** Development Lab G 1,300 PL/1, HAL, ALC***
- S/W Production

Facility G 2,300 PL/1, C
- Mission Simulation G 1,800 FORTRAN, ALC

Flight Control
- Launch Processing G 13,000 GOAL
- Mission Control G 1,800 FORTRAN, PL/1

Flight - Onboard F 580 HAL/S, ALC

* KSLOC = thousands of source lines of code
** S/W - software
*** ALC = assembly language code

In developing this very large amount of software, NASA usually con-

tracts for over 90 percent of the development and does the remainder in-
house. Therefore, the principal role of NASA in the production of new

software is that of acquisition manager. Contractors are responsible for
most of the implementation and testing. Each of the NASA centers has

some level of software responsibility, whether it is mission support and

I These estimates are based on a review of NASA projects incIuding Gamma Ray Ob-
servat0ry (GRO), Galileo, Cosmic Background Explorer (COBE), Solar Maximum
Mission (SMM), and several others.

2-2

2 -- Software Development in NASA Today

operations, testing or research support; therefore, all centers must have

skilled software engineers and managers.

Table 2-2. Mission Support Software

New
Project Software Percent Primary

(KSLOC) Flight Languages

Gamma Ray Observatory
(GRO) 850 5 FORTRAN, ALC

Galileo 600 1 FORTRAN, HAL
Spacelab 400 18 FORTRAN, ALC
Hubble Space Telescope

(HST) 2,600 3 FORTRAN, ALC
Cosmic Background Explorer

(COBE) 925 1 FORTRAN, ALC
Solar Maximum Mission

(SMM) 114 4 FORTRAN, ALC

2.2 The Changing Role of Software

Computers and their software are essential to increasingly

sophisticated technical activities in NASA.

NASA's first use of software was to solve small, specific problems.

The programming was usually done by engineers or scientists working alone

or in small teams. The programs tended to be simple, since the problems

the developers were addressing were themselves simple. Such software de-

velopment involved very little use of engineering disciplines. Indeed, in the

early days of NASA, software technology was so young that very few engi-

neering or management principles applicable to software were even known.

Today, the role of software is much greater than in NASA's early days.

Functions once performed manually or in hardware are now done under

software control. Coping with the sheer complexity of some operations and

processes, such as launch processing for the space shuttle, has required the

use of computers and, therefore, software. In addition, more functions are
being put into software because of its flexibility, an attribute that is espe-

cially important in the case of programs like the SSFP that are expected to

span decades.

Many current NASA missions are large, complex, multicenter develop-

ment efforts. Moreover, they are intended to interact with other existing and

2-3

2 -- Software Development in NASA Today

planned systems. The Space Station Freedom, for example, will depend on
millions of lines of code developed throughout the agency. The software for

such systems is critical and pervasive. It is expected not only to perform the

mission for which it was developed but also to be adaptable and flexible

over a long life cycle (up to 30 years for Space Station Freedom).

The use of computer simulation and modeling has accelerated the

process of creating, evaluating, and testing innovative designs for aerospace
vehicles and structures like the aerospace plane and the Space Station Free-

dom. Supercomputer simulations are now used to supplement or replace

wind-tunnel testing. Such computer-aided engineering requires sophisticated
software.

Analysis of scientific and engineering findings is becoming more com-

plex and hence more dependent on capable software and on the cost-
effective development or acquisition of that software. NASA will receive

billions of bits of information per day from the Hubble Space Telescope, for

example, and will receive trillions of bits per day from the Space Station

Freedom. Sophisticated software is needed to manage and analyze this ava-

lanche of data (Kneale, 12 January 1988).

In the future, software will continue to grow in complexity, size, func-

tionality, life expectancy, and required reliability._ Software for such mis-

sions as the Space Station Freedom and the Earth Observational System will

need to have high quality and reliability and yet be adaptable and flexible

over its long life cycle.

To address this growing complexity, approaches to the software proc-

ess must evolve to incorporate state-of-the-art principles of software engi-

neering. These principles provide new design techniques; strategies for

decomposing extremely complex problems; concepts for software reuse;

techniques for attaining extremely high reliability; methods of testing and
verification; and concepts for managing, planning, and controlling high-

quality software. The success of such missions as the space shuttle is due in
part to the use of new software engineering concepts and techniques

(Kolkhorst, September 1988).

2.3 The Growth of NASA Software

Software's size, influence, and criticality are growing dra-

matically in NASA.

Since there is no universally accepted measure for software size, it is

difficult to compare data drawn from different projects. Nonetheless, it is

m

2-4

2 -- Software Development in NASA Today

clear that the expanding role of NASA software has resulted in a long-term

upward trend in the size of software systems. Figure 2-1 shows that flight
software for major NASA programs has quadrupled in size over a 20-year

period. (Boehm's estimate of Space Station Freedom software size may not

be correct.) There is every indication that this growth in demand will con-

tinue and, in fact, that the rate of growth will continue to increase.

80

70

"_ 60

50

40

30
O

20

lO

Space

Space

01960 19_0 19180 19[90

Year

Source: Boehm (September 1987).

Figure 2-1. Estimated Growth in Software Demand: Manned

Spaceflight Program

If the demand for software continues to increase at the historic rate

and unless more efficient approaches to software development are found,

NASA will be unable to supply the number of software engineers required
to meet this increased demand. The continued demand for increased soft-

ware functionality, coupled with a limited supply of talented personnel, is

an issue of growing concern for all parts of the agency.

2-5

2 -- SoftwareDevelopment in NASA Today

One technology that was developedto support new software engineer-
ing principles, and thus to reduce the gap between software supply and
demand, is the Ada programming language and its associatedprinciples,
methods, and tools. The next section discussesthe potential value of this
technology in meeting the challengesposedby NASA's software needs.

z

2-6

3 -- The Promises of Ada

Ada has promise for more efficient production of higher

quality software through its support for the principles and

goals of software engineering.

3.1 Software Engineering and the Software Crisis

The discipline of software engineering has the potential to

alleviate the pervasive problems that constitute the "soft-
ware crisis."

In 1968, a North Atlantic Treaty Organization (NATO) conference was

held to discuss a perceived condition known as the software crisis. This cri-

sis, still unresolved today, consists of deficiencies in the following proper-
ties of much of the software that is produced: correspondence with user

needs, reliability, cost, modifiability, timeliness, portability, and efficiency

(Booch, 1987b, pp. 7-10). The term software engineering was coined at that
NATO conference. Software engineering is the disciplined use of software

development principles, methods, and tools in the production of software

systems. The discipline of software engineering addresses all facets of soft-

ware specification, development, and maintenance. Its main goal is the cost-
effective development of complex software systems that are reliable,
efficient, and maintainable. It concerns itself with techniques for handling

complex software problems; planning and managing software projects; de-

velopment methods; estimation of costs and schedules; software architec-

ture; reliability; assurance; and reuse of software components. The field of

software engineering has the potential to remove or at least alleviate the
software deficiencies cited above.

3.2 The Inception of Ada

The Department of Defense established a program to create

and use a new high-order language to improve software pro-

ductivity and quality.

In 1974, a report by the Department of Defense (DoD) estimated that
annual DoD software costs would soon exceed $3 billion. More recent esti-

mates indicate that total DoD software costs will reach $30 billion by the

early 1990s. During this period, the DoD's demand for software is expected

3-1

3 -- The Promises of Ada

to grow about 12 percent per year, the number of software personnel to

grow about 4 percent per year, and their productivity to grow about 4 per-
cent per year. Projecting these three growth rates into the future yields an

expected shortage of software (Booch, 1987b, p. 10). Other studies noted

that hundreds of programming languages or dialects were being used by the

DoD and its contractors. This situation made it difficult to interchange pro-

grams or programmers within the DoD and increased the department's soft-

ware maintenance costs. To address these problems, the DoD set in motion

a process to design a new high-order language, which was eventually named
Ada (Sammet, August 1986, pp. 723-725).

The Ada language is the central element of a broader entity sometimes
called the "Ada culture" (Booch, 1987b, p. 4). This culture includes the

following elements:

• The Ada language itself

• Principles of software engineering that Ada supports

• Methods for effective use of the language

• Ada programming support environments (DoD, February 1980)

The institutions, such as the DoD's Ada Joint Program Office

(AJPO), that support the use of Ada (Sammet, August 1986)

The AJPO was established in 1980 to coordinate the introduction of

Ada into the DoD by assuming such responsibilities as the validation of
compilers and the dissemination of information about Ada. The existence of

an official validation process is an extraordinary aspect of the Ada lan-

guage. It prevents the proliferation of subsets, supersets, and dialects. The

use of Ada became a matter of broad DoD policy with Department of De-

fense Directive 3405.1 (Dept. of Defense, 2 April 1987).

Because of Ada's merits and the breadth of its application domain, the

use of the language has spread far beyond the DoD. The Federal Aviation

Administration selected Ada for its new air traffic control system, the Ad-

vanced Automation System. The Aeronautical Radio, Inc., Airlines Elec-

tronic Engineering Committee (October 1987) has adopted Ada for avionic

systems. Ada is also widely used in Europe (e.g., by the European Space
Agency). Several NATO countries are collaborating to produce an Ada pro-

gramr;ning support environment. NASA has also selected Ada for a number

of projects (see Section 5 of this report).

3-2

3 -- The Promises of Ada

3.3 Support for Software Engineering

Ada is not an end in itself but rather a means to achieve the

goals of software engineering.

Those who participated in the specification and design of Ada (e.g.,

Fisher, March 1978, p. 30) intended that use of the language would reduce

the costs and increase the reliability and quality of software. The main

promises of the Ada language are that it supports the principles of software

engineering and, thereby, achieves the goal of cost-effective production of

efficient, reliable, and maintainable software. For example, the language

design emphasizes readability in order to promote reliability and facilitate

maintenance. Aria features, such as the package construct, enable one to

decompose a program into small parts that are easily understood and tested.
The language design promotes reliability by facilitating automatic detection

of errors. Language features enable one to write software designs in a com-

pilable Ada-based design language. An Ada compiler can then check the

consistency of the design.

Ada provides much more support for the principles of software engi-
neering than other languages, such as FORTRAN and C. It is possible, how-

ever, to develop Ada programs in the style of such earlier languages,

thereby losing the potential benefits of using Ada. Education in the princi-

ples of software engineering and in the use of Ada to support those princi-

ples is required to use the language's features most effectively.

Automated tools are key elements of state-of-the-art software engineer-

ing practices. Use of Ada is supported by a suite of tools that compose an
Ada programming support environment (APSE). A number of APSEs with

varying sets of capabilities have been produced by private and governmental

organizations. An APSE always includes a compiler, text editor, and linker.

Some APSEs contain tools, such as Ada-specific text editors and symbolic

debuggers, that have indepth "knowledge" of Ada. Such tools have a high

potential to increase software development productivity and reduce the at-
tendant risks.

Boehm (September 1987, p. 52) states that a number of studies have

predicted "a long-range savings of 40-50 percent for a fully mature Ada

support environment and development staff." The cost of design may in-

crease, but the expanded design efforts are expected to result in a net re-

duction in total development costs. For example, Ada's support for software

reliability is expected to reduce the cost of testing.

-3 "

3 -- The Promises of Ada

Proper use of Ada is also expected to produce significant reductions in

the cost of the maintenance phase. Industry spends between 40 and 70 per-
cent of its total hardware and software budget on maintenance (Booch,

1987b, p. 8). The expected benefits in the maintenance phase are attribut-
able to Ada's support for readability and isolation of code that is likely to

change; to increased portability due to the standardization of the language
(Fisher, March 1978, p. 30); and to reduced costs of training maintenance

personnel in languages and the use of tool sets (Sammet, August 1986,

p. 723).

3.4 Support for Reuse

Ada may produce its greatest reductions in life-cycle costs

by increasing software reuse, that is, the use of components

in more than one program.

Reuse has been a major topic of study and discussion for several years,

but existing methods and tools have produced only a small increase in the
amount of reuse. Through software engineering using Ada and related tech-

nologies, software components can become standardized in format and

style, portable, and reflective of the entities in the problem space, as in

object-oriented design (Booch, 1987b, ch. 5).

Indeed, "the ability to assemble a program from independently pro-

duced software components has been a central idea in [the] design" of the

language (Dept. of Defense, 1983, sec. 1.3). Since the cost of a software
system increases rapidly with its size, any technique that significantly de-

creases the amount of new software that must be specified, designed,

coded, and tested has a potential for large cost reductions. Components can

also be used to build prototypes of some parts of a system (Booch, 1987a,

sec. 18.2) to validate requirements and thereby avoid costly requirements

changes at later stages.

To realize the potential of software reuse, additional research and de-

velopment will be required to understand optimum design characteristics;

the problem domains in which reuse is feasible; retrieval-and-use tech-

niques; portability; and other pertinent issues. Software reuse is an integral

part of the Ada culture and has unmatched potential to reduce software

costs, but the best ways to approach it are not yet completely understood.

3.5 Advantages of a Common Language

Language commonality has advantages that are largely inde-

pendent of the chosen language.

F

3-4

3 -- The Promises of Ada

Commonality allows an entire software development organization to
acquire and use a single set of language-specific tools. Personnel can be

transferred among projects without retraining either in a language or the use

of tool sets. Since the organization's training program can focus upon the

common language and associated methods and tools, it can be simplified.

Similarly, the organization can have a single set of software standards, poli-

cies, and procedures tailored for the common language (Fisher, March

1978, p. 26). The use of a common language that is supported on many

processors makes it possible to port programs from one environment to

another with relatively little change. For all these reasons, language

commonality should lead to a reduction in total software costs.

To realize the promises of Ada, an organization must be willing to

make changes to incorporate both Ada technologies and software engineer-

ing principles into its software development process. Changes to the training

program, software tool suite, and software standards and practices are nec-

essary parts of the adoption process. Section 4 presents a model of the

essential aspects of Ada adoption.

3-5

r..

|

Im

i

|

E

z

w

4 -- A Model for Transition to Ada

A transition to Ada and state-of-the-art software engineering

requires changes in an organization's approach to software

development and management.

Section 3 has presented the improvements in the software development

process and its products that are expected to result from the effective use of

Ada and software engineering. However, to attain these benefits, an organi-

zation may have to modify older approaches and incorporate new software
technologies. These technologies, in turn, may require changes in training

programs, management practices, support organizations, standards, acquisi-

tion policies, programming support environments, research programs, and

methods of measuring success. Few organizations have yet had time to

make such.changes, since Ada and associated technologies have evblved so

recently. These changes require careful planning, take considerable time,

and have certain costs that must be weighed against their benefits.

Section 4 is not intended as a set of recommendations for NASA.

Rather, it is a model of how any organization that acquires or develops
software could evolve to the use of Ada and update its software engineering

practices. The question of whether such evolution would be beneficial for
NASA is considered in Sections 6 and 7.

The transition model consists of changes in training, experience, tools

and methods, management, infrastructure, research, and measurement. The
model is based on reports by Basili et al. (April 1987), Softech (15 Novem-

ber 1987), Foreman and Goodenough (May 1987), Humphrey et al. (Sep-

tember 1987); on interviews with personnel at four NASA contractors now

undergoing a transition to Ada (TRW, Hughes Aircraft, McDonnell Douglas
Astronautics, and General Electric); and on conversations with NASA per-
sonnel.

The transition model includes not only Ada but also software engineer-

ing technologies because effective use of Ada is predicated on the use of

sound software engineering principles. As was stated in Section 3.3, Ada is
a means to an end; it is not an end in itself. It would be more effective to

adopt sound software engineering principles without Ada than to adopt Ada
without sound software engineering principles.

Section 5 describes current NASA activities in Ada and software engi-

neering. Section 6 then compares the current NASA activities with the

4-1

4 -- A Model for Transition to Ada

model for transition presentedin this section.Section 7 presentsrecommen-
dations for changes in NASA's current practices and plans in light of the
findings in Section 6.

4.1 Building a Knowledge Base

To realize the potential of software engineering and the Ada

programming language, an organization must make major

changes in its training program.

Training programs dealing with Ada, software engineering, and man-

agement of Ada projects must be brought into an organization. Courses and

curricula could be developed in-house, obtained from the public domain,

purchased, or taught by contractors.

4.1.1 Ada Training

Studies have repeatedly emphasized that effective applica-

tion of Ada requires adequately trained software developers

and managers.

"It is of particular importance that both contractor and customer be
well trained in Ada technology Ada software development includes

training for all associated personnel, including managers, with a heavy em-
phasis on software engineering" (Basili, April 1987, pp. xv, 2-7). "Manage-

ment training [in Ada] is especially critical" (Foreman and Goodenough,

May 1987, sec. 9.1). Ada is a complex language and requires a longer

learning period than a language such as FORTRAN. Ada courses should

emphasize that Ada by itself does not guarantee good software but must be

used as a means to implement good software engineering practices: "Ada is

not merely a programming language; it is a vehicle for new software prac-

tices and methods for specification, program structuring, development and

maintenance" (Brooks et al., September 1987, sec. 4).

Both managers and developers must undergo extensive training in Ada

as part of the transition to the use of the language and the adoption of

improved software engineering practices. Because of the size, complexity,
and advanced features of Ada, training must be more extensive than is

required for other classical development: languages. Ada syntax, advanced
Ada features, designing with Ada, real-time programming with Ada, and

Ada for managers are typical topics that should be addressed. All training

must involve hands-on programming exercises and should be aimed at

11¢

[

4-2

4 -- A Model for Transition to Ada

preparing students for immediate application of the principles they have

learned to a software development project.

The duration and schedule of Ada training may vary across organiza-

tions (e.g., Murphy and Stark, October 1985). Developers may require more
than 3 or 4 full weeks of classwork, while managers would probably require

much less Ada classtime to cover material pertinent to their needs.

4.1.2 Software Engineering Training

Training in Ada also requires training in software engineer-

ing principles, methods, and tools.

As noted in Section 3.3, the use of sound software engineering princi-

ples is more important and potentially more beneficial than the use of the

Ada language alone. For this reason, training in effective software engineer-

ing techniques is more important to a software development organization

than training in Ada. The evolution to state-of-the-art software development

practices cannot be successful without extensive training in and use of soft-
ware engineering principles. Repeatedly, studies have shown and leading

software engineers have stated that much heavier emphasis in classroom

time should be placed on training in software engineering than on training

in the Ada language (e.g., Softech, 15 November 1987, pp. 3-25, 3-26).

Organizations must usually provide software engineering training for their

own employees, since it is not usually available from universities.

An effective training program in software engineering would have the

following characteristics:

• Comprehensive--The training program should not consist of
merely one or two courses addressing a few topics. The program

should consist of numerous units addressing a wide spectrum of

software engineering principles and activities.

• Consistent--The content of a given course should remain nearly

constant through repeated offerings.

• Practical--Courses should be developed by senior software engi-

neers who recognize the characteristics and needs of the software

development organization and tailor the courses accordingly.

• Applied--Like Ada training, software engineering training must be

used in near-term software development applications, such as pilot

projects, to be effective.

4-3

4 -- A Model for Transition to Ada

The key elementsthat shouldbe part of the software engineeringtrain-
ing program include, at a minimum, the following:

• Requirements analysis

• Software design approaches

• Software assurance

• Verification and testing techniques

• Development methods and tools

• Software metrics

4.1.3 Management Training

Management training should prepare managers to deal with

the changes in the software development process that result
from a transition to Ada.

Aspects of the management process affected by a transition to Ada
include

• Process model

• Scheduling

• Software size estimation

• Resource allocation

• Environments

• Acquisition control

• Reviews

• Product characteristics

• Problem indicators

• Risk management

Management training should point out that Ada source code may differ

greatly in size from FORTRAN source code with equivalent functionality. In
addition, the use of Ada requires significant changes in the allocation of

staff and effort across development phases, e.g., design, code, test,

4-4

4 -- A Model for Transition to Ada

integration (Foreman and Goodenough,May 1987, pp. 15-16). The use of

Ada may also require additional allocation of resources early in the project

to support proper training and experience in the newly adopted technolo-
gies. Finally, Ada management training should prepare managers to deal

with new forms of information, such as compilable design language, that

the developer is required to deliver for particular reviews.

4.2 Building an Experience Base

An experience base of understanding and lessons learned

from both pilot projects and production projects in Ada is

vital for the effective use of the language.

Reports by the Software Engineering Institute (SEI) (Foreman and

Goodenough, May 1987, see. 9), the MITRE Corporation (Basili et al., April

1987, sec. 2.1.7), and the Software Engineering Laboratory (SEL) at GSFC

(Murphy and Stark, October 1985, p. vi) have strongly recommended that

all developers and managers who expect to use Ada and effective software

engineering techniques must participate in hands-on development or man-

agement under the supervision of an experienced software engineer. Some
of this experience may be obtained through a practice problem that is part

of the training sessions. However, students should apply the technology in a

production project within 6 months after the classroom training. Lectures

and seminars that are not immediately followed up with practical applica-
tion of the principles they teach may be wasted efforts.

Pilot projects are not only important for training purposes but also to

prepare an organization for the use of Ada on production projects. Pilot

projects provide the initial data for an organization's experience base and

allow for the measurement and understanding of the new technology as
applied to a production environment (Basili et al., April 1987, sec. 2.1.7;
Voigt, 1985, p. 107).

Pilot projects should involve relatively unsophisticated and noncritical

systems or parts of systems, e.g., tools, benchmarks, prototypes, simulators,

and test drivers. Experience to date shows that, on the average, benefits of

Ada are not realized until the third project by a given development organiza-
tion. Typical initial Ada projects encounter a 10- to 30-percent overhead due

to learning curves and other transition costs (Reifer, December 1987). Ada

projects developed by organizations with one or two previous Ada projects

are expected to break even as compared to projects using other high-order

languages. The benefits of using Ada and related development techniques

are expected to be realized only in the longer run (Boehm, September 1987,

4-5

4 -- A Model for Transition to Ada

p. 52). An organization must, therefore, plan for the evolution to an Ada

environment by conducting smaller, pilot projects before initiating efforts on

large, critical systems.

As Ada is subsequently used for production projects, the experience

base should continually evolve, providing lessons learned and guidance for
future Ada projects. Information in the experience base should describe the

degree of success obtained with given features of the Ada language; meth-

ods and tools; and standards, such as life-cycle models.

4.3 Tools, Methods, and Reusable Components

Transition to Ada requires the availability of new software

development tools, methods, and reusable components.

Since software development is an expensive, labor-intensive process, it

is cost effective to invest considerable sums to automate it. The develop-

ment of any nontrivial software system requires a minimal set of tools, such

as an editor, compiler, and symbolic debugger.

Prospective tools should be evaluated for functionality, efficiency, ca-

pacity, compatibility with each other, quality of documentation, and matur-
ity. If results of essential benchmark tests for efficiency and capacity cannot

be obtained elsewhere, they should be performed (Foreman and

Goodenough, May 1987, sec. 4.2-4.3; Basili et al., April 1987, sec. 2.1.6,

3.4). An organization that evaluates tools should archive results to avoid

duplication of the considerable effort required.

Methods for software development that have been used successfully for

many years in the development of FORTRAN or COBOL systems are not

entirely adequate in the Ada context. Such methods provide no guidance in

the use of Ada features such as packages and tasks. Software development

organizations adopting Ada must adopt new ways to address these prob-
lems, e.g., object-oriented design (Booch, 1987b; Nielsen and Shumate,

1988).

Detailed software development methods, such as a particular version of

object-oriented design, should normally be selected at the project level, not

at the company or government agency level. Such methods are far less ma-

ture than the major programming languages such as Ada. Moreover, their
appropriateness varies greatly across kinds of project. This is why TRW, for

example, does not prescribe a single company-wide Ada method but teaches

a variety of approaches in its in-house courses. TRW does, however,

4-6

4 -- A Model for Transition to Ada

prescribe required properties that must be satisfied by the methods chosen.

For example, "Verify consistency and completeness of requirements and
design specifications from both a functional hierarchy and a data-flow

standpoint."

If a large company should normally not have a single software develop-

ment method, there is all the more reason why a government agency should

not normally have a detailed, official methodology that it imposes upon its
contractors (Gardner et al., February 1988, sec. 1.1.3). A government

agency can, however, impose both a set of auditable standards on the re-

quired products developed by the chosen method and a set of milestones

and reviews at which the compliance of the products with the required stan-
dards is demonstrated and assessed.1

An organization planning to use Ada to develop multiple systems with

potential commonality of components should establish, populate, and use a
library system containing reusable Ada software. The organization must es-

tablish an infrastructure to create the library system, populate it with suit-

able components developed for projects or specifically for the library, and
ensure that the components are used when appropriate.

4.4 Management

Evolution toward the adoption of Ada as an organization's

principal programming language requires planning at the or-

ganizational level and software risk management planning.

4.4.1 Organizational Planning

A key element to ensure a smooth transition to Ada is an

Ada transition plan that includes a training plan.

As with any new technology, the introduction of Ada requires planning.

First, an organization must determine the goals that it intends to reach in

terms of Ada technology in 5 or 10 years. The transition plan should then
specify the rate of approach to the goal, the resources to be applied, and the

projects to which the resources should be applied.

Because of Ada's complexity and the foundations in software engineer-

ing required for Ada's effective use, a training plan is a critical part of the

1 Dr. Barry Boehm of TRW assisted us in drafting this paragraph and the one immedi-
ately preceding it.

4-7

4 -- A Model for Transition to Ada

overall transition plan. Since software engineering is not taught in most
universities, an organization must make this training available to its employ-

ees. The training should include an entire curriculum with different paths

depending on the individual's function (e.g., manager, development engi-
neer, or assurance engineer) and on the individual's previous training and

experience. Reports are available (e.g., Softech, 15 November 1987) that

define sample curricula appropriate for the transition to Ada.

4.4.2 Risk Management

Software projects using new software technology must incor-

porate risk management as an integral part of the manage-

ment process.

Managing Ada risks is a special case of software risk management.

Requiring projects above a certain size to develop and carry out a formal

program to manage software risks, including Ada risks, should be part of a

transition to Ada and more effective software engineering (Boehm, April

1988). As Ada technology matures, Ada-specific risks will become less
prominent among the overall risks of an Ada software development.

The Language Panel at NASA's Open Forum on Space Station Soft-

ware Issues listed the following Ada risk factors:

• "The applicability of Ada to distributed, fault-tolerant, and hard
[fast-response] real-time systems

• The efficiency of Ada run-time support environments and of code

generated by Ada compilers, especially for tasking in real-time

and distributed systems

• The development of good Ada implementations for the particular

machine architectures that might be used for [a given project]"

(Voigt, 1985, p. 107)

Two years later, Basili et al. (April 1987, sec. 3) still sounded the same
alarm in recommending that the Federal Aviation Administration use Ada

for the Advanced Automation System. In addition to those risks mentioned

above, the later report mentioned risks pertaining to the ability of compilers

to handle large program size, customer readiness for contract monitoring,

availability and maturity of programming support environments, availability

of qualified personnel, and the soundness of schedule and cost predictions

in view of the paucity of previous Ada projects.

4-8

i
D

|

m
m

4 -- A Model for Transition to Ada

4.5

Peschel (13 December 1988), reports a survey of the major Ada risks in
eight TRW projects. In descending order, the five greatest risks were found

to be the following:

Compiler performance and maturity

Staff's experience with compiler and tools

Ada tool set performance and maturity

Budgeting and scheduling

Staff's Ada design skills

Infrastructure

Transition to Ada and better software engineering requires
suitable policies, standards, and internal support organiza-
tions.

4.5.1 Policies and Standards

A government agency evolving to Ada should have agency-
wide standards that are compatible with Ada and with state-

of-the-art software engineering principles.

It is possible for a government agency to eschew agency-wide standards

and operate on the basis of standards developed by particular branches,

departments, or projects. Such an approach, however, tends to waste both

governmental and contractor resources. It means that many different groups
within the agency, rather than a single central group, must spend time deal-

ing with many of the same issues. It also means that the agency's contrac-

tors who deal with several parts of the agency may need to learn how to

work under multiple sets of standards. By contrast, a uniform set of agency
standards allows the contractor to economize on training and also may

make it cost effective for the contractor to develop automated tools to sup-
port the production of a uniform set of deliverable documents and the veri-

fication of traceability between them.

Software development standards developed in a pre-Ada era may be

incompatible with Ada and also with state-of-the-art software engineering

principles. For example, a standard might presuppose functional decompo-

sition rather than object-oriented design, abstraction, and information hiding

4-9

4 -- A Model for Transition to Ada

(Gardner, e t al., February 1988, sec. 3). Again, a standard might presup-

pose the waterfall life cycle, thereby ruling out such innovative life cycles as

the spiral model (Boehm, August 1986).

Revision of a government agency's standards should not be done in a

vacuum but with extensive review by outside interested parties. The DoD

uses an organization named the Council of Defense and Space Industry

Associations as a vehicle for such reviews. This organization consists of
various associations of defense and space contractors, such as the Aero-

space Industries Association and the Electronic Industries Association. Such

a mechanism for involving major corporations in the standards review proc-

ess is advisable for any government agency.

4.5.2 Internal Organizations

An organization evolving to Ada should establish an internal

structure to support the evolution.

An organization's transition to Ada requires gathering technical infor-

mation from outside the organization and transferring information within it.

Employees who are responsible for individual projects may not have suffi-

cient time to keep informed about the latest developments in compilers,

other tools, or methods that may be applicable to current or future projects.

In a large organization, it is cost effective to establish an internal organiza-

tion or set of organizations to perform such functions as the following:

• Planning the Ada and software engineering training program

• Gathering and disseminating information on tools and methods

• Planning and supporting software reuse

• Coordinating the collection and dissemination of metric data

• Assessing and revising the software engineering process

• Revising standards

• Coordinating research

4.6 Research and Development

A successful transition to Ada can be assisted by a research

program on Ada and associated technologies.

4-10

4 -- A Model for Transition to Ada

BecauseAda is relatively young, additional information about develop-
ment methods, compilers, environments,and lessonslearned is continually
being generated.Hence, it is essentialfor an organization evolving to Ada
to investigatethe application of Ada and related technologiesto that organi-
zation's projects. These investigations should not be performed as part of
critical production projects, but rather as research and development that
promotes the effective use of these technologieson production projects.

Such a researchand developmentprogram should identify the techno-
logical needsof future projects. Critical technology issuesshould be studied
and findings made available to the organization's projects. Ada-related is-
suesmight include determining the most effective methods for using the
language for real-time or network systems;methods for developing and us-
ing reusable components;or life-cycle variations required for effective use
of Ada.

4.7 Measurement and Assessment

A high level of software engineering maturity requires the

adoption and use of software measurement concepts.

To determine the characteristics of a software development organiza-

tion, one must have some mechanism for assessing the software develop-
ment process and its products. Such measurable quantities as resource

expenditures, reliability, testing effectiveness, and productivity must be ex-

tracted from the software process to determine the effects, strengths, and
weaknesses of evolving technology. Without this information, there is no

means of determining if, and to what extent, improvements are being made.
For example, there is no way of determining whether a particular technol-

ogy (e.g., Ada) has a positive or negative effect on the software develop-
ment process or product.

Decisions about the management of an individual project should be

made on the basis of metrics that provide such information as testing effec-
tiveness, resource expenditures, key problem areas, or software errors. Met-

ric information from projects should be archived in the corporate memory
where it is available to new projects and where it also is used for continuous

assessment of the organization's strengths and weaknesses. Such assess-

ments help identify needed training, tools, and methods. The effects on

productivity and reliability of process changes, such as the introduction of

Ada, can be observed and used to refine the process further (Humphrey et
al., September 1987, pp. 26-27, 40).

4-11

4 -- A Model for Transition to Ada

In the next section, NASA's use of state-of-the-art software engineering
technologies, including Ada, will be explored with respect to this model for
transition.

4-12

mi

=

=
u

m

E

m

Z

z

E

m

5 -- Ada and Software Engineering in NASA

NASA has taken some of the steps required for a transition

to Ada and to more effective software engineering.

5.1 Building a Knowledge Base

NASA has both agency-level and center-level training in Ada

and software engineering; yet the number of NASA person-

nel who have completed Ada training is small.

An agency-level training program in software engineering topics includ-

ing Ada has been established by the Software Management and Assurance

Program (SMAP) in Code Q. However, the majority of NASA training in
Ada and software engineering has been done through courses planned by

center education offices or by individual projects. Current information de-

scribing courses in Ada and software engineering for NASA indicates that
all centers have conducted at least a minimal level of Ada training. SMAP

courses have been offered over 75 times with a total attendance of over

1500. (It cannot be determined how many distinct individuals are included

in this total.) Johnson Space Center (JSC) indicated that approximately
300 employees have participated in software engineering courses, some of

which were Ada courses, at the University of Houston-Clear Lake. GSFC

estimated that approximately 60 persons have had some Ada training. A
review of all NASA centers indicated that the total number of employees

who have attended at least one Ada course is approximately 500, of whom

fewer than 200 have subsequently used the training on an Ada project.

A recent survey (Softech, 15 November 1987, sec. 5.5.2) reported the

following results:

Twenty-seven percent of the respondents state that half or
more of their technical staff have some form of software engi-

neering training Fifty percent of the respondents state
that less than one-fourth of their technical staff have been

exposed to training in Ada in any form.

Over 50% of the respondents [stated] that less than one-fourth

of their management staff has received software engineering

training and nearly 70% of the respondents said that less than

5-1

5 -- Ada and Software Engineering in NASA

one-fourth of their management personnel have received Ada

training.

On-the-job training, then, is the most commonly used training technique.

Softech developed a comprehensive plan for Ada and software engi-

neering training across NASA. The plan is based on previous work that

Softech did in developing Ada training for the DoD. This plan contains two
main components (Softech, 15 November 1987, sec. 3.7, 4.5): (1) a core

curriculum comprising 18 courses and (2) a procedure by which each center

can supplement the core curriculum with a center-specific system of short

courses and on-the-job training.

The core curriculum includes courses on such topics as the following:

• Software engineering with Ada

• Ada project management

• NASA software life cycle and standards

• Software requirements analysis

• Software design specification

• Quality assurance

• Configuration management

Softech (15 November 1987, p. 3-30) also recommended the continu-

ation of training with pilot or other project work under the supervision of an

experienced software engineer.

We were not able to identify any evidence that this comprehensive

training plan has been implemented in any portion of the agency.

5.2 Building an Experience Base

All NASA centers have completed some Ada projects, some

of which are small pilot projects; and all centers have indi-

cated that they plan to develop additional projects in Ada.

The growth of the Ada experience base at NASA can be measured by

the number of completed Ada projects developed by NASA personnel or

developed for NASA by support contractors. Softech (15 November 1987,

i
!

i

!

!

|

Z

5-2

5 -- Ada and Software Engineering in NASA

pp. 2-1, C-5) identified a total of 20 Ada projects completed by or for

NASA as of September 1987 and a total of 150 projects planned before

1992. Most of the completed projects are small training and pilot projects,

but the planned projects include some large systems intended for opera-

tional use. Excluding the SSFP, these projects will require a total of

1200 staff-years of effort.

The Softech report also summarized the Ada experience level of man-

agers, technical staff, and support personnel. There were 24 survey respon-

dents who were responsible for approximately 1400 personnel. The report

states that the "average level of experience in Ada related projects for the

sample population of this study was zero for management and support per-
sonnel and under six months for technical personnel '' (Softech,

15 November 1987, p. 2-1). Since most of the survey's respondents were

personnel associated with Ada at the NASA centers, it is unlikely that the

rest of the population (those not responding to the survey) would raise the

average level of experience.

During the fall of 1988, the ASMAWG attempted to update Softech's

findings on Ada experience by contacting key personnel at most centers.

The ASMAWG determined that additional Ada projects are planned but that

few additional Ada projects were completed between September 1987 and
October 1988. The Ada experience base for NASA has grown somewhat but

not significantly in the past year. However, NASA's Aria experience base is

probably no less than that in most organizations responsible for producing
or acquiring large amounts of software. Because of the newness of Ada, a

shortage of experienced Ada managers and developers currently exists; that

shortage will persist for the foreseeable future.

NASA's most significant commitment to Ada obviously has been that

of the SSFP. The program commissioned three studies, to be completed by

the summer of 1985, to determine whether Ada should be chosen for the

program. All three recommended that Aria should be chosen as the princi-

pal language for the Space Station Freedom. TRW Defense Systems Group

(11 April 1985, sec. 1.4.1.2) recommended that special-purpose languages

could be considered on a case-by-case basis for use in such limited areas as

testing, artificial intelligence, and data base management. SSFP project

management then mandated that all operational software would be written

in Ada unless a closely scrutinized waiver were granted. Other projects as-

sociated with the SSFP have taken that program's lead and have selected

Ada for their software development.

Since the Softech report was written, additional projects have selected

Ada. These projects include the Orbiting Maneuverable Vehicle (over

5-3

5 -- Ada and Software Engineering in NASA

50 KSLOC), Aero-AssistFlight Experiment (over 200 KSLOC), and Secure
Shuttle Data Systemsat Marshall SpaceFlight Center (MSFC). GSFC has
developedover 500 KSLOC of Ada code for flight dynamics projects over a
3-year perio& In addition, GSFC is using Ada for the Explorer PIatform
onboard system (5 KSLOC) and the Second TDRSS1 Ground Terminal
(more than 500 KSLOC). At the JetPropulsion Laboratory (JPL), numerous
production projects plan to use Ada, including Real-Time Weather Proces-
sor (over 72 KSLOC) and the Network Operations Communications Center
Upgrade.

In addition to the projects that have already selected Ada, numerous
other projects haveindicated a serious interest in it. As NASA's Ada experi-
ence base grows, a sigiaificant number of additional projects will probably
selectAda as the software development language.

5.3 Tools, Methods, and Reusable Components

NASA software is developed using a wide variety of tools
and methods.

Many of the Ada projects at GSFC have been developed on a Digital

Equipment Corporation (DEC) VAX-11/780 or 8600 using the DEC com-

piler. However, GSFC's Explorer Platform used the Interact cross-compiler
hosted on a DEC MicroVAX and targeted to the Military Standard (MIL-

STD) 1750A processor. MSFC is developing the Secure Shuttle Data System

using Concurrent Computer's Ada compiler for the Perkin-Elmer 3244 but

is developing the Orbiting Maneuverable Vehicle using the TLD Systems

Ada compiler for the M]L-STD-1750A processor. Various Ada projects at

JPL are being developed on DEC, Rational, and Gould environments.

NASA Ada methods are comparably diverse. Developers in the flight
dynamics area at GSFC have formulated a general object-oriented software

development method (Seidewitz and Stark, July-August 1987). The Real-

Time Weather Processor at JPL used a tailored version of part of this ap-

proach for preliminary design but applied Yourdon, Ward, and Mellor

techniques for requirements specification. By contrast, the Power Manage-
ment and Distribution Photovoltaic Testbed at Lewis Research Center

(LeRC) used George Cherry's Pictorial Ada Method for Every Large Appli-

cation (PAMELA 2).

1 Tracking and Data Relay Satellite System.

5-4

5 -- Ada and Software Engineering in NASA

The SSFP's Software Support Environment (SSE) will be the first com-

plete computer-aided software engineering environment created to meet
NASA specifications. It will consist of the "rules and tools" for developing

Ada software for the Space Station Freedom. Some of the tools will be

purchased commercially and some will be custom built. The SSFP has de-

veloped a well-defined software management, development, and assurance

process, which will be automated by means of the SSE. The process will be
controlled and traceable from its very beginning. The SSE will support a

library of reusable components and will represent an investment of
$151 million (in 1987 dollars), not including a 3-year optional extension.

5.4 Management

NASA has not adopted an Ada transition or training plan or

an approach for managing the associated risks.

5.4.1 Agency-Level Planning

NASA has not adopted a plan for agency-wide transition to

Ada or for the training that such a transition would require.

Neither the agency nor any center has adopted a plan for evolving to

Ada. Some projects have selected Ada and have formulated the necessary

training and software development plans. Softech (15 November 1987) rec-

ommended an Ada and software engineering training plan (Section 4.1,

above), but the agency has neither formally adopted it nor established a

mechanism to implement it. It is up to individual projects to plan and imple-
ment their own training plans in Ada and software engineering.

5.4.2 Risk Management

Currently, no agency-level policy or standard requires the

formulation and implementation of a software risk manage-

ment plan.

No risk management plan appears on the NASA Software Acquisition

Life Cycle chart published by SMAP (version 3.0, 15 October 1986). How-
ever, version 4.3, due for release in March 1989, does address risk for in-

formation systems and software. The new baseline of SMAP's Information

System Life-Cycle and Documentation Standard includes a risk management

plan (see SMAP-DID-M910 Risk Management Plan Data Item Description).

5-5

5 -- Ada and Software Engineering in NASA

The SMAP baseline is not an agency-wide standard and is not even an

agency-wide policy.

Although software risk management plans are rare in NASA projects, a

few individual projects have heeded the warnings about risks discussed in

Section 4.4.2. For example, Nelson (1988, pp. 121-122) reports that

Each of the Space Station [Freedom] Program software man-

agers has addressed the issue of risk management in their

software management plans. Some of the technical concerns
identified ... include interoperability ..., operating system

performance, ... portability, Software Support Environment

System immaturity and Ada performance, Some of the steps
that are being taken to mitigate these concerns include rapid

prototyping, engineering test beds and reevaluation of require-
ments.

The Real-Time Weather Processor Project at JPL (Molko and Loesh,

1 December 1988) has developed and is implementing an Ada risk manage-

ment plan very similar to the one that Basiii et al. (April 1987) have recom-
mended.

5.5 Infrastructure

NASA has a small number of agency-level standards and

agency-level internal organizations supporting software; all

have limited scopes.

5.5.1 Policies and Standards

NASA has only one official agency-level product and a set of

draft documents applicable to software development.

NASA Management Instruction (NMI) 2410.6, issued in 1979, governs

the management of flight software. Its major requirement is that the project

manager for each flight project will produce a Software Management Plan.

The NMI requires that this plan describe the project's management ap-
proach (e.g., management responsibilities and mechanisms, configuration

management techniques, and quality assurance procedures) and technical

approach (e.g., processes and schedules for requirements definition, imple-

mentation, and testing). However, the NMI imposes no substantive require-

ments on either the management or technical approach.

E

5-6

5 -- Ada and Software Engineering in NASA

SMAP has baselined a document called Information Systems Life-Cycle

and Documentation Standards. It defines a life-cycle model for software sys-
tems and specifies the format of deliverable documentation. These descrip-

tors have not been adopted as NASA standards through a NASA-wide

policy; consequently, they often are not applied in major software projects.

SMAP is also preparing a set of guidebooks on several topics in software

management and assurance. Finally, SMAP is formulating a software man-

agement and assurance policy to be issued as an NMI, replacing

NMI 2410.6, and addressing prototyping, flight software security issues, and
several other assurance issues.

In the absence of NASA policies for software other than NMI 2410.6,

each center, program, and project office is responsible for establishing sup-

plementary software development policies, standards, and guidelines for its
own use.

SMAP has adopted the practice of seeking contractor input into the

process of standards development by inviting industry representatives to its

workshops. SMAP has also asked the centers to solicit contractor comments
on draft standards and to incorporate them into the center's comments.

5.5.2 Support Organizations

Three main organizations concern themselves with software

at the headquarters level: the Automated Information Man-

agement (AIM) Council, the Inter-Center Committee on

Automatic Data Processing (ADP), and SMAP.

The AIM Council addresses management and technical issues of the
institutional automated systems. Its main purpose is to create a standard

environment for the development and support of agency-wide institutional

systems, such as payroll, equipment inventory, and personnel.

The Inter-Center Committee on ADP draws its participants from the

managers of NASA's large central computer facilities. It deals primarily

with the management regulations pertaining to long-range ADP planning
and acquisition planning and with acquisition issues raised by external regu-

latory agencies such as the General Services Administration and the Office

of Management and Budget.

SMAP, which is guided by an intercenter steering committee, was char-
tered in 1983. Its responsibilities include formulation of life-cycle standards,

documentation standards, and guidelines for software development. SMAP's

5-7

5 -- Ada and Software Engineering in NASA

training courses (Section 5.1), life-cycle standard, documentation standards,

and guidebooks (Section 5.5.1) are parts of a broader plan according to

which SMAP will serve as the central agency-level source of policies, proce-

dures, information, consultation, and planning in the area of software man-

agement and assessment. However, none of the additional products or

services envisioned in the broader plan are available at this time.

Most centers (e.g., GSFC) have an organization separate from software
development that is responsible for the assurance of major software projects

developed at the center. In recent years, such organizations have made

some strides in recognition and in impact on software projects. However,

they are typically a relatively small'component of a center and do not have

adequate staff to carry out an effective program.

Other support functions such as independent verification and valida-

tion, configuration management, software technology assessment, software
process engineering, and technology information centers are not established

parts of the agency but are supported locally by the center or by individual

projects.

One exception is the commercially operated Ada Technology Transfer

Network, called AdaNet. Located in West Virginia, this network has been

partially supported by NASA.

5.6 Research and Development

NASA has supported research in the area of software engi-

neering (e.g., methods, management practices, reliability)

for at least the past 12 to 14 years; but little of it concerns
Ada.

NASA's major research activities are centered in the Office of Aero-

nautics and Space Technology (OAST). This office defines various pro-

grams of research across a broad spectrum of technologies that are of

interest to NASA projects. These technologies include computer science

and, in particular, software engineering. OAST delegates responsibility for
research in particular areas to Various NASA centers on the basis of their

interests, capabilities, staffing, and programs. OAST does not restrict itself

to working with the three NASA research centers--LeRC, Langley Research

Center (LaRC), and Ames Research Center (ARC)--since another center

may have the best facilities to perform a particular research program.

One center is responsible for defining, managing, and carrying out

each major OAST research program. OAST is responsible for integrating

5-8

5 -- Ada and Software Engineering in NASA

and coordinating the full effort across all centers. Such programs as the

NASA Initiative on Software Engineering (NISE) and the High Performance
Computing Initiative are examples of research and development (R&D) pro-

grams directed by OAST.

Other NASA program offices support R&D efforts that are pertinent to
their specific needs. The Office of Space Operations (OSO) may support

research in communication technology, while the Office of Space Science

and Application (OSSA) may support research in sensor technology. Since

software technology is vital to nearly every program office, each office sup-

ports at least some software research.

The research supported by OSO, OSSA, and other program offices is

managed in nearly the same way as the research supported by OAST. A

center, which need not be a research center, proposes research that a pro-

gram office may consider relevant to its concerns. The program office may

then support the R&D at that center. Research at a given center may be

supported by more than one program office.

When research is completed at a center, technology transfer is the re-

sponsibility of the sponsoring program office. The infusion of advanced

technology into specific application areas is not the principal responsibility

of any agency-level organization.

Until recently, the agency has not had a coordinated research program

in which multiple centers have attempted to cooperate in order to achieve a

single well-defined objective. Such cooperation is the aim of the NISE,

which began in fiscal year 1988. Its major concern is the management and

development of complex, highly reliable software systems. At least four

centers (JSC, LaRC, GSFC, and JPL) have active roles in the coordinated

effort. NISE supports research in critical areas of software engineering but

currently has no plan to address any specific Ada issues.

The following subsections describe NASA research programs in soft-

ware engineering.

5.6.1 Goddard Space Flight Center

The Software Engineering Laboratory (SEL) at GSFC has

been carrying out research in software engineering for over

10 years.

At GSFC, one division has been carrying out experimental studies in

the effectiveness of software technologies. An informal organization, the

5-9

5 -- Ada and Software Engineering in NASA

SEL, was established at GSFC to carry out the research. The primary func-

tion of the SEL has been to identify potentially useful software technologies

and then to evaluate them as applied to flight dynamics production software

projects. The mode of operation is to train development teams in the use of
some method, language, or tool and then measure its effects on the soft-

ware process and products. Although the SEL has been functioning in one

particular environment, many of the results are relevant to, and have been

applied to, a broad spectrum of software development areas. Ada is one

technology that has been under study since 1985; in fact, it has been the

SEL's principal subject of study during this time.

5.6.2 Jet Propulsion Laboratory

JPL sponsors the Systems, Software, and Operations Re-

search Center (SSORCE) and the Ada Development Labora-
tory.

The purpose of the SSORCE is to infuse state-of-the-art software engi-

neering technology into practice. It does so through education, consulting,
development of standards, and the introduction of automated software tools.

More recently, JPL established the Ada Development Laboratory as an envi-

ronment for teaching Aria and developing Ada software for specific applica-

tions and pilot projects.

5.6.3 Johnson Space Center

JSC has performed extensive research in Ada-related tech-

nologies and other areas of software engineering during the

past 5 years.

The major efforts at JSC were coordinated through an Ada beta test

bed established to evaluate Ada with participants from local industry and a

local university. This program's research on Ada-related issues has pro-

duced a growing awareness of the complexity and potential of the language.
The Software Engineering Research Center at the University of Houston-

Clear Lake is also also doing research for JSC.

5.6.4 Langley Research Center

LaRC has been carrying out research in software engineer-

ing for over 10 years.

I

|

E
I
.ffir

=

B

5-10

5 -- Ada and Software Engineering in NASA

Much of the LaRC research has involved the development and study of
techniques and tools intended to improve software reliability. LaRC has also

carried out some research related to Ada tasking and has directed and coor-

dinated computer science and software engineering research at several uni-
versities.

5.6.5 Other Centers

ARC, MSFC, and LeRC have also conducted some research

in software engineering.

The other centers have also carried out software research. For exam-

ple, ARC has carried out research in parallel processing and in artificial
intelligence.

5.7 Measurement and Assessment

NASA has two significant programs of software measure-
ment and assessment.

One of the goals of JPL's SSORCE program, which was established in

1985, is to assess software development methods. In addition, the SEL at

GSFC (Section 5.6.2) has been performing software measurement and as-
sessment since 1977. The SEL has collected measurement data from over

65 flight dynamics projects and has used these data to study the effects of

software development technologies, including Ada. Such data as resource

usage, software error characteristics, product complexity, and software

quality are recorded and archived for study and for use in creating new

development guidelines and management aids. Ada has been part of this

study effort since 1985.

5-11

6 -- Findings

This section contains the ASMAWG's findings on NASA's

use of Ada and its software engineering practices.

6.1 Appropriateness of Ada

Ada is an appropriate vehicle to support the evolution to

improved software practices in NASA.

NASA's many past successes in missions that depended heavily on

software attest to the strength of its software development approach. How-

ever, to meet the challenges posed by the increasingly voluminous and com-
plex software that the agency will require, an evolution to new software

technologies, such as Ada, is critical.

The ASMAWG assessment indicates that Ada technology (the lan-

guage, compilers, other development tools, and methods) has now matured

to the point that the claims for Ada discussed in Section 3 are credible for

many applications. Specifically, Ada provides a high degree of support for

the principles of software engineering and thus for NASA's goal of cost-
effective development and maintenance of large, complex software systems

that are also efficient and reliable. More than any other major programming

language, Ada promotes readability, maintainability, extensive checks dur-

ing compilation and execution, reuse of general-purpose software compo-

nents, and compilable designs.

In addition, standardizing on Ada would enable NASA to take advan-

tage of the massive investments that the DoD, its contractors, and their

vendors are making in Ada technology as a result of the DoD's Ada man-
date. Because of these investments, Ada is "doomed to success," as

Michael Deutsch put it in a briefing at Hughes Aircraft. That is, problems
that afflicted Ada in its early years, such as immature compilers and other

tools, are being overcome because they have to be. NASA can benefit from

these efforts without paying much of their costs.

Selecting a principal programming language, regardless of what it is,

has great advantages to NASA. The training of personnel; acquisition and
development of tools, methods, and reusable components; development of

standards and policies; and performance of software research may be much

more economical if they concentrate upon a principal programming

6-1

6 -- Findings

language. This consideration applies both to work done by NASA and by its

contractors. Savings that contractors achieve through the use of a principal

language should be passed on to NASA in the form of lower costs for work
done under contract.

In addition, the adoption of a principal programming language would

assist NASA in supporting the existence of a wide spectrum of potential

vendors. Knowing where NASA intends to go, vendors of compilers and

other language-specific tools could better anticipate future markets and cre-

ate the needed products. Potential contractors would also be stimulated to
train personnel in the new language and undertake projects to gain experi-
ence with it.

Finally, NASA and the DoD, especially the Air Force, have similar

requirements for computer processors. For example, NASA makes some

use of the Air Force's standard processor specified by MIL-STD-1750A. In

the future, NASA will probably continue to want to use newly developed
processors that the DoD uses. Ada compilers are more likely to be sup-

ported for these future processors than compilers for other languages for
which the DoD will have little use. It will, therefore, be easier to port NASA

software to these processors or to create new software for them if that soft-
ware is written in Ada.

Because of the SSPF's Ada mandate, the technical capabilities of the

Ada language, and the increasing availability of excellent Aria tools and

techniques, the role of Ada in NASA will inevitably grow. The agency could

passively allow such a transition to occur through the uncoordinated choices

of individual project managers over several years. However, the transition
will be faster and more efficient if NASA adopts a firm mandate for Ada. A

mandate will both stimulate and channel the energy that is required to bring

about such a technological transition.

Because of the newness of Ada, there currently is very little empirical

evidence showing the cost-benefit ratio of applying the language. However,

some of the SEL data does indicate positive trends in a series of Ada pro-

jects carried out in a single environment, the flight dynamics area at GSFC.

These projects show an increase in the percentage of code that is reused,

with values that are already well above those typical of comparable
FORTRAN projects (Figure 6-1). They also show increases in productivity

of about 50 percent from the firstrtime to the third-time Ada projects (Fig-

ure 6-2). These studies concluded that the productivity on a third-time Ada

project would result in a slightly lower cost than that of an equivalent

FORTRAN project. Finally, these projects show significant decreases in

error rates (Figure 6-3).

6-2

w

m

6 -- Findings

Percent
Code

Reused 50140

30

20

Typical
FORTRAN

project in same
environment

1st Ada 2nd Ada

t i i:::::::::::::::::::::::::::::::::::::::

3rd Ada

Figure 6-1. Reuse Trends

Noncomment
Lines

Per
Staff-Day

35-

30-

25-

20-

15-

1st Ada 2nd Ada

_!ii!i':_i!ii!!!!!!ii_ii!i

iiiiiii!!i!iiiiii!iiiiiiii
_i!i!!!!!!!!!!!!!!_i?ii_i

:..........,......:........,..................,............,..,.........
i_i!i!i!i!i!i!iii!_iii:il

:::::::::::::::::::::::::

iiii!i!i!iiiiiiiili;ii iil
iiiiiii_!ii_ii!_i_ii!:!_i
,,,..,,,,.,.,,.

3rd Ada

Figure 6-2. Productivity Trends

Many of the remaining findings in this section are based on this funda-

mental assumption about the desirability of a transition to Ada.

6.2 Knowledge Base

Although NASA offers courses in Ada and software engi-

neering, the training programs are not adequate to accom-

plish a transition to Ada.

The number and variety of courses in Ada and software engineering

offered at the NASA centers reflect the great importance that the agency

places on these disciplines. Nonetheless, the Ada knowledge base across the

6-3

6 -- Findings

Errors Per
Thousand

Lines
(Test Phase)

m

Typical 1st
FORTRAN Ada

project in
same environment

2nd
Ada

3rd
Ada

Data is based on McGarry et al. (Deccmber 1988).

Figure 6-3. Error-Rate Trends

agency is small (as it is in industry, too). This situation is partly due to the
unique characteristics of Ada and associated technologies, which require

more extensive training than is needed for most programming languages.
However, inadequacies do exist in NASA's training programs. As noted in

Section 5.1, a 1987 survey found that the percentages of NASA manage-

ment personnel who have received training in software engineering and Ada
are low. Often, NASA personnel assume that "long NASA tenure qualifies

as software engineering training" (Softech, 15 November 1987, p. 5-11).

SMAP and the center education offices have offered a large number of

courses. However, the training programs have not been derived from em-

pirical measurement and assessment of the current capabilities and needs of

the agency in software engineering and Aria. In addition, with very few

exceptions, the training programs for Ada have not been coordinated with

pilot projects or other development efforts in Ada. Moreover, a shortage of

adequate funding and time planned for employees' participation exists. Un-

less reinforced by experience in Ada development, much of the knowledge

gained through Ada training will soon be lost.

Additional shortcomings in NASA's current approach to training are

the following:

• The agency has not measured the effects of training programs on

subsequent projects.

• The center education offices have not implemented the Softech

(15 November 1987) recommendations or any other plan for full

training in Ada and software engineering.

6-4

6 -- Findings

The center education offices have not implemented an organized

sequence of courses suitable for given classes of employees, as

recommended by Softech (15 November 1987, sec. 3.7.1).

Managers have not required their subordinates to acquire Ada

training by taking suitable sequences of courses.

Without significant modification of current approaches to training in
Ada and software engineering, the evolution to Ada will require too much

time, will involve too many missteps, and may never take place at all.

6.3 Experience Base

NASA has very little experience with Ada, and current plans

do not provide for building an experience base adequate to
meet existing commitments for the use of Ada.

Although production-quality compilers have been available since 1985,

and although NASA made a serious commitment to Ada as early as 1985

(for the SSFP), the agency as a whole has made only small efforts to use
Aria on projects in order to build an experience base. Through fiscal year

1988, the total number of Ada projects completed by or for NASA, where

NASA directly participated in development or management, is fewer than

20. Most of these projects were located in one of two or three centers. Of

the Ada work NASA has done, the percentage of studies, as opposed to

production projects, is too high. Our estimate is that fewer than 1 out of

50 NASA software developers or managers has had any practical experi-

ence in developing, managing, or acquiring Ada software other than small

classroom projects.

NASA cannot establish an adequate Ada experience base solely

through training programs and without direct participation in the

management and development of Ada systems. Without a concentrated ef-

fort to rectify its current lack of Ada experience, the agency will be

inadequately prepared to develop, manage, or acquire Ada production sys-

tems over the next 5 to 8 years.

6.4 Tools, Methods, and Reusable Components

NASA Ada projects have often selected or developed sophis-
ticated tools and methods; but software reuse is still in a

rudimentary state.

6-5

6 -- Findings

The examples described in Section 5.3 indicate that the tools used in

NASA Ada projects vary widely. In some cases, they are mature and reli-
able. In other cases, projects have been severely limited in their choice of

tools because of a requirement to use a particular processor. Consequently,

some of these projects have suffered from poor quality or unavailability of

tools such as compilers and symbolic debuggers. The SSFP's Software Sup-

port Environment is a commendable effort to assemble or create a set of

tools and procedures especially suited to the development of large NASA

projects.

On the whole, the few completed NASA Ada projects have tended to
use state-of-the-art Ada methods and have sometimes contributed to the

advancement of the technology (see Section 5.3).

Some NASA projects have achieved high levels of software reuse, e.g.,

the flight dynamics area at Goddard (Solomon and Agresti, November
1987; and Section 5.7 of this report). However, reuse so far has been

achieved without the benefit of systematic planning or automated library

support. The Software Support Environment will include reuse plans and

library support, but they are not yet available.

6.5 Management

NASA software management has been weak in two areas

pertinent to this report:agency-level planning for the use of

state-of-the-art software engineering technologies (e.g., Ada)

and project-level management of software risks, including
those associated with Ada.

6.5.1 Agency-Level Planning

NASA has not adopted an agency-wide plan for a transition

to more effective software technologies including Ada.

Although additional Ada projects are planned, no comprehensive

agency plan exists to evolve to Ada and associated technologies. Such a

transition plan is presented in this report's companion document (McGarry

et al., April 1989).

6.5.2 Risk Management

NASA software projects typically neglect the need for a writ-

ten risk management plan.

6-6 I=--

E

6 -- Findings

Risk management plans provide systematic means to avoid unpleasant

surprises that result in costly rework. In recognition of this fact, several

DoD standards and directives require the formulation and implementation

of a risk management plan. Such plans are also required by the policies of

some NASA and DoD contractors, such as TRW (Boehm, April 1988,

p. 61). By contrast, NASA's agency-wide policies and the managers of indi-

vidual projects have given too little attention to this essential management

tool. Software risk management was, however, addressed at the agency level

in March 1989, with Release 4.3 of the Information Systems Life-Cycle and
Documentation Standards.

6.6 Infrastructure

NASA does not have an adequate set of agency-level stan-

dards and internal organizations to provide direction in soft-

ware engineering and to support the evolution to new
software technologies such as Ada.

6.6.1 Policies and Standards

NASA's lack of agency-wide software development standards
wastes resources.

As noted in Section 5.5.1, NASA's only agency-level products applica-

ble to software development are NMI 2410.6, which requires a Software

Management Plan for flight projects, and SMAP's Information Systems Life-

Cycle and Documentation Standards. The SMAP products are nonbinding on
agency organizations. There are no agency-level standards prescribing how

to perform any of the following software development activities: manage-

ment; assurance; configuration management; data base management; inter-

face management; data communication; assurance of safety, security, and
integrity; or verification and validation.

With the two exceptions just noted, the establishment of standards is

left to the centers and individual projects. As argued in Section 4.5.1, this

practice is time consuming and thus expensive for both NASA and its con-

tractors. Many different groups within the agency must deal with the same
issues, such as the revision of standards to accommodate the use of Ada.

Similarly, contractors who deal with several parts of the agency often must

learn how to work under multiple sets of standards and cannot economically

develop automated tools to support document production. Moreover, center-

level standards are no longer adequate in an era when some projects span

multiple centers.

6-7

6 -- Findings

Finally, NASA's procedures for obtaining contractor input into the

process of standards revision are not adequate to ensure that the agency's

approaches to Ada and software engineering are coordinated with those of

its major contractors.

6.6.2 Support Organizations

NASA does not have an adequate agency-level infrastructure

to provide direction in software engineering and the evolu-
tion to new software technologies such as Ada.

No agency-level organization has general responsibility for NASA soft-

ware engineering. In particular, no organization is responsible for software
technology transfer within the agency. Nor is there any organization respon-
sible for the collection and dissemination of data about NASA software

development processes or for the assessment of their effectiveness. Conse-

quently, these tasks are not being performed.

This lack of support organizations sometimes causes good policies to

lose their effectiveness for lack of management followup. For example,

NMI 2410.6 requires that the software management plan for flight project

software undergo peer review before implementation. If lessons are learned
from such a peer review, there is neither a requirement to write them down

nor an organization responsible for propagating them to other software

practitioners in the agency or for using the lessons to refine the review

process. In fact, the peer review Process has never been formally defined.

Developing agency-wide standards is a major undertaking requiring sig-

nificant resources. Attempting to do so through ad hoc groups has both
advantages and disadvantages. Ad hoc groups are very useful in that their
members are committed to solving a problem and have an interest in seeing

the effort succeed. However, they normally do not have the time, resources,

authority, or visibility to promote their solutions at the agency level. The

agency has no resources or internal organizations to perpetuate the good

works and transfer the findings to the agency as a whole once the group
dissolves.

A lack of agency-level resources also impedes the implementation of

project-directed investigations and products. For example, the Softech Aria

training plan (15 November 1987), although sponsored by the SSFP, is rele-
vant to the entire agency. But because there has been no agency-level or-

ganization to sponsor and implement the plan, it has languished.

[

6-8

6 -- Findings

6.7 Research and Development

Although NASA has sponsored extensive research in soft-

ware engineering, some of which has dealt with Ada-related

technology, the agency has not had a broad, coordinated

program of research, experimentation, and pilot projects.

Very little of the software R&D budget is directed toward issues con-

cerning Ada and related technologies. Considering the number and size of
NASA production projects that will use Ada within the next 5 to 10 years,

the budget allocated to Ada issues is not adequate.

A number of the NASA centers have conducted small research efforts

in Ada. Again, the amount of research is insufficient to support the major

projects already planning to use Ada. In addition, no coordination of these
research activities exists across the agency; no mechanism is in place to

ensure that Ada technology developed through research will be transferred

into practice. Therefore, NASA does not receive adequate benefit from the

Ada research that is being conducted and has accumulated little evidence

about the potential effects of Ada on software development by and for the

agency.

6.8 Measurement and Assessment

NASA does not have an adequate program of collection and

use of metric data about the software development process.

The SSORCE program at JPL and the SEL data base at Goddard are
good examples of such data collection. However, most NASA projects do

not gather software metrics. Consequently, such data is not available to

serve as the basis for monitoring the development process and estimating

the progress of a project. Nor is such data archived and effectively struc-

tured to serve as the basis for projections about future projects, for the

development of risk models or cost-estimation models, or for research that

might lead to evaluations and improvements of software development proc-

esses. Finally, there are no agency-level standards requiring the collection
of software metrics or defining a standard set of metrics.

6-9

7 -- Recommendations

This section contains the ASMAWG's recommendations for

a transition to Ada and forimproved software engineering in
NASA.

7.1 Ada Adoption

NASA should adopt Ada as its standard programming lan-

guage.

By adopting Ada as a standard, the agency can focus its efforts on this

technology. This adoption should be approached gradually at each center.

All new mission software should be developed in Ada by 1998. Since the

Ada language was first defined in 1980, a period of 18 years to develop a

full Ada capability in NASA would coincide with the approximately 18-year

period that Riddle (April 1984) found was required for new software tech-
nologies to mature from initial conception to widespread use.

Each center should evolve to Ada through a three-phase approach in

which the scope of Ada use is gradually widened. In the three phases, Ada
should be used in the following classes of projects:

, Laboratory and pilot projects intended to gain familiarity with the

language and associated tools and methods

2. Selected production software projects

3. All new mission software projects

Our definition of mission software is the following:

Mission software is all software that is critical to the design,

planning, operation, control, or testing of any NASA flight

project. It comprises all flight software and all ground soft-

ware that directly interface with the flight systems or could

affect mission planning, control, or operations. Mission soft-

ware includes, for example, all software used in flight plan-

ning, flight dynamics, mission control, and flight readiness. It
also includes all software used to simulate, model, or test any

of the foregoing software functions.

7-.1

7 -- Recommendations

A waiver process should be instituted to deal with situations where the

use of Ada is inappropriate. For example, an entire application might be

written in the data manipulation language associated with a commercial

data base management system, or a new system might be created almost

entirely from existing FORTRAN components. Waivers should not be re-

quired for acquiring commercial off-the-shelf software that is to be used
without modifications, writing small special-purpose programs, or develop-

ing software where adequate Ada support is unavailable.

The goal of transition to Ada as NASA's standard programming lan-

guage should be reassessed every 2 years on the basis of the data gathered
in accordance with the recommendation of Section 7110.

7.2 Software Engineering and Ada Implementation Task
Force

NASA should establish a Software Engineering and Ada Im-

plementation Task Force.

Evolution to Ada and state-of-the-art software engineering practices in

NASA should be supported by a Software Engineering and Ada Implemen-
tation Task Force. The task force, composed of representatives from center

support organizations, should provide information and consulting in soft-

ware engineering and the use of Ada. A primary function would be to im-

plement the 5-year plan for the transition to Ada (McGarry et al., April

1989).

The task force's duties should include the following tasks:

• Consulting with management on the use of Ada and the correct

application of software engineering technology

• Consulting with software engineers on specific technology and ap-

plication issues and providing background and reference informa-
tion

• Gathering information on the use of Ada and advanced software

engineering technology

• Gathering, analyzing, and disseminating metrics reflecting the ef-

fectiveness of Ada and various software engineering tools and
methods

• Disseminating technical reports about Ada, software engineering,

and the application of specific tools and methods

7-2

7 -- Recommendations

Sponsoring and encouraging other NASA organizations to sponsor

seminars, workshops, and conferences on Ada-related technolo-

gies

Promoting software reuse

Providing a NASA liaison with support groups from other govern-

ment agencies and industry organizations to take advantage of

their experiences and research

Ensuring the development and implementation of the core NASA

curriculum in Ada and software engineering

Such a formal support organization is necessary if Ada and improved

software engineering practices are to be advanced in NASA. It will enable

NASA to leverage limited funds by capitalizing on good practices inside and

outside the agency. It will be a highly visible focal point where projects can
look for assistance.

7.3 Policies and Standards

NASA should develop and adopt tailorable standards for

software development, management, and assurance.

NASA should issue general agency policies and standards for software

development, management, and assurance. Agency-level standards should

form a framework within which more specific center or project standards
can exist.

NASA should request contractor reviews of proposed standards. A

mechanism analogous to the Council of Defense and Space Industry Asso-
ciations should be identified for NASA.

Contractor experiences reported to the ASMAWG indicate that the lit-

eral and rigid enforcement of standards can delay a software project and

increase its costs by requiring unnecessary actions, such as the production
of inapplicable documents. Standards should be tailorable, if necessary, to

fit a particular project. NASA project management should be responsive to

a contractor's suggestions for tailoring.

7.4 Software Development Environments

NASA should evolve toward a common software support en-
vironment.

7-3

7 -- Recommendations

To evolve toward the common use of Ada without striving toward a

common support environment would be inconsistent with the philosophy of
Ada. NASA should not impose a single, fixed hardware and software archi-

tecture or a single set of precisely specified software support tools on con-
tractors. However, NASA should define a common set of functional

capabilities that would become the common environment for NASA soft-

ware development. NASA should also define standard requirements for
deliverables, e.g., language and medium. This policy would not preclude

contractors from using their own specialized tools to assist the development

process. NASA should also take responsibility for generating the standard
set of functional capabilities on common support systems and making the

resulting environment available for use on contracted software efforts.

7.5 Transition Planning

Each center should develop a plan for evolving to Ada.

The plan should establish milestones for reaching the goal of all new
mission software being written in Ada by 1998. This plan should be sub-

mitted to the Software Engineering and Ada Implementation Task Force,

which should be responsible for supporting the center in developing and

carrying out these plans.

7.6 Training

The Software Engineering and Ada Implementation Task
Force should ensure the development and implementation of

an agency-wide core curriculum in software engineering and
Ada. Each center should adapt the core curriculum to its

specific needs.

The core curriculum should address Ada, software management, life

cycles, quality assurance, configuration management, computer-aided soft-

ware engineering, and other pertinent topics relevant to state-of-the-art soft-

ware engineering. It should factor in the application to pilot or production

projects as an integral part of the training process. It should include se-

quences of courses recommended for given classes of personnel, that is, a
common, well-defined track for all managers and developers. Software

managers should then require their personnel to take a sequence of courses
suited to their backgrounds and responsibilities. Development of the core
curriculum should take into account the educational planning that the Soft-

ware Engineering Institute has done. The training program should be avail-

able to the NASA support contractors as well as NASA personnel.

i
F

7-4

7 -- Recommendations

NASA should also enhance its Ada knowledge base by using previous

Ada training and experience as a criterion for evaluating potential em-
ployees.

7.7 Risk Management

For any "critical" project, management should be required

to develop and implement a written risk management plan.

The plan should assess (identify, analyze, and rank) all development

risks. It should propose a plan to control the risks through risk management

planning, risk monitoring, and risk resolution (Boehm, April 1988). For Ada
projects, the plan should cover risk items associated with the use of Ada

(Basili et al., April 1987, sec. 3; Peschel, 13 December 1988). The criteria

for "critical" projects should be defined in the software management stand-
ard referred to in Section 7.3.

7.8 Contractor Incentives

NASA should establish an Ada incentive program for its
software contractors.

First, an offeror's experience with Ada and record of effective software

management should be important considerations in the evaluation of pro-

posals.

Second, NASA should recognize that at this early stage in the history

of Ada, a contractor may have additional expenses connected with training

and hiring Ada software engineers and acquiring a programming support

environment. NASA should be willing to share these expenses, since they
will affect the size of bids, whether or not they appear explicitly as line

items in the cost proposal.

Third, the schedule of activities in a statement of work should be struc-

tured so as to give the contractor an incentive to hire or train adequate

numbers of Ada personnel by the time they are needed. For example, a

project might specify that a prototype be built or other pilot activity be

performed at an early stage to give the Ada personnel some experience.

Fourth, a request for proposal or statement of work should be written

so as to give the bidder or contractor incentives for software reuse.

7-5

7 -- Recommendations

7.9 Coordination of Research and Development

The Office of Aeronautics and Space Technology (Code R)

should plan and coordinate agency-wide software research
and development, more of which should support Ada.

NASA's approach to software-related research requires two significant

changes in order to support the agency's adoption of state-of-the-art soft-
ware engineering practices, including Ada.

First, research related to Ada must be significantly increased. Much of

the work (under the Ada beta test bed) that was completed at JSC should

have stimulated further NASA Ada studies aimed at learning more about

the appropriate uses of Ada. However, the work that has continued is not

extensive enough to support the timely evolution to Ada. The agency re-
quires a substantial increase in Ada research, especially experimentation

and laboratory studies.

Second, NASA must support a major, coordinated initiative in software

engineering research, including Aria-specific research. The initiative that

OAST has recently planned, NISE, should become the vehicle to coordinate

all NASA-related research in Ada and software engineering. However, NISE

must be enhanced to include significant research in Ada. The agency should

continue to support Research Technology Objectives and Plans activities in

other program offices (e.g., OSSA and OSO); but the relevant work carried
out under these programs in the other program offices must be factored into

the NISE program in OAST. OAST should not direct, plan, or control the

research in other program offices; but it must become the focus for accu-

mulating all relevant results so that the planning and execution of the initia-

tive under the aegis of Code R can be more effective.

7.10 Software Measurement Program

NASA should establish an agency-wide program to collect
and use software metrics.

As discussed in Section 4.7, metrics provide a sound basis for deci-

sions about the management of a specific project (e.g., whether a given

development phase is on schedule or complete) and about the general effec-
tiveness of given tools or methods. The Software Engineering and Ada Im-

plementation Task Force should specify metrics to be collected by software
development projects. Project management should use the metrics for

z

%

7-6

B

7 -- Recommendations

management purposes and make the information available to the task force.
NASA researchers can then use these metrics to measure the effectiveness

of software engineering practices and to suggest improvements.

The adoption of Ada as the agency's standard language would provide

an opportunity to establish a systematic method for collecting and analyzing

metric data on a very broad scale. Such data has a wide range of applica-

tions, such as improving the development process by monitoring how it is

affected by new methods, tools, and techniques. Management has many

potential uses of such data. Tools such as risk models and cost-estimation
models could be developed. Managers could monitor the development proc-

ess and estimate the progress of a project on the basis of information gener-

ated automatically by the software support environment.

7.11 Software Process Engineering Task Force

NASA should establish a Software Process Engineering Task

Force to support the evaluation and improvement of the

agency's software acquisition and in-house development

processes.

The task force should adopt a method for the internal assessment of

NASA's software engineering capabilities using an approach similar to that
of the SEI (Humphrey et al., September 1987). This method is based on five

postulated levels of process maturity: initial, repeatable, defined, managed,
and optimized. It employs a set of questions and investigatory techniques

through which an assessment team can determine the maturity level of a

given software development organization. The Software Process Engineering

Task Force should use such an assessment method to evaluate and improve

of NASA's in-house software development capabilities. In addition, the task

force should develop an analogous method to evaluate software acquisition

processes and should apply the method to acquisition processes in NASA.

7-7

=_

r

m --

Appendix- Persons Consulted

The ASMAWG consulted the following persons in preparing this re-

port:

David Barakat, TRW

Bryce Bardin, Hughes Aircraft Company

Victor Basili, University of Maryland

Frank Belz, TRW

Barry Boehm, TRW

Doris Boyd, Hughes Aircraft Corporation

John Bryant, TRW

George Buchanon, Hughes Aircraft Corporation

Marvin Cart, McDonnell Douglas

Robert Dausch, McDonnell Douglas

Raymond Delaney, General Electric Corporation

Robert Demshki, TRW

Michael Deutsch, Hughes Aircraft Company

Bud Doyle, TRW

John Garman, NASA/JSC

Dana Hall, NASA/HQ

William Halley, McDonnell Douglas

Hal Hart, TRW

James Inscoe, General Electric Corporation

Rhys John, General Electric Corporation

Richard Knackstedt, McDonnell Douglas

Milda Napjus, Hughes Aircraft Company

A-1

Jeffrey Neufeid, General Electric Corporation

Rose Pajerski, Goddard Space Flight Center

Albert Peschel, TRW

George Petrovay, Hughes Aircraft Company

Daniel Roy, Ford Aerospace Corporation

Walker Royce, TRW

Edwin Seidewitz, Goddard Space Flight Center

Dwight Shank, Computer Sciences Corporation

David Smith, Hughes Aircraft Company

Phyllis Stevens, General Electric Corporation

Christopher Thompson, Hughes Aircraft Company

Raymond Wolverton, Hughes Aircraft Company

Marvin Zelkowitz, University of Maryland

A-2

References

Aeronautical Radio, Inc., Airlines Electronic Engineering Committee

(October 1987), "Guidance for Using the Ada Programming Language in

Avionic Systems," Project Paper 613. Kansas City.

Basili, V., et al. (April 1987), Use of Ada for FAA's Advanced Automation

System (AAS), MTR-87W77. McLean, VA: MITRE Corp.

Boehm, B. (August 1986), "A Spiral Model of Software Development and

Enhancement," Proceedings of the IEEE Second Software Process Workshop,

ACM Software Engineering Notes.

Boehm, B. (September 1987), "Improving Software Productivity," IEEE

Computer, Vol. 20, No. 9, pp. 43-57.

Boehm, B. (April 1988), Software Risk Management Tutorial. Redondo Beach,
CA: TRW.

Booch, G. (1987a), Software Components With Ada. Menlo Park, CA:

Benjamin/Cummings.

Booch, G. (1987b), Software Engineering With Ada. Second Edition. Menlo
Park, CA: Benjamin/Cummings.

Brooks, F., et al. (September 1987), Report of the Defense Science Board on

Military Software. Washington, DC: Office of the Under Secretary of De-

fense for Acquisition.

Century Computing (15 September 1987), Ada Projects at NASA: Runtime

Environment Issues. Laurel, MD.

Dept. of Defense (February 1980), Requirements for the Programming Environ-
ment for the Common High Order Language, Stoneman. Washington, DC.

Dept. of Defense (1983), Reference Manual for the Ada Programming Lan-

guage, ANSI/MIL-STD 1815A. Washington, DC.

Dept. of Defense (2 April 1987), Computer Programming Language Policy,
DoD Directive 3405.1. Washington, DC.

Fisher, D. (March 1978) "DoD's Common Programming Language Effort,"

IEEE Computer, Vol. 11, No. 3, pp. 24-33.

R-1

References

Foreman, J., and J. Goodenough (May 1987), Ada Adoption Handbook: A

Program Manager's Guide, CMU/SEI-87-TR-9, ESD-TR-87-110. Pittsburgh,

PAL: Software Engineering Institute.
. _

Gardner, M., et al. (February 1988), Software Engineering, Ada Development,

and Acquisition Streamlining Under DOD-STD-216 7, MTR-88W00006.

McLean, VA: The MITRE Corp.

Hinners, N. (27 June 1988), "NASA IRM Council; Ada and Software

Management Assessment Working Group," memorandum to NASA
Council.

Humphrey, W., et al. (September 1987), A Method for Assessing the Software

Engineering Capability of Contractors (Preliminary), CMU/SE1-87-TR-23,

ESD-TR-87-186. Pittsburgh, PA: Software Engineering Institute.

Kneale, D. (12 January 1988), "Into the Void," The Wall Street Journal,

p. 1.

Kolkhorst, B. (September 1988), "Shuttle Code Achieves Very Low Error

Rate," IEEE Software, Vol. 5 , No. 5, pp. 93-95.

McGarry, F., et al. (December 1988), "Evolving Impacts of Ada on a Pro-

duction Software Environment," briefing to Thirteenth Annual Software En-
gineering Workshop. Greenbelt, MD: Goddard Space Flight Center.

McGarry, F., et al. (April 1989), NASA--Evolving to Ada: Five-Year Plan.

Greenbelt, MD: Goddard Space Flight Center.

Molko, P., and R. Loesh (1 December 1988), "Real-Time Weather Proces-

sor (RWP) Project: Ada Experience at PDR" (Unpublished briefing).

Pasadena, CA: Jet Propulsion Laboratory.

Murphy, B., and M. Stark (October I985), Ada Training Evaluation and Rec-

ommendations From the Gamma Ray Observatory Ada Development Team,

SEL-85- 002. Greenbelt, ME): Goddard Space Flight Center.

Nelson, R. (1988), "Space Station Software: Progress and Plans," in

J. Johnson (ed.), Proceedings of the Fifth Washington Ada Symposium: New

York: Association for Computing Machinery, pp. 117-122.

Nielsen, K., and K. Shumate (1988), Designing Large Real-Time Systems with
Ada. New York: McGraw-Hill.

i

B

R-2

References

Peschel,A. (13 December 1988), "Ada Risk Managementand TRW Project
Experience" (Unpublished briefing). RedondoBeach, CA: TRW.

Reifer, D. (December 1987), "Ada's Impact: A Quantitative Assessment,"
Proceedings of the 1987 ACM SIGAda International Conference. New York:
ACM.

Riddle, W. (April 1984), "The Magic Number Eighteen Plus or Minus

Three: A Study of Software Technology Maturation," ACM SIGSoft Software

Engineering Notes, Vol. 9, No. 2, pp. 21-37.

Sammet, J. (August 1986), "Why Ada Is Not just Another Programming

Language," Communications of the ACM, Vol. 29, No. 8, pp. 722-732.

Seidewitz, E., and M. Stark (July-August 1987), "Towards a General Object-

Oriented Software Development Methodology," Ada Letters, Vol. 7, No. 4,

pp. 54-67.

Softech (15 November 1987), A Report on NASA Software Engineering and

Ada Training Requirements. Houston, TX.

Solomon, D., and W. Agresti (November i987), Profile of Software Reuse in

the Flight Dynamics Environment (Preliminary), CSC/TM-87/6062. Silver

Spring, MD: Computer Sciences Corporation.

TRW Defense Systems Group (11 April 1985), Language Task 3 Trade

Study. Redondo Beach, CA.

Voigt, S. (ed.) (1985), Space Station Software Recommendations, NASA Con-
ference Publication 2394. Hampton, VA: NASA Langley Research Center.

R-3

Glossary of Acronyms

NbiI

OAST

OSO

OSSA

R&D

SEI

SEL

SLOC

SMAP

SMM

SSE

SSFP

SSORCE

TDRSS

NASA Management Instruction

Office of Aeronautics and Space Technology

Office of Space Operations

Office of Space Science and Application

research and development

Software Engineering Institute

Software Engineering Laboratory

source lines of code

Software Management and Assurance Program

Solar Maximum Mission

Software Support Environment

Space Station Freedom Program

Systems, Software, and Operations Research Center

Tracking and Data Relay Satellite System

G-2

ACM
ADP
AIM

AJPO
ALC
ANSI

APSE

ARC

ASMAWG

CMU

COBE

DEC

DID

DoD

GRO

GSFC

HST

IEEE

IRM

JPL

JSC

KSLOC

LaRC

LeRC

MIL-STD

MSFC

NASA

NATO

NISE

Glossary of Acronyms

Association for Computing Machinery

Automatic Data Processing

Automated Information Management

Ada Joint Program Office

assembly language code

American National Standards Institute

Ada Programming Support Environment

Ames Research Center

Ada and Software Management Assessment Working Group

Carnegie Mellon University

Cosmic Background Explorer

Digital Equipment Corporation

data item description

Department of Defense

Gamma Ray Observatory

Goddard Space Flight Center

Hubble Space Telescope

Institute of Electrical and Electronic Engineers

Information Resources Management (Council)

Jet Propulsion Laboratory

Johnson Space Center

thousand source lines of code

Langley Research Center

Lewis Research Center

Military Standard

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

North Atlantic Treaty Organization

NASA Initiative on Software Engineering

J

K

m
w

p

E

!

G-1

