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: Abstract

A fast implicit upwind algorithm for the solution of the time-

dependent Euler equations is presented for aerodynamic analysis

involving unstructured dynamic meshes. The spatial discretiza-

tion of the scheme is based on the upwind approach of Roe re-

ferred to as flux-difference splitting (FDS). The FDS approach is

naturally dissipative and captures shock waves and contact dis-

continuities sharply. The temporal discretization of the scheme

involves an implicit time-integration using a two-sweep Gauss-

Seidel relaxation procedure. The procedure is computationally

efficient fi)r either steady or unsteady flow problems. The paper

gives a detailed description of the implicit upwind solution algo-

rithm along with results which assess the capability. The results

are presented for the NACA 0012 airfoil and for the Boeing 747

aircraft. The 747 geometry includes the fuselage, wing, hori-

zontal and vertical tails, under-wing pylons, and flow-through

engine nacelles. Euler solutions for the 747 aircraft on an un-

slructurcd tetrabedral mesh containing approximately 100,000

cells were obtained to engineering accuracy in less th:m one

hour CPU time on a Cray-2 computer.

lntr(xluction

In recent years signilicant progress has been made on de-

veloping numerical algorithms fiw the solution of the govern-

ing fluid flow equations based on unstructured meshes, n-7 This

progress includes improvements in solution accuracy as well as

computational efficiency. For example, upwind methods have

been developed for unstmclured meshes which are based on

the local wave propagation characteristics of the flow and con-

_quently produce highly accurate solutions. 23 Most of these

upwind meth(xls, however, um explicit time-marching schemes

to integrate the governing equations in time to steady state The

explicit approach is computationally efficient when applied to

meshes that are coarse, but the rate of convergence deteriorates

significantly when finer meshes are used. For cases where finer

meshes are used, either a muhigrkl strategy for convergence ac-

celeration or an implicit temlx)ral discretizalion which allows

large lime steps is required to obtain steady-state solutions in a

counputationally efficient manner, hnplicit upwind .,a)lution al-

gorithms fi_r unstruclured meshes in two dimensions hav_¢ been

reporled by the author in Ref. 8. These algorithms are simi-

lar to the Ixfint-implicit scheme of Tharcja, el al., 9 ahhough the

metht_ks of Ref. 8 arc fully implicit and not point implicit. The

purpc, se of the paper is to report the extension of the implicit
discretiT_ltion of Ref. g to unstructured meshes in three dimen-

sions. This new flow solver is a fast implicit upwind algorithm

for the sohltion of Ihe tilne-dependent I'uler equations, for nero-
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dynamic analysis involving unstructured dynamic meshes. The

spatial discretization of the scheme is based on the upwind ap-

proach of Roe t° referred to as flux-difference-splitting (FDS).

The FDS approach is naturally dissipative and captures shock

waves and contact discontinuities sharply. The temporal dis-

cretization of the scheme involves an implicit time-integration

using a two-sweep Gauss-Seidel relaxation procedure. The pro-

cedure is computationally efficient for either steady or unsteady

flow problems. The paper gives a detailed description of the im-

plicit upwind solution algorithm along with results which assess

the capability. The results are presented for the NACA 0012

airfoil and for the Boeing 747 aircraft.

Euler Equations

In the present study the flow is assumed to be governed

by the three-dimensional time-dependent Euler equations which

may be written in integral form as

/-_ dV + (I;,, + 1"% + G,.)d.q = 0 (l)

where the vector of conserved variables Q and the convective

fluxes E, F, and (7 axe given by
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The velocities I/, It, and IV are defined by

U = u- xt, V = o- yt, IV = w--t (3)

where xt, Yt, and :t are the grid speeds in the .r,y, and :

directions, respectively, and the pressure p is given by the

equation of state for a perfect gas

p = ('7 -- I ) Ic - _p(,t_" -F v2 -t- w")] (45

The above equations have been nondimensionalized by the

freestream density p_ and the freestream speed of sound a_.

Also, the second integral in Eq. (1) is a boundary integral result-

ing from application of the divergence theorem, and n,, nv, and

,, are Cartesian components of the unit normal to the boundary

surface.

Spatial Discretization

The spatial discretization is based on Roe's flux-difference

splitting which is herein implemented as a cell-centered scheme

whereby the flow variables are stored at the centroid of each

tetrahedron and the control volume is simply the tetrahedron

it_lf. Con_quently, the spatial discretization involves a flux

balance where the fluxes across the four faces of a given tetra-

hedron are summed as

4 4

,`3s' = (1.:,,,+'1% 4 (55
I'el_ | t/1 = |

where A.,:,' is the area of the face. The flux vector H is

approximated by

I Ill!C2' ) +If(Q-)- 4 (Q_-Q-)] (6)II =

where Q- and Q _ are the state variables to the left and right

of the cell face and A is the flux jacobian matrix given by

i)l//i)Q. Also the tilde and the absolute value sign indicate thai

the flux jacobian is evaluated using the so-called Roe-averaged

flow variables and the ;lbsolute value of the characteristic speeds.

The left and right states Q and Q_r, are determined by

upwind-biased interpolations of the primitive variables q. In

three dimensions, for a given tetrahedron j, for example, the

upwind-biased interpolation for q- across the common face

between tetrahedra j and k is defined by

where

q- ---,tj + _1(I - .)_- + (I _ _')._d (75

_+ = q_ - 'b (Sa)

_- = qs - '1, (8b)

in Eqs. (7) and (85, qs and q,_ are the vectors of primitive

variables at centroids j and k, respectively, and q,, the vector of

primitiv e variables at node i (the n_xle of tetrahedron j opposite

to the face being considered5, is determined by an inverse-

±_ - ._ .

distance-weighted average of the flow variables in the tetrahedra

surrounding node i. The upwind-biased interpolation for q+ is

determined similarly. Also the parameter _ in EcI. (7) controls

a family of difference schemes by appropriately weighting A_

and ,3+. On structured meshes it is easy to show that _¢ = -1

yields a fully upwind scheme, _: = 0 yields Fromm's scheme,

and x = 1 yields central differencing.

On highly stretched meshes, the formula for A+ is modified

to be

3a

A+ = _-_(qt - qs} (9)

where t, and b are the distances from the midpoint of the face to

the centroids of tetrahedra j and k, respectively. This formula

weights the flow variables in the interpolation formula (Eq.

(7)) differently to account for the stretching of the mesh. For

example, by substituting Eq. (95 into Eq. (7) and letting s = 1

b a

q- = _--_qj + _q_ (10)

Furthermore, in calculations involving upwind-biased schemes,

oscillations in the solution near shock waves are expected to

occur. To eliminate these oscillations flux limiting is usually

required. The flux limiter modifies the upwind-biased interpo-

lations for q- and q+ such that, for example

.q

q- = q, + ?,[(l - _-._),3_+/f + _)±+] (115

where s is the flux limiter. In the present study, a continuously

differentiable flux limiter was employed which is defined by

2,3_.3+ +
02)

"_= .3'_ + a_. + _

where t is a very small number u_d to prevent division by zero

in smooth regions of the flow.

Temporal Discretization

The temporal discretization is an implicit time-marching

._heme involving a Gauss-Seidel relaxation proc_edum _.Tlie

scheme is derived in general by first lineafizing the flux vector

II according to

011 AC.
11"+_ = I1" + i-_ 2 (13)

where OII/OQ is the flux jacobian A. as discussed before, and

AQ = Q,,+l _ Q,_ Linearizing both flux terms on the right-

hand-side of Eq. (6) using Eq. (13), and ignoring the tilde on

the tlux jacobian, results in

,,ol ! + Z A+(Qs)AS `3Qs + A-(Qm)A,_AQ,,
.... , =

4

=_1 Z [,,(o*)+,,(o-)-al(o+-o-)]°
.... 1 (14)

where 1 is the identity matrix, "vol" is the volume of the tetra-

hedron j, and AQ,,, is the change in flow variables in each
of the four tetrahedra adjacent to tetrahedron j. Also in Eq.
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(t4),A + and A- are h_rward and backward ttux jacobians, re-

spectively. For flux-difference splitting, the exact jacobian A

(derivative of the right-hand-side of Fat. (6) with respect to Q)

is too expensive to compute and thus an approximate jacobian

is normally used. This is accomplished by constructing the ja-

cobians making use of the fact that the torward and backward

jacobians should have non-negative and non-positive eigenval-

ues (characteristic speeds), respectively. This is accomplished

by expressing ahematively the jacobians using similarity trans-
formations such that

A ÷ = RA4H -; ,'l'- -_ liA-R -7 (15)

where A 4 and A- are diagonal matrices whose diagonal ele-

ments are the eigenvalues A+ and .\- detined by

= ,_(,x + IAI) A- = _>(A-IAI) (16)_+
g,.

and I? is the matrix whose columns are the correslxmding

eigenvectors.

Direct solution of the sysleJ_ of simultaneous equatJons

which results from application of Eq. (14) for all tetrahedra

in the mesh, requires the inversion of a large matrix with

large bandwidth which is computationally expensive. Instead, a

Gauss-Seidel relaxation :tpproach is used to _lve the equations

whereby the summation involving AQ,,, is moved to the right

hand side of Eq. (14). The terms in this summation are then

evaluated for a given time step using the most recently c(_mputed

values for AQ .... The solution procedure then involves only the

inversion of a 5 x 5 matrix (repre_nted by the terms in .square

brackets on the left hand side of Eq. (I4)) for each tetrahcdron

in the mesh. Also, although the procedure is implemented for

application on (randomly-ordered) unstructured meshes, it is not

a point Gauss-Seidel procedure. The meth(v.t is in fact more like

line Gauss-Seidel since the list of tetrahedra that make up the

unstructured mesh is re-ordered fro,n upstream to downstream,

and the solution is obtained by sweeping two times through the

mesh as dictated by stability considerations: The first sweep is

performed in the directkm from upstream to downstream and

the _cond sweep is from downstream to upstream. For purely

supersonic flows the second sweep is unnecessary.._

Boundary Conditions

To imlx_se the flow- tangency tx)undary conditions along the

surface of the vehicle, the flow variables are set within dummy

cells that are effectively inside the geometry being cbnsidered.

The velocity components within a dummy ceill ii_i,,ui),t,_are-

determined from the values in the cell j adjacent to the surface,

(u, t,, w)j. This is accomplished by lirst rotating the com-I_Onents

into a coordinate syslem thal has a c_mrdinate direction normal

to the boundary face. The sign of the velocity component in

this direction is changed (hence trellising no flow through the

face) and the three velocity comramcnts are then rotated back

into the original .r,y, z cca_rdinate system. After considerable

algebra this yields

{'}v
w d

1 - 2n; -2n_,n_ -21_xnz

° 9

-2n,n_ I - 2n; -2nyn_

-2T_tn_ -2n_n,_ 1 -2n_

ll

I,'

W J

(17)

where t_x, n_, and n, are the x, y, and z components of the unit

vector that is normal to the boundary face. Also, pressure and

density within the dummy cell are set equal to the values in the

cell adjacent to t_ surface.

After application of the upwind-biased interpolation formula

to determine q- and q+ at each face, the velocity components

are corrected to give a "strong" implementation of the surface

boundary condition according to

(18)

In the farfield a characteristic analysis based on Riemann

invariants ig used to determine the values of the flow variables on

the outer boundary of the grid. This analysis correctly accounts

fin" wave propagation in the farfield which is important for

rapid convergence to steady-state and serves as a "nonreflecting"

boundary condition for unsteady applications.

Results and Discussion

To assess the accuracy and efficiency of the implicit up-

wind solution algorithm, calculations were first performed in

two dimensions for the NACA 0012 airfoil. These results were

obtained using the unstructured mesh shown in Fig. 1. The grid

has 3300 nodes and 6466 triangles, and extends 20 chordlengths

from the airfoil with a circular outer boundary. Also there are

110 points that lie on the airfoil surface. Steady-state calcula-

tions were performed for the airfoil at a freestream Much number

of M_ = 0.g and an angle of attack of a -- 1.25 °. The results

were obtained using both the implicit relaxation time-marching

scheme and an explicit three-stage Runge-Kutta time-marching

scheme. "Fne explicit results were obtained using a CFL number

of 4.0, with residual smoothing and local time-stepping to ac-

celerate convergence to steady state. The implicit results were

obtained using a CFL number of infinity. Such a large value

was used for the implicit results since the relaxation scheme

has maximum damping and hence fastest convergence for very

large time steps. This is in contrast with implicit approximate

factorization schemes which have maximum damping for CFL

numbers on the order of 10. Also, the flux jacobians of the

implicit scheme were updated only every twenty iterations.

A comparison of the convergence histories between explicit

and implicit time-marching is shown in Fig. 2(a). The "error"

in the solution was taken to be the L2 norm of the density

residual. As shown in Fig. 2(a), the explicit solution is slower to

converge than the implicit solution. The explicit solution takes

approximately 739 CPU secs. (2,682 iterations) on a Cray-2

computer to converge to engineering accuracy, which is taken

to be a three order of magnitude reduction in solution error. In

3



Fig.

A

I Partial view of unstructured unesh of triangles about

the NACA 0012 airfoil.

constrasl, the implicit solution is converged to three orders of

magnitude in only approximately 362 _cs. (I,251 iterations).

The resulting steady pressure distribution is shown in Fig. 2(b).

For this case there is a relatively strong shock wave on the

upper surface of the airfoil near 62% chord and a relatively

weak shock wave on the lower surface near 30% chord. The

pressure distribution indicates thai there is only one grid point

within the shock structure, on either the upper or lower surface

of the airfoil, due to the sharp shock capturing ability of the Roe

solver.

To assess the efficiency of the implicit upwind solution

algorithm in three dimensions, calculations were perh)rnned for

the Boeing 747 aircraft. These results werc obtained using the

unstructured mesh shown in Fig. 3. The 747 geometry includes

the fuselage, the wing, horizontal and vertical tails, under-wing

pylons, and flow-through engine nacelles. The unstructured

Fig. 2
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Fig. 3 Surface mesh of triangles for the Boeing 747 aircraft.
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Comparison of convergence histories for the Boeing

747 aircraft at ._/._ = 0.84 and a = 2.73 °.

mesh for the 747 contains 101,475 lelrahedra and 19,055 nodes

for the half-span airplane. Also there are 4,159 nodes and

8,330 triangles on the boundaries of the mesh which include

the airplane, the symmetry plane, and the farfield. Steady-state

calculations were performed for the aircraft at M-.,:= 0.84 and

, = 2.730. The results were obtained using both the implicit

and explicit time-marching schemes. Similar to the NACA 0012

cases, the explicit results were obtained for the 747 using a

CFL number of 4.0, with residu:d sm(x)thing and hv.:al time-

stepping to accelerate convergence to steady state. The implicit

results were obtained using a CFI. number of infinity and the

flux jacobians were updated only every twenty iterations.

A comparison of the convergence histories between explicit

and implicit time-marching is shown in Fig. 4. The explicit

_lution required 8,251 CPU sees. (1,124 iterations) on a Cray-

2 computer to converge the solution three orders of magnitude,

whereas the implicit solution required less than half of that, or

3,578 sees. (522 steps). The resulting steady pressure coefficient

contours on the surface of the 747 aircraft are shown in Fig.

5. The contours indicate that there is a significant amount of

flow compression on the nose of the aircraft, along the inboard

leading edge of the wing, and inside the cowl of the engine

nacelle. There is flow expansion on the forward fuselage, on the

horizontal and vertical tail surfaces, and on the upper surface of

the wing terminated by a shock wave. Additional details of the

mesh and pressure contours on the outboard pylon and engine

nacelle are shown in Fig. 6. These contours show further flow

expansion on the outside of the cowl and within the inner core

of the engine.

Concluding Remarks

A fast implicit upwind algorithm for the solution of the

time-dependent Euler equations was presented for aerodynamic

analysis involving unstructured dynamic meshes. The spatial

discretization of the scheme is based on the upwind approach

of Roe referred to as flux-difference splitting (FDS). The FDS

approach is naturally dissipative and captures shock waves and

contact discontinuities sharply. The temporal discretization of

the scheme involves an implicit time-integration using a two-

sweep Gauss-Seidei relaxation procedure. The procedure is

computationally efficient for either steady or unsteady flow prob-

lems. Results were presented for the NACA 0012 airfoil and

for the Boeing 747 aircraft. The 747 geometry included the

fuselage, wing, horizontal and vertical tails, under-wing pylons,

and flow-through engine nacelles. Euler solutions for the 747

aircraft on an unstructured tetrahedral mesh containing approx-

imately 100,000 cells were obtained to engineering accuracy in

less than one hour CPU time on a Cray-2 computer.

r _ .....

Fig. 5 Steady pressure coefficient contours on the Boeing 747 aircraft at

M_,, = (I.84 and _ = 2.73 °.
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