
UAH ResearchReport No. ME-91-101
Date of Issue: September 1991

;/_j

ENGINE DATA INTERPRETATION SYSTEM (EDIS) (PHASE II)

Prepared by:

Thomas L. Cost and Martin O. Hofmann

College of Engineering

The University of Alabama in Huntsville

Huntsville, AL 35899

Prepared for:

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

Final Report on:

Contract No. NAS8-36955, Delivery Order 97

Period of Performance: October 30, 1990 to July 29, 1991

Disclaimer Statement:

'The views, opinions, and/or findings contained in this report are those of the authors and

should not be construed as an official. NASA position, policy, or decision, unless so

designated by other documentation".

Distribution Statement:

Distribution is unlimited.

: 5/_ C,

, - . -? ,

https://ntrs.nasa.gov/search.jsp?R=19920005905 2020-03-17T14:10:20+00:00Z

UAH Research Report No. ME-91-101

Date of Issue: September 1991

ENGINE DATA INTERPRETATION SYSTEM (EDIS) (PHASE II)

Prepared by:

Thomas L Cost and Martin O. Hoflnann

College of Engineering

The University of Alabama in Huntsville

Huntsville, AL 35899

Prepared for:

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

Final Report on:

Contract No. NAS8-36955, Delivery Order 97

Period of Performance: October 30, 1990 to July 29, 1991

Disclaimer Statement:

"The views, opinions, and/or findings contained in this report are those of the authors and

should not be construed as an official NASA position, policy, or decision, unless so

designated by other documentation".

Distribution Statement:

Distribution is unlimited.

SUMMARY

A prototype of an expert system has been developed which applies qualitative
constraint-based reasoning to the task of post-test analysis of data resulting from a rocket

engine firing. Data anomalies are detected and corresponding faults are diagnosed. Engine
behavior is reconstructed using measured data and knowledge about engine behavior.
Knowledge about common faults guides but does not restrict the search for the best

explanation in terms of hypothesized faults. The system contains domain knowledge about
the behavior of common rocket engine components and has been configured for use with

the Space Shuttle Main Engine (SSME). A graphical user interface allows an expert user

to intimately interact with the system during diagnosis. The system has been applied to
data taken during actual SSME tests where data anomalies had been observed.

2

TABLE OF CONTENTS

SUMMARY ... 2

I. INTRODUCTION ... 5

2. DIAGNOSTIC METHODOLOGY 7

3. USER GUIDE .. 29

3.1 Preparations Before Running EDIS 29

3.2 Running EDIS ... 30
3.2.1 Cautions 30

3.2.2 Conventions 31

3.2.3 Invocation 31

3.2.3.1 Introductory Screen 31

3.2.3.2
3.2.3.3

3.2.3.4

3.2.3.5

3.2.3.6

3.2.3.7

3.2.3.8

3.2.3.9

File Entry Screen 31
Wait Screen 32

Anomaly List Screen 32
SSME Schematic Screen 33

Diagnosis Control Screen 34

First Component Screen 34

Diagnosis Status Screen 35

EXIT 35

4. DEVELOPER GUIDE ... 36

4.1 System Architecture 36

4.2 Installation ... 36

4.3 ED[S Configuration 37

4.3.1 Configuration files 37

4.4 Changing the Configuration 39

4.4.1 Simple Configuration Changes 39

4.4.2 Sensor Changes 39

4.4.3 Focus/rig on Part of the SSME 39

4.4.4 Adding Fault Types 39

4.4.5 Modifying the Graphical Data Presentation 40

4.4.6 Adding A Component Type 40
4.4.6.1 Structure Definition 40

4.4.6.2 Behavior Definition 41

4.4.6.2.1 Additional Slots 42

4.4.6.2.2 New Slot Names 43

4.4.6.2.3 Modified Slots 44

4.4.6.3 Constraint Rules 45

4.5 Tuning System Performance and Strategic Parameters 46

3

5. STATE OF DEVELOPMENT 48

5.1 Hardware and Sofware Setup 48

5.2 Interface ... 48

5.3 Knowledge Base .. 48

6. SAMPLE CASES .. 49

6.1 Case 1: No Backtracking 49

6.2 Case 2: Backtracking 50

APPENDICES

A: Listing of EDIS Interface (TOOLBOOI0 Code

B: Listing of EDIS Diagnosis (NEXPERT) Code

C: Parameters Used by EDIS

D: Example Data Input File
E: SSME Schematic

F: Configuration Files

4

1. INTRODUCTION

The research described in this report is a continuation of the work performed under a
previous contract, NAS8-36955, D.O. 58. This, the second, phase of the development of

a knowledge-based system which assists in post-test data analysis and fault diagnosis of the

Space Shuttle Main Engine (SSME), builds upon the methodologies devised and explored

during the earlier contract period. Implementation and software tools are completely

different, however.

The Engine Data Interpretation System (EDIS) attempts to assist the data review personnel

to quickly identify significant data anomalies and to generate explanations for the

anomalies in terms of abnormal component behavior and underlying faults. The review

process is time-consuming and repetitive and requires an undue amount of human

resources, i.e. it occupies too much of the experts' time. Special care was taken during the

design to fit EDIS into the current review process without disrupting standard review

procedures. EDIS can also perform the data analysis and fault diagnosis tasks

autonomously without intervention by the user. In this mode EDIS might be used to

produce an independent second opinion.

EDIS is unusual compared to traditional diagnostic expert systems because it presents its

questions and results to the user in a manner which requires very little explanation. The

combination of a special diagnostic mechanism and a state-of-the-art user interface

strategy make this behavior possible.

Diagnosis is performed using a qualitative constraint model of the SSME and its

components. Qualitative parameter values describe data anomalies as positive or negative

deviations from the norm. Constraints model normal component behavior independent of

component use within the SSME. The reasoning mechanisms synthesizes a description of

SSME behavior based on the measured data, the observed anomalies, and knowledge about

normal and fault behaviors of components. The behavior description makes explicit the

assumptions about component health and thus generates diagnostic hypotheses. The

reasoning mechanisms deals naturally with single and multiples faults, with known and

unknown fault modes, and may be tuned by an experienced user. It also accepts user

guidance during processing. To some extent, the reasoning process emulates an expert

who envisions how the SSME is performing using the familiar schematic diagram and

assumptions about component faults.

The user interface was designed to make relevant data as well as choices made by the

diagnostic process immediately visible to the user. Whenever possible the user may change

the suggestions brought forth by the system and thus redirect diagnostic search. Graphic

images, menus, and mouse-invoked actions were used throughout the design.

EDIS does not and cannot claim to automate the review process completely. A much larger

development effort would be necessary to accomplish this. EDIS, however, should be seen

5

as a prototype of a data review support system in that it explores methods of representing
relevant expert knowledge which may readily be adapted to changes in the engine,

methods of reasoning in an expert-compatible style, and methods of user-centered

mixed-initiative user-system communication. The EDIS project is therefore never finished.

In the following sections we will first lay out the knowledge representation and reasoning
methodologies incorporated into EDIS and then describe how to use and maintain EDIS.

We will close with a note on the state of development of EDIS and a demonstration of the

performance of EDIS using simple examples.

6

2. DIAGNOSTICMETHODOLOGY

This section consists of a journal paper which was submitted for publication after receiving
clearance from NASA.

MODEL-BASED DIAGNOSIS OF THE SPACE SHUFFLE MAIN ENGINE

Martin O. Hofmann

Department of Electrical and

Computer Engineering

Thomas L. Cost

Department of Mechanical

Engineering

The University of Alabama in Huntsville
Huntsville, AL 35899

Michael Whitley
NASA-MSFC

Huntsville, AL 35812

ABSTRACT

The process of reviewing test data for anomalies after a firing of the Space Shuttle Main

Engine (SSME) is a complex, time-consuming task. A project is under way to provide the

team of SSME experts with a knowledge-based system to assist in the review and diagnosis

task. A model-based approach was chosen because it can be adapted to changes in engine

design, is easier to maintain, and can be explained more easily. A complex thermodynamic

fluid system like the SSME introduces problems during modeling, analysis, and diagnosis

which have as yet been insufficiently studied. We developed a qualitative constraint-

based diagnostic system inspired by existing qualitative modeling and constraint-based

reasoning methods which addresses these difficulties explicitly. Our approach is unique in
that it combines various diagnostic paradigms seamlessly, such as the model-based and

heuristic association-based paradigms, in order to better approximate the reasoning process

of the domain experts. The end-user interface allows expert users to actively participate
in the reasoning process, both by adding their own expertise and by guiding the diagnostic

search performed by the system.

I. Introduction

Three main engines provide a significant portion of thrust to the Space Shuttle during
liftoff. Dependable performance of the Space Shuttle Main Engines (SSME) is critical to

the Shuttle missions. The SSME is a highly complicated device which is stressed to the

7

limit during normal operation. Therefore, each SSME is tested exhaustively for flight
readiness, and new and improved designs are developed and evaluated frequently.

A comprehensive data review is performed at NASA Marshall Space Flight Center (MSFC)

after each firing of a SSME, both after Shuttle launches and after ground tests. The review

serves to reveal anomalies in the recorded data and, if anomalies are detected, to diagnose

the underlying engine problem or fault. Shuttle launches occur only infrequently, but a

SSME is testfired as often as once every three days on one of the five test stands. During
the test hundreds of measurements are taken up to fifty times per second. The resulting
bulk of data has to be analyzed at Marshall Space Flight Center within a turnaround time

of about one day. Analysis is currently performed by a team of experts, some of whom are

specialists assigned by the SSME contractor companies; others are NASA engineers. These

experts are also charged with modifying and upgrading the SSME and its components as

well as with improving and maintaining performance models and data reduction programs.

Routine data reviews distract and take time away from these more important activities.

SSME data review and fault diagnosis are good candidates for supporting and augmenting
expertise-based human activities with a knowledge-based expert system. The tasks are

repetitive, require expertise in short demand, and do not lend themselves to an algorithmic

solution. We are developing a knowledge-based system called EDIS (Engine Data

Interpretation System) which assists the review team in the analysis of engine performance
data and in the diagnosis of engine faults.

EDIS incorporates a combination of diagnostic paradigms because neither heuristic rules,

quantitative models, nor qualitative models alone adequately represent the scope of

knowledge that human experts apply to the task of SSME data analysis and fault diagnosis.
Experts are able to intuitively intermix and coordinate reasoning based on these different
types of knowledge such that each contributes to the solution. The architecture of EDIS

has been formulated to enable cooperation of several heterogeneous knowledge sources in

order to emulate the diversity of human expert reasoning. Coordination and cooperation
of different reasoning paradigms will be described elsewhere. In this paper we present the

qualitative model-based component of EDIS and the diagnostic reasoning methodology
which operates on the qualitative model.

The approach to device diagnosis presented in this paper is rooted in qualitative physics,
model-based representation of devices, and constraint satisfaction methods. Device

behavior is represented qualitatively using "qualitative constraints." Constraints model the

normal (non-faulty) behavior of each component. They are derived by linearizing and

simplifying physical (thermodynamic) laws. The reasoning mechanism dynamicany
composes device behavior from component behavior, reconciling current case-specific
measurements with qualitative constraints. Anomalous device behavior gives rise to fault
hypotheses. Fault diagnosis using constraint-based models is not limited to selecting from
a set of predetermined faults and does not require assumptions about the number of faults

present. Knowledge about fault probabilities and component fault modes is only used to
focus diagnostic search.

8

A large number of sensors provide data on SSME performance. However large the set of

parameters measured may be, it is nevertheless limited to readings from the installed

sensors and therefore fixed and incomplete. No additional measurements can be made;

probing is not possible. Many approaches to expert diagnosis depend on the ability to

acquire additional data. The methodology presented in this paper is designed to make

optimal use of available data, measured at locations distributed fairly evenly throughout

the device, without the need for complete information. Because of incomplete access to

critical data, cases exist where no definitive diagnosis can be generated, and instead a list

of possible faults constitutes the final result of the diagnostic reasoning process.

In the following sections we will first introduce the application domain and point out its

unusual characteristics. Next we will outline our approach to qualitative constraint-based

modeling and diagnosis followed by our rationale for selecting this approach. We will then

describe the methods for implementing the approach, discuss the results, and compare our
approach to work of other researchers.

2. SSME Data Review Process

The EDIS system assists in the analysis of data from tests of the Space Shuttle Main Engine
(SSME) (Cost & Hofmann, 1990). After each test of an SSME data from several hundred

sensors are reviewed at NASA MSFC in order to verify SSME performance and to diagnose
anomalies. A large number of graphs are printed which display parameter values versus
time. The experts peruse these charts several times: first, to detect anomalies in the level
or shape of the curves, then, if anomalies have been found, to correlate characteristics of

other relevant measurements. For example, experts check temperature and flow rates at a

pump inlet if perturbations in the pressure readings were detected at this site; they also
foUow anomalous readings along the fluid or gas path through the engine.

Separate sets of charts are produced for different stages of the SSME firing, i.e. the startup,

main stage, and shutdown stage. During main stage the SSME settles into steady state
during time intervals of constant commanded power level. The first version of EDIS is

limited to analysis of steady-state data during mainstage operation. Figure I shows a
typical chart which depicts the shaft speed of the low pressure fuel turbine. Steady-state
conditions can be observed from about 100 seconds to 300 seconds and from 320 to 450

seconds after ignition. The power levels are 104% and 100%, respectively. Like most
other charts it contains two curves, one for the current test and one from a previous test
which the new data are compared against. Comparison charts such as this one are used to

identify anomalies in the current test data. A numerical power balance model which

predicts critical engine parameter values exists, but it is not used for anomaly detection
because it is not reliable enough. The quantitative model also cannot simulate individual

component behavior, and its fault simulation capabilities are limited.

Testing an SSME is very complicated, labor-intensive, and expensive. It is not possible to

repeat a test just to get more or different measurements. Therefore the problem of

9

selecting optimal additional points to probe does not arise. To offset the lack of additional

measurements an unusually large number of parameters is measured during each test and

made available for analysis. A diagnostic technique was developed for EDIS which

performs well with a large but fixed number of parameter values.

XX TEST 62 LPFP SPD

TEST 6L LPFP SPD

16000

M

I

H tSO00
$

T

A

G

14000 '

[ak * --

t 3 SO0

v
13000 _P

0 100 200 300 400 500 600

FIGURE 1. TIME FROM START COMMAND - SECONDS

Most first-generation diagnostic, expert system use heuristic rules to generate and test

hypotheses. Heuristic rules are inadequate for SSME diagnosis because of the complexity

of the SSME, because the SSME is continually being modified, and because faults arise with

low frequency and high degree of variation. Few faults can be recognized by their

symptom patterns. In other words, although the review process is routine, the anomalies
and faults encountered are not.

There exist many aspects of the SSME data review process which have been or will be

addressed in the EDIS project but are not discussed in this paper. For example, the review

10

behavior of a number of thermodynamic components are supplied with EDIS. Any
particular device is described in terms of its components and their interconnections.

Definition of device structure and component parameters, e.g. efficiency or friction

coefficients, configure the model of a particular device, see Figure 3.

Generic Thermodynamic

Component Moaels

SSME Component List,

SSME Component Connectlvtty.
SSME Sensor DelcriDtion

Devloo /

|Con f Iguratlon

• \
"/\,._/

General SSME Component
Model Coel Ilclen ts

com°onen,
iSpeclficet|on |

Slap /

Teet-Speol f I©
SSME Modal

I

FIGURE 3

3.1 MODEL

Behavior is modeled by incremental qualitative constraints (IQCs) on system parameters.

The characteristic parameters of the medium moving through the thermodynamic device

constitute the set of system parameters. Typical parameters are pressures and temperatures

of fluids or gases and the rotational speed of pumps and turbines. Constraints are

incremental because they describe behavior as change or deviation from normal values.

The incremental formulation linearizes and simplifies the constraints. Constraints are

qualitative because they classify parameter values into three categories: normal, high, and
IOW.

12

Constraintsexpressqualitative proportionality betweendeviations of parametervaluesfrom
the norm, assuming correct device behavior. Constraints are derived from mathematical
system models, but unlike Iwasaki and Simon (Iwasaki & Simon, 1986), who derive a
qualitative model from the differential equationsdescribingsystemdynamics,we start with
steady-stateequations of energy and massequilibrium. The term "behavior" thus denotes
the ordinal interrelations of systemparametersin steady-state,instead of an account of the
dynamicchangesin parametervalues. Our type of analysis is labeled "comparative statics"

by Kalagnanam, Simon & Iwasaki (1991) in a recent review of qualitative reasoning.

Incremental deviations can also be represented quantitatively. Govindaraj (1987) reports

the use of a quantitative deviation model to simulate a complicated marine steam power

plant. Biswas, Hagins & Debelak (1989) formulate a quantitative process model for a fluid

system. Our primary model is qualitative.

Constraints describe local behavior, i.e. they describe the interrelations of parameters

associated with each particular component. Parameters are associated with a component

if they are defined at one of the terminals of a component, e.g. its inlet, outlet, or shaft,

or if they describe medium state within a component. [QCs are thus an example of

component-centered qualitative modeling in contrast to process-centered modeling

developed by Forbus (1984), which decomposes the device model into processes instead

of components. A process definition collects descriptions of the influences on a substance

mediated by all the components it is in contact with. In the SSME, where a substance,

such as the engine fuel, is engaged in many processes at the same time, a

component-centered modeling approach leads to a more satisfactory decomposition. For

each component, however, behavior is described as a process which obeys thermodynamic

conservation laws. Global behavior is generated by simultaneously satisfying the

constraints imposed by all components. Parameters defined at the terminals of components

constitute the linkage between component behaviors since their values have to satisfy the

constraints of two or more connected components, see Figure 4.

shared/coupling parameters

1

Component A
{Ca,i}

I

parameters

{Cab.i" Cba,i} Component B {Cb.i]

interface parameters

FIGURE 4

13

For example, the behavior of a pipe is characterized by an energy conservation equation

and a mass conservation equation between the pipe inlet (index 1) and the pipe outlet
(index 2).

2g v 2g v
(la)

(lb)

v:A,v, = vCqv (2)

_¢ = average fluid velocity

Vi = fluid velocity
g = gravitational constant

h = height

p = pressure
y = density

L = pipe length
D = pipe diameter
f = friction coefficient

/q = pipe cross:sectional area

After linearization and simplification equations (1) and (2) reduce to (3) and (4)

respectively. The delta operator (A) indicates incremental (small signal) change and K is
a constant which depends on the operating point, the pipe dimensions, and the friction
coefficient.

(s)

AV_ = AV2 (4)

The essence of these equations, which is captured by IQCs, is that the pressure difference

between inlet and outlet is proportional to the velocity, and that the input velocity is
proportional to the output velocity as long as the pipe is operating correctly. Faults which
could invalidate the constraints are pipe leaks and obstructions, for example.

It has been shown by Kalagnanam et al. (1991) that the ordinal properties of the involved

quantities do not change even under such strong simplifications as long as the simplifying
transformations are monotonic. Our simplifications and transformations from quantitative

to qualitative models therefore preserve relative magnitude of parameter values. If, for

14

example, the qualitative model predicts an increasein value then the quantitative model
(if it existed) would also predict an increase. Invariance of ordinal properties in essence
guaranteesthat qualitative values are predicted correctly by IQCs.

3.2 DIAGNOSIS

In the presence of faults there will be no parameter value assignment which satisfies all

constraints. Davis R. (1984) describes "constraint suspension", a technique which finds the

constraint (or constraints) which, if suspended, eliminate all conflicts. The procedure is

basically trial and error and demands that a complete analysis be made for each hypothesis.
A number of other approaches have been reported which will be discussed when

appropriate in the following sections.

EDIS uses a constructive diagnostic paradigm. EDIS attempts to find the most appropriate
explanation of the observed symptoms. An explanation of behavior indicates values for all

critical parameters and assertions about health states of components. Such an explanation
is called a "scenario." Faulty components may exhibit unconstrained behavior, all other
components must obey their behavior constraints. Each scenario which takes all measured

data into account and satisfies all constraints except for those imposed by components

considered faulty generates a fault hypothesis. The hypothesis states that those and only
those components whose behavior constraints were disregarded are the cause for the

observed malfunction. Finding the qualitative behavior of a system is called "envisioning"
in the qualitative modeling literature, e.g. De Kleer & Brown (1985), Forbus (1988). In
general, envisioning deals with dynamic behavior of devices described as sets of states and

state transitions. EDIS envisions steady:state values of critical engine parameters, i.e.
engine states, but no state transitions.

Envisioning scenarios is a constraint satisfaction problem. However, constraint satisfaction

alone is not powerful enough to perform diagnosis. Consider a faulty SSME and a set of
measurements which renders the fault observable. If all constraints are enforced, no
consistent assignment of values to constrained parameters exists. Diagnosis consists of a
search for those constraints which, if revoked, permit a consistent value assignment. There
are thus two levels of search involved in diagnosis: search for the violated constraint or
constraints, which identify the failed component, and search for a consistent value
assignment given this fault, i.e. constraint satisfaction. Both types of search are
computationaUy intensive and are supported by knowledge about normal and fault
behavior of components.

There are, in general, a vast number of scenarios which fit the measured data and satisfy
a subset of component constraints. A diagnostic strategy has been defined which attempts
to select a small number of "good" scenarios, i.e. plausible fault hypotheses. Scenario

quality is determined from a number of factors which effectively characterize how likely
a hypothesis is with respect to other hypotheses. Diagnosis is viewed as search in a space

of all scenarios for the scenario which best explains the symptoms. SSME diagnosis is a

15

domain complex enough to render enumeration and subsequent selection of hypotheses

impossible. According to the problem classification scheme described by Stefik, Aikins,

Balzer, Benoit, Birnbaum, Hayes-Roth & Sacerdot/ (1983) we are dealing with a big,

factorable solution space calling for a step-wise generate and test methodology. Therefore,

EDIS attempts to sequentially accommodate the constraints contributed by one component

at a time, thereby creating partial scenarios. Partial scenarios are evaluated and compared

against each other at each step.

Observed anomalies contribute to the envisionment of scenarios through a process of

counterfactual reasoning (Adams 1975), wkich either suspends the constraint and declares

the component faulty or puts the blame on anomalous data on the component interfaces.

Anomalous values of parameters associated with a component do not by themselves imply

a fault of this particular component. Some kinds of anomalous behavior may be due to a

shift in operating point caused by a fault in some other part of the SSME. Full knowledge

of all critical parameters would be necessary to judge the health of individual components.

In reality, assumptions must be made and their consequences tested against all available

data and knowledge of SSME behavior.

Generation of a scenario simulates device behavior since it transforms the implicit

representation of component behavior as physical constraint laws into value assigmnents

for parameters which characterize states and behaviors of components. Accounts of device

behavior can be used to justify fault hypotheses to the end user.

A qualitative model, regardless of whether it is a constraint model or not, is less precise

than a quantitative model. Precision becomes important during constraint testing when

the relative strengths of opposing changes cannot be predicted. Two kinds of errors can

be made by the scenario generator. It can assume that opposing influences cancel out

when in fact they do not, i.e. the component is considered to be working correctly when

it is in fact faulty; or the scenario generator can assume that a constraint is violated when,

in fact, the component is working correctly. In the first case scenarios may exist which do

not contain an existing fault, in the second case scenarios will contain too many faults.

Our current approach is to generate separate scenarios for both assumption and to use

more accurate, e.g. quantitative constraints, to test the validity of assumptions whenever
possible.

EDIS operates as an assistant to the user. More difficult to implement than an autonomous

expert system, an assistant system is better suited for use by domain experts who are

expected to augment system expertise with their own experience in the analysis task. Also,

the broad scope of this project and the uncertainty associated with the analysis process,

which arise from the diversity of knowledge and from the limitations on data collection and

process characterization, favors a system structure which is open to user guidance. For

example, the system accepts user-generated fault hypotheses and elaborates and evaluates

16

them like hypotheses generated by the system itself. A graphical user interface which
supports mixed-initiative processing and offers direct manipulation of diagnostic plans and

hypotheses is under development.

4. Rationale

A model-based approach was chosen as the main diagnostic paradigm because it provides
a declarative formalism for specifying domain knowledge which can be easily updated and

improved. A model-based system can more readily be adapted to changing device

configurations. Changes to SSME configuration keep happening since improvements to its

design are still actively sought. In general, our approach is applicable to a variety of liquid

fuel engines and fluid systems in general because the knowledge about device behavior is

stored in reusable component models.

A model-based domain knowledge representation facilitates explicit formulation of

reasoning strategies. Diagnostic reasoning can be subdivided into discrete tasks which are

scheduled by an intelligent strategy module. The device model forms the basis for
coordinated performance of the task modules. Data, strategic plans, and intermediate

diagnostic results, such as a list of currently active hypotheses, can be accessed and made
available to user inspection. Users can more easily understand and be involved in decisions
and choices made by the system. Qualitative formulations also help to create reasoning
paths which are more easily understood and directed by a user as compared to heuristic
rules or quantitative approaches using equation solvers.

Models using constraints naturally represent component behavior at a detailed physical
level independent of component use or function within a device. Constraint-based models

support behavior simulation as well as verification. A description of device behavior using

a constraint model does not presuppose a particular diagnostic methodology. Diagnosis

based on a constraint model can operate without any fault assumption, e.g. GDE (de Kleer

& Williams 1987), with fault assumptions but without models of fault behavior, e.g. Davis
R. (1984), or can operate generatively, like in EDIS. Generative methods, i.e. methods

which envision behavior, are computationally more expensive, but envisioned behavior is

a usefi_ byproduct of diagnosis because EDIS uses envisioned Scenarios to explain and

justify hypotheses, ha order to reduce complexity, EDIS exploits restrictions on possible

fault behavior options imposed by physical laws and domain heuristics. For example,

energy and substances cannot be spontaneously created, and in a high pressure fluid
system, such as the SSME, fluid can leak out but cannot be added to the system from the
environment.

Compiled causal model representations also fail to adequately capture the intricate relations

between critical parameters. Compiled causal models suffer from the same shortcomings
as heuristic rule-based representation. They do not easily adapt to changes in

configuration, and they cannot easily cope with the lack of direction of causal influence
between processes and parameters. Constraints, however, can easily represent

17

Quantity-1 Relational-Operator Quantity-2

The two relational operators are

p ... "is proportional to" and

ip ..."is inversely proportional to".

THERMODYNAMIC_COMPONENT

PIPE ENERGY_

PUMP TURBINE

_BURNER

MAIN_BURNER

Figure 5:

MANIFOLD

 O,N
2_SPLIT

GAS_TURBINE HYDRAUUC_TURBINE

Component Hierarchy (partial).

A quantity is either a state parameter of the fluid or gas, such as pressure, a derived

parameter, such as pressure difference, or an explicit measure of energy. We allow only

two-place relations in order to simplify reasoning. More complex relations can be

represented by introducing derived parameters where necessary and explaining their
composition with normative constraints.

The semantics of fundamental and normative constraints and of auxiliary relations differ.

A fundamental constraint captures an energy balance which must hold when the

component is operating correctly. Faults, in general, are assumed to introduce losses and
to invalidate fundamental constraints.

A normative constraint relates a derived quantity which appears in a fundamental or

normative constraint to measurable quantities. Since this derived quantity will be normal

or "constant" during normal operation, but may deviate from normal in the presence of a

fault, it is called a "pseudo-constant." Note however, that a change in a pseudo-constant

19

by itself does not incriminate a specific component, since its value could have shifted due

to a change in operating point. Normative constraints must hold only as long as the derived

quantity they depend on remains constant.

Attxiliary relations describe how a change in a pseudo-constant is reflected in the quantities

of the normative constraint. An auxiliary relation thus couples a normative relation to a
fundamental relation via its pseudo-constant quantity. Normative constraints may be
coupled to a fundamental constraint through a chain of other normative constraints in
order to deal with more complex cases.

For example, the behavior of a pipe is characterized by fundamental constraints (5) and

(6), which are equivalent to equations (3) and (4) above.

p-diffp _' (5)

v_ p v2 (6)

p-diff = pressure difference

Equation (3) asserts that a small change in the difference between fluid pressures measured
at both ends of the pipe is proportional to a change in the velocity of the fluid. The
constraint was derived from a fluid energy balance, given by equations (la) and (lb),
neglecting possible differences in height and diameter of the pipe ends. Equation (4)
indicates that a change in flow rate at one end must be proportional to a change at the

other end. It was derived from a mass conservation law given by equation (2). The pipe
has one normative constraint, defined by equation (7).

Pl P P2 (7)

Constraint (7) holds (at least) as long as the pseudo-constant "p-diff' remains constant.

One can observe that the normative constraint captures a superficial rule-of-thumb analysis
of pipe behavior.

Auxiliary relations are applied when a pseudo-constant has (or is suspected to have)
changed and its changes have to be related to changes in the parameters of the normative
constraint. In the example the auxiliary relations for p-dlff are given by equations (8) and
(9) and for _¢ by equations (10) and (11).

p_ p p-diff (8)

P2 ip p-diff (9)

V_ p q (10)

V2pq (11)

2o

still exist. If contradictions are found, only faulty behavior is possible. This last rule

eliminates creation of invalid hypotheses; it is equivalent to hypothesis testing. All possible

and valid behaviors are generated except for physically impossible ones. Therefore, an

additional fault hypothesis is generated at each step.

At the end of the reasoning process the most promising complete scenarios are presented

to the user as candidate solutions. Each scenario indicates which component or

components might have failed and how the failure has affected component behavior.

Next, we will present an example for a single step of the envisionment process. We will
use a pipe as the component under consideration since we have already defined its
behavior. Assume that a partial scenario exists which determines input pressure and

velocity. The task is then to create all possible scenarios augmented by information derived
from the behavior of the pipe, i.e. its average velocity, output velocity, pressure difference,
and output pressure, we will demonstrate the development of a subset of behaviors. Table
1 lists all possible behaviors.

Table I

Possible Pipe Behaviors Given Pl ffi I, V 1 ffi n

(I = low, n = normal, h = high)

CASE

No.

1 aonmd

13

DERIVED VALUF__

½ _' _ P2

n n n !

2 faulty I I 1 h

3 faulty 1 ! ! n

4 faulty I 1 h !

5 * 1 i n 1

6 * 1 1 n n

7 * n n h 1

8 * n n 1 n

9 * n n 1 h

10 • 1 n n 1

11 * l n i h

12 * 1 h 1 n

! n h 1

22

We will use the constraints associated with the pipe to predict values for the unspecified

parameters. First, we wiU derive normal (non-faulty) behavior. Constraint (6) determines
the output velocity to be normal. Auxiliary relations (10) and (11) agree that the average
velocity should be normal also. Since constraint (5) predicts that the pressure difference
is normal we can use the normative constraint (7) to derive the output pressure to be low.
This is case 1 in Table 1.

If fundamental constraint (6) were violated, the output velocity would be low. It cannot

be high since fluid cannot be added to the system. This is a case where a potential fault

behavior is eliminated because it violates basic, domain-wide assumptions. The average

velocity could be normal or low depending on the size of the deviation. In each case we

need to investigate the eases for constraint (5) being complied with or violated. In the

case where the average velodty is low and constraint (5) is complied with, the pressure

difference will be low and the output pressure can thus be high or barely normal. These
two cases are numbered 2 and 3 in Table 1.

The predictions generated in this step are added to the parent scenario (the scenario which
supplied values for input pressure and velocity), and thus thirteen successor scenarios are
generated. If no further data are available, each scenario is evaluated and the best ones

are extended further. Evaluation would prefer case 1, because it requires no new fault
hypothesis. Cases 4, 5, 10, and 13 would also be ranked high, because they predict low
output pressure and flow which is consistent with a common pipe fault, a leak.

If additional data, i.e. measured values of parameters, are available, some scenarios can be
eliminated. If, for example, the output pressure is known to be low, then cases 2, 3, 6, 8,

9, 11, and 12 are impossible and the number of eases to be considered has been halved.

If it is known to be normal, then only cases 3, 6, 8, and 12 survive. Here, the normal case

has been eliminated. Therefore, in the context of this particular parent scenario the pipe
must be considered faulty. Note that in general there wiU be several parent scenarios, each

leading to different conclusions.

The diagnostic process terminates after all components have been analyzed. If, in the case

described above, the faulty pipe is the only fault required to satisfy aU other constraints
(using any one of its possible fault behaviors), then the completed scenario would raise the

hypothesis that the SSME is malfunctioning because the pipe is faulty. If a complete

scenario contains fault behaviors for two or more components, then the hypothesis implies

muitiple concurrent faults. Thus, no special procedures are necessary to deal with multiple
faults. Scenarios which hypothesize multiple, but common, faults compete directly with

single, but unusual, fault hypotheses through the heuristic evaluation function.

23

7. Implementation

At the beginning of the project several expert system shell products were evaluated.

Important selection criteria included power of representation and inference mechanisms,

ease of creating a custom user interface, portabili W between various hardware platforms,

and ease of integration with existing and future software components. Shells which

contained support for the object-oriented paradigm, i.e. support for classes, defaults,

inheritance, and instantiation, were preferred. The selected shell also had to run on a
personal computer. Our evaluation ranked NEXPERT-Object first and KES second.

However, due to budget constraints we selected KES for the initial phase of the project.

KES provides backward chaining rules, data driven demons, and a class/member

(object-oriented) representation formalism. In addition we purchased a subroutine package

which contains support for mathematical functions and graphical data presentation. These

subroutines were integrated with ICES and provide the user interface framework. KES itself

was embedded into a C main program which manages execution of EDIS system tasks.

After encouraging results prompted us to proceed to a second development phase, we
decided to change to more powerful tools. We chose NEXPERT as the expert system shell

and Toolbook as the user interface environment, both of which run under Microsoft

Windows. NEXPERT and Toolbook are linked through function calls and handler scripts

using the Dynamic Link Library mechanism of Microsoft Windows.

Currently, we are concentrating on mainstage steady-state anomalies due to, for example,
turbo-machinery performance degradation or pipe leaks.

8. Discussion and Future Work

The EDIS system is still in a prototype state and its performance cannot be formally
evaluated yet. Instead of discussing results we will contrast our approach to related
methods reported in the literature. We believe that mixing diagnostic paradigms and using

incremental qualitative constraint models constitute a novel and effective way of diagnosing

complex thermodynamic systems such as the SSME. EDIS attempts to solve a difficult

problem in a manner which is compatible with human expert behavior. The overt behavior

of the process by which diagnosis proceeds from symptom detection to fault identification

has rarely before been the focus of attention. Previously, only the characteristics of the

process, such as fault coverage, completeness, and efficiency, had been considered. The
only exceptions were concerns for the order of questions and additional measurements.

An additional benefit of the EDIS methodology is that explaining the rationale behind

diagnostic behavior has become easier because system (EDIS) behavior is modeled after the

behavior of human experts and meta-reasoning about goals and tool choices is made

explicit.

A review of recent publications reveals that applications of expert systems to SSME

behavior analysis have been largely focused on real-time detection of malfunctions and

24

health monitoring (Perry, 1988, Gupta and Ali, 1988). Neural networks (Lute & Govind,

1989, Whitehead, Kiech & Ali, 1990, Luce& Govind 1990) and signal processing

techniques (Norman & Taniguchi, 1988, Walker & Baumgartner, 1990) have lately been

proposed and developed because they accelerate processing and promise to recognize
anomalies and imminent failures fast enough to avert dangerous consequences. There is

no need or time to interact with a human user. EDIS, on the other hand, was designed to

operate off-line in cooperation with human experts. Emphasis has been placed on smoothly

integrating EDIS into the review processes. The ability to explain reasoning and the state
of diagnosis and to accept directions from users are important.

De Kleer et al. (1987) have presented GDE, a method for diagnosing single and multiple

faults in systems which can be modeled by interconnected modules, each characterized by

constraints between input and output parameters. Essentially the same method has also

been proposed by Reiter (1987) except that his derivation is based on formal logic. GDE

predicts values for device parameters given some known values, e.g. measured or input

values, by propagating the known values through the component interconnections and
constraint expressions. Note that constraints must be non-directional, i.e. the system must

be able to reason from inputs to outputs as well as from outputs to inputs. Davis IL
(1984), for example, supplies "simulation" and "inference" rules for forward and backward
propagation, respectively. Constraint propagation mechanisms in general are discussed by
Davis E. (1987).

The diagnostic paradigm exemplified by GDE is very powerful but some caution is

appropriate before recommending it for every diagnostic application. De Kleer et al.

(1987) point out that complete prediction of component and system behavior is currently

beyond the state-of-the-art. The SSME is a good example of a complex dynamic system

whose behavior is very difficult to model and to predict. Also, GDE relies on the ability to

take additional measurements until the fault or faults have been uniquely identified. GDE

works well when aU data at a given location can be measured. EDIS is adapted to deal
with many pieces of incomplete information located quasi-randoraly within the structure

of the SSME. Also, the results gained from propagation can be further manipulated using
different diagnostic paradigms, such as heuristics, quantitative simulation, or simply user

input. The qualitative reasoning methodology used by EDIS lends itself to integration in

a larger diagnostic framework, which is important when satisfactory reasoning behavior

cannot be generated using one paradigm alone.

Reasoning about SSME behavior is similar to analyzing electronic circuits at the component
level since fluid systems and electric circuits can be modeled by structurally equivalent

equations. StaUman & Sussman (1977) presented a constraint-based approach to circuit
analysis. Fluid systems have to cope with two additional problems. The structure of a
fluid system, especially a high pressure system like the SSME, can easily experience
structural changes, i.e. leaks. Leaks correspond to short circuits which are usually

acknowledged as being hard to diagnose. The reason is that the device structure has

25

changed. Also, power sourcesare more complex in fluid systems. Pumps usually supply
constant power to the system, characterized by a constant product of pressure difference
times fluid velocity. These differences make it hard to apply the mechanisms developed

for electric circuits directly to SSME diagnosis.

Extensions to the work presented in this paper can follow several directions. Analysis of

dynamic anomalies, such as drifts, steps, and spikes, in parameter values can be included
into ED[S. The SSME is known to experience such anomalies. The qualitative constraint
representation will have to be augmented in order to accommodate dynamic behavior, and

temporal reasoning capabilities will have to be added. A formalism Like Qsim (Kuipers

1985) augmented with temporal information, e.g. time instants and interval duration,
might prove to be sufficient.

Further methods and tools representing additional paradigms could be added to the
reasoning framework of EDIS. Case-based reasoning would address the reoccurrence of

similar faults. Case-based reasoning could supplement qualitative reasoning to envision
diagnostic scenarios.

Better, more efficient ways of searching the space of possible behaviors could be explored.
For example, the search does not necessarily have to follow structural linkages but could

execute opportunistically, concentrating on components which are likely to contribute

essential information to the solution. The search could be implemented in a paraUel

fashion or even cast as a simulated annealing problem if a suitable energy function is
formulated.

Facilities which implement limited self-improvement or learning could be added. For
example, newly discovered component failure modes could be included into the set of

known modes. After that, EDIS would consider scenarios more likely which invoke the

stored failure mode. Newly revealed symptom/fault associations could be added to the

heuristic rules and used as shortcuts in subsequent diagnoses.

Acknowledgements

This research has been supported, in part, by NASA Contract NAS8_-36955, D.O. 97.

26

RP_fez_[ices

Adams, E.W. 1975, The Logic of Conditionals, Dordrecht, Holland: D. Reidel.

Biswas G., Hagins W.J. and Debelak K.A. 1989, Qualitative Modeling in Engineering

Applications, Proc. 1989 IEEE International Conference on Systems, Man, and Cybernetics,

Cambridge, Massachusetts, November 1989, pp. 997-1002.

Cost T.L. and Hofmann M.O. 1990, Engine Data Interpretation System, UAH Research

Report, No. ME-90-101, July 1990.

Davis, E. 1987, Constraint Propagation with Interval Labels, Artificial Intelligence, 32(3),
281-331.

Davis R. 1984, Diagnostic Reasoning Based on Structure and Behavior, Artificial

Intelligence, 24(1-3), 347-410.

Davis, R. and Hamseher, W. 1988, Model-based Reasoning: Troubleshooting, In: Shrobe,

E.H., (ed.), Exploring Artifidal Intelligence, California: Morgan Kaufmann, 297-346.

De Kleer, d. and Brown J.S. 1985, A Qualitative Physics Based on Confluences, In: Bobrow

D.G. , (ed.), Qualitative Reasoning about Physical Systems. Cambridge, MA: MIT Press,

7-83.

De Kleer, J., Williams, B.C. 1987, Diagnosing Multiple Faults, Artificial Intelligence, 32(1),
97-130.

Forbus K.D. 1984, Qualitative Process Theory, Artificial Intelligence, 24(1-3), 85-168.

Forbus, K.D. 1988, Qualitative Physics: Past, Present, and Future, In: Shrobe, E.H., (ed.),

Exploring Artificial Intelligence, California: Morgan Ka_ 239-296.

Govindaraj T. 1987, Qualitative Approximation Methodology for Modeling and Simulation

of Large Dynamic Systems: Applications to a Marine Power Plant, IEEE Trans. SMC,

SMC-17(6), 937-955.

Gupta, U.IC and Ali, M. 1988, LEADER - An Integrated Engine Behavior and Design

Analysis Based Real Time Fault Diagnostic Expert System for Shuttle Main Engine, Proc.

2nd IEA/AIE, TuUahoma, Tennessee, pp. 135-145.

Iwasaki, Y. and Simon, H. A. 1986, Causality in Device Behavior, Artificial Intelligence,

29(1), 3-32.

27

KalagnanamJ., Simon H. and Iwasald Y. 1991, The Mathematical Basesfor Qualitative
Reasoning, IEEEExpert, 6(2), 11-19.

Kuipers, B. 1985, CommonsenseReasoning about Causality: Deriving Behavior from
Structure, In: Qualitative Reasoning about Physical Systems, Bobrow, D.G.,
(ed.),Cambridge, Mass.:MIT Press,pp. 169-203.

Luce, H.H. and Govind, IlL. 1989, Prediction and Diagnosisof Failure in the SSME High

Pressure Fuel Turbopump Using Backpropagation Neural Networks, Proc. 1st Health

Monitoring Conf. for Space Propulsion Systems, Cincinnati, OH, pp. 218-237.

Luce, H.H. and Govind, IlL. 1990, Neural Network Pattern Recognizer for Detection of

Failure Modes in the SSME, AIAA Paper No. 90-1893, AIAA 26th Joint Propulsion
Conference.

Norman, A.M. and Tarfiguchi, M. 1988, Development of an Advanced Failure Detection

Algorithm for the SSME, AIAA Paper No. 88-3408, AIAA 24th Joint Propulsion
Conference.

Perry, J.G. 1988, An Expert Systems Approach to Turbopump Health Monitoring, AIAA

paper 88-3117, AIAA 24th Joint Propulsion Conference, Boston.

Reiter, R. 1987, A Theory of Diagnosis from First Principle, Artificial Intelligence, 32(1),
57-95.

Stallman, R.M. and Sussman, G.J. 1977, Forward Reasoning and Dependency-Directed

Backtracking in a System for Computer-Aided Circuit Analysis, Artificial Intelligence,

9,135-196.

Stefik, M., Aikins, J., Balzer, II, Benoit, J., Birnbaum, L., Hayes-Rot.h, F., and Sacerdoti,

E. 1988, The Architecture of Expert Systems, In: Hayes-Roth, F., Waterman, D.A., and

Lenat, D.B., (eds.), Building Expert Systems, Reading, Massachusetts: Addison-Wesley,

89-126.

Walker, B.K. and Baumgartner, E.T. 1990, Comparison of Nonlinear Smoothers and

Nonlinear Estimators for Rocket Engine Health Monitoring, AIAA Paper No. 90-1891,

AlAA 26th Joint Propulsion Conference.

Whitehead, B., Kiech, E. and All, M. 1990, Rocket Engine Diagnostics Using Neural

Networks, AIAA Paper No. 90-1892, AIAA 26th Joint Propulsion Conference.

28

3. USER GUIDE

This section describes the interaction between user and system during a diagnostic

consultation. Input options and output formats are explained. We also illustrate the

consequences of user choices on system behavior and performance. It should be noted that

EDIS operates primarily as an assistant to an expert user and as such can be directed to

operate according to user-defined reasoning paths. We start with a description of the files

which have to be provided for EDIS to operate correctly. Some of the information given

is overly restrictive; system capabilities depend to a large degree on configuration files

which may be changed by a knowledgeable user. Section 4, "Developer Guide", will

describe system configuration.

The main idea behind the qualitative reasoning system is to generate an account of the

behavior of the SSME in terms of its parameters and (possibly) its faults. Behavior is

characterized by qualitative values of parameters (normal, high, and low) and by fault
hypotheses, e.g. pipe leaks, pump efficiency drops, etc. Fault hypotheses are derived from
specific behaviors, i.e. parameter assignments. Since too few parameters are measured by
sensors, EDIS generates additional values to complete the behavior model. Generation of
values is constrained by thermodynamic laws applicable to particular components but to

a large part remains guesswork, in particular at the beginning of diagnosis when local

measurements have not yet been propagated through the SSME structure. EDIS tries to

pick the most promising choice from the available behavior alternatives and propagates its

effects to the rest of the components. Obviously, false starts are possible which lead either

to conflicts with other measurements or to highly improbable fault assumptions. In both
cases EDIS will back up and select another alternative. Wrong guesses will never cause

EDIS to completely discard the correct answer but it may take longer to find it. There may
also exist several equally satisfying diagnoses, at least from EDIS' point of view, which may

be generated in an order which depends on the choices made. Choices are controlled by
heuristic evaluation functions which attempt to emulate the reasoning of a human expert.
See the section on performance tuning for more information.

3.1 Preparations Before Running EDIS

EDIS reads files to

- configure the engine (SSME)
- configure the sensors

- provide test data

- provide comparison data
- provide limit data

- set fault probabilities

[required]
[required]

[required]

[required]

[at least one type]
[optional]

29

An end user has to prepare the test and comparison data files only. All other files do not

normally change from test to test. All these files currently reside in the same directory as

the EDIS source files. The list of sensors need not be changed in case of sensor failures;

missing values present no problem. The configuration has to be updated to recognize new

sensors which provide additional measurements, however. Limit data may be

changed/updated when required. If you need to check that you have all the necessary files,
refer to the "Installation" section later in this document.

Currently, only those parameters which are collected in the 2-sigma data base can be read

into ED[S. They are listed in Appendix C. To generate a data file for a particular test,

extract data the same way as it is done to include new data into the 2-sigma data base,

using program PIDEXT. You need to save the resulting fixed-format ASCII file under any

name ending in extension ".DAT'. An example file (A1614.DAT) is listed in Appendix D.
Create two such files: one for the current test data and one for the data from the test to

compare against (most likely the previous test of this engine). Note that the comparison

data are not yet used during diagnosis because we did not incorporate limits for the

difference between test and comparison values.

3.2 Running EDIS

3.2.1 Cautions

1. To exit from EDIS, ALWAYS choose the EXIT option from the EXIT menu or click on a

button labeled STOP, EXIT, etc.

2. When something goes wrong with NEXPERT, EDIS will lock up your computer and you

have to reboot. This may happen after a reconfiguration if you are not careful. Any error

or warning message from NEXPERT will cause this, e.g. missing files, compilation

warrdngs, if the NEXPERT authorization module is not plugged in, etc.

3. When you are using the development versions of TOOLBOOK and/or NEXPERT you have

the power to change ANYTHING. Refrain from doing this tmless you are an experienced

developer.

4. If you iconify the EDIS window you will see a NEXPERT icon. This is the NEXPERT

session which is controlled by EDIS. You can open it and inspect system state if needed

(recommended only for experienced users).

5. EDIS uses only one value for each parameter. This value is currently taken at 104%

power level and maximum HPFT discharge temperature.

3O

3.2.2 Conventions

A user interacts with EDIS by cricking on buttons, selecting items from menus, filling

blanks, and clicking on graphical objects.

Buttons are green if they represent normal choices, e.g. normal modes of operation,

acceptance of system suggestions, or simply continuation of processing. Buttons are red

if they stop or change the operation of EDIS. Yellowish brown buttons can be clicked for

optional activities, e.g. requesting more information.

Fields which have yellow headers with blue text require input from the user, e.g. entry of

input file names. Green fields with blue text present information on the progress of EDIS.
White fields with red text are displayed during periods of silent system operation.

3.2.3 Invocation

Invoke MicroSoft Windows 3.0 and click on the EDIS icon. This executes the command

< path > \TOOLBOOKkTOOLBOOK.EXE ..kNEXPERTkNXPTBKkEDIS.TBK

where < path> represents the directory path on your machine.

3.2.3.1 Introductory Screen

First, TOOLBOOK is loaded and an introductory screen appears. Click on the green START

button. Now NEXPERT and the SSME configuration will be loaded. NEXPERT displays

the names of the knowledge-base files being loaded. When done, you enter a screen where

EDIS asks for the test and comparison data file names.

3.2.3.2 File Entry Screen

Enter the names of the files you created during the preparation step followed by

< RETURN > omitting the extension".DAT'. To make corrections you may return the cursor

to a field by pressing < RETURN > or by clicking the mouse button in the field. EDIS will

give an error message if the files do not exist. In that case you can either stop EDIS or

iconify it, open a DOS window, create the files, restore EDIS, and continue normally.

There are three options listed which you may choose by clicking on the box to their left.

Only the middle option is implemented at this time. It serves to reformat the 2-sigma limit
file so that it can be loaded quickly by NEXPERT. Use this option after a new 2-sigma limit
file has been created (check the Developer Guide for details).

31

Two additional buttons are provided which let you choose between assistant and

autonomous mode of operation. In assistant mode (the default) the user may interact with

the system during diagnosis and must be present. In autonomous mode EDIS will work

quietly until a diagnosis has been found. In the following it is assumed that the system is

operating in assistant mode.

Now click the Continue button to load the data files and load the SSME configuration.

This may take a while. EDIS first loads the test and comparison data into TOOLBOOK
(because only TOOLBOOK can load the fixed ASCII format) and then transfers the data to

NEXPERT. NEXPERT then loads the SSME configuration and 2-sigma limit data and

immediately executes the anomaly detection algorithm. Three types of limits may be

supplied and at least one has to be supplied. Currently, this is the 2-sigma limit file. In

the future, heuristic limits for the difference between current and comparison test data may

be supplied and also absolute upper and/or lower limits for data may be added. Note that

the 2-sigma limits currently in use are too permissive to find some anomalies. The example
case will illustrate this.

3.2.3.3 Wait Screen

Before you get to the Anomaly List Screen a '_Nait" Screen is displayed so can can see that
something is happening. 3ust watch as the messages change and wait for the next screen

to appear.

After this screen some strange glitches appear, i.e. irrelevant screens being displayed for

a moment, just ignore those please. I have not been able to get rid of that.

3.2.3.4 Anomaly List Screen

After anomaly detection is complete, a screen is displayed which lists those parameters

which were found to be anomalous, i.e. they were either too high (exceeded the +2-sigma
limit) or too low (were below -2-sigma limit) as measured from the average value. Since

anomaly detection is imperfect, the user may select measurements to add to or delete from
the list of anomalies. To add, click on the ADD PARAMETER button and wait for a list of

measurements to appear. Then scroll the list to the desired parameter and click on it (may

require two clicks). Now select HIGH or LOW as new qualitative value. Click on the

DONE button when done. To delete, click on the DELETE PARAM button and click on an

entry in the list of anomalies; it will disappear. When finished deleting click on FINISHED.

Note that you can only undo a delete action by explicitly re-adding the parameter to the

anomaly list as described above.

You can immediately start diagnosis by clicking the green Diagnosis button or you may

elect to go to a screen which displays a schematic of the SSME (button "Schematic"). This

screen allows to inspect measured values of engine parameters and to see measured data

plotted against comparison and limit data.

32

3.2.3.5 SSME Schematic Screen

A simplified schematic of the SSME is displayed, see Appendix E. The schematic does not

quite fit on one screen. Scroll bars are provided to view the clipped portions of the

drawing. Components which have anomalous parameters associated with them are drawn
in red, all others in black, ff an anomalous parameter is associated with several

components, e.g. a pressure at the output of a pump and the input of a pipe, only one
component is marked in red. We chose the more "important" component, i.e. the pump
instead of the pipe, in most cases. This can be changed in the configuration file, see below.

If you click on a component (NOTE: click on a line, not whitespace) a scroUable list of

parameter values will be displayed. The numbers indicate the current test values.
Anomalous values are displayed in bold print, ff you click on one of the entries a
comparison chart is drawn which shows the relative values of current, comparison, and

2-sigma limit data. They are labeled with their numeric values. Current test data are

drawn in green, comparison data in blue, and 2-sigma limit data in purple. Thus it is

possible to inspect the numeric values of all currently available data. The comparison chart
uses a relative scale where minimum and maximum values are always shown at the same

locations and other values are placed in between according to the scale created by the

spread between minimum and maximum.

Clicking on additional components will display additional parameter lists. These lists

contain all parameters associated with a component, therefore there is overlap between
connected components. The location of the mouse pointer determines where the list is
displayed. This feature allows you to control which parts of the schematic will be
obscured.

Clicking on additional list items, i.e. parameter names, replaces the comparison chart with

the newly selected parameter data.

To remove any list or chart completely you have to click the button "Hide Data" which

erases ALL lists and the comparison chart if displayed.

The button "Show Labels" displays labels which identify the major SSME components in

the schematic. The labels can be removed by clicking "Hide Labels".

The button "Diagnosis" leaves the anomaly inspection step and starts diagnosis; it is
equivalent to the "Diagnosis" button in the previous screen (the anomaly list screen).

The button "Modify Anomaly List" takes you back to the previous screen (the anomaly list
screen) where you can add and delete anomalies based on the information gathered from
inspecting the data values.

33

3.2.3.6 Diagnosis Control Screen

Here you are able to inspect and modify the diagnostic strategy. Currently, you have to

accept the initial suggestion because only the qualitative reasoning mechanism is

implemented.

The EXPLAIN button does nothing yet.

The EVALUATION STRATEGY button takes you to a screen which is a model of how we

will let the user modify numeric strategy parameters which tune system performance.

Currently you may change the displayed values but they are not used. They should be

replaced by more useful parameters, see the section on tuning system performance:

The Continue button starts the diagnostic reasoning process. After a short time the "First

Component" screen will appear.

3.2.3.7 First Component Screen

WARNING: The features descr/bed below may or may not be implemented in the current
version of EDISI

The performance, i.e. the time it takes to produce a diagnosis and the order in which

competing diagnoses are produced, of EDIS is quite sensitive to the order in which

component behavior is analyzed (and to the strategy parameters). Currently, the strategic
parameters are set so that EDIS attempts to find a faulty component as soon as possible.

If, for example, normal and faulty behavior for the first component are possible choices,
then EDIS will assume a fault unless the faults are too unlikely. EDIS will then verify the

consistency of this assumption with all other measured data and reject it ff necessary, but

a bad first choice leads to a lot of wasted time. Also, a component which has fewer

unknown parameters will lead to fewer behavior choices which accelerates further
processing.

Therefore, EDIS a) attempts to make a good guess as to where to start and b) allows the

user to change the selection.

For this reason provisions were made in the system architecture to be able to add
additional knowledge sources which may optimize the search process, such as heuristic

rules. This is not currently implemented, however.

The component EDIS suggests is selected based only on the number of known parameter
values associated with it. A pipe, for example, is currently modeled using six parameters.

If EDIS knows the values of two of these six parameters it will prefer this pipe to another
component where maybe two of eight parameters are known. As you can see, EDIS does

not take component fault likelihood into account and a bad first guess is possible. If you

34

suspect this, change the initial selection by clicking on the CHANGE button; if you want

to know more about the component and its associated parameters click on INSPECT; and

if you agree click on ACCEPT.

If you choose INSPECT you will see the number of known and unknown parameters and

the qualitative values of the parameters associated with the component.

If you choose CHANGE you may choose a different component from a scrollable list of

components. For this new component you may again select INSPECT, CHANGE, or
ACCEPT.

If you choose ACCEPT you will be asked whether you want to supply additional qualitative

data and/or if you want to suggest a fault hypothesis for this component. A good guess

on your part can speed up diagnosis. A bad guess will slow down EDIS but will not

eliminate the correct diagnosis even if it contradicts your guesses. Your answer will ordy
influence the heuristic evaluation functions so that EDIS' guesses will conform to yours

initially. If you advance a fault hypothesis EDIS will first test whether your hypothesis is

compatible with all measured data without having to assume additional faults. Note that
the above described behavior of EDIS depends on the values of the strategic parameters.

After you choose ACCEPT EDIS will start processing. This can take a long time depending
on the number of unknown parameters, e.g. ca. five minutes for four unknown parameters

of a pipe.

When EDIS has finished working an a component it will show a status screen.

3.2.3.8 Diagnosis Status Screen

WARNING: The features described below may or may not be implemented in the current
version of EDIS!

The status screen indicates whether a complete diagnosis has been found. If so, its quality
and details are available for user inspection. If not, the current state and progress made are
available.

3.2.3.9EXIT

When you are done select EXIT from the EXIT menu to leave EDIS.

35

4. DEVELOPER GUIDE

4.1 System Architecture

The EDIS system consists of two main parts, a knowledge-based reasoning system written
in NEXPERT and a user interface written in TOOLBOOK. Both tools use Microsoft

Windows and communicate through dynamic link libraries (DLLs). The TOOLBOOK code
contMm instructions to load and initialize the NEXPERT session. TOOLBOOK code

requests expert system processing by suggesting data and volunteering hypotheses (the

NEXPERT kind). NEXPERT requests interface support by executing calls to routines which

are handled by TOOLBOOK, i.e. for which TOOLBOOK has installed a handler script via a

DLL call.

TOOLBOOK code reads the data files while NEXPERT code reads all other files, e.g.

2-sigma limit data, component and parameter configuration, etc. All relevant data are

maintained in NEXPERT, changes made by a user interacting with the interface are

immediately propagated to NEXPERT.

4.2 Installation

Install TOOLBOOK and NEXPERT first. During NEXPERT installation request that the

TOOLBOOK bridge and the Windows DLL be installed. The *.DLL files will be put in the

NEXPERTXNXPTBK subdirectory. All EDIS code must reside in this directory!

EDIS code consists of the files

EDIS.TBK

KBlllB.TKB

KBl11C.TKB

PLANNER.TKB

QUALIT.TKB

CONSTRN.TKB

[TOOLBOOK code]

[NEXPERT code: configuration
and

anomaly detection;

qualitative

diagnosis]

In addition, a set of configuration files must reside in this directory, see below (we may

change this so that the configuration files reside in a subdirectory called CONFIG).

NOTE: You must have the NEXPERT authorization module plugged into your PC before

executing EDIS.

36

NOTE: There may be a problem when you run a large application, i.e. one where too many

dynamic objects are created. As far as NEXPERT by itself is concerned (without

TOOLBOOK) I made the following observations: If you are not developing you may want

to replace the NEXPERT.EXE file by the file BIN\STDALONE.EXE which does not contain

support for editing but can handle large problems. The development version tends to crash

when too many dynamic objects are being created. There is even a version supposedly for

large applications called STDALONL.EXE but I could not get it to work properly.

Neuron Data has sent me a pre-release large development version, but said that there may

also be a problem with the DLL version (to be used by TOOLBOOK). There will be a large

DLL version available which you maybe will have to obtain when you are running EDIS

on the full SSME configuration.

4.3 EDIS Configuration

4.3.1 Configuration files

You must provide files which describe the physical SSME configuration, i.e. components

and interconnections, which parameters are measured by sensors, and limit data. You

should provide a file which lists probabilities of common faults. See Appendix F for

examples.

The physical configuration is defined by a set of files, one for each component type, i.e.

NEXPERT class. For example, there are files PUMP, PIPE, VALVE, etc. All the component
classes are subclasses of class "STATIC COMPONENT'in NEXPERT. Some file names do

not directly correspond to class names, e.g. file "gturbine" contains the definition of

GAS_TURBINE objects. Cheek the rule with hypothesis "CONFIGURE_COMPONENTS" to

see how the files are loaded and the components are defined. A configuration file defines

(among other things) the component name, its connections, and its associated parameters

(ordy those which are measured have to be defined). The connections are specified by

entering the name of the connected component in the appropriate slot. The associated

parameters are specified by name which must correspond to a name in the parameter

configuration file. For each measured parameter you must identify which "generic"

parameter it corresponds to. For example, the LPFP_DS_PR is the output pressure, or

"pout" for short, of the low pressure fuel pump. The name used must correspond to the

name of a slot in the behavior class for this component. (For each component class there

exists a corresponding behavior class, see the section on changing the configuration).

37

The component types currently supported are

Component Class FILE Notes

PUMP PUMP
PIPE PIPE
VALVE VALVE
GAS TURBINE GTURBINE
TANK TANK
PRE BURNER PBURNER
CO()LING COOLING
TWO SPLIT TWOSPLIT
TWO JOIN TWOJOIN
THREE SPLIT TRISPLIT

e.g. LPFP,HPFP
1-input, 1-output
e.g. MFV, FPV
e.g. HPFT
No behavior definition
e.g. FPB
e.g. MCC_COOLING
pipe split: 1-input, 2-output
pipe join: 2-input, 1-output
pipe split: 1-input, 3-output

One additional file deals with physical configuration. The file TERMINAL lists the names

of those components which are not of interest during diagnosis. For example, the fuel tank
has to be defined because it is connected to the LPFP but EDIS does not reason about faults

of the tank. The tank is therefore listed in the TERMINAL file. The main reason for this

file is to isolate the configuration from supporting and bounding components. However,

you may list any component in this file and it will be ignored by the reasoning process.

This is currently the only way to limit the reasoning process to a particular portion of the

SSME as configured.

Measured parameters are defined in file PARAM1.NXP. For each parameter an object of

class MEASURED_PARAMETER is created in NEXPERT. The most important entry

(NEXPERT slot) is the SENSOR PID NUMBER which allows EDIS to transfer data from

TOOLBOOK to NEXPERT without enforcing use of identical parameter names. TOOLBOOK

contains a page for every measured parameter identified by the PID number. Test and

comparison data are read into fields on this page at the beginning of a session, as described

in the user guide. TOOLBOOK relies on the order of parameter values in the data files

when assigning them to PIDs.

The 2-sigma limit data are stored in file SIGM/LNXP. It has to be created from a data base
file in SYMPHONY format. The SYMPHONY file should be called SIGMAS.WR1 so that

EDIS can create SIGMA.NXP from it automatically. The symphony file must list the data

in columnar format, i.e. transposed from the original format. The data must be explicit,

not defined as formulas. The header row and data records must be defined as a range

named TRY. The range should only include the 104% MAX FUEL data recods.

The file named FAULTS lists common faults and their probabilities. You specify a

component type, e.g. "pipe", a fault mode, e.g. 'leak", and a probability, e.g. "0.1". The

probability is used to rank competing fault hypotheses. An unknown fault, i.e. one which

38

has no name, has probability 0.01. The rating and ranking method is described in more

detail in the section on performance tuning.

4.4 Changing the Configuration

4.4.1 Simple Configuration Changes

Only the component configuration files have to be modified in order to change the physical

configuration of the SSME as long as no new component types are introduced. In fact,

EDIS will work for any liquid fuel rocket engine or any high-pressure fluid system

consisting of pipes, pumps, valves, etc. Neither the component types nor the behavior

models are specific to the SSME. Just make sure the component configuration files are

complete and consistent.

A configuration change invalidates the schematic drawing, however. It will have to be

updated by hand using TOOLBOOK's author mode. Whether you use line drawings, as was

done for the SSME, or other means to create the drawing, it is important that you define

objects, e.g. groups of lines, which correspond to each component and give each group the

name of the component as defined in NF2CPERT. If this is done EDIS will be able to access

and display information on the parameters associated with the component as described
above.

4.4.2 Sensor Changes

Changes have to be made in both TOOLBOOK and NKXPERT if additional sensors are

implemented. For NEXPERT, the configuration file PARAM1.NXP and the files which

define the components associated with the newly measured parameter have to be updated.

For TOOLBOOK, a page has to be added for each new parameter and the algorithm which

reads the data from the ASCII file has to be modified. We regret this inconvenience but

the data files do not contain any information on which parameters are contained. Also be

sure to update the algorithms for both current and comparison test data. (This should be

cleaned up.) The algorithm is in the book script in the handler "loadTestData".

4.4.3 Focusing on Part of the SSME

In order to focus on only part of the SSME, i.e. a subset of the components of the SSME,

the fine TERMINAL can be modified to include all those components which should be

neglected.

4.4.4 Adding Fault Types

Fault types are easily added in the FAULTS file. Follow the style of the entries already

there. The probability should probably be around 0.1 so that it is higher than that of an

unknown fault (0.01) and lower than 1.0. Also, adjust all fault probabilities in this file so

39

that they reflect your judgement and experience about the relative likelihoods of faults of

the SSME. The absolute values are not too important but you should implement a rank
ordering among faults so that the more likely ones have higher probabilities then the less

likely ones.

4.4.5 Modifying the Graphical Data Presentation

You may want to to modify the graphical presentation of data on the schematic drawing

screen when additional limit data become available. The script for handler "showGraph"

on page "schdiag" should be clear enough to allow you to adapt the algorithm.

4.4.6 Adding A Component Type

Knowledge about new component types has to be added to NEXPERT when configuration
changes call for components which have not yet been described to EDIS. This is the most
difficult change in configuration and requires special care. In general, try to reuse as much
of the code present and use it as a template when additions cannot be avoided. Also, be
careful to add new classes and rules to the appropriate knowledge bases so that they are

loaded in correct sequence. A mistake here could cause NEXPERT to display warning

messages which will lock up your Windows system. Throughout we will pretend to add
the type VALVE to the system to illustrate the procedure.

Choose a name for the component type, e.g. VALVE. Identify its connections to other

components, e.g. medium input and output, and position control input. Identify its internal

and external parameters. Here we may note that the new component is similar to an
already existing component. For example, the valve is structurally similar to a pipe since

both have a single medium input and output. Its behavior is, in part, a subset of the

behavior of a pump, because in both cases we may choose to ignore the possibility of leaks
and a pressure change takes place. Structure and behavior are implemented separately.

4.4.6.1 Structure Definition

In KB111B.TKB create a class with the name chosen for the new component type, and

make it a subclass of an appropriate parent class. Display the class hierarchy starting at
STATIC_COMPONENT to identify a good place. You only need to watch for connectivity

similarities. For example, we make VALVE a subclass of THERMO_COMPONENT and
inherit the ASSOCIATE_PARAMETERS, GENERIC_PARAMETERS, MEDIUM,

MEDIUM_INPUT, MEDIUM_OUPUT, and NAME slots. We now add a slot for the

connection to the controller, e.g. CONTROLLED_BY. The last four slots define which

(generic) parameters in the neighboring components are equivalent to the interface

parameters of a particular valve. Normally, the output pressure "pout" would be equivalent
to the input pressure of the next component which might be called "pin" and you may think

that this could be assumed automatically. However, some components have two inputs,

such as pipe joins and prebumers, and use "pin" and "pinB" or "pin_OXY as parameter

4O

names. We recommend that you define a meta-slot for each of these slots which initializes

it to the most common name, e.g. "pout" here. If you do this the configuration files need

only specify deviations from this normal assumption. It is convenient to use the names of

the generic parameters as defined in the behavior class in these slots, e.g. pin, pout, Vin,

Vout, commanded__position. These names are the names of slots in the behavior class.

(@CLASS= VALVE

(@PROPERTIES =

ASSOCIATE PARAMETERS

comaOLLgD BY
GENERIC PARAMETERS

m

MEDIUM

MEDIUM INPUT

MEDIUM OUTPUT

NAME

parametercoupled_to_pin

parameter_coupled to pout

parameter_coupled_to_Vin

parameter_coupled_to..Vout

parameter_coupled_to_commanded_position

4.4.6.2 Behavior Definition

Behavior definition is more difficult. In QUALIT.TKB create a behavior class named <new

component >_BEHAviOR, e.g. VALVEBEHAVIOR, and make it a subclass of

COMPONENT BEHAVIOR. Now you have to modify some slots which apply to all

behaviors, add component-specific slots, define meta-slot procedures for some of these

slots, and create rules which manipulate slot values.

(@CLASS= VALVEBEHAVIOR
(@PROPERTIES=

add_fault_type

commandedposition

comp_name
control slot

exchange..hypo

fault_hypo

fault_type

faulty

local_quality

neighbors

next slot
m

41

normal_quality

num known_params

num_unknown_params

open_parameters
p dill
pin
position

pout

temporary
Vbar

Vin

Vout

Behavior should be defined in terms of constraints on parameter values derived from

energy and mass conservation equations. The derivation of constraints is described in

chapter 2. For implementation, fundamental constraints lead to rules which detect

component faults. Normative constraints and auxiliary equations together are implemented

as rules which determine whether a given assignment of parameter values is physically and

mathematically possible. Rules based on mathematical constraints relate derived to

measured parameters, e.g. pressure difference to input and output pressures.

4.4.6.2.1 Additional Slots

In this example we added slots for input and output pressure and temperature (pin, pout,

Vin, Vout), actual and commanded valve position (position, commanded._position), and a
slot which lists the neighbors of the component. The "neighbors" slot should actually
reside in the structure definition.

The parameter slots, e.g. pin, pout, require an "Order of Sources" and an "IF Changed"

meta-slot method. The "Order of Sources" slot is the same for all parameters, copy it from

another behavior class. The "If Changed" slot is used to either set other parameters and/or,

more importantly, to test the possibility of the behavior specified against the behavior

constraints for this component type. In some cases, the parameter may have any value and

does not require constraint testing. For example, we neglect the possibility of leaks in a
pump and assume that input, output, and average fluid velodty (or flow) in the pump are

identical. If one of these three parameters changes so must the other two. The "If

Changed" slot enforces rids. Look at the Vin and Vout parameters of PUMP_BEHAVIOR
for examples. We suggest to make the same assumption for the VALVE. Any leak will thus

be attributed to the pipes leading to and away from a valve. If the parameter is subject

to constraint testing, however, the "If Changed" slot will suggest one or several hypotheses

which trigger constraint rules. These rules test if, after enough parameter values have been

42

determined, a behavior constraint can be shown to be violated. If so, the particular

behavior is be discarded. You may want to wait until you have defined the constraint rules

before you complete such a meta-slot. These constraint rules identify the impossible

behaviors and mark them for later deletion. Look at the "pin" parameter of

PUMP_BEHAVIOR for an example. Both eases discussed above may apply to a parameter,

e.g. the Vbar parameter of PUMP._BEHAVIOR. It was chosen at random (from Vin, Vout,

Vbar which are all the same) to represent fluid velocity in the constraints. Therefore it has

both statements which update Vin and Vout as well as statements which trigger constraint
rules.

Every component needs a "neighbors" slot with associated "Order of Sources" meta-slot

which defines how to find the neighboring, i.e. connected, components. Part of this

procedure is accomplished by a recta-slot in class TWO PORT_BEHAVIOR. If the new

component has fluid input and output like PIPE or VALVTE you can make it a subclass of

TWO_PORTBEHAVIOR and you only have to add neighboring components which are

attached to additional interfaces. A VALVE has an additional neighbor via the

CONTROLLED_BY slot and we add to the meta-slot definition. Even if only fluid input and

output are present, the meta-slot method has to be completed for the new component, as
can be seen in class PIPE BEHAVIOR.

u

4.4.6.2.2 New Slot Names

Try to reuse existing names, such as Vin, Vout, etc. as much as possible to describe

component parameters. If you have to define new names, such as "position" in our VALVE

example, you have to add additional information.

For each new parameter name define rule called "expand_behavior<name>". It is best to

copy this rule from an existing parameter, e.g. pin, and change the parameter name

everywhere. Create a "fill..." rule for the parameter. It is best to copy this rule from an

existing parameter, e.g. pout (rule fi112), and change the parameter name everywhere. In

the example, "position" and "commanded_position" are new parameters. Create pair of rules

"OPEN_<name> t" and "OPEN_<name> t"' which test whether the parameter has a value

yet. Compare rifles "OPEN_V'm_t" and "O-PEN Vin_P', for example.

FinaLly, if the parameter is an interface parameter, you have to detemdne which parameter

in any neighboring component it may made to be equivalent to. For example, Vout may

be equivalent to Vin, but also VinB and Vin_OX. You have to check all existing

components which my be connected to this interface. In the example

"commanded._position" is a new interface parameter. Since the valve position input may

only be connected to the engine controller its "commanded_position" parameter may only

be equivalent to the "commanded_position" parameter of the engine controller. You need

to create a "x_data <name>" rule for each equivalence. It is best to copy this rule from

an existing parameter, e.g. rule x_data_Voutl, and change the parameter name everywhere.

43

In the example, we need a "x_data_commanded_position" rule. Also, for each pair of
possible equivalent parameters you need a rule which checks for possible value conflicts.

These rules are named "xinc_<paraml >_<param2>". Again, copy and adapt an existing
rule.

This seems to be unnecessarily complicated but the extra code is necessary because
NEXPERT does not allow indirect specification of slot names.

4.4.6.2.3 Modified Slots

The "Order of Sources" meta-slot method of slot "add_faulttype" triggers rules which
identify particular fault modes of a component, e.g. leaks or obstructions in a pipe. These
rules may or may not be present but should be provided ff some fault behaviors are more
common than others. Write rules which identify the fault behavior and add its probability

to the FAULTS file. If you do not specify the meta-slot it will be inherited from
COMPONENT BEHAVIOR which covers the cases of leaks and obstructions in a conduit.

An example rule is 'leak_is._present_l".

The "exchange_hypo" slot has to be initialized to a hypothesis which exchanges data values
with the neighboring components. Compare slot PlPE_BEHAviOR.exchange_hypo and
hypothesis PIPE_X_DATA of rule "pipe_x_datal". These rules make sure that parameters

at interfaces between components are shared. A valve shares data with three neighbors:
the commanded_position with the controller in addition to pressures and velocities at the

medium input and output.

The "fault_hypo" slot has to be initialized to a hypothesis which determines whether the

current behavior is faulty. At this point no specific fault mode has to be recognized. In

general, there will be some cases which correspond to a known fault mode or behavior and

some which are unknown or "strange", all of which have to be detected with these rules.
Compare rule "pump_testfaultl". These rules follow from the fundamental constraints of
the component.

The "num_unknown._params" slot has to be initialized to the number of parameters
associated with the component. Groups of parameters which are identical, such as Vin,
Vout, and Vbar in the pump, count only once.

The "open_parameters" slot needs an "Order of Sources" meta-slot method which executes

a rule that determines which parameters have not received a value yet. Compare, for
example, the slot PUMP.open.parameters and the rule leading to hypothesis
"CHECK_OPEN_PARAMS_PUMP". All internal and external parameters must be tested,

each with its own rule. Only one of a group of identical parameters has to be checked.
The rules which test each parameter should already exist at this point. You may have
added some in step 4.4.6.2.2 above.

44

4.4.6.3 Constraint Rules

Most of the required rules have been discussed in enough detail in the previous sections.
This section will add information about constraint rules.

EDIS creates possible component behaviors by enumerating all possible values for each

undetermined parameter. After enumeration physically or mathematically impossible

behaviors are discarded. The rules which are triggered by the "If Changed" methods of the

parameter slots in a component behavior object perform this elimination task. Therefore,

the left hand side of these rules matches to impossible value assignments. Sometimes it

is not perfectly obvious ff a behavior, i.e. or value assignment, is possible due to the

uncertainty associated with qualitative values. For example, even if input and output

pressure are considered normal, the pressure difference may still be considered high if the

input and output pressures are just barely normal at opposite ends of the scale. The

judgement depends on the somewhat arbitrary placement of the limits between normal

high and low. Often, if we assume a consistent limit definition, some cases can be

eliminated. In the above example, we may know that the pressure difference will be

normal for all values of input and output pressure which are considered normal. This

stricter assumption will eliminate more of the generated scenarios. Fewer behaviors mean

faster execution. Our approach is to locate rules which are sure to eliminate only

impossible cases in knowledge base QOALIT.TKB and rules which apply only under strict

assumptions about choice of limits in file CONSTRN.TKB. Currently file CONSTRN.TKB

is loaded automatically, but you may simply remove the load command. EDIS will then

consider more cases which will, in general, slow down the system. On the other hand, it
may be possible that the additional strict rules eliminate the only reasonable description

of SSME behavior, although we think that this is unlikely.

Originally constraint rules were created for each component type individually. For

example, PUMP TEST_POSSIBLE PV eliminate behaviors which incorporate impossible

combinations of-labels assigned to parameters PC_Product, p-diff, and Vbar. The rule is

derived from the constraint PV_Product "p" p-dill + Vbar. Note that the implementation

makes use of three-place (and one four-place) constraints in contrast to the theoretical

exposition in Chapter 2 which allows only two-place constraints. The above constraint was

derived from the mathematical relationship which defines the derived parameter

PV Product as the product of p-dill and Vbar. Since PV_Product increases with both p-diff
and Vbar their relationship can be described by an additive constraint. The majority of

relationships encountered can be represented by additive or subtractive constraints.

Currently, we are adding generic methods, i.e. rules, for testing additive and subtractive
constraints. The If-Changed method of each parameter slot involved in such a constraint
copies the relevant parameter values into slots 'W', 'Y', and "Z" of object "GCO" (short for
generic constraint object). Additive, i.e. X-Y+Z, and subtractive, i.e. X--Y-Z, constraints

can be tested by suggesting hypotheses CONSTRAINT_ADD_POSSIBLE and

45

CONSTRAINT_SUB_POSSIBLE,respectively. Make sure that the behavior object being
examined is linked to classTEMP_BEHAVIORas these two rules assumethat. If you do
not want or cannot use thesegenericrules you have to provide explicit rules similar to the
rules with hypothesis PUMP_TEST_POSSIBLE_PVdiscussedabove.

4.5 Tuning SystemPerformanceand Strategic Parameters

The most significant tradeoff is made when you decide whether to load the knowledge-base
CONSTRN.TKB or not. The decision to load it restricts the number of solutions EDIS will

pursue, see above. All other performance tun/ng mechanisms change only the order in

which alternatives are considered. Tiffs may still turn out to be significant because the

execution time to enumerate all solutions is probably too long to consider finite. Solutions
which would be generated 'qate" are thus never generated.

Tuning may be required for selection of the first component to analyze, for selection of

subsequent components to analyze, and for evaluation of partial solutions.

The first component is selected based only on the ratio of known to unknown parameters

but the choice may be overridden by the user, see section 3.2.3.7.

Given a partial solution the next component to be analyzed is again chosen based on the

ratio of known to unknown parameters, except that components which are connected to
the last analyzed component are given precedence. This generates a less '_jumpy" flow of

analysis.

Partial solutions, i.e. scenarios, are evaluated using a number of contributing factors which
are rated individually. A composite numeric score is accumulated and the best partial

solution is chosen for further expansion until all components have been analyzed.
Contributing factors are the number of faulty components in the partial scenario and the

score or probability of each faulc The scores for the number of faults are defined in order
in slot "quality" of object SCENARIO EVALUATION OBJECT. The values are 1.0 for no
fault, 90.0 for one fault, 8.0 for two _ults, and 1.0 _r three or more simultaneous faults.

For each fault, its probability is sought. If it was defined in file FAULTS the probability

given there is used, ff not 0.01 is used. These values are multiplied to the partial score.

FinaLly, the score of each partial scenario is increased by the number of components is has
already analyzed. This eliminates overly frequent shifts of the focus of attention.

For example, the score of a partial scenario with one fault, a pipe leak, is 90.0 times 0.1,
which is the probability measure defined for pipe leaks in the current FAULTS file. The
total score is thus 9.0. A further fault would reduce the score to near 1.0. In fact, a partial

scenario with no faults is considered to be about as likely as one with two faults. This is

basically sound, but since the scoring does not (or hardly) depend on how far the

46

reasoning has progressed, a single fault will be assumed at the first component analyzed,
unless there is no known fault behavior which fits the available data. In the latter case the

fault score of 0.01 will make the combined score 0.9 which is less than 1.0 for the no fault

case. You may want to experiment and modify these numbers.

47

S. STATE OF DEVELOPMENT

5.1 Hardware and Sofware Setup

EDIS runs on 80386 based personal computers with color VGA display. Between ten and

twenty megabytes of hard disk space are required depending on which portions of the tools

are loaded. Four megabytes of RAM, a math coprocessor, and a mouse are recommended.

EDIS uses the software tools NEXPERT, an expert system shell, and TOOLBOOK, a

graphical user interface design tool. Both software tools require Microsoft Windows 3.0.

To run EDIS only nmtime licenses are needed, but the experimental nature of EDIS makes

development licenses desirable.

5.2 Interface

A large portion of the user interface has been implemented, especially the parts which deal

with setup, configuration, initialization, and anomaly detection. A dynamic image of the

SSME schematic is available which shows parameter values relative to limits. The interface

to the qualitative diagnosis mechanism is only partially available. The explanation facility

has not been coded yet.

5.3 Knowledge Base

The qualitative reasoning mechanism has been implemented and a limited number of

component types are supported. No other types of reasoning are supported yet.

Currently structure models of component types PIPE, PUMP, COOLING, GAS_TURBINE,

VALVE, TWO_SPLIT, THREE_SPLIT, TWO_JOIN, PRE_BURNER, and TANK are

implemented. Complete behavior models exist for PIPE, PUMP, COOLING, TWO_SPLIT,

THREE_SPLIT, and TWO_JOIN. In all cases only pressures and temperatures are

considered, temperatures and heat transfer is ignored (which makes COOLING just like
PIPE).

48

6. SAMPLE CASES

Two simple sample eases will be presented in this chapter. Both are based on a small

configuration of pipes which is not related to the SSME but is simple enough to explain the

reasoning process performed by EDIS. The configuration consists of a pipe F101 which

feeds into a pipe-split M102 which, in turn, feeds into pipes F102 and F103. Note that the

configuration files have to define additional components which serve to terminate the input

and outputs but will not be analyzed.

In the first case three measurements are available: input pressure and flow at pipe F101
and input velocity at pipe F102. Normally, a measurement at the input of F102 would be

shared with the output of M102 which is connected to the input of F102. In this example
we omit this parameter sharing in order to demonstrate a special case of value propagation.
All measured values are NORMAL.

In the second case an additional measurement is available: the output pressure at pipe
F103. It is also NORMAL.

The examples will demonstrate how EDIS analyzes a configuration component by

component, assures consistency between components, and backtracks, if necessary, when

assumptions become unlikely when new measurements are encountered. The second case
demonstrates the backtracking mechanism in particular. The examples will demonstrate

how EDIS, using its default strategy, tries to find a single fault as soon as possible. You

can see how this may lead to inefficiencies when the initial fault assumption is incorrect.

Remember that this behavior depends on the strategy parameters described in a previous
chapter and can be easily modified. Also, the user is given the opportunity to influence

behavior and fault assumptions. Here we show how operates without user intervention.

It should be clear now that the initial hypothesis generated by EDIS will contain a fault

even though all measured parameter values are normal.

6.1 Case 1: No Backtracking

EDIS selects a component to analyze. At first the only criterion is derived from the ratio

of the number of known parameters versus the number of unknown parameters. A pipe
has 6 parameters and a pipe-split has 4. We know two of the six parameters of F101,

therefore it will be analyzed first. We assume that the pressure is constant throughout the

pipe-split and use the generic parameter name "pin" for it.

All possible behaviors of pipe F101 are created. Given the two measurements nine

behaviors survive constraint testing. Some of them describe normal behavior but most

imply a fault of the pipe. In this version of EDIS two faults are defined for a pipe: an
obstruction with merit 0.2 and a leak with merit 0.1, which indicates that we believe that

an obstruction is more likely than a leak. A leak is identified by a drop in flow from input

to output while an obstruction causes an undue pressure drop.

49

Each behavior of pipe F101 generates a new partial scenario. Each scenario is rated based
on the number of faults it predicts, the merit of each behavior it contains, and how many

components it already describes. The basic ratings for no, one, two, and three or more

faults are 1.0, 90.0, 8.0, and 1.0 respectively. The appropriate base rating is then

multiplied by the rating of each behavior contained in the scenario. Normal behavior is

rated 1.0 while faulty behavior is rated by the figure of merit associated with the fault.
An unidentified fault has merit 0.01 and will therefore not be considered until all other

options have failed.

EDIS selects the most promising partial scenario, i.e. the one with the highest rating, to

expand. This is because EDIS actually performs best-first search in the space of all SSME
behaviors. In this case the highest rated scenario is Scenario-4 which assumes an

obstruction in pipe F101. A consequence of this fault assumption is that the output

pressure of F101 will be assumed to be LOW and this value is propagated to pipe-split
M102, together with the output flow which is NORMAL in this case.

Next, all possible behaviorsof M102 are generated. Since two of its four parameters were

determined via propagation only three or four behaviors are possible. Propagation of the

output flow to F102 may lead to a conflict with the measured value at the input of F102.

Scenarios which lead to such a conflict are discarded. In our case only a single behavior
of M102 is consistent with the interface conditions. It predicts normal flows and low

pressure.

Next, pipe F103 is analyzed. This time 15 behaviors are possible and EDIS chooses a

normal, i.e. non-faulty, behavior since the scenario ratings for the two-fault cases are

obviously worse. The chosen behavior predicts normal flows and pressure drop but low

input and output pressures.

Finally, pipe F102 is analyzed. EDIS chooses the same behavior as for F103. Now the

scenario is complete. It contains a complete account of SSME behavior in terms of all

relevant parameters and the fault hypothesis that pipe F101 is obstructed. It is clear that

other explanations of the measurements are possible because three measurements are far

too few to lead to a unique answer. The search strategy and fault likelihoods supplied to
EDIS led to this particular answer. EDIS could, ff requested, generate further answers if
we force it to backtrack.

6.2 Case 2: Backtracking

The second case is identical to the first except that a measurement for the output pressure

of pipe F103 is added. The value supplied is NORMAL. Processing begins the same way
and the first two steps are identical: EDIS considers F101 first and chooses a behavior

which implies a pipe obstruction. Note that the output pressure of F101 is assumed to be

LOW according to this fault hypothesis. Analysis of pipe-split M102, too, leads to the same
result as before.

5O

When EDIS reaches pipe F103, however, it cannot find a normal behavior for F103 given
the propagated input values and the measured output pressure. It has to assume a second

fault: a leak, for example. This drops the rating of the resulting scenarios below the rating

of earlier scenarios which predict only a single fault. The bonus for covering more

components is less than the penalty for a two-fault hypothesis. EDIS therefore abandons

these scenarios in favor of a scenario which has the highest rating at this point. In this

case it is a scenario with only F101 analyzed where F101 is again assumed to be faulty,

but the fault is supposed to be a leak instead of an obstruction. There are, however, a

number of behaviors possible given that the pipe has a leak. EDIS chooses one at random

since they all have the same rating. It turns out that again no single fault hypothesis can

be supported by this choice of behavior for pipe F101 and EDIS has to put aside its
assumption in favor of a different one.

Another behavior for F101 is now chosen, again with a leak fault, and it fails also. Finally,
a forth behavior of pipe F101 is selected which leads to a complete hypothesis with only

one fault. Interestingly, the fault proposed is again a leak in pipe F101, supported by a
different behavior of F101 given the leak. This behavior predicts LOW output flow (this
is the characteristic of a leak) and also LOW output pressure. The pipe-split behavior

chosen assumes that the input flow is divided so that the output flow into F103 is LOW
but the output flow into F102 is (maybe just barely) NORMAL. The low flow through

F103 then creates a reduced pressure drop in pipe F103 which allows for a NORMAL
output pressure reading even though the input pressure was LOW. F102 sees LOW input

pressure and NORMAL input flow and EDIS assumes that its output pressure and flow are

LOW and NORMAL, respectively.

The resulting scenario is considered optimal by EDIS and is offered as a valid diagnosis.
Note, however, that with such few measurements several other answers would have been

possible. Obviously, EDIS could have derived that there is no fault in the system since all
measurements are NORMAL. Or, the output flow from the pipe-split into pipe F102 could
have been assumed to be LOW just as for pipe F103. Then, the behavior of F102 would
have been identical to that of pipe F103. A measurement of the output pressure of F102
could distinguish between these two cases. Without additional data the choice of answers
(actually, the choice of the order in which the answers are produced by EDIS) depends on
the strategy parameters.

51

APPENDICES

A: Listing of EDIS Interface (TOOLBOOK) Code

B: Listing of EDIS Diagnosis (NEXPERT) Code

C: Parameters Used by EDIS

D: Example Data Input File

E: SSME Schematic

F: Configuration Files

52

APPENDIXA

LISTING OF EDIS INTERFACE (TOOLB(X}IO CODE

APPENDIXB

_G OF EDIS DIAGNOSIS (NEXPERT) CODE

APPENDIXC

PARAMETERSUSEDBY EDIS

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

P-.D.

287
63
86
15
32
52
17
18

231
232
58
260
53
24
2o9
30
9o
21
59
g4

233
234

1o21
821

1058
858
100
65g
457
65O
657
658
436
835

1035
48O
142
764
754
327
328
595
395
221

34
878
879
140
734
2

TIME IN TEST THE DATA VALUES WERE TAKEN (COLUMN I IN
SIGMA.WR1 "FILE)

MCCPC_
MCC PC
LPFP DS PR
LPFP DS TMP
LPFPSF_
HPFP DS PR
IVlCCCLNT DS PR
MCC CLNT DS TMP
HPFT DS TMP A
HPFT DS TMP B
FPBPC
HPFP SPEED
HFFP CLNT LNR PR
MCC FUEL BCJECTORPR
LPOP DS PR
LPOPSP_D
I-IPOPI_ PR
LOX DOMETMP
PBPDS PR
PBP DS TMP
HPOT DS TI_ A
HPOT DS TMP B
ENG FUB. N.L=TTMP
ENG FUELINLET PR
ENG OX IM.ErTMP
ENG OX INI.ETPR
RJB.FLOW
HPFP DS TMP
HPFP BAL CAV FIR
I-PFP COOLANT IJNER TMP
HPFP DRAIN I:_
HPFP DRNN 11_
LR:T INLET PR
RJEL _ INIISRFACE PR
FUEL _ BCrE_FACETIVP
Ol:gl:C
RIOV POSffK_
HRR:' SPED
LPFPSPEB:)
HPOP BAILCAV PR A
HPOP BALCAV PR B
MCC LOX _ "11_
MCC LOX ICJECTOR PR
I:O(_ PFE-O'IkqGE PR
I-EAT_DSPR
I-EAT _ IcrB:IFACE PR
I-IEAT_ INTEI:FN::::E11_P
(]:OV _
LP(_SPEB:)

APPENDIX D

EXAh_LEDATAINPUTFILE

,q..

_to

.m.

lm,

tie

a

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

A1061(_,.i_ 498.05 2705.38 2704.49 220.23 42.56 14697.60 5099.74 39/,1.73 /66.38
1697.75 1696.82 4273.90 31936.32 2996.09 14.25 336.79 4806.99 3428.25 189.88
6171.50 200.51 1243.60 1246.77 37.49 10.59 166.20 84.28 13862.44 89.20
4048.50 312.63 1/,.57 477.72 3878.00 2914.93 450.90 5111.35 74.96 31938.70

14692.32 2598.78 2408.71 192.00 3152.96 1156.08 3292.10 3283.86 811.56 61.06
4775.75 25451.60

39.00 2705.38 2704.85 Z34.54 42.19 14705.32 5107.94 3_4.14 459.63
1663.32 1669.45 4272.10 31834.24 2964.36 14.25 341.50 4628.49 3434.32

188.81 6204.30 198.67 1244.69 1259.13 37.06 22.12 1(]4.71 88.42
13768.16 88.31 4060.75 Z._. v3 14.64 470.88 3876.30 2795.16 _.4.07
4256.60 74.06 31883.32 1472Z._,4 2603.12 2395.76 190.45 3153.13 11/3.15
3267.85 3267.05 800.76 60.48 4767.38 25404.12

511.00 "3006.00 3005.88 216.83 42.61 15100.96 5628.14 4363.66 473.001 1717.82 4877.83 33880.08 3337.15 14.25 352.22 5254.55 3886.49 194.13
7019.56 205.83 1328.46 1334.47 37.54 9.49 166.25 82.31 15442.36 93.85
4472.68 305.57 14.58 477.78 4291.92 3242.38 457.65 5097.98 77.68 33282.76

15116.30 2914.61 2749.96 196.21 3558.15 1302.55 3727.45 3719.26 825.33 6.5.72
5097.72 27569.06

512.00 3006.00 3006.25 216.58 42.61 15105.76 5629.78 4362.45 473.00
1698.35 1718.36 _.877.25 33842.72 3335.98 14.25 352.17 4610.97 3884.70

194.13 7017.92 205.87 1339.24 1335.58 37.54 9.48 166.25 82.34
15432.04 95.87 4475.11 298.70 14.57 477.75 4292.13 32/3.44 457.51

5097.29 77.63 33889.44 15113.43 2916.92 2753.11 196.27 3559.43 13(][3.47

3727.45 3721.96 826.09 65.66 5101.23 27554.37430.00 3126.25 3125.24 225.30 42.68 15534.00 5926.62 4579.34 468.fl4
I759.13 5129.11 34840.g6 3479.37 14.25 357.14 4979.63 4074.56 196.16

7348.88 207.95 1366.45 1398.64 37.46 9.05 166. I0 81.64 16041.32 96.16
4716.83 281.72 14.59 476.59 4500.52 3380.92 452.79 5150.70 79.23 347'/7.40

15541.45 3028.92 2882.50 197.94 3722.15 1362.45 3905.62 3905.49 848.27 67.76
5223.10 284,27.41

159.05 3126.25 3128.76 230.37 42.44 15606.40 5936.46 4590.76 _6.90
1705.15 1734.63 5136.99 34793.04 3461.06 14.25 323.39 5186.95 4087.20

195.32 7451.38 207.91 1427.97 1425.40 37.17 9.01 165.25 39.86
15989.56 95.69 4722.$6 247.91 14.61 472.02 4508.37 3249.23 453.11

5181.84 78.24 34753.80 15614.52 3010.45 2864.17 197.79 3727.64 1366.20

_) 3912.30 3916.11 866.82 68.40 5246.64 28650.2692.00 3276.50 3276.98 241.22 42.64 16115.24 6307.92 4851.70 4_N?..05
1 1781.25 5467.80 35809.68 3630.74 14.25 357.14 4961.08 4318.70 197.31
7849.58 210.27 1436.71 1477.25 37.14 10.60 165.14 72.84 16777.96 98.71
5042.45 248.71 14.61 471.?S 4767.57 3411.80 /.46.83 5509.00 80.68 35874.88

16123.92 3169.91 3041.99 199.78 3931.83 1441.36 4124.80 4127.73 865.74 72.13
5386.08 29614.15

96.00 3276.50 32?5.77 240.92 42.63 16119.84 6306.26 4849.88 461.51
1737.99 1780.72 5463.54 3585300/, 3627.22 14.25 355.79 4813.92 4316.28

197.31 7851.22 210.28 1456.89 1482.70 37.16 9.95 165.06 70.98
16772.72 98.66 5039.11 262.31 14.60 471.92 4765.11 3410.32 446.77

5506.41 80.S3 35864.30 16129.07 3167.81 3040.91 199.79 3930.56 1441.36
4125.38 4129.00 869.53 71.96 531K. 16 29620.55

300.05 3126.25 3126.67 228.57 42.58 15578.80 5929.08 4581.71 /,69.63
1719.04 1746.18 5133.38 34762.88 3483.92 14.23 356.93 5152.58 4076.33

195.19 7387.42 207.67 1368.43 1417.69 37.32 8.97 165.77 8Z.05
16025.40 95.92 4720.63 326.23 14.60 472.99 4501.55 3250.4,6 454,096

5160.77 78.69 34767.58 15595.31 3029.62 2877.97 197.61 3725.44 1124.03
3215.38 3194.94 850.74 67.57 5224.45 28455.02

518.00 3006.00 3005.35 216.10 42.60 15099.36 5625.68 4364.27 475.00
1700.95 1718.70 4874.82 33883.28 3336.37 14.25 352.17 4599.43 3881.05

194.13 7013.00 203.86 1318.38 1338.30 37.55 9.48 166.28 82056
15440.72 93.80 4472.20 291.63 14.57 478.13 4289.98 3242.31 456.92
5091.38 77.66 33880.62 15105.64 2913.31 2731.97 196.27 3557.81 12518.68
3724.45 3719.72 828.25 65.62 5097.64 27566.78

100.00

f_

Sep 19 10:12 1991 cooling Page 1

\MCC_COOL 1NG. NAME\""MCC COOL! NG"

\HCC_COOL] NG. NED IUN_OUTPUT \="F 109"

\MCC CO(3L! NG, NED ! UM_ [NPUT \= "M 102"

\MCC COOL[NG. MED |UN_u"FUEL"

"_MCC_COOL1MG. AS$OC | ATE_PARkZlETERS\u_4CC_CLNT _DS PR"

\NCC_COOL l NG. GENER l C_PARAHETERS\-"pout"

\NOZZLE_COOL [NG. NANE\-"NOZZLE COOL/ NG"

\NOZZLE_COOL [MG. NIEOI LM_OUTPUT \="N201"

\NOZZLE_COOL 1MG. NED !UN ! NPUT\='91102"

\NOZZLECOOL ! NG.NED !UN\="FUEL,'

\NOZZLE. COOL] NG.ASSOC |ATE PARANETERS\="Not krto_n"

Sep2013:47 1991 ctrlfuet Page 1

\ FUEL_F LOW_CONTROL LER. NAME\="FUEL_F LOW_CONTROLLER"

\ FUEL FLOW CONTROLLER. CONTROLS\m-FPOV-

\FUEL F LOW_CONTROLLER .MEASURES AT\-.FI01',

\FUEL FLOIJ CONTROLLER.ASSOCIATE PAR_iIIETERS\=-FUEL FLOIJ, FPOV POSI T ION-

\FUEL_FLOWCONTROLLER. GENER ICPARAMETERS\="Vin, co_..posi t i On"

lira

m_

_mK

sep 19 10:12 1991 paraml.nxp Page 2

\HPFP_CLNT_LNR_PR. SOURCE\='S¥STEN"

\HPFP CLNT LNR PR.SIGIqA_NA_IE\='NPFTP CLT LNR PR 104NF"

\HPFP CLNT LNR PR .SENSOR PID NUHI_ER\s'S3"

\HPFP CLNT LNR P_, .HAJqE\R_HPFP CLNT LNR pR.

\ HPFP CLNT LNR PR. NEAUEIIENT\m'S INGLE"

\HPFP CLNT LNR PRoGENERIC NANE\t"P CLT"

\HPFP CLNT LNR .PR .ASSOC |ATE_COIPONENT\-'HP FP"

\I4CC_FUEL ! NJECTOR PR. SOURCE\z"SYSTEN"

\MCC FUEL_INJECTOR PR.SIGMA NAME\m"NCC FL INJ Pll 104NF"

\HCC FUEL_INJECTOR PR. SENSOR. PID NUNSER\:"24"

\MCC FUEL INJECTOR PR.NANE\z"NCC FUEL INJECTOR PR"

\HCC FUEL INJECTOR PR .HEASUREMENT \m"$ | NGLE"

\MCC FUEL | NJECTOR PR.GENERi C NN4E\m"P IN, P OUT"

\MCC FUEL_I NJECTOA PR. ASSOC I ATE CONPOHENT\="14CC, F111"

\LPOP..OS PR. SOURCE\='SYSTEN"

\LPOP DS PR.SIGI_ NAME_="LPOP OS PR 104MF.

\LPOP. DS PR. SENSOR P ID_NUNBER\="209"

\LPOP OS PR ._UI)tE\t"LPOP DS PR"

\ LPOP_DS PR. NEASURENENT \="S ! NGLE"

\ LPOP..OS PR. GENER 1C_NAME \t"P OUT, P_ I N"

\LPOP_DS PR • ASSOCIATE_COHPONENT\,f"OZOl, HPOP"

\HPOP_DS PR. $OIJmCE_w"STSTEN"

\HPOP_OS_PR.SIGNA NAI4E%mMNPOP OS PR 1Gr_NF"

\HPOP..DS PR. SENSOR P ID NUHSER\,_"90"

\MPOP..DS.PR.lUUIE\--ttPOP..DS_Plt.
\HPOP_OS PR.NEAUENENT\:"SINGLE"

\ HPOP .DS PR. GENERI C..NAHE\'_"P (XIT, P_ ! N"

\ HPOP_DS PR. ASSOC | ATE COHPOHENT\:"HPOP, 0204 u

\LOX .DONE_TNP. SOURCE\="SYSTEM"

\LO_ D{_IE_TMP. S I GMA_NANE_ ="OX..DONE_T_ 10_F"

\ LOX. DOME_TI4P. SE NSORP I D_NUI4BER \ =" 21"

\LOX DONE_TNP. N_q_IE\="LOX OONE TNP"

\ LOX_DI_E_TMP. 14EASUREIIENT \:"S ! NGLE"

\LOX OONE_THP. GENER l C NAI4E\mmMCC"

\ LC__DGqE TMP • ASSOC I ATE_COIIPONENT\m"MCC"

\PEP DS PR. SOURCE\:"SYSTEH"

\PBP DS PR.SIGKA..NAHE\s"PBP OS PR IO/J4F"

\PBP_DS PR. SENSOR P ! D NUNBER%m"59"

\PBP DS PR. NAIqE\me'PllP DS PR"

\PEP I)S_PR • HEASURE1NENT\:"S ! NGLE"

\PBP. DS_PR. GENERIC NANE%I"P ! N"

\PIP..DS PR • ASSOC 1ATE COIIPQNENT\:"020S"

\PBP DS THP. SOURCE\m'SYSTEII"

\PSP_OS_THP. SEliSOR_P IO IIU_ER_s"94"

\PBP DS TNP .NJUIE\m"PBP DS THP"

\PBP..DS TRP. NEASURENENT\-'S ! NGLE"

\PBP..OS.THP. GENER | C_HARE\:"T_ ! N"

\PIIP..DSTNP. A$SOC| ATE C:I:BI_EI T \: "0205"

\ENG_FUEL_! NLET TNP .SCUACE\I"SYSTEN"

\ENG_FUEL_INLET_TNP-SIGNA_H_\'feENG FL IN T 10411Fm

\ENG_FUEL ! NLET_TMP. SENSOIt P I D_NU_R\m" 1021"

\ENG FUEL INLET TNP. HANE_mmENG FUEL 1NLET TIIP_,

\ENG FUEL_I NLET TNP oHEAUEHENT\m"S INGLE"

\ENG FUEL INLET TIlP.GEHEIIIC NNIE_maT IN"

\ENG FUEL INLET TNP .ASSOCIATE COI_ENT\m,LPFP-

Sep1910:121991parlel.nxpPage3

\ENG_FUEL_IMLET_PR.SOURCE\="SYSTEM"

\ENG_FUEL_INLET_PR.SIGMA_NAME\="ENG FL IN PR 104NF"

\ENG_FUEL_INLET_PR.SENSOR_PID_NLJMBER\="821"

\ENG_FUEL_INLET_PR.MANE\u"ENG_FUEL_INLETPR"

\ENG_FUEL_|NLET_PR.NEASUREMENT_"S|NGLE"

\ENG_FUEL_iNLET_PR.GENERIC..MANE\mNp_ZNU

\ENGFUEL_INLET_PR.ASSOC]ATE__ENT\m"LPFP"

\ENG_OX_INLETTMP.SOURCE\t"SYSTEM"

\ENG OX_INLET TNP.$1GMA NAME_"ENG OX IN T 104NF"

\ENG_OXINLET_TMP.SENSOR PID NUMBER\-"lO58"

\ENG_OX_INLET_TMP.NAME%u"ENGOX_INLET_TMP"

\ENG_OX_INLET_TNP.MEASURENENT\s"SINGLE"

\ENG OX INLET TMP.GENERiC NAME\u"T IN"

\ENG_OX_INLET_TNP.ASSOCIATE_CONPONENT\="LPOP"

\ENG.OX_INLET_PR.SOURCE\="SYST[M"

\ENG_OX_INLET_PR.S%GMANAME\="ENG OX IM PR 104MF"

\ENG_OX_ ! NLET_PR. SENSOR_P ! DNUMBER \="858"

\ENG_OX_ I NLET_PR. NAME\a"ENG_OX I NLET_PR"

\ENG_OX_! NLET_PR.NEASUREMENT\="S ! NGLE"

\ENG_OX_INLET_PR.GEMERIC_NAME\-"P_IN"

\ENG_OX_INLETPR.ASSOCIATECOMPONENT\s"LPOP"

\FUEL_FLOM,SOURCE\s"SYSTEM u

\FUEL_F LOM. S l GNA_NANE\s" FL FLOW_104NF"

\FUEL_FLOqd.SENSOR PID NUMBER\:"IO0"

\ FUEL_FLOW. NAME\u" FUEL FLC_"

\FUEL_FLC_.MEASUREHENT\u"SINGLE"

\FUEL_FLOI,/.GENERICNAME\u"V_OUT,V_IN"

\FUEL_FLOW.ASSOC|ATE_C(3MPONENT\="FIOI,NPFP"

\HPFP..DS_TMP.SOURCE\="SYSTEM"

\HPFP_DS_TNP.S|(;MANAME\u"HPFp DS T IO&NF"

\HPFP..DSTNP.SENSOR_PID_NUMBER\u"659"

\HPFP...DS_TMP. NAME\'"HPFP..DS TMP"

\HPFP_DS_TNP.NEASURENENT_"SINGLE"

\HPFP. DS_TNP.GENER|C_NAME\-"T_IN,T_OUT"

\HPFP_OS_TMP.ASSOC|ATECONPONENT\f"FIO2,HPFP"

\HPFP BAL CAV PR.SCURCE\u"$¥$TEM"

\HPFP BAL CAV PR.S%GMANANE\s"HPFP BAL CAV PR 104NF"

\HPFP BAL CAV PR.SENSORPIDNUMBER\x"45_o

\HPFP BAL CAV PR.NANE\i"HPFP fULL CAV PR"

\HPFP BAL CAV PR.NEASUREMENT\u"SINGLE"

\HPFP 8AL CAV PR.GENERICNAMIE\s"PBAL"

\HPFP BAL CAV PR.ASSOCIATECCMPONENT\-"HPFP"

\HPFP_COOLANT_LINER_TMP.S_URCE\m'SYSTEM"

\HPFP_CCOLANT_L|NER_TMP.SIG_ANAME%m"NPFP CL T 104MF M

\HPFP_COOLANT_LINER_TNP.SEMSORP[DNUNBER_m"650"

\NPFP COOLANT LINER TMP.N/U4E\m"HPFP COOLANT LINER TMP"

\HPFP_COOLANTLINER_TMP.MEASUREMENT\m"SINGLE"

\HPFP_COOLANT_L|NERTMP.GENER|CNAIqE_"TCLT"

\HPFP_COOLANTLZNER_TNP.ASSOCIATECCNPOMENT\m"NpFp"

\HPFP..DRAIN_PR.Si3URCE_NSYSTEM"

\HPFP_ORAIN_PR.S|GMA_NAME\-"NPFP DRN PR 104MF"

\HPFP_DRA|N_PR.SENSOR_PID_NUMBER\u"6§7"

\HPFP_DRA | N_PR. NAME_-"NPFP..DRA ! N,.PR"

\HPFP_DRAINPR.MEASUREMENT\u-SINGLE.

\HPFP ORA|N PR.GENER[C NAIqE\u"p GRAIN"

\HPFPDRA|NPR.ASSOC|ATE__3MPONENT\s"HPFPn

Sep 19 10:12 1991 parml.nxp Page 4

\HPFP_DRAX N_TMP. SOURCE\:"SYSTEM"

\HPFP_DRAIN_TMP.SIGMA_NAME\:"HPFP DRN T IOLddF"

\HPFP_DRA XN_TMP. SENSORP ! D_HUMBER\I"658 N

\HPFPDRA| N_TMP.NAM_.\-"NPFP_DRAI N_TMP"

\HP FP_DRA I N_TMP. MEASUREMENT\m"S I NGLE"

\HP FP_DRA | N_TNP. GENER | C_NAME \'"T_DRA I NN

\HP FP_DRAi N_TMP. ASSOC |ATE_COMPONENT\u"HP FP M

\LPFT_I NLET_PR. SOLIRCE\z"SYSTEN"

\LPFT_INLET_PR-S|GMA_NAME\u"LPFT IN PR 104NF #

\LPFT_I NLET_PR. SENSOR_P |D_NUMBER \='436"

\LPFT_| NLET_PR.NAME\u"LPFT_I NLET PR"

\LPFT_| NLET_PR. MEASUREMENT\="S | NGLE"

\LPFT_I NLET PR • GENER I C_NAME\x"P_OUT, P_! N"

\LPFT_I NLET_PR. ASSOCI ATE_Ci3MPONENT\=" F109, LPFT"

\FUEL_PRESSURANT_|NTERFACE_PR.SIGMA_NAME\=HFL PRINT PR lOaF u

\ FUE L_PRESSURANT_| NTER FACE_PR. SENSOR_P ZD_NUMBER\="835"

\FUEL_PRESSURANT_|NTERFACE_PR.NAME_"FUEL PRESSURANT INTERFACE PR"

\FUEL_PRESSURANT_| NTERFACE_PR .MEASUREMENT\="St NGLE#

\ FUEL_PRESSURANT_ I NTERFACE_PR. GENERi C_NAME \m"NotKnown"

\FUEL_PRESSURANT_iNTERFACE_TMP.SIGMA_NAME\m-FL PR |NT T 104MF"

\FUEL_PRESSURANT_INTERFACE_TMP.SENSOR PZD NL_ER\='103S"

\FUEL PRESSURANT_INTERFACE_TMP.NAME\m-FUEL PRESSURANT INTERFACE TMP"

\ FUE L_PRESSURANT_ l NTERFACE_TMP. MEASUREMENT\w"S ! NGLE"

\ FUE L_PRE SSURANT_ I NTER FACE_TNP. GENER] C_NAi_\I"NotI_"

\OPB_PC. SOURCE\=xSYSTEM"

\OPB_PC. S ! GMA_NN4E\="OPB_PC_I O/,qF u

\OPB_PC.SENSOR P|D NUMBER\="480"

\OPB PC. NAME\='*OPB_PC*'

\OPB_PC. MEASUREMENT\="S ! NGLE"

\OPB_PC. GENER! C_NAME\="P ! N, P_OUT"

\OPB PC. ASSOC| ATE_CCMPONENT\="HPOT, OPB"

\ FPOV_POS | T | ON. SOURCE\="SYSTEN"

\FPOV_POSZTZON.SIGHA_NANE\u*'FPOV ACT POS IO/,NF"

\ FPOV_POS | T l ON. SENSOR_P 1D_NUMBER\=" 1&2"

\FPOV POS| T |ON. NAME\=HFPOV POS| T |ON "

\ FPOV_POS 1T | ON. MEASURENENT\="S | NGLE"

\ FPOV POS I T | ON. GENER| C_NAME \ ="POS"

\ FPOV_POS I T | ON. ASSOC ! ATE_COMPONENT \=" FPOV"

\MCC LOX INJECTOR TNP.SOURCE\="SYSTEM"

\NCC LOX INJECTOR_TMP.SIGMA_NAME\t"MCC OX INJ T I04MF"

\MCC LOX INJECTOR_TMP.SENSOR PID_NLIMBER\=-S95u

\NCC LOX |NJECTOR_TMP.NANE\="MCC LOX INJECTOR TNP"

\MCC LOX |NJECTOR TMP.MEASUREHENT\="SINGLE"

\MCC LOX |NJECTOR_TNP.GENERtC NAME\,,"T IN OX,T_OUT"

\MCC_LOX_ | NJECTOR_TMP. ASSOC 1ATE_CC)I4PONENT\="MCC, NOV.

\MCC LOX INJECTOR_PR.SOURCE\="S¥STEM"

\NCC LOX INJECTOR PR.SZGMA NAME\="MCC CO(INJ PR IO_F"

\NCC_LOX INJECTOR PR. SENSOR P [I) NUNBER\="395"

\MCC LOX INJECTOR PR.NAME\="MCC LCIX INJECTOR_PR"

\MCC LOX INJECTOR PR.MEASURENENT\==S|NGLE.

\MCC_LOX_| NJECTm_PR. GENER] C_NAME\=MP_I NO|, POUT w

\MCC_LOX | NJECTOR_PR. ASSOC | ATE_COMPONENT \=-MCC, NOV =

\POGO PRE CHARGE_PR .SOLIRCE\suSYSTEMU

\POGO_PRE CHARGE_PR. S | GMA_NAJqE\ = "PO(;O_PR CHG_PR_104MF,

\POGO PRE CHARGE_PR.SENSOR_P|D NUMBER\m-221A

\POGO PRE CHARGE_PR. NAME\="POGO_PRE_CANRGE_PR m

Sep1910:1Z1991parmml.nxpPage 5

\POGO_PRE CHARGE_PR .NEASUREMENT\="S! NGLE.

\POC_)_PRE_CHARGE_PR.GENERZC_NANE\=.P PRE IN'*

\POGO_PRE_CHARGE PR. ASSOC %ATE_CONPONENT\="POGO"

\HEAT_EXCHANGER_DS_PR.SIGMA_HAME\-MHX DS PR I04MF"

\HEAT_EXCHANGER. DS_PR. SENSOR PID NLJNRER\-.34"

\HEAT_EXCHANGER_DS PR.NN4E\-.flEAT EXCHANGER DS PR"

\HEAT_EXCHANGER_DS PR. MEASURENENT\="S]MGLE"

\ HEAT_EXCHANGER.. DS_PR. GEHER I C_HANE\=NNot Knoum"

\HEAT_EXCHANGER [NTERFACE_PR.SZGMA_NANE\=-HX INT PR I04MF"

\HEAT_EXCHANGER_|NTERFACE PR.SENSOR PID NUMBER\z"878"

\HEAT_EXCHANGER_INTERFACE_PR.HAME\=-HEAT EXCHANGER [NTERFACE PR"

\HEAT_EXCHANGER INTER FACE PR. NEASURENENT \="S ! MGLE"

\HEAT_EXCHANGER_ | NTER FACE PR. GEHER! CNAME \="HotKnouw1"

\HEAT_EXCHANGER INTERFACE TNP.S|GMA_NAME\--HX INT T I04MF"

\HEAT_EXCHANGER_] NTERFACE_TNP. SEHSOR_P lD_NUMBER\="879"

\HEAT_EXCHANGER_INTERFACE_TNP.NAME_-HEAT EXCHANGER INTERFACE TNP"

\HEAT_EXCHANGER! NTERFACE_I"MP.MEASUREMENT\="S INGLE"

\HEATEXCHANGER_! NTERFACE_TMP. GENER ! C_NAME\="NotKr_o'dn"

\OPOV_POS ! T ! ON. SOURCE\='*SYSTEM.

\OPOV_POSIT]ON.SIGNA_NAME\-.OPOV ACT POS IOAMF"

\OPOV_POSZTION.SENS|3R PlO NUNBER\="I/*O"

\OPOV_POS] T ION. NAHE\a"OPOV_POS I T ION"

\OPOV_POS ! T I ON. NEAUEMENT\z"S INGLE"

\OPOV_POS I T I ON. GENER I C_NAME \="POS"

\OPOV_POS l T I ON. ASSOC] ATE CI)IPONENT \-"OPOV"

\HPOP_SPEED. SOURCE\z"SYSTEM"

\HPOP_SPEED. S I (g4A_NAME\z *'HPOP_SPD_104NF"

\HPOP_SPEED. SENSOR P ! D_NUMBER \"*2"

\HPDP_SPEED. MAME\u"HPOP_SPEED"

\HPOP_SPEED .MEASUREMENT\="S INGLE"

\HPOP_SPEED. GENER I C_NAME\a"SPEED, SPEED, SPEED"

\HPOP_SPEED. ASSOC IATE_COMPONENT\z'HPOP, HPOS, HPOT"

\I.POP_SPEED2. SOURCE \-"SYSTEM"

\LPOP_SPEED2. S I GMA_NAME\="LPOP_SPD_ 104MF"

\LPOP_SPEED2.SENSOR PID NLIMBER\="734"

\ LPOP SPEED2. RELATED_TO\="LPOP SPEED 1"

\LPOP_SPEED2. NAME\'"LPOP_SPEED2"

\LPOP_SPEED2. MEASURENENT\z"CONST I TUT 1ON"

\LPOP_SPEED2. GEMERI C_NANE\a"SPEED, SPEED, SPEED"

\LPOP_SPEED2 .ASSOCIATE_CONPONENT\z"LPOP, LPOS oLPOT"

\HPOP BAL CAV PR B.SQURCE\z"SYSTEM"

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP SAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP SAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

\HPOP BAL CAV PR

B.SIGMA_NAME\-"HPOP_BCAV PR B I04MF"

B. SENSOR_P ! D_NUNIIER\-'328"

II.RELATED_TO\-uNPOP BAL CAV PRI"

R.NAME\-"HPOP BAL CAV PR O"

B. MEASUREMENT \u"CONST ! TUT I ON*'

8. GENERI C NAJ4E\-"P BAL"

B. ASSOC I ATE_CONPONENT\-" HPOP"

A. SOURCE\""SYSTEW'

A.SIGMA NAME\z"HPOP_BCAV PR A I04NF"

A. SENSOR_P l D_NUNIIER\="327 m

A.RELATED_TO\u"HPOP BAL CAV PRI"

A.NANE\z"HROP BAL CAV PR A"

A.MEAUEMENT\-"C(MiST] TUT I ON"

A. GENER1C_NAME\-"P_BAL"

A.ASSOC I ATE_CONPONENT\u"HPOP.

Sep 19 10:12 1991 l:_raml.nxp Page 6

\LPFP_SPEED2. SOURCE\:"SYSTEM"

\LPFP_SPEED2.S%GMA_NANE\="LPFP SPD 10414F"

\LPFP_SPEED2. SENSOR_P I D_NUNBER\="754"

\LPFP_SPEED2. RELATED_TO\="LPFP_SPEEDI"

\LPFP SPEED2. NN4E\s"LPFP SPEED2"

\LP FP SPEED2.14EASUREMENT\,:"CONST I TUT I ON'°

\LPFP_SPEED2. GENER ! C_NANE\:"SPEED, SPEED t SPEED"

\LPFP SPEED2. ASSOC | ATE COHPONENT\="LPFP, LPF S, LPFT"

\L P FP SPEED. SOURCE \="SYSTEH"

\LPFP SPEED.S! G#4A NANE\zO'Lp FTP SPD 104NF"

\LPFP SPEED. SEMSOR P ! D MUNBER\="32"

\LPFP SPEED.RELATED TO\="LPFP SPEED1"

\LPFP SPEED. NANE\="LPFP SPEED"

\LPFP SPEED .NEASUREI4ENT\:"CONST ! TUT ! ON'°

\LPFP SPEED. GENERI C_NANE\='SPEED, SPEED, SPEED"

\LPFP SPEED .ASSOC ! ATE CONPOMENT\:"LPFP, LPFS, LPFT"

\HPFP SPEED2. SOURCE\="SYSTEM"

\HP FP SPEED2. S ! GNA_NANE _" HPFP_SPD_104NF"

\HPFP SPEED2.SENSOR P!D NUNOER\=O'76&"

\ HPFP SPEED2. RELATED TO\s"HPFP SPEED 1"

\HPFP SPEED2. NN4E\,,"HPFP SPEED2 'o

\HPFP SPEED2.MEASUREMENT\="CONST l TUT ION"

\HP FP SPEED2. GENERI C NANE\="SPEED, SPEED, SPEED"

\HPFP SPEED2 .ASSOC XATE_CONPONENT\="HPFT, HPFS, HPFP"

\HPOT OS TMP B.SOURCE\="SYSTEM"

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HFOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPOT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

\HPFT

OS TMP

OS TMP

DS TMP

DS TNP

DS TNP

DS TNP

DS TNP

DS

DS

DS TNP

DS TNP

DS TMP

DS TMP

DS TMP

DS TNP

B. S ! GMA_NAME\=*'HPOT_T_9_I O_F"

B. SEMSOR_P I D_NUMBER\-"234"

B. RELATED_TO\="HPOT DS TMP1"
B.NANE\""HPOT DS TMP B"

§. MEASUREMENT \:"CONST i TUT !ON"

B. GENER ! C_NN4E\m"T_OUT, T_I N"

- - B. ASSOC !ATE_COMPONENT\="HPOT, 0207"

DS TMP

DS TNP

DS TNP

DS TNP

DS TMP

OS TMP

DS TMP

DS TNP

DS TMP

DS TNP

DS TNP

DS TMP

DS TI4P

DS TMP

DS TNP

DS TNP

TMP A.SOURCE\m"SYSTEM"

TMP A.SIGMA_NAME\="HPOT_T_A_IO4MF"

A.SENSOR_P!D_NUMBER\-"233"

A.RELATED_TO\="HPOT..DS_TNP1 o'
A.NAHE\z"HPOT OS TMP A"

A.NEASUREMENT\="CONST!TUTZON"

A.GENERIC_NA#4E_"T_OUT,T!N"

A.ASSOCiATE_COHPONENT\s"HPOT,O207"

A.SOURCE\=uSYSTEM u

A-SZGMA..NN4E%imHPFT T A 1OFd4F"

A.SENSCR..PID_MUNBER_"231"

A.RELATED_TO_"HPFTDS_TI4PI"
A.NAI4E\aNHPFT DS TMP A"

A.MEASUREHENT\m"CONSTITUTZON"

A.GENERIC_NAME\uUT_OUT,T_IN"

A.ASSOCXATE_C_ENT\=NHPFT,Fl11"

B.SOURCE\m"SYSTEN"

S.S|GMA_NAME_mUHPFT_T_B_IO4NF"

- - _B.SENSORPZD_NUMBER\="232"

- - _B.RELATEDTO\u"HPFT_DS_TMPI"

_ _ _8.NNE_uNHPFT DS TMP Bm

- - _B.HEAUEHENT\="CONSTITUTION"

- _ _B.GENERIC_NAHE\mNT_OUT,T_;N-

- - _B.ASSOCIATE_COHPONENT\="HPFT,F111"

Sep1910:121991parml.nxpPage7

\LPOP_SPEED.S_URCE\="SYSTEM"

\LPOP_SPEED.SIGi4A_NAME\-"LPOTP SPD 10/_4F"

\LPOPSPEED.SEMSOR_PID_NUI4BER\="30"

\LPOP_SPEED._ELATEDTO\="LPOPSPEEDI"

\LPOP_SPEED.NAME\suLPOP_SPEED"

\LPOP_SPEED.MEASUREIqEMT\s"CONSTITUTIOM"

\LPOP_SPEED.GEMERIC_MN4E\="SPEED,SPEED,SPEED"

\LPOP_SPEED.ASSOCIATECOMPONENT\="LPOP,LPOS,LPOT,,

\HPFPSPEED.SCiURCE\="SYSTEM"

\HPFPSPEED.SIGI4A_NAJ4E\="HPFTP SPD 106HF"

\HPFPSPEED.SENSOR_PIDMUNBER\="260"

\HPFP SPEED.RELATED TO\="HPFP SPEED1"

\HPFP_SPEED.NAME\w"HPFPSPEED"

\HPFPSPEED.NEASURENENT\="CONSTITUTZON"

\HPFP_SPEED.GENER;CNAME\="SPEED,SPEED,SPEED-

\HPFPSPEED.ASSOCZATECOMPONENT\="HPFT,HPFS,HPFP.
_ttw_te_w

Sep 19 10:12 1991 piourner Psge 1

\FPB. NAME\:" FPB"

\FPB. GAS_OUT\=="HPFT"

\FPB. FUEL_] N\:"F 110"

\FPB.OX_|N\:"FPOV"

\ FPE.ASSOCI ATE PARANETERS\='FPB pc,,

\ FPB. GENER 1C PARAHETERS\="pOUt"

\OPB. NAHE \="OPB"

\OPB. GAS_OUT\="HPOT"

\OPB. FUEL_I N\z"FIO8"

\OPB. OX_] N\= "OPOV"

\OPB • A$SOC XATE PARANETERS\="Not knowrl.
_tW/tttWtttCr

Sep 19 10:12 1991 pipe Page 1

\FIO1.NAME\='FI01"

\FIO1.MED%UN_OUTPUT\="HPFP"

\FIO1.NEDIUN_INPUT\="LPFP"

\FIOI.NEDIUM\="FUEL"

\FIOI.ASSOCIATE_PARAMETERS\="FUEL_FLOW,LPFPDS_TMP,LPFP_DS_PR"

\FIO1.GENERICPARANETERS\="Vout,Tin,pin"

\FIO2.NAME\="F 102"

\ F102. NED I UN_OUTPUT \ ="M FV"

\F 102.NED I UN_I NPUT\"*HPFP"

\FIO2.NEDIUM\="FUEL"

\FI02.ASSOC|ATE_PARANETERS\:"HPFP_DS_PR,HPFP_OS_TNP"

\FI02.GENERICPAR/LMETERS\="pin,Tin"

\FIOT.NAME\="FI07 u

\FIOT.NEDXUMOUTPUT\="NI03"

\FIOT.NEDtUM_INPUT\="N201"

\FIOT.NEDIUM\s"FUEL"

\FIOT.ASSOCIATE_PARAMETERS\="NotKnoum"
\FIO8.NAME\="FI08"

\FIOS.NEDXUH_OUTPUT\="OPB".

\FIOS.NEDIUM_INPUT\="NI03"

\FIOS.NEDIUM\m"FUEL"

\ F 108. ASSOC ZATE_PARANE TERS\="NotKnoun"

\FIOg.NAME\="FI09"

\F 109. NED ! UN_OUTPUT\="LPFT"

\FIOg.NEDIL__INPUT\"_CCCOOLZMG"

\FIOg.NEDIUN\mNFUEL"

\FIO9.ASSOCIATE PARANETERS\="MCC_CLNT_DS_PR,NCC CLNT DS TNP,LPFT INLET PR"

\FIO9.GENERIC. PARAMIETERS\="pin,Tin,pou_"

\FllO.NAME\s"FllO"

\FllO.MEDIUM_OUTPUT\="FPB"

\FllO.HEDXUM_INPUT\="M103"

\FllO.MEDIUM\="FUEL"

\FllO.ASSOCIATEPARANETERS\="NotKnmm"

\F111.NAME\="F111"

\F111.MEDIUNOUTPUT\="MCC"

\F111.NEDZUM_INPUT\w"HPFT"

\F111.NEDIL_\m"FUEL"

\ F 111 • ASSOC XATE PARAMETERS\="HPFT_DS TNP 1"

\ F 111. GENER l C PARANETER S\="T i n"

\0206 • NAME\'"0206"

\QZO6.NEDIUNOUTPUT\:"FPOV"

\0206.MEDIUN_INPUT\s"MI05"

\0200.MEO|UN\u"OX"

\0206.ASSOCXATEPARANETERS\z"PBP_DSTNPePBPDSPR"

\0200.GENERIC_PARAMETERS\="pin,pout"
_t_f_ttt_

Sep 19 10:12 1991 pump Poge 1

\LPFP.MANE\='LPFP"

\LPFP.HEDItX, I_OUTPUT\='FI01"

\LPFP.NEDIUM_INPUT\z"FUEL_TAMK"

\LPFP.NEDZUN_"FUIEL"

',LPFP.D]RECTION\="IN"

\LPFP.COUPLED_TO\z"LPFT"

\L_F_.ASS_C_ATE-_ARA_ETERS__ENG-FUEL-|NLET-_R'ENG-FUEL-_NLET-T___L_F_-SPEED1_L_F_-DS-_R'L_F_-DS-T__ M

\LPFP.GENERIC_PARANETERS\='pin,Tin,omega,pouc,Tout,,

\HPFP.NAME\='HPFP N

\HPFP.MEDXUM_OUTPUT\='FI02"

\HPFP.MEDIUN_IMPUT\="FI01"

\HPFP.NED1UN\:"FUEL"

\HPFP.DIRECTION\-'IN"

\HPFP.COUPLED_TO\s'HPFT"

\HPFP.ASSOC|ATE_PARANETERS\="HPFP_DS_PR,FUEL_FLOW,HPFP_SPEED1,HPFP_DS_TNP u

\HPFP.GENER1C_PARAHETERS\='pout,Vin,omega,Tout.

Sep 19 10:12 1991 tank Page I

\FUEL_TAMK.NAME\="FUEL_TANK"

\FUEL_TANK.MEDIUN_OUTPUT\="LpFp',

\FUEL_TANK.MEDIUN\="FUEL"

\FUEL_TANK.ASSOCIATE_PARAMETERS\="HPFP_SPEED1,FPB_PC,HPFT_DS_TMPI"

\FUEL_TANK.GENERIC_PARAMETERS\=-omegaopin,Tout-

\FUEL_TANK.ASSOCIATE_PARAMETERS\=.ENG_FUEL_INLET_PR,ENGFUEL_INLET_TMP"

\FUEL_TANK.GENERIC_PARAMETERS\:.pout,Tout,,
tw_eQt_tmw

Sep 19 10:12 1991 terminal Page 1

\ FUE L_TANK. NAME\="FUEL_TANK"

\FI I l .NAME\="FI 1 I"

\0206. NAME\="0206"

\OPB. NANE\:"OPB"

\M101 .NANE\="MI01"
_/Itttwwm

Sep 20 13:48 1991 trisptit Page 1

\M102. NAME\="M102"

\M 102. MED | UM_OUTA\="MCC COOLI NG"

\M102. MED!UM_OKJTB\=-NOZZLE_COOL] NG"

\M102 .MED l UM_OLITC\,,"CCV"

\M 102. MED ! UM_ I N \m"M FV"

\MIOZ.MED IUM\='FUEL"

\M102- ASSOC XATE_PARANETERS\:,,NotLnot._Iu
_tmttttt_w

Sep 20 13:68 1991 twojoin Page I

\H201.NAHE\="N201"

\H2OI.HEDIUM_OUT\="FI07"

\H201.HEDIUi__INA\="NOZZLE_COOLING"

\M201.MEDXUN_]NB\m"CCV"

\MZOI.MED]UM\:"FUEL"

\M201.ASSOCIATE_PARAMETERS\=-Notknok11-
tt/m.lm_Q_t

Sep 20 13:48 1991 twosptit Page 1

\M101. NAME\="M101"

\M 101. MED! UM_GUTA\="H POT_COOL 1NG"

\M101 .NED IUM_OUTB\="HPFT_COOL I NG"

\M101 .MED I LIM_! k _8"LPFT"

\M101.MED ILIM\u"FUEL N

\M101 .ASSOC I ATE PARAMETERS\z"Notknoun"

\M103. NAME\umM103.

\M103 .MED | LIM_OUTA\u-F 108.

\M103 .MED ! UM_OIJTB_"F 11 O"

\MIO3.MED IUM_I N\-"F 107 _'

\M103.MED 1UM\u"FUEL"

\M103.ASS(X:IATE_PARAMETERS\T-Not known-
/_lt_tQQ_lkQQlll

