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I. INTRODUCTION AND SUMMARY

consequences of the impact of a large SRM fragment on the Galileo GPHS-RTG. Fairchild
Space Company personnel first became involved in predicting the fesponse of the GPHS-RTG
to explosion and explosion driven shrapnel environments in June 1984, Because of this
cxperience, the authors were asked, in May 1986, to participate in the 51L explosion working
group activity then being initiated by JPL and KSC. The activity of this group involved
assessing the yield of the 51L external tank explosion if any; Predicting the environment
produced by a confined by missile (CMB) explosion of a Centaur G* had it been on board the
SIL, and predicting the velocity of the SRM fragments which were generated by the range
destruct action initiated at a mission elapsed time (MET) of 110 seconds. This latter effort

was subsequently enlarged to include al] SRM fragment information required for the Shuttle

120 seconds of SRM bum.



Calculational methods were devised to predict the velocity of the S1L. SRM fragments
produced by the 110 sec MET range destruct. These methods were exercised and calibrated
against the results determined by photographic interpretation of the PIGOR film record®®) of
the 51L event. Good agreement was obtained between the analytical predictions and the
experimental observations, and these results were first presented to the Shuttle Data Book
working group in September 1986. A circumstance of nature (the failure of the Titan 34D-9
SRM in April 1986) provided a datum against which to check the analytical models at early
MET (10 sec). Analytical models of the 34D were prepared and it was found that the methods
which had been used for performing late MET predictions underpredicted early MET SRM

fragment velocities by a factor of two.

After study of the 34D-9 films and a review of the analytical methods used, it became
obvious that allowances for effects of casing-grain debonding must be made when predicting
carly MET failures. A method for interacting the complex high pressure gas flow field with
the debonded casing and grain was devised. This method was first presented in a briefing at
JSC in February 1987, it was developed, refined, and implemented in the period between
September 1987 and January 1988. The effort described in this report constitutes the
analytical basis for the fragment velocities, velocity distributions, and azimuths which are

presented in the Shuttle Data Book.

The fragment-flow-field interaction pattern shown in Figure 1 is typical of the results
obtained using the described techniques. This particular model is of the forward cylinder of an
aft-center segment of an STS-SRM undergoing random failure at an altitude of 36,600 m.
Point calculations were performed at 10, 84, and 110 sec MET for both range destruct and
random failure cases. The detailed results of these calculations were transmitted to JPL and
GE on magnetic tape. A hard copy of those results is presented in Appendix A in some, but
not all, copies of this report.

A comparison of predicted and observed results for a variety of mission failure scenarios
is shown in Table 1. The predictions made using the methods discussed in this report were in

good agreement with observations made by others. It should be noted that, with one
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Table 1. Summary of the Predicted and Observed Fragmentation Response of
Several Vehicle Elements to a Number of Internal Pressure Environments
Booster / Event Vessel Failure Fragmentation jPredicted Range| Observed |Predicted Range| Observed
Pressure at MET Time® of Fragment Range of of Fragment Range of
Time of Velocities®® | Fragment Rotation Fragment
Initial Failure Velocities Rates® Rotation Rates
Bar $6C msec m/s mis Hz Hz
34D-9 Range
Destruct 54.5 10. 0-20 17-104 15-106!¢) 8-12 5-12
34D-9
Random'®
Failure 54.5 10. 0-201@ 15-111 15-114(! 8-12 5-12
STS Range
Destruct 60. 10. 0-20 2-108 - 1-12 -
STS Random
Failure 60. 10. 0-20 2-115 — 1-12 -—
STS Range
Destruct 41.4 84. 0-20 30-104 - 1-11 -
STS Random
Failure 414 84. 0-20 53-123 - 1-12 -
STS-51L Range
Destruct 31.0 110, 0-20 6-162 15-198 0-11 3-17
(Fwd. Cyl))
STS-51L Range
Destruct 310 110. 0-20 19.8-226. 15-198 1-19 3-17
(Aft. Cyl)
STS Random
Failure 3. 110. 0-20 3.-169. - 0-12 -
(Fwd. Cyl)

@Time after initial grain fragmentation at which casing fragments are generated. The latest time at which sheil stresses can be
supported by casing-materiais’' strength.
(BlA 320 m/s propagation rate is used to communicate the crack from segment to segment.
{©)gased on analyses of range data performed by Jaffe® using a six degree of freedom code.
(Mnstantaneous fragmentation is assumed in the randomiy failed segment foilowed by subsequent segment casing failure up to

20 msec after the arrival of a propagating (320 m/s) crack at the relevant segment boundary.

(®Ranges vary from early-fragmentation-large-fragments to late-fragmentation time-smali fragments adjacent to the initial
casing-crack free-surface.

" Note that all random failure generated fragment velocity ranges are for the fragmented cylinder. The cylinders adjacent to this
cylinder will have serially decreasing maximum fragment velocities. This decrease may be more than a factor of two when the
randomly failed cylinder is at a stack extreme. At low crack propagation rates the axtreme cylinder may not fragment.




éxception, the authors made their analytical predictions before they knew the corresponding
experimental results. This was purposely done to provide a single-blind experiment. A
complete explanation of the analytical methods developed and their boundary assumptions is

presented in the following chapter.

Shortly after this report was issued in draft form, analysts from the Naval Surface
Warefare Center (NSWC) presented the results of their analytical studies of potential SRM
fragment velocities. These studies resulted in their prediction of higher fragment velocities at
early MET and lower fragment velocities at late MET than are presented in the report at hand.
NASA management convoked an ad hoc Committee chaired by Dr. Franklin Moore to study
the analytical methods and boundary condition assumptions used by both sets of investigators
and to reconcile the different velocity predictions if possible. A large amount of new material
was developed to answer questions raised by the Moore Committee. This material, in all
cases, confirmed the efficacy of the methods used. It does not, however, provide a detailed
fragmentation mechanism which could be developed from first principles. Subsequent
analyses have shown that the fragmentation mechanism requires detailed modeling of the

SRM cylinder joints before it presents itself.

The material presented to the Moore Committee in defense of the methods used in the
study at hand is included in an Epilogue to this document. Detailed three-dimensional
calculations which identified the SRM fragmentation mechanism have been presented in
subsequent reports by the authors. The findings of the Moore Committee are a matter of

public record.



[I. TECHNICAL DISCUSSION

The initial approach taken to predicting the SRM failure-generated fragment
environment was somewhat conventional. The modeling methods involved defining a gas flow
field in an Eulerian coordinate system, defining an SRM casing structure in a Lagrangian
coordinate system and coupling the two coordinate systems. The flow field definition required
knowledge of the vessel internal pressure at the time of failure and the Physical properties of
the expanding gas. The shell modeling required knowledge of the materials of construction of
the vessel and its detailed geometry. All fragment velocity calculations were performed in
two-dimensions using X-y wranslational symmetry arguments. The flow fields and the chamber
longitudinal pressure distributions for random failure cases were calculated in two-dimensions
using an axisymmetrical argument. The Physics-Intcmational-dcveloped finite-difference
continuum-mechanics code PISCES(11) was used to mechanize the computational process. It
soon became apparent that while the methods originally employed were computationally
sound, the assumption that chamber pressure acted only on the inner surface of the grain was
not sound. Further, it was clear that different failure mechanisms were at work when large

amounts of grain were present and when they were not (early MET and late MET).

caused by random and range destruct actions.

The material in the following sections describes the methods used to predict fragment

velocities, azimuths and rotation rate generated by:

A. SRM Range Destruct Actions
B. SRM Random Failures



Fragment environments generated by range destruct actions and random failures
occurring at 10, 84 and 110 sec MET were predicted by applying the methods presented in the

following sections. More detailed results of these predictions are presented in Appendix A.

A. SRM Fragmentation Resulting From

Range Destruct Actions

Initial calculations were performed to determine if the available codes and models could
be used to make approximately correct predictions of fragment velocities resulting from range
destruct actions. These calculations were also used in an attempt to define mechanistic SRM
casing and grain failure models. Even when traveling stress waves generated by the linear
shaped charge (LSC) were included, the predicted stress levels never exceeded the yield
strength of the D6A steel used in the SRM casings. The possibility of three dimensional
bending effects was considered but Euler calculations showed very rapid decreases in chamber
pressure with time. It was not clear how bending waves (which travel at about 20 percent of
the sound speed) could affect the largely two dimensional local casing bending in the 20-40
msec available. It rapidly became clear that the time at which the SRM casing fragmented was
controlled by statistical phenomena such as the location of crack nucleation sites, complex
bending wave interactions, and the notch sensitivity of the casing steel. Since no micro-
failure-mechanism could be identified, it was concluded that the efficacy of any analytical
model must be evaluated on a macro scale. The only reasonable way to accomplish this was to
compare predicted results to observations made of actual SRM failures. It was reasoned that
the ground location of the fragments resulting from the Titan 34D-9 failure would give reliable
witness to the time after initial casing failure at which these fragments were generated.
Combining these early MET range data with late MET STS-51L photo data would provide a
reasonable data base against which an analytical model could be calibrated.

The approximate time of casing fragmentation was important to the safety analysis
because this time has a first order effect on fragment azimuth and a second order effect on
fragment velocity. Fragment-RTG hit probability, therefore, becomes a strong function of

fragmentation time. It was known that the circumferential shock transit time of the 34D-9

7



casing was approximately 2.5 msec. It wag unlikely therefore, that fragmentation could occur
less than 2.5 msec after the formation of the first casing-crack free-surface. Crack propagation

in the PBAN fuel is significantly slower than in steel and flame Propagation is even slower.

confused with LSC initiation time or first casing-crack free-surface formation time which may
be up to 15 msec earlier, This distinction is important because the mass of chamber gas does

not begin to decrease until the first flow-passage through the grain is generated. Since there is

The two-dimensional Eulerian-Lagrangian-coupled calculations shown in Figure 2 tied the
rate of chamber pressure decrease to the movement of the SRM casing. The casing movement
Wwas assumed to be a "clamshel]” opening about a hinge point located 180 degrees from the
initial casing fracture. Additional calculations were performed which allowed arbitrary
geometric fragmentation of the casing. Although arbitrary, the selection of these fracture
locations was based on first hand inspection of the fragments from 51L and a review of the
photographic Teconstruction records of 34D-9. The results of these calculations are presented

in Figure 4. These initial calculations were based on the assumption that the chamber pressure
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acted only on the inside diameter of the PBAN grain and accelerated the chamber casing and

grain as a single body.

The forces acting on the PBAN grain shown in Figure 2 and Figure 4 were predicted
using a 5,000 zone Eulerian model of the gas flow field which had a minimum cell size of
15 cm x 30 cm and was further defined by the nature of the PBAN gas and its current
pressure. The rate at which the SRM casings deformed was controlled by the strength of the
Lagrangian modeled casings and grains, and their inertias. Component inertia was by far the
controlling effect. Initial predictions made for early MET were found to be in error because
they did not consider the flow field which resulted if PBAN -casing debonding occurred. This
debonding led to a very different model of the forces applied to the SRM casing. As a result,
it was necessary to develop separate models for fragmentation when there was a large
difference in the PBAN grain inertia and the casing inertia. Debonding due to inertia
differences had to be considered when PBAN grain thicknesses were greater than 15 cm.
These models are called "thick grain” and "thin grain.” They will be discussed in tumn,

1. Early MET Failure (Thick Grain Models)

The basic approach taken to the early MET failure effort was to propose a process for
the SRM break-up, analytically model that process, exercise the model to predict resulting
fragment velocity and azimuth and compare those predicted results to velocity and azimuth
results inferred from the recovery location of the Titan 34D-9 SRM fragment. Specifically,
the developmental models duplicated the geometry and mass of pieces 497, 538, 1109C and
1109G of Segment 1, SRM-1 of the Titan 34D-9.

The processess by which: the rationale for the analytical models were developed; these
models were calibrated; and they were used to predict the SRM fragment velocities and
azimuths resulting from various SRM abort events, are presented in the following subsections.

These subsections are:

a. MODEL DEVELOPMENT
b. MODEL CALIBRATION
¢. MODEL APPLICATION

12



a. MODEL DEVELOPMENT. While performing the calculations which led to the results

shown in Figure 2, it was noted that the strain energy stored in the SRM casing was released

very quickly after the initial fracture. The unit-strain energy stored in the PBAN is much less
than that stored in the SRM casing. Because of its lower stored energy, lower sound speed,
and greater mass, a considerable debonding force occurs at the PBAN -casing interface when
the linear shaped charge (LSC) is initiated in a destruct action or a random-crack free-surface
is generated. The resulting circumferential “twang" produces a high tangential and a lower but
still significant radial casing velocity relative to the grain. This relative motion debonds the
casing from the grain. Although the grain initially expands radially, it soon cracks and
produces gas passages into the cavity which forms between the grain and the casing. After
some initial grain oscillations, this cavity fills with hot gas from the chamber. The chamber

gas exerts a force directly on the casing at this time.

1. Material Properties Effects. Variations in the material properties used in the

Lagrangian model of the casing and fuel were modeled to investigate the debonding and cavity
formation phenomena in greater detail. This model incorporated 182 casing zones and 546
PBAN grain zones. Material properties and property ranges used to exercise this model are

presented in Table 2.

Figure 5 shows the geometry of a 34D casing which has undergone a casing failure, but
has not yet suffered grain or casing fragmentation. The geometric model shown was described
above and uses the UTC(]) properties shown in Table 2. This model was exercised to define
the sensitivity of grain fragmentation to the values of PBAN material properties used.
Detailed traces of the deviatoric stresses and the strain rates at a point four inches inside the
inner diameter and 12.5 degrees from the initial-casing-crack free-surface are presented in

Figure 6 and Figure 7.
The Von-Mises strain model invokes plasticity when three times the second invariant of

the stress tensor (12’) equals the material yield strength squared. Plasticity onset may be

inferred from the times at which the deviators plateau. Examination of Figure 6 leads to the

13



Table 2. Properties of Materials Used in the TITAN 34D SRM

Material(" Casing Grain Grain
(Solid) (Reaction Gas)
Type D6A Steel PBAN PBAN
Equation of State
Polynominal
Young's Modulus, kbar — .03779-0.121@
Bulk Modulus, kbar 1670. 10.5-33.5 -
Poissons’ Ratio 0.3 0.4994 —
Reference Density (o), gm/cc 7.86 1.775@ —
Gamma
Y — — 1.142
Specific Internal Energy, eu®(© — — 0.0672
Reference Density (0,), gmicc® — - 0.00571
Yield Model Von Mises Von Mises —
Shear Modulus , kbar 816 0.0126-0.0403 —
Yield Strength, kbar 12.9 0.00877-0.0483(9) —
Spall Strength, kbar 1000. 100. —
Elongation to Failure, % 10. 26.-52.
Cylinder
Areal Density, kg/cm 7.69® - -
Thickness, at 0 sec met, cm typ. 0.95 min 0.88 87.2 fwd-100. aft —
Height, at 10 sec met, cm 310.6 301.6 —
Inner Diameter, at 10 sec met, cm 304.8 122.7-148.1® -
Outer Diameter, at 10 sec met, cm 306.6 304.8 —
Flange
Areal Density, kg/cm 8.67® — —
Height, cm 33 — —_
Piece 497
Average Areal Density, kg/cm 1.258 - —
Ave. Circumferential Extent, deg 57 — -

@The rubber inhibitor is treated as having the same physical response as solid

adjusted from 1.76 gmi/cc to account for the presence of the inhibitor.
(blvaries with burn time. See Figure 8 and Table 4 for typical geometry and pressure response.

©)One eu is 102 ergs.

@One of 12 pieces used to calibrate the model.
®includes mass of V2 original rubber insulation.

At 75°F. Thiokol Data!'?.

(@Results of dogbone tests at elevated strain rates. UTC Data'").
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conclusion that material properties uncertainty produces an uncertainty of a factor of two in

the time of plastic flow onset.

Examination of Figure 7 shows that strain rates at the point of interest vary from
essentially static to 30 per second. Elevated strain rates usually affect only the traditionally
non-liner properties of a material; however, with PBAN the effects of the large implied elastic-
strain regime are uncertain. The material properties of the PBAN are important in establishing
a proper physical model. This material is rubber-like and has a reported Poisson ratio of
0.4992. Poisson ratio is normally a small strain concept. It is usually determined by placing
thin "poker chip” type samples in tension and measuring their resulting height decrease. Table
2 shows that the yield strength of PBAN is between 20 and 30 percent of the reported Young's
modulus. This would imply the presence of a very large elastic strain prior to the onset of
plasticity. It is unlikely that Young's modulus would remain linear over such a range of
elastic distortion; however, no strain-dependent modulus information was avaiiable. Although
it is not shown in Table 2 the further implication is that about half the strain-to-failure would
occur in the elastic portion of the loading curve; however, one would have to know the nature
of the unloading curve to say this with certainty. The Thiokol data show that the PBAN strain

to failure is anisotropic. No attempt to incorporate anisotropy into the model was made.

The effects of large elastic strains prior to plasticity onset are illustrated in Figure 8.
Effective stress is defined as V3 12’. Note that a large amount of PBAN has exceeded the
plastic flow criteria relatively early in the event. An attempt to develop a failure criteria was
made and is presented in Figure 9. It is assumed that the failure strain given in Table 2 sources
are engineering strains, (l-lo)/lo. rather than the natural strain, In (1/10), used in PISCES.
Figure 9 shows a composite curve of the elastic and plastic strains obtained from assuming
linear elastic behavior for PBAN prior to the onset of the PISCES predicted plasticity. Note
that fragmentation is strongly dependent on the value of strain selected as a failure criteria. A
further limitation of any linear elastic model with a Poisson ratio nearly equal to 0.5 in that
there is no PdV work involved. Given the available properties of PBAN, this implication

seems unlikely. It was concluded from these results that a reliable grain fragmentation model
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could not be generated because there were too many uncertainties in the fracture mechanics of

PBAN.

Additional analyses were performed to see if the model could be desensitized to the effects
of grain fragmentation. Slide line logic had already been incorporated in the model discussed
above between the casing and the grain. The purpose of this logic was to investigate the
potential effects of tractive forces (friction) at this interface. Additional slide line logic was
provided between four 45 degree sections of grain to provide time-zero grain defects. It was
reasoned that a material with a Poisson ratio of 0.4994 would undergo considerable
circumferential growth while undergoing radial contraction. As shown above, failure does not
occur from hydrostatic loads; it occurs from deviatoric stresses. The actual value of deviatoric
stress at which the grain would fail would be difficult to predict. As was shown, there are few,
if any, reliable data for the value of PBAN yield strength at destructive-disassembly strains
and strain rates. The slide lines at the 0, 45, 90, 270 and 315 degree location would give
witness to the time at which the compressive circumferential force was lost. This witness
would manifest itself as a gap opening between the grains. It was also reasoned that gas would
begin to flow from the chamber into the cavity which forms between the grain and the casings

at the time at which these gaps begin to open.

The development of the SRM-casing "twang" is shown in Figure 10. Details of selected
interesting areas of Figure 10 are shown in Figure 11. The particle velocity vectors show that
activity has traversed 90 degrees of casing in the first 500 usec after the generation of the
casing-crack free-surface. A substantial cavity is seen developing 180 degrees from the crack
initiation site after 2.0 msec. This cavity persists at 4.5 msec since the grain dilation, because
of its higher inertia and lower wave propagation speed, has not yet accelerated sufficiently to
keep up with the casing. The expansion of the casing inner diameter can be noted after about

2.5 msec.

An algorithm was needed to relate chamber pressure to chamber inner diameter. The
argument could be made that increasing inner diameter causes increased burning surface which

would raise the mass flow rate of gas into the chamber. Conversely, increasing chamber inner
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Cetail from Figure 10 Showing Retrograde Motion of
Casing-Edge Vectors at Casing-Crack Initial Free-Surfaces

Ik’
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Time = 4.5 msec

Detail from Figure 10 Showing Persistance
of Cavity Between SRM casing and Grain
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Figure 11. Detail of Indicated Zones of Interest in Figure 10
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diameter would increase the chamber volume and this would reduce the buming rate by the
cube root of the chamber volume ratio. Since both these effects would take time, and the total
event time could be recorded in tens of milliseconds, the authors evaluated the earlier work on
short-time energy addition effects and chose to assume that the mass of the gas in the chamber,
its gamma and it specific internal energy remained constant until radijal outflow from the
chamber began. The time at which this radial flow began would be taken as the time that gaps
opened between the PBAN slide lines at the 45 degree incremental locations. Armed with this
logic, the authors intrepidly assumed that the chamber pressure simply tracked the chamber

volume as the grain inner diameter increased.

It was reasoned that the grain distortion caused by the casing-grain interfacial tractive
forces would produce large stress discontinuities at the outer diameter of the grain. These

forces would then Produce a series of flow channels near the casing edge as the stress

PBAN fracture mechanics as possible. While we were aware of the physical realities of grain

flow passage development delay, we felt that the model described above was too uncertain a
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model used to produce the input to the Shuttle Data Book was developed. The details of this

model will be presented in a subsequent section.

2. Models Proposed by Other Investigators. Some calculational methods currently in use

are based on the assumption that the total available chamber impulse may be applied directly
to the SRM casing to obtain fragment velocity. This assumption is incorrect because it
invokes a static pressure field and ignores the pressure drop and mass losses which occur
between the chamber and the casing-grain cavity. In the highly dynamic flow field which
occurs during SRM fragmentation, it is patently unreasonable to assume that the velocity of
the gas flow into the region between the grain and the casing is subsonic. The pressure ratio
which exists between the chamber and this cavity will be determined by the physical
properties of the gas and the flow area into and out of the cavity. Given that these flows will
be supersonic, the pressure ratio between the chamber and the cavity will be about 0.5. This
means that the pressure acting on the casing fragment will be about one-half of the chamber
pressure. Because of the importance of the gas flow into the cavity, a very detailed (one cm
square zoning) model of the cavity and chamber flow interaction was developed to test this
postulate and to assess the magnitude of the effective static pressure which could occur in this
cavity during SRM fragmentation. The authors chose to model this cavity development at the
location of the initial fracture; however, this is not a requirement of the scenario. The model is

typical of any grain-crack casing-edge interaction.

In addition to the above, several investigators have pointed out that there is a gap
between the grains where each cylinder is joined. Gas from the chamber can flow through that
gap and into the cavity formed between the fuel and the casing. Indeed, there can be a three
dimensional flow field; however, this flow field must be properly defined. A detail of this gap
is shown in Figure 13. Examination of this figure shows that the flow area to feed the grain-
casing cavity is quite small at early MET. Burning increases the width of this gap and
decreases the length of the gas flow path as MET increases. Thus, at early MET the ability of
the available mass flow rate to maintain cavity pressurization by this method will be highly
questionable. At late MET this cavity pressurization method becomes more reasonable. It

should be noted that the cavity produced at the 180 degree location shown in Figure 11 can
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communicate with the gas in the gap between grains. This could pressurize the cavity until the
grain flow closed the cavity or it could prevent the grain from expanding by equalizing the
pressure. If the pressures on the grain inner and outer diameters equalize, the grain outer
diameter will transiently contract because of the greater PA force. This would tend to increase
the cavity volume. In any event, it is unlikely that this flow pathway could keep the cavity

pressurized after initial casing displacement.

Examination of Figure 13 also shows that the flange is a significant reinforcement. The
areal density of the flange region is twice that of the casing. Further study of Figure 13 shows
that the Titan 34D-SRM casing flange is somewhat more robust than the STS-SRM flange. In
addition, the 34D-SRM has no LSC on the flange. The STS-SRM is fitted with a 1000
grain/ft HMX-LSC along the entire length of the casing (except for the three aft cylinders)
including the flange. The likely development of the casing grain cavity formation and SRM
fragmentation is shown in three dimensions in Figure 14. '

Given the greater areal density of the flange region and, in the case of the 34D-SRM, the
lack of an LSC, it is difficult to see how gas flowing supersonically from the chamber could
negotiate the right angle tumn into the cavity from the zone between the grains. Clearly the
higher areal density of the flange region will result in a lag in its radial expansion relative to
the casing center region. Further, it is unlikely that, once fractured, the PBAN grain will
remain stationary during the disassembly process. The grain is acted upon by the chamber
pressure on its inner diameter and by the cavity pressure on its outer diameter. It will remain
stationary only if the forces generated by the pressures acting on these areas are equal. The
maximum cavity pressure will be set by a complex material balance between what flows into
and what flows out of the cavity. The supersonic nature of the flow field must be modeled
analytically and any assumption of equal cavity and chamber pressures is demonstrably
incorrect. Preliminary calculations showed that additional gas flow passages through the grain
would begin to develop in the first § msec after initial grain failure. Although the authors
chose to provide initial cracks in the fuel model, these cracks were not assumed to be caused
by the LSC. They were assumed to result from the expansion of the grain caused by the

chamber pressure acting on the grain inner diameter, by the radial tensile waves generated by
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the release of the casing hoop constraint, and by the stress discontinuities generated by the
tractive forces at the casing-grain interface. It was felt that any delay in grain fragmentation
may delay the initiation of chamber pressure decrease but such a delay will change its initial
magnitude only to the extent that the chamber volume increases. Therefore, the zero time used
in our models is the time of first crack propagation from the casing to the chamber, not the
LSC initiation. The authors felt that the uncertainties associated with the actual fracture
mechanics justified the use of a two-dimensional radial flow mode] which ignored longitudinal
flow into the cavity. It is the authors’ judgement that this assumption does not significantly
affect the results predicted for the range of various SRM fragment environments studied.

3. Model Used for Shuttle Data Book Input Geometries. A simplified 2-D model of the

actual problem geometry is presented in Figure 15. This model does not attempt to determine
grain fragmentation time, nor is it dependent upon a precise prediction of the actual chamber
pressure at the time of grain fragmentation. The assumption is that the maximum chamber
pressure is available to accelerate the casing fragments at the time of casing failure. This
assumption should result in the prediction of the highest possible fragment velocity. While
this model does not include cavity feed from the cylinder ends (z-flow), it does include
stagnation and circumferential flow effects. In this model, the degree to which a casing
fragment is in the lee of a grain fragment affects the ability of the pressure which acts on the
fragment to reach its theoretical maximum. Fragment-to-grain orientation then becomes a
statistical variable by which to account for the observed fragment velocity distribution. The
assumption of a casing lip projecting into the supersonic flow stream Provides a mechanism
for pressurizing the cavity. As previously noted, it is not a requirement that this lip be placed
at the location of the LSC or the initial casing-crack free-surface. It is only necessary that it
occur opposite a flow passage which has been created by grain fragmentation. This
mechanism produces a pressure acting on the fragment area which is believed to be essentially
correct regardless of the details of the flow and fragmentation process. A detail of the one cm
square zoning coupled Eulcrian-Lagrangian model which shows the interaction of the various

flow and mass components is presented in Figure 16.
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Calculations of this type were performed for a number of SRM geometries at various
mission elapsed times (MET). These calculations varied SRM diameter, casing areal density,
grain thickness and chamber pressure. They were generated to provide forcing functions for a
study of the sensitivity of the fragmentation process to these variables. While assembling
these results, Peter J affc(z) noted that it was possible to normalize across the MET and SRM-
type domains and to produce a set of curves which related cavity pressure to chamber pressure
for any MET and time-after-initial casing failure. These curves are presented in Figure 17.
The existence of a single functional relation for cavity and chamber pressures across the MET
and SRM-type domains greatly simplified the problem of predicting SRM fragmentation
response. Because of this relation, the computational process could eliminate the Eulerian
portion of the problem. The casing fragmentation process could be approximated by applying
the appropriate pressure from Figure 17 as a stress boundary to the grain inner diameter and
outer diameters, and to the casing inner diameter. The extant atmospheric pressure was

applied to the casing outer diameter to develop the appropriate net casing accelerating force.

b. MODEL CALIBRATION. It was necessary to calibrate the early MET model to
establish its credibility. No early MET STS-SRM failures had occurred; however, the Titan
34D-9 had failed at 10 seconds MET. It was felt that the 34D-SRM would be similar to the

STS-SRM in fragmentation response. The Titan 34D-9 event was useful not only in that it
provided fragmentation information against which the analytical model could be calibrated,
but also because it contained both a randomly failed booster (SRM-2) and a range destructed
booster. As in the case of the 5 1(12), the 34D-9 casing had fragmented into large sections
which could be defined approximately as octants, quadrants and halves of the casing. Only the
single randomly failed segment of SRM-2 was fragmented into a significant number of pieces
smaller than an octant. There were obvious detail differences between the 34D-SRM and the
STS-SRM. Nevertheless, it was reasoned that if good predictions of the 34D-9 fragment
environment could be made the efficacy of the modeling process would be established and it

could be extended to predict STS-SRM fragmentation response.

A detailed model of the Titan 34D-9 event was prepared. The properties of the

materials used in the preparation of this model were previously presented in Table 2. The
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model geometry approximated that of the fragments from SRM-1 and SRM-2 known to have
been created in the abort. Each of the five SRM segments was zoned into fragments of the
observed circumferential extant. The initial stress distribution within the casing and PBAN
was developed by applying the chamber pressure extant at 10 sec MET as a stress boundary to
the inner surface of the PBAN prior to the initiation of the casing failure. A casing fault was
introduced into the model and the relevant cavity pressure time-history from Figure 17 was
applied to the casing inner diameter and the grain outer diameter. The relevant chamber
Pressure time-history was simultaneously applied to the grain inner diameter. Again note that
zero time in all the time-history curves is the time at which the first continuous crack develops

between the chamber and the casing.

The development of the fragmentation pattern typical of the boosters studied is shown in
Figure 18. This fragmentation pattemn is for segment 1 of SRM-1. The sensitivity of fragment
geometry and velocity to the time after initial fracture at which fragmentation occurs is shown

in Figure 19.

The x and y velocity of each Lagrangian zone are calculated within the code and
archived. An edit routine sums the squares of the x and y velocity of those models which
constitute a recovered fragment. The velocity of a fragment then is determined by extracting
the square root of the sum of the squares of the x and y velocity. The azimuth of a fragment is
calculated by determining the arctan of the ratio of fragment x and y velocity and relating this
angle to the proper quadrant. A study of Figure 20 is especially instructive. It shows, in

general, that:

1)  Fragments adjacent to the initial failure point attain the highest velocities.

2) Given the same orientation to the point of initial failure, smaller fragments reach

higher velocities than do larger fragments.

3) Up to a point, fragment velocity increases with increasing time between initial

casing failure and casing fragmentation (fragmentation times).
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Further examination of Figure 20 shows that maximum fragment velocity is not a strong
function of casing fragmentation time for carly-MET range- destruct cases. It is difficult
therefore to establish casing fragmentation time by comparing the predicted fragment
velocities to the velocities inferred from the range and the abort positions at which the
fragments were recovered. It was reasoned that fragment azimuth might be more sensitive to
casing fragmentation time than velocity would be. The azimuths of the fragments presented in
Figure 20 and Figure 15 are presented in Figure 21. Examination of Figure 21 shows that the
azimuth of the fragments adjacent to the initial fracture surface are relatively sensitive to
casing fragmentation time. In addition, it is seen that the azimuth of the smaller fragment

(fragment 4) is more sensitive than is the azimuth of the larger fragment (fragment 1).

Given that the smaller fragment adjacent to the location of initial casing failure is the
most sensitive indicator, it was reasoned that grouping the four fast fragmeﬁts (fragment 4)
shown in Figure 20 might be instructive. The results of this cross plot are shown in Figure 22,
It is seen that fragment velocity is not a sensitive indicator of fragmentation time but azimuth

is.

A detailed comparison of the results of sensitivity calculations to the observations made
for the 34D-9 event is presented in Table 3. The effects of arbitrarily reducing the maximum

predicted cavity pressure to capture the observed data base are also shown in this table.

The computational methods described slightly over-predicted the maximum velocities
observed in the 34D-9 event. Detail differences, which were noted when comparing lower
velocity fragment observations to predictions, all fell on the side of lower apparent cavity
pressures existing in the event than were predicted. Several reasons for the existence of lower
than critical pressure ratio inferred pressures in the cavity have already been discussed. No
theoretical reasons for the existence of higher than predicted cavity pressures (other than three-
dimensional flow effects) have been identified nor have any observations shown that higher
than predicted cavity pressures occurred in the single abort which was available for detailed
study. It was noted that the fragments which were clockwise from the LSC (North trajectory)
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attained higher velocities than those which were counterclockwise from the LSC. The
mechanism for producing short range and long range cutline fragments is probably related to
the degree to which these casing fragments were in the lee of grain fragments and to the timing
of the casing-grain debonding. These factors are statistical in nature and no attemnpts to infer
mechanistic causal relations were made. The entire fragment velocity domain of the 34D-9
event could be captured using a 20 to 100 percent range for the cavity pressure forcing
function shown in Figure 17. It should be noted that these same observed lower velocities
(labeled short range in Table 2) can be predicted by assuming that the casing and PBAN grain
do not debond and that they move as a single body (Figure 2). The agreement obtained
between predictions and observations was considered sufficiently good to establish the
efficacy of the modeling process, for use in generating an STS-SRM fragmentation statistical

data base.

¢. MODEL APPLICATION. A detailed model of the STS-SRM was prepared using

the same early MET modeling process that was calibrated against the Titan 34D-9 event. The

prcdictcd(G) chamber pressure time-history for an STS-SRM is presented in Figure 23. The
STS-SRM gas and grain characteristics are presented in Table 4. Additional characteristics of
the STS-SRM are presented in Table 5.

The development of a typical assumed STS-SRM fragmentation pattern is shown in
Figure 24. The sensitivity of the fragment geometry and velocity to fragmentation time is
shown in Figure 25. Figure 25 is analogous to the 34D-9 results shown in Figure 20. Identical
trends and slightly lower abso- lute values of velocity were noted between the STS-SRM and
34D-SRM fragments when using identical boundary assumptions. Figure 26 shows the
sensitivity of fragment azimuths to casing fragmentation time. Figure 27 is a cross plot of the
fast fragments (fragment 1) from Figure 25 as well as a restate- ment of the variation of
fragment 1 azimuth as a function of fragmentation time. Figure 23 compares to Figure 19 of
the 34D-9 calibration analysis.

Additional calculations for 10 second MET failures were performed at a number of

assumed fragmentation times to create a statistical data base for the Shuttle Data Book. These
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Table 4. STS-SRM Propellant Characteristics®

Fiight . Propeliant Bum ! Propellant Chamber Chamber Pressurs (psia)
Time ! Weight (ib) |  Radius Bum Area | Volume
(sec) | i (im (in?d | (in% Head At End
! ] 1108355 | 30698 4613360 } 4365466.0 | 8315 759.5
6 i 1,051,639 ¢ 32605 . 4779940  5258631.4 i 848.2 794 .4
12 } 981,275 34911 1 487578.0 " 6366725.8 850.1 809.3
18 ¢ 909,343 | 37224 | 4953700 | 7499513.2 852.4 820.0
24 ‘ 840,987 39.503 469380.0 8575985.7 7719 7475
30 781,382 41.707 4400320 9514647.1 700.5 681.6
38 726,201 43.844 419440.0 | 10383639.2 6447 629.7
42 673,831 45919 400537.0 11208363.8 591.4 579.5
48 624,044 47.943 385587.0 11992410.9 £568.9 547.2
54 575,407 49.937 382237.0 127583479 541.7 533.5
60 526,297 51.926 390886.0 13531733.7 548.1 540.7
66 476,284 §3.928 396986.0 14317765.2 561.1 554.3
72 | 424,727 §5.948 409223.0 151312613 577.8 571.5
78 370,760 57.988 421554.0 | 15981135.3 588.4 582.9
84 314,736 60.037 4247820 16863403.0 597.8 592.7
90 258,294 62.099 432484.0 | 17752253.4 | 606.2 601.7
9% 200243 | 644171 440387.0 | 186664424 | 6153 611.2
102 ’ 143,571 66.239 425018.0 | 19558914.8 587.9 E 594.3
108 89,025 | 68331 408811.0 | 20417906.9 | 5645 561.4
110 ) 71,584 ; 69.019 400355.0 | 20692568.4 551.8 548.7
112 54,717 ‘ 69.682 \ 386063.0 | 20958190.4 537.1 534.3
114 39,054 ¢ 70.329 383733.0 | 21204851.8 473.0 4706
116 24,368 ’ 70.939 333787.0 21436158.9 382.8 380.8
118 i 13,310 71489 ; 262552.0 | 21610269.1 252.7 251.4
120 5,975 71.957 1868429.0 21725781.0 148.0 148.3
122 l 2,383 72312 | 69990.0 217823479 32.9 32.7
124 2,246 [ 72.520 ’ 9093.0 21784505.4 { 6.7 6.6
Chamber Pressure ‘ Chamber Gas Temperature Chamber Gas Density
(psia) (*°K) {RHO, gice)
5 2911 3.8226-5
15 3027 1.1170-4
25 3081 1.8399-4
50 3154 3.62394
100 3228 7.14344
150 3267 1.0629-3
200 3295 1.4094-3
250 3317 1.7545-3
300 3334 2.0985-3
350 3349 2.4418-3
400 33681 2.7840-3
450 3372 3.1257-3
500 3382 3.4869-3
550 3390 3.8076-3
600 3388 4.1479-3
650 34058 4.4878-3
700 3411 4.8274-3
750 3417 5.1667-3
800 3423 5.5056-3
850 3428 5.8443-3
900 3433 6.1828-3
950 3437 6.5211-3
1000 3442 6.8591-3




Table 5. Properties of Materials Used in the STS-SRM

Material® Casing Grain Grain
(Solid) (Reaction Gas)
Type D6A Steel PBAN PBAN
Equation of State
Polynominal
Young’s Modulus, kbar - 0.0455(9-0.121(®
Bulk Modulus, kbar 1670. 12.619.33.5 —
Poissions’ Ratio 0.3 0.4994 —
Reference Density (0,), gm/cc 7.86 1.775@ -
Gamma
Y®) — - 1.142
Specific Internal Energy, eu!®¥e) - - 0.0672
Reference Density (p,), gm/cc® - - 0.00571
Yield Model Von Mises Von Mises -
Shear Modulus , kbar 816 0.01269-0.0403 -
Yield Strength, kbar 129 0.0087'9-0.0483 -
Spall Strength, kbar 1000. 100. —
Elongation to Failure, % 10, 26.-52. —
Cylinder
Thickness, cm 1.22 ~115, -
Height, cm 410.7 ~400. —_
Diameter, cm 365.8 363. -
Membrane Mass, Kg 330 - —
Joint Mass Averaged Over Cylinder, kg 53. — -
Total Cylinder Mass, kg 383. — —
Fwd Cylinder-10 Sec MET
PBAN, kg — - —
Insulation Averaged Over Cylinder, kg 235 - -
Total FWD Cylinder, kg 406 — -
Fwd Cylinder-110 Sec
PBAN, kg — 422.2 -
Insulation Averaged Over Cylinder, kg 17.2 - -
Total Cylinder Mass, Kg 822. - —
Aft Cylinder-110 Sec MET
PBAN, kg 67.8 68.6 -
Insulation Averaged Over Cylinder, kg 46.1 - -
Total Aft Cylinder, kg 500. - -

@ The rubber inhibitor is treated as having the same physical response as solid grain.

The PBAN grain [A is adjusted from 1.76 gmicc to account for the presence of the inhibitor.
(®Naries with burn time. See Figure 13 and Table 4 for typical geometry and pressure response.

©)One eu is 102 ergs.
(DAt 75°F. Thiokol Data(1d),

(®)Resuilts of dogbone test at elevated strain rates. UTC Data(?
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results were transmitted to JPL and GE on magnetic tape and are full documented and

reproduced in Appendix A.

Stress boundary calculations using the thick grain models were performed at 84 sec
MET for a number of fragmentation times to create a statistical data base for the Shuttle Data
Book. The results were similar to those shown above. The details of these calculations are not

presented here but they are fully documented in Appendix A.

2. Late MET Failures (Thin Grain Models)

Late MET is defined as the time at which the grain has bumed down to a thickness small
enough such that its extant inertia and stored strain energy allow the grain to track the
circumferential "twang"” of the casing. Under these conditions no debonding occurs, and no
cavity between the grain and casing is formed. It is much less difficult to model late MET
failures than early MET failures. In late MET failures the fragmentation forcing function is

generated by simply applying the chamber pressure to the inner grain surface.

A number of stress boundary calculations were performed to develop the 110 sec MET
failure data base. These calculations were performed using the aft-center segment as typical of
the STS-SRM. At 110 sec MET, the forward cylinder of the aft-center segment has a
maximum of about 6.5 cm of PBAN remaining. The aft cylinder of the aft-center segment has
almost all fuel consumed. This difference in grain thickness is due to the initial taper of the
grain (see Figure 13) and its approximately constant recession rate during buming. The mass
of the bonded fuel remaining has a large effect on the predicted velocity of the SRM
fragments. Calculations were performed to determine the velocity and azimuth of fragments
originating in an aft cylinder of an aft-center segment. These fragments and those originating
in the SRM dome and star grain segment will have the highest velocities in late MET aborts
since they have the lowest areal density and the chamber pressure acts directly upon them.
Peak velocities somewhat higher than 200 m/s were predicted for these fragments. A

summary of the material characteristics used for the late MET stress boundary calculations
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was presented in Table 5. The data base generated using these input parameters and the stress

boundary methods discussed previously is presented in Appendix A.

The material presented in Appendix A is used as input to a Monte Carlo calculation
which randomizes, among other things, SRM casing failure MET and fragmentation time.
Before they can be used to predict a threat at the RTG location, the momenta implied in the
tables presented in Appendix A must be corrected for any chamber impulse remaining at the
randomly selected fragmentation time. This correction was performed using a post-processing
code developed by J affe() and transferred to GE. The authors were requested to calibrate this
post-processor by performing a series of 110 sec MET calculations using four assumed
fragmentation times. These were fully defined coupled Eulerian-Lagrangian calculations of

the type which had been used to develop the flow field basis for Figure 17.

A 110 sec MET casing failure Eulerian-Lagrangian coupled model of an STS-SRM
forward cylinder of an aft-center segment is shown in Figure 28. The fragmentation
approximates that of a segment observed in the SIL event(d), Plots of predicted velocity as
a function of time after initial failure are shown in Figure 29. Examination of Figure 29 shows
that the smaller of the fragments (fragment 1) adjacent to the failure site has the highest
velocity of any of the segment fragments. Also, it is seen that the magnitude of this velocity is
much more sensitive to casing fragmentation time than was the case for early MET failure.
Examination of Figure 30 reveals the expected sensitivity of the azimuth of the fast fragments
to the casing fragmentation time. The fastest fragments shown in Figﬁre 30 are cross plotted
on Figure 31 to show the sensitivity of maximum fragment velocity to casing fragmentation
time. It is interesting to note that the velocity of the fastest fragments increases by 25 percent
when comparing late MET events with break times varying from 5 msec to 20 msec. Similar
comparisons for early MET failures resulted in velocity increases of less than 10 percent.
Plots of the chamber-pressure time-history, at a fixed Eulerian location just inside the center of
fragment 1, for the four assumed fragmentation times are shown in Figure 32. The original
prediction of STS-SRM chamber-pressure time-history which was shown in Figure 3 is
repeated in Figure 32 for reference. Examination of Figure 32 shows a clear trend of chamber

pressure decay. The earlier the fragmentation time, the faster the chamber pressure decays.
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Note that the integrals of all of the fragmentation time time-history curves (impulse) shown in
Figure 32 are lower than the integral of the time-history used to develop the Figure 17 data
base. This means that the fragment velocities used in the Shuttle Data Book may be slightly
conservative. A comparison of the velocity predictions shown in Figure 29 to those made

using Jaffe's post processing code showed good agreement.

The late MET data base showed good agreement with the 51L data reduction performed
by Parker®) and with Kolp’s(5 ) observations. Given this good late MET agreement and the
good early MET agreement inferred from the Titan 34D-9 results, the authors consider the
range destruct fragment data base to be well calibrated and reliable for use as input into the

Galileo FSAR threat assessment.

B. SRM Random Failures

Range destruct induced SRM fragmentation produces essentially the same fragment
velocity distribution for each SRM segment. Random failure induced SRM fragmentation
produces fragment velocity distributions which are dependent upon the segment-of-interest’s
stack location and the stack location of the randomly failed segment. Preliminary evaluations
of 34D-9 SRM-2 indicated that the upper segment fragments had a lower average velocity than
did those of the range destructed SRM-1. These considerations greatly complicated the
analytical modeling of the random failure of SRM segments. These complications were
brought about by the need to account for longitudinal flow (z-flow) in the gas flow-field
modeling.

Longitudinal flow of the gas stored in the SRM chamber has two effects. First, this flow
tends to increase the impulse available to accelerate fragments generated in the randomly
failed segment. Second, by reducing the chamber pressure along the longitudinal axis of the
SRM, the existence of this flow tends to reduce the velocity of fragments generated from those
segments which were initially sound. In general, the failure of segments other than the
randomly failed segment occurs because propagating cracks produce stress concentrations in

structures which are otherwise sound. If the crack propagation rate is slow enough, segments
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at longitudinal positions distant from the failed segment may have their chamber pressure
reduced by longitudinal flow below their failure threshold before a significant stress riser

appears at the segment boundary. In this case the segment will not fragment.

Axisymmetrical models of the Titan 34D-SRM and STS-SRM were generated to test the
sensitivity of the temporal variation in the longitudinal chamber pressure distribution to
various crack propagation rates. The Titan 34D-SRM model was divided into five segments
(nine for the STS). A grid plot of the Titan 34D-9 axisymmetrical calibration model and grid
plots of the STS-SRM models used at 10, 84 and 110 seconds MET are shown in Figure 33.
Each segment of each of these models is fitted with a "slide valve.” This valve is an analytical
artifact to allow the variable rate of radial outflow of gas which is required for a two-

dimensional simulation of the sequential failure of each SRM segment.

The change in available gas radial flow area with time was inferred from the initial
coupled calculation results presented in Figure 2. The variation with time of the X-position of
the edge of the last node of the Titan 34D-9 SRM casing model is shown in Figure 34.
Knowing the location of this boundary in space and time, one may calculate the temporal
variation of flow area and the rate of change of the flow area through which the chamber gas
may exit the casing. Since the diameter of the casing is known, this information may be used
to calculate a "slide valve" velocity profile which will produce an identical rate of change of
flow area in the axisymmetrical model. Each segment of the SRM was fitted with a "slide
valve" (5 for the 34D-SRM and 9 for the STS-SRM). The delay time between the serial
opening of the slide valves is related to the segment transit time for the crack (i.c. segment
height and crack propagation rate). Typical Titan 34D and STS-SRM model valve velocity-

time schedules are presented in Table 6.

The variation of the x-position of the edge of the last node of the STS-SRM casing
model is shown in Figure 35 for three METs. The rate at which these valves opened was
determined in the same manner as was described above for the Titan 34D-9 case. The time at
which valve opening began was determined by the longitudinal position of the subject segment

in the stack, the crack propagation rate, and the crack segment-transit time, since all segments
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Table 6. Valve Velocities Used to Generate Radial Outflow From the
Axisymmetrical SRM-Random-Failure Model

Time After
Initial
Failure

msec
5
10
15

20

Valve Velocity Profile!®

|

34D at
10 sec MET

cm/msec
1.0
21
2.8

3.4

10 sec MET
cm/msec

STS at

1.4
2.0
3.0

3.6

STS at
84 sec MET

cm/msec
2.0
4.0
6.0

6.1

STS at
110 sec MET

cm/msec
3.5
7.0
9.1

10.5

@All 34D-SRM Segments are identical. The values shown for the STS-SRM are for Segments 4

through 9. Length-corrected tables were used for cylinders in the STS aft segment.
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were not of equal length. Typical valve delay-time-bcfore-opening schedules for the 34D and
STS-SRM are shown in Table 7. For the Titan 34D-9 event, a delay time to begin radial flow
from each segment was selected using crack propagation rates of 534 and 320 m/s. The results
of calculations employing all of the devices discussed above are presented in Figure 36.
Examination of this figure shows that upper-segment-pressure reductions of a factor of two

can occur prior to casing fragmentation for these crack propagation rates.

The impulse available to accelerate fragments from an early-MET segment failure can
be obtained by correcting the integral of the relevant pressure-time-history curve shown in
Figure 36 by the normalization factor shown in Figure 17. The ratio of these values of
impulse to a Figure 17 corrected integral of the relevant Figure 3 pressure-time-history curve
will provide a basis for assessing the effects of z-flow on fragment velocity in SRM random
failure events. Nance, et. al.(7) noted that the peak value of fragment range observed from
each segment of the randomly-failed 34D-9-SRM-2 decreased as the longitudinal distance
from the initially failed segment (Segment 1) increased. A comparison of impulse ratio
calculated for two crack propagation rates to the impulse ratio inferred from fragment peak
range data is shown in Figure 37. The agreement shown between the values calculated for a
crack propagation rate of 320 m/s and the observed results was considered acceptable to

validate the modeling techniques.

Parker(10) has observed that the crack Propagation rate for an STS-SRM would be
expected to be higher than that observed for a Titan 34D. This observation is based on his
Judgement that the 34D flange is more robust than the STS-SRM flange and that it is not fitted
with an LSC. Because of this concern, the results of the calculations presented for three
mission elapsed times in Figure 38 are based on a crack propagation rate of 534 m/s. A factor
of two head-to-nozzle Pressure variation is seen in all of these cases. A typical STS-SRM
longitudinal pressure distribution 57.4 msec after a 110 seconds MET random failure had

occurred in segment 1 is shown in Figure 39.

The model used to generate the 110 sec MET pressure-time-history shown in Figure 38

was also used to generate a z-flow argument into a late MET x-y translational symmetry
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Table 7. Delay Times Used to Propagate Serial Segment Failures in the
Axisymmetrical SRM-Random-Failure Models

Crack Arrival®
at Aft Boundry of:

Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8

Segment 9

320 m/s

534 m/s

34D Segment Boundary
Crack-Arrival Time

msec
10.

20.

| 30.

34D Segment-
Boundary Crack-
Arrival Time

msec
6.
12.
18.

24,

|

STS Segment-
Boundary Crack-
Arrival Time

msecC
6.2
12.8
15.8
235
31.2
38.9
46.6

54.3

@Random failure is assumed to occur in Segment 1 in all cases.
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model. This model was used as a check on the overall efficacy of the predictive process. The
flow field and fragment geometry predictions for the randomly failed forward cylinder of an
aft-center segment of an STS-SRM at 110 sec MET are presented in Figure 40. Fragment

velocities resulting from this same event are shown in Figure 41.

Comparison of these results to the range destruct cases discussed previously shows that
at late MET, the randomly failed segment will produce fragments which, depending upon
fragmentation time, have approximately three to seven percent higher velocity than will occur
in range destruct cases. Concurrently, randomly failed SRM segments which are considerably
displaced from the initially failed segment will have considerably less impulse to accelerate
fragments than will range destructed segments. In the case of an STS-SRM at 110 sec MET,

this reduction could be a factor of two even when using a high crack propagation rate.
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. CONCLUSIONS

Results obtained using the analytical methods described in this report showed good
agreement between predictions and observations for two specific events. It was shown that
these methods have good potential for use in predicting the fragmentation process of a number
of generically similar casing systems. It was concluded that coupled Eulerian-Lagrangian
calculational methods of the type described in this report provide a powerful tool for

predicting SRM casing fragmentation response.
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