ATMOSPHERIC DEGRADATION MECHANISMS OF HYDROGEN CONTAINING CHLOROFUROCARBONS (HCFC) AND FLUOROCARBONS (HFC)

Reinhard Zellner

Institut für Physikalische Chemie und Elektrochemie
Universität Hannover
Callinstrasse 3 A, 3000 Hannover, FRG
DEGRADATION MECHANISMS

EXECUTIVE SUMMARY

The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons [HCFC 22 (CHClF₂), HCFC 123 (CHCl₂CF₃), HCFC 124 (CHClFCF₃), HCFC 141b (CFC₁₂CH₃), HCFC 142b (CF₂ClCH₃)] and fluorocarbons [HFC 125 (CHF₂CF₃), HFC 134a (CH₂FCF₃), HFC 152a (CHF₂CH₃)] is assessed. Except for the initiation reaction by OH radicals there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A notable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC’s may be deduced:

- HCFC’s containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals. For HCFC 124 such release is apparently prevented.

- HCFC’s such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously. The second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF₃CClO or CClFO.
1. INTRODUCTION

According to current knowledge volatile organic compounds are removed from the atmosphere predominantly by gas phase oxidation processes. These are always initiated photochemically, either by direct photolysis or - more importantly - by photochemically generated species such as OH, O(1D), HO2, Cl, NO3 and O3. Due to the high energies of the first electronic absorption bands of saturated hydrocarbons and their halogen containing analogues, direct photodissociation is only possible in the middle and upper stratosphere where solar photon fluxes become sufficiently intense below 270 nm.

Among the photochemically generated oxidants, the OH radical is by far the most important species. It is present at all altitudes from ground to well above the stratopause with a maximum density of several 10^7 cm^-3 during the daytime near 40 km. Due to its photochemical origin and due to the spatial variation of its main source and sink species (O3, H2O, NO, CO), OH is highly variable in space and time; the globally and annually averaged concentration is normally assumed to be ~5 x 10^5 cm^-3.

OH is important not only because of its concentration level but also because of its reactivity. Due to the strong HO-H bond, it reacts readily in an exothermic reaction with all saturated hydrocarbons by H-atom abstraction. Only the atoms O(1D) and Cl are capable of performing similar abstraction processes. In general the reactions of these species have higher rate coefficients than those of the OH radical, their importance however is limited to those regions of the atmosphere (> 30 km) where sufficient concentrations of these species prevail.

Conventional CFC's owe their long tropospheric lifetime and effective stratospheric chlorine injections - as expressed by their ozone depletion potential (ODP) - to their stability against OH attack in the troposphere. Reactions such as CX3Cl + OH → CX3 + HOC1 are endothermic and have not been observed in the laboratory (DeMore et al. 1987). Hydrogen containing HCFC's and HFC's on the contrary may be degraded by initial OH attack in the troposphere and hence are expected to have correspondingly lower ODP values. The most relevant question with regard to the environmental acceptability of this class of compounds is

- What is the flux of chlorine across the tropopause relative to CFC 11 and per unit mass emitted?

An answer to this question can only be found by addressing to the following problem areas:

- Reactivity towards OH, the global distribution of tropospheric OH and its temporal evolution
- Other potential tropospheric sinks (i.e. solubility, hydrolysis)
- Tropospheric lifetime and fate of oxidation intermediates.

In this review an attempt is being made to delineate the current knowledge of the tropospheric oxidation mechanisms of HCFC's and HFC's with particular view to assessing their ultimate role as chlorine sources in the stratosphere. Since some of the mechanistic details remain speculative at the present time, we will first highlight what is known about the tropospheric oxidation of simple hydrocarbons and on which some of the analogies presented later are based.
DEGRADATION MECHANISMS

2. THE OXIDATION MECHANISM OF SIMPLE HC’S IN THE TROPOSPHERE

Following the initial attack of HC’s (alkanes) by OH radicals, viz.

\[(1) \quad \text{OH} + \text{RH} \rightarrow \text{H}_2\text{O} + \text{R} \]

the subsequent oxidation of the alkyl radicals (R) under tropospheric conditions is known to proceed by the general sequence:

\[(a) \quad \text{alkyl} \rightarrow \text{alkylperoxi} \rightarrow \text{alkoxi} \rightarrow \text{carbonyl compound} \rightarrow \text{oxidized fragments} \]

The rates of these individual steps, including the oxidation of the carbonyl compound are generally faster than that of reaction (1) such that the initial OH attack is rate determining and the lifetime of the hydrocarbon is given by the space and time average of \((k_t \cdot [\text{OH}])^{-1}\). Other potential loss processes of hydrocarbons in the troposphere (i.e. reactions with \(\text{HO}_2\) and \(\text{O}_3\), photolysis, hydrolysis) are unimportant.

a. \(\text{R/RO}_2\) conversion

Step (a) of the above sequence reflects the universal conversion of alkyl radicals to alkylperoxi radicals, viz.

\[(2) \quad \text{R} + \text{O}_2 (+\text{M}) \rightarrow \text{RO}_2 (+\text{M}) \]

This reaction is extremely fast under all tropospheric conditions. Due to the relatively high R-O_2 bond strength (> 25 kcal/mol), reaction (2) is not reversible and RO_2 is the only form in which R exists in perceivable levels in the troposphere. Alternative interactions between R and O_2 leading to an unsaturated HC and \(\text{HO}_2\), viz.

\[(2^1) \quad \text{R’CH}_2 + \text{O}_2 \rightarrow \text{R’}_-\text{H} = \text{CH}_2 + \text{HO}_2 \]

account for less than 0.1% \((\text{R’} = \text{CH}_3)\) of the overall reaction and can safely be discarded for the simpler HC’s.

b. \(\text{RO}_2/\text{RO}\) conversion

Unlike step (a), the conversion mechanism of alkylperoxi radicals to alkoxi radicals - step (b) - depends on the ambient conditions.

(i) \(\text{RO}_2/\text{NO}_x\) interactions:

In the continental boundary layer as well as in the upper troposphere/lower stratosphere, sufficient nitrogen oxides are normally present for the alkylperoxi radical chemistry to be dominated by the fast reaction with NO, viz.

\[(3) \quad \text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \]
DEGRADATION MECHANISMS

The rate constants for this process at 298 K are of the order of 8×10^{-12} cm3/s for $R = \text{CH}_3$, C$_2$H$_5$, n-C$_3$H$_7$ and i-C$_3$H$_7$ (Atkinson et al., 1989). However, with the exception of $R = \text{CH}_3$, the interaction between RO$_2$ and NO may also proceed in recombination forming alkynitrates,

$$(3') \quad \text{RO}_2 + \text{NO} (+\text{M}) \rightarrow \text{RONO}_2 (+\text{M})$$

The importance of this process increases somewhat with chain length and amounts to $< 1.5\%$, 2% and 4.4% for $R = \text{C}_2\text{H}_5$, n-C$_3$H$_7$ and i-C$_3$H$_7$, respectively.

Under conditions where RO$_2$ radicals interact predominantly with NO$_x$, another reaction pathway of general application also needs to be considered: the recombination between RO$_2$ and NO$_2$ to form peroxinitrates, viz.

$$(4,-4) \quad \text{RO}_2 + \text{NO}_2 (+\text{M}) \leftrightarrow \text{RO}_2\text{NO}_2 (+\text{M})$$

Similar to (3) this reaction terminates the hydrocarbon oxidation chain. Its rate coefficients are well established for the smaller peroxiradicals with values near 10^{-11} cm3/s in the high pressure limit. However, peroxinitrates have a relatively low bond strength and tend to be unstable at the temperatures of the lower troposphere. For instance, CH$_3$O$_2$NO$_2$ has a thermal lifetime of <1 s at 298 K. Only at the lower temperatures of the upper troposphere and lower stratosphere peroxinitrates are more persistent and removal pathways other than thermal decomposition (i.e. photolysis, reaction with OH) may become important. It should be noted that halogen and acyl substitution tends to make peroxinitrates considerably more stable. The lifetimes of CF$_2$ClO$_2$NO$_2$ and CH$_3$C(O)O$_2$NO$_2$ (PAN) for instance, at 298 K are 20 s and 28 min, respectively, in the high pressure limit (Atkinson et al., 1989). Since these lifetimes will be further enhanced at all pressures prevailing in the troposphere, peroxinitrate formation from these radicals is clearly an important process.

Taking peroxinitrates as relevant temporary reservoir species of HC oxidation intermediates, the question arises whether and how the oxidation chain may be continued other than by the "do-nothing" sequence (4,-4)? It appears that there is at present insufficient knowledge to assess alternatives such as photolysis or reactions with OH. One may speculate that the photolysis products of RO$_2$NO$_2$ may be RO$_2$ + NO$_2$ or RO + NO$_3$ which would correspond to "do-nothing" or the standard RO$_2$/RO conversion of step (b), respectively. The OH reactions of RO$_2$NO$_2$ except for PAN (Wallington et al., 1984; leBras, 1988), have apparently not been investigated. Assuming that their mechanisms occur by α-hydrogen abstraction, viz.

$$\text{OH} + \text{R'}\text{CH}_2\text{O}_2\text{NO}_2 \rightarrow \text{H}_2\text{O} + \text{R'}\text{CHO}_2\text{NO}_2$$

these processes may provide direct access to the carbonyl compound since the product radical is expected to decompose readily to R'CHO + NO$_3$.

(ii) RO$_2$/HO$_2$ interactions:

In the background middle troposphere where the concentration of NO$_x$ is very low, RO$_2$ can only be removed in mutual interactions or in reaction with other free radicals such as OH, HO$_2$ or Cl. Considerations of the concentration levels of each of these species suggest that HO$_2$ will be the dominant oxidant
DEGRADATION MECHANISMS

of RO₂ leading primarily to the formation of hydroperoxides, viz.

\[
RO₂ + HO₂ \rightarrow ROOH + O₂
\]

The rate constant of this type of reaction is only well established by direct techniques for R = CH₃ (k = 6.3 \times 10^{-12} \text{ cm}^3/\text{s at 298 K}). However, there is evidence of a still larger reactivity of R = CH₃CO (Moortgat et al., Veret et al., private communications). Recent product studies performed on reaction (5) (R = CH₃) also suggest that there may be an alternative reaction channel forming formaldehyde + H₂O directly, viz.

\[
CH₃O₂ + HO₂ \rightarrow CH₂O + H₂O + O₂
\]

Whereas (5') as well as the subsequent oxidation of the hydroperoxide by OH

\[
OH + ROOH \rightarrow H₂O + R₁R₂CO + OH
\]

both produce carbonyl compounds directly (thereby circumventing the alkoxi oxidation stage) alkoxi radicals are formed in the competitive photolysis of ROOH, viz.

\[
ROOH + hv \rightarrow RO + OH
\]

This process however is slow in the troposphere since simple hydroperoxides absorb only weakly in the actinic range of the solar spectrum (Molina and Arguello, 1979). It should be noted that hydroperoxides resulting from simple organics are expected to be highly soluble in water and their formation may therefore provide an efficient route of heterogeneous removal via rain out. Whether peroxiradicals themselves may also undergo this pathway is presently open to speculation.

c. RO/carbonyl compound conversion

The dominant oxidation pathway of simpler alkoxi radicals is by direct abstraction of the α-H-atom in reaction with O₂, viz.

\[
RO + O₂ \rightarrow R₁R₂CO + HO₂
\]

The rate coefficient for this type of reaction is relatively small (k = 1.9 \times 10^{-15} \text{ cm}^3/\text{s at } T = 298 \text{K} for R = CH₃ (DeMore et al., 1987) and 1.1 \times 10^{-14} \text{ cm}^3/\text{s at } T = 298 \text{K} for R = C₂H₅ (Gutman et al., 1982; Hartmann et al., 1989). However due to the atmospheric O₂ content, the “lifetime” of RO radicals with respect to this process is <0.2 ms. For RO radicals with a chainlength ≥ C₄, alternative reaction pathways (isomerization, decomposition) forming hydroxyalkyl radicals and carbonyl compounds + alkyl radical are also important (Balla et al., 1985, Dobe et al., 1986).

d. Carbonyl compound/oxidized fragment conversion

It is apparent from the above discussion that carbonyl compounds are the primary oxidation products of any HC oxidation in the atmosphere. Apart from the decomposition routes possible for larger RO radicals, the number of carbon atoms of the parent HC has been conserved. However, carbonyl compounds are further oxidized, mainly in reaction with OH. In case of an aldehyde, R₁HCO, this oxidation occurs almost exclusively by abstraction of the weakly-bonded carbonyl-H-atom leading to the formation of an
DEGRADATION MECHANISMS

acyl radical, viz.

\[(9) \quad \text{OH} + R_1\text{HCO} \rightarrow \text{H}_2\text{O} + R_1\text{CO}\]

The subsequent oxidation of this radical occurs in the sequence

\[
\begin{align*}
R_1\text{CO} + \text{O}_2 & \rightarrow R_1\text{C(O)O}_2 \\
R_1\text{C(O)O}_2 + \text{NO} & \rightarrow R_1\text{C(O)O} + \text{NO}_2 \\
R_1\text{C(O)O} & \rightarrow R_1 + \text{CO}_2
\end{align*}
\]

leading eventually to the split of the α-C-C bond and the formation of CO₂.

Acylperoxiradicals of the type \(R_1\text{C(O)O}_2 \) also tend to react readily with NO₂ to form relatively stable acylperoxinitrates, viz.

\[
R_1\text{C(O)O}_2 + \text{NO}_2 \rightarrow R_1\text{C(O)O}_2\text{NO}_2
\]

The kinetics of formation and decay of the simplest of these species, PAN (CH₃C(O)O₂NO₂), are well documented (Atkinson et al., 1989).

Carbonyl compounds have weak near UV (230 - 340 nm) absorption bands arising from the "forbidden" \(\pi - \pi^* \) singlet-singlet transition. The band maxima appear around 280 - 290 nm with absorption coefficients near \(6 \times 10^{-20} \text{ cm}^2 \) (Calvert and Pitts, 1967). Therefore photolysis is a minor but non negligible alternative pathway of degradation. The photolysis products are alkyl + acyl radicals, i.e.

\[(10) \quad R_1R_2\text{CO} + \text{hv} \rightarrow R_1 + R_2\text{CO} \]

both of which will be further oxidized according to the mechanisms delineated above.

3. THE OXIDATION MECHANISMS OF SIMPLE HYDROGEN CONTAINING HCFC’s AND HFC’s

3.1. General considerations

In light of the above discussion and in view of additional evidence, the following similarities/differences of the atmospheric oxidation of partially halogenated alkanes can be formulated

- Due to the hydrogen content the initial oxidative attack will be by OH radicals. Compared to CH₄ the reactivity of individual C-H bonds in partially halogenated methanes, including CHClF₂, is increased by increasing F and Cl substitution due to a corresponding reduction of the C-H bond strength. An exception being CF₃H, with a C-H bond strength about 1.5 kcal/mol larger than CH₄. The same increase of reactivity applies to F and Cl substituted ethanes, again except when one of the carbon atoms represents a CF₃ group (McMillen and Golden, 1982). Note, however, that the overall reactivity towards OH, as expressed by the rate coefficient, also depends on the number of abstractable H atoms in the molecule. The results for \(k_{OH} \) values are documented elsewhere in this report.

- The fully or partially halogenated alkyl radicals will add O₂ to form the corresponding peroxy radicals. Direct kinetic measurements which are available only for CCl₃, CCl₂F and CF₃ (Atkinson et al., 1989; Caralp et al., 1986) indicate that halogen substitution enhances the rates of these association processes
DEGRADATION MECHANISMS

(for instance $k (\text{CF}_3 + \text{O}_2) / k (\text{CH}_3 + \text{O}_2) \approx 22$). Moreover, since the thermochemistry is expected to be similar for the substituted and unsubstituted case reactions, peroxy radical formation will be the exclusive pathway of oxidation of the halogenated alkyl radicals.

- Halogenated peroxy radicals will be reduced to the corresponding oxi radicals in reactions with NO. The limited direct evidence available for CCl$_3$O$_2$, CFCI$_2$O$_2$, CF$_2$ClO$_2$, CF$_3$O$_2$ suggests that these reactions have rate constants in the order $\sim 1.6 \times 10^{-11} \text{ cm}^3/\text{s}$ at 298 K, i.e. a factor of two larger than the corresponding reaction of CH$_2$O$_2$ (Atkinson et al., 1989; Dognon et al., 1985). An alternative formation of nitrates from the recombination of halogenated RO$_2$ with NO is uncertain; for the C$_1$ case it is most probably unimportant. The recombination of halogenated peroxy radicals with NO$_2$ occurs with similar rate coefficients to those of the unsubstituted radicals, i.e. $k \approx 10^{-11} \text{ cm}^3/\text{s}$ in the high pressure limit (Atkinson et al., 1989). The pernitrates formed, however, are considerably more stable in the halogenated series (Caralp et al., 1988a) with an increase of the RO$_2$-NO$_2$ bond strength of approximately 4.3 kcal/mol.

- Reactions of halogenated RO$_2$ with HO$_2$ have apparently not yet been studied. However, there appears to be no reason to assume that they would not occur and that hydroperoxides will be the products in complete analogy to the unsubstituted systems. Since the RO$_2$/HO$_2$-interactions, however, are in competition with the RO$_2$/NO$_x$-interactions and since the latter are faster in the substituted cases, we expect reactions between halogenated RO$_2$ and HO$_2$ to be generally less important.

- As a result of modified bond strengths, halogenated oxi radicals present new types of reactions. Whereas simple alkoxi radicals such as CH$_3$O and C$_2$H$_5$O only react with O$_2$ (to form aldehyde + HO$_2$) and not by C-H or C-C bond rupture, the latter reaction is induced upon halogen substitution. As a result, C-Cl and C-C bond dissociations may become competitive events, even when there are remaining H atoms in the oxi radical (Betrand et al., 1971). Fluorine substitution in the α-position does not significantly affect the C-Cl bond strength, but it tends to make C-C bonds more stable (McMillen and Golden, 1982). These processes are considered in more detail in the subsequent section.

3.2. Discussion of specific examples

In the following we will discuss the possible atmospheric degradation pathways of a number of specific HCFC's and CFC's in the light of the above principles. The available kinetic information from laboratory studies is too weak to make a firm assessment except perhaps for the more simple cases, i.e. CHClF$_2$.

For the sake of brevity we will condense the initiation reactions as long as they are expected to follow the general pattern of HC oxidation, i.e. we will use the symbol

$$\text{OX}$$

to indicate the sequence: H atom abstraction by OH/O$_2$ addition/reduction with NO, and will concentrate on the subsequent fate of the oxi radicals. This is done because from the reactions of these radicals the largest differences compared to the hydrocarbon system and between the individual substituted cases are to be expected. It must be understood, though, that in each case presented, additional products such as peroxinitrates and hydroperoxide which arise as chain termination steps from the interactions of
peroxi radicals with NO₂ and HO₂ will also occur. They are listed together with the carbonyl compounds in the individual lists of expected products.

As a general rule we have used thermochemical arguments as a guideline of discussing the atmospheric fate of the individual oxi radicals. This has two substantial shortcomings:

- The thermodynamic data base is derived using group additivity rules (Benson, 1976; see appendix). Although this leads generally to acceptable accuracy it is expected to be less reliable for halogen substituted compounds due to polar effects, in particular for F-substitution (Chen et al., 1975). As a consequence the calculated enthalpies of reaction, which in cases comprising fluorinated compounds are the difference between large numbers, may even be uncertain with regards to the sign of their values.

- There is no direct way to relate enthalpies of reaction to a kinetic quantity such as an activation energy. However, we may assume that intrinsic activation barriers for C-C or C-Cl fission in a radical are small such that the likelihood of these processes to occur will be governed by thermochemistry.

(i) **HCFC 22: CHF₂Cl**

\[
\begin{align*}
\text{CHF}_2\text{Cl} & \longrightarrow \text{OX} \longrightarrow \text{CF}_2\text{ClO} \\
\text{CF}_2\text{ClO} & \rightarrow \text{CF}_2\text{O} + \text{Cl} \quad \Delta H_R = -30 \text{ kcal/mol}
\end{align*}
\]

There is evidence from various laboratory studies (Carr et al., 1986; Sanhueza, 1977; Hautecloque, 1980; Lesclaux et al., 1987; Zellner), mainly performed on the photo-oxidation of CHX₃ type compounds, which indicate that a Cl atom is readily released from CX₃O. A rate coefficient of 7x10⁵ s⁻¹ at 298 K has been determined for CF₂ClO (Carr et al., 1986). The alternative dissociation pathway

\[
\text{CF}_2\text{ClO} \rightarrow \text{CFCIO} + \text{F}
\]

is endothermic by 10 kcal/mol and can safely be discarded. The thermal decay rate of CF₂ClO under atmospheric conditions is comparable to the rate of reaction of CH₃O with O₂. It ensures the rapid transformation of CHF₂Cl to CF₂O with accompanied release of the Cl atom and negligible build-up of CF₂ClO.

CF₂O is considered to be stable with regards to reaction with any of the tropospheric oxidants. However, it is very susceptible to hydrolysis (yielding CO₂ and HF) and is therefore most likely to be removed from the troposphere by this pathway. In the stratosphere CF₂O may be degraded by reaction with O^(1D), viz.

\[
\text{CF}_2\text{O} + \text{O}^{(1D)} \rightarrow \text{CO}_2 + \text{F}_2
\]

\(k = 2.2 \times 10^{-11} \text{ cm}^3\) (Atkinson et al., 1989)) or by photolysis. However, its UV absorption is very weak even at 220 nm (\(\sigma \sim 5 \times 10^{-22} \text{ cm}^2\) (DeMore et al., 1987).
DEGRADATION MECHANISMS

Summary of expected products from CHF₂Cl:
Carbonyl compounds: CF₂O
Others: CF₂ClO₂NO₂, CF₂ClOOH

(ii) HCFC 123: CHCl₂CF₃

\[\text{CHCl}_2\text{CF}_3 \xrightarrow{\text{OX}} \text{CF}_2\text{ClCIO} \]

followed by:

\[\text{CF}_2\text{CICO} \rightarrow \text{CF}_2 + \text{ClCIO} \quad \Delta H_R = -3 \text{ kcal/mol} \]

There is no direct evidence that this reaction occurs. It is suggested on the basis of its exothermicity. The alternative dissociation pathway

\[\text{CF}_2\text{CICO} \rightarrow \text{CF}_3 + \text{Cl}_2O \quad \Delta H_R = +2 \text{ kcal/mol} \]

is thermodynamically less favourable and therefore not expected to be competitive with the α-Cl-elimination. The subsequent fate of trifluoroacetylchloride (CF₂CICO) is uncertain. In the troposphere it is not expected to react with OH. Similarly, on the basis of the ClC₂O/CHO analogy its photolysis is expected to be slower than that of CH₃CHO. However, CF₂CICO is known to be highly soluble and easily hydrolyzed with trifluoroacetic acid as a product (Beilstein, 1960). Therefore we may expect the lifetime of CF₂CICO to be determined by wash-out or by transport to the ocean. There is therefore little potential for chlorine transport into the stratosphere.

Summary of expected products from CHCl₂CF₃:
Carbonyl compounds: CF₃CCIO
Other products: CF₃CCl₂O₂NO₂, CF₃CCl₂OOH.

(iii) HCFC 124: CHFCICF₃

\[\text{CHFCICO} \xrightarrow{\text{OX}} \text{CF}_3\text{CFCIO} \]

followed by:

\[\text{CF}_3\text{CFCIO} \rightarrow \text{CF}_3 + \text{CFCIO} \quad \Delta H_R = -4 \text{ kcal/mol} \]

- C bond fission of CF₃CFCIO seems to be the most favourable reaction of this radical. The alternative α-Cl-elimination

\[\text{CF}_3\text{CFCIO} \rightarrow \text{CF}_3\text{CFO} + \text{Cl} \quad \Delta H_R = +4 \text{ kcal/mol} \]

is thermodynamically less likely and may not be competitive with the former. Therefore we expect the Cl-atom of CHFCICF₃ to be stored in CFCIO.
DEGRADATION MECHANISMS

The atmospheric fate of CFCIO is presently not well known. It must be considered stable with regards to reaction with any of the tropospheric oxidants and its photolysis is very slow in the troposphere (De-More et al., 1987). However, CFCIO may be subject to hydrolysis (yielding CO$_2$, HF and HCl) and is expected to be removed from the troposphere by this pathway.

The subsequent oxidation of the CF$_3$ radical in the troposphere is highly speculative. It is expected to undergo the normal oxidation chain producing CF$_3$O radicals. However, there is no apparent thermodynamically allowed pathway for decomposition or reaction with O$_2$ of this radical. Therefore, CF$_3$O may be expected to react with other trace gases such as NO or HO$_2$, viz.

\[
\begin{align*}
\text{CF}_3\text{O} + \text{NO} & \rightarrow \text{CF}_3\text{ONO} \\
\text{CF}_3\text{O} + \text{HO}_2 & \rightarrow \text{CF}_3\text{OH} + \text{O}_2
\end{align*}
\]

Summary of expected products from CHFClCF$_3$:

Carbonyl compounds: CFCIO, (CF$_3$CFO)
Other products: CF$_3$CFClO$_2$NO$_2$, CF$_3$CFCIOOH
(CF$_3$ONO, CF$_3$OH)

(iv) HCFC 141b: CCl$_2$FCH$_3$

\[
\text{CCl}_2\text{FCH}_3 \underset{\text{OX}}{\rightarrow} \text{CCl}_2\text{FCH}_2\text{O}
\]

followed by:

\[
\begin{align*}
\text{CCl}_2\text{FCH}_2\text{O} + \text{O}_2 & \rightarrow \text{CCl}_2\text{FCHO} + \text{HO}_2 & \Delta H_R = -32 \text{ kcal/mol}
\end{align*}
\]

Due to the remaining σ-atoms the CCl$_2$FCH$_2$O radical is expected to react predominantly with O$_2$ to produce a perhalogenated acetaldehyde in accordance with the standard hydrocarbon oxidation chain. Chlorine release from the oxi radical is not possible. Moreover, β-scission of CCl$_2$FCHO, viz

\[
\text{CCl}_2\text{FCH}_2\text{O} \rightarrow \text{CCl}_2\text{F} + \text{CH}_2\text{O} \quad \Delta H_R = + 7 \text{ kcal/mol}
\]

is endothermic and may therefore not be competitive with the O$_2$ reaction.

The subsequent fate of the aldehyde will most likely be degradation via initial OH attack to yield CO$_2$ + CCl$_2$F (CClFO), viz.

\[
\begin{align*}
\text{CCl}_2\text{FCHO} \underset{\text{OX}}{\rightarrow} \text{CCl}_2\text{FC(O)O} \\
\text{CCl}_2\text{F(O)O} & \rightarrow \text{CCl}_2\text{F} + \text{CO}_2 \\
\text{CCl}_2\text{F} + \text{O}_2 & \rightarrow \text{CCl}_2\text{FO}_2 \\
\text{CCl}_2\text{FO}_2 + \text{NO} & \rightarrow \text{CCl}_2\text{FO} + \text{NO}_2 \\
\text{CCl}_2\text{FO} & \rightarrow \text{CClFO} + \text{Cl}
\end{align*}
\]
DEGRADATION MECHANISMS

Due to the higher OH reaction rate of the aldehyde compared to the initial HCFC, this sequence corresponds essentially to the release of one chlorine atom instantaneous with the degradation of the HCFC. The second one is being stored in CCIFO, the fate of which has been discussed under (iii). It may be worthy of note that β-scission of the oxiradical will produce the same products.

Summary of expected products from CCl₂FCH₃:
- Carbonyl compounds: CCl₂FCHO, CCIFO, (CH₂O)
- Other products: CCl₂FCH₂O₂NO₂, CCl₂FCH₂OOH,
 CCl₂FC(O)O₂NO₂ (from the oxidation of CCl₂FCHO),
 CCl₂FO₂NO₂, CCl₂FOOH (from the oxidation of CCl₂FCHO)

(iv) HCFC 142b: CClF₂CH₃

\[
\text{CClF}_2\text{CH}_3 \xrightarrow{\text{OX}} \text{CClF}_2\text{CH}_2\text{O}
\]

followed by:

\[
\text{CClF}_2\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CClF}_2\text{CHO} + \text{HO}_2 \quad \Delta H_R = -29 \text{ kcal/mol}
\]

In complete analogy to Cl₂FCH₂O we expect CClF₂CH₂O to react predominantly with O₂ to form perhalogenated acetaldehyde. Chlorine release from CClF₂CH₂O is not possible. Moreover, the β-scission reaction

\[
\text{CClF}_2\text{CH}_2\text{O} \rightarrow \text{CClF}_2 + \text{CH}_2\text{O} \quad \Delta H_R = +10 \text{ kcal/mol}
\]

is more endothermic than in the 141b case and hence may be entirely negligible.

The subsequent oxidation of CClF₂CHO will lead to CClF₂ + CO₂; whereupon CClF₂ radicals will oxidize to CF₂O. As a consequence we expect the release of the chlorine content of HCFC 142b instantaneous with the initial OH attack. However, since HCFC 142b has a relatively long tropospheric lifetime (∼ 28 years), some of this degradation will always occur in the stratosphere.

Summary of expected products from CClF₂CH₃:
- Carbonyl compounds: CClF₂CHO, CF₂O, (CH₂O)
- Other compounds: CClF₂CH₂O₂NO₂, CClF₂CH₂OOH
 CClF₂C(O)O₂NO₂, CClF₂O₂NO₂, CClF₂OOH
 (from the oxidation of CClF₂CHO).

(vi) HFC 125: CHF₂CF₃

\[
\text{CHF}_2\text{CF}_3 \xrightarrow{\text{OX}} \text{CF}_3\text{CF}_2\text{O}
\]

followed by:

\[
\text{CF}_3\text{CF}_2\text{O} \rightarrow \text{CF}_3 + \text{CF}_2\text{O} \quad \Delta H_R = -23 \text{ kcal /mol}
\]

262
DEGRADATION MECHANISMS

The perfluorinated oxi radical CF₃CF₂O is expected to be thermally unstable with respect to C-C bond fission. The alternative elimination of an F-atom to yield CF₃CFO is endothermic by ~ 25 kcal/mol and can safely be discarded. The subsequent atmospheric fates of CF₃ and CF₂O have been discussed above (compare (iii) and (i)).

Summary of expected products from CHF₂CF₃:
Carbonyl compounds: CF₂O
Other products: CF₃CF₂O₂NO₂, CF₃CF₂OOH,
(CF₃ONO, CF₃OH)

(vii) HFC 134a: CH₂FCF₃

\[
\text{CH₂FCF₃} \xrightarrow{\text{OX}} \text{CF₃CHFO}
\]

followed by:

\[
\text{CF₃CHFO} + O₂ \rightarrow \text{CF₃CFO} + \text{HO}_₂ \quad \Delta H_R = -38 \text{ kcal/mol}
\]

and, alternatively,

\[
\text{CF₃CHFO} \rightarrow \text{CF₃} + \text{CHFO} \quad \Delta H_R = 8 \text{ kcal/mol}
\]

Due to the hydrogen content of CF₃CHFO this radical is expected to react readily with O₂ yielding perfluoroacetylfluoride. The alternative C-C bond fission is sufficiently exothermic to be expected as a competitive reaction pathway. Thermal elimination of an H atom from CF₃CHFO on the other hand is endothermic (+ 11 kcal/mol) and can safely be discarded.

The product CF₃CFO is not expected to react with any of the tropospheric oxidants, nor to be subject to photolysis. However, in analogy to CF₂O and CF₃CCIO it may readily hydrolyze yielding CF₃OOH and HF as products. Therefore its removal rate from the troposphere may be determined by the rate of wash-out or by transport to the ocean surface.

The atmospheric fate of the CF₃ product has been discussed above (cf (iii)). For the second product resulting from this channel, CHFO, we expect both photolysis and reaction with OH as possible degradation pathways, viz.

\[
\text{CHFO} + \text{hv} \quad \rightarrow \quad \text{CFO} + \text{H}
\]

\[
\quad \rightarrow \quad \text{CO} + \text{HF}
\]

\[
\text{OH} + \text{CHFO} \quad \rightarrow \quad \text{CFO} + \text{H}_₂
\]

The consecutive reactions of the CFO radical are highly uncertain. Due to the strong C-F bond we must expect other reactions than for CHO and propose the following sequence

\[
\text{CFO} + \text{O}_₂ \quad \rightarrow \quad \text{FC(O)O}_₂
\]

\[
\text{FC(O)O}_₂ + \text{NO}_₂ \quad \rightarrow \quad \text{FC(O)O}_₂\text{NO}_₂
\]
DEGRADATION MECHANISMS

\[
FC(O)O_2 + NO \rightarrow FC(O)O + NO_2 \\
FC(O)O + HO_2 \rightarrow FC(O) OH + O_2
\]

with fluorinated formic acid as a product, which may further stabilize by HF elimination.

Summary of expected products from CH₂FCF₃:

- Carbonyl compounds: CF₃CFO, CHFO,
- Other products: CF₃CHFO₂NO₂, CF₃CHFOOH, FC(O)O₂NO₂, FC(O)OH (from the oxidation of CHFO)

(viii) HFC 152a: CH₂CH₃

There are two different initial oxidation pathways, viz.

(a) \[CHF₂CH₃ \rightarrow OX \rightarrow CHF₂CH₂O \]
(b) \[OX \rightarrow CH₃CF₂O \]

arising from \(\alpha \)-and \(\beta \)-H-abstraction from the parent by OH radicals. Apparently, the relative rates of these processes have not been directly measured. However, there is indirect evidence from reactions of OH and Cl radicals with fluorinated alkanes (Martens et al., 1976, Tschuikow-Roux et al., 1985, Singleton et al., 1980) that suggest preferential attack of the \(\alpha \)-(fluorinated) position yielding predominantly CH₃CF₂O (channel b) despite the statistical advantage of the \(\beta \)-position. However, in the subsequent presentation we will still consider the possible final products arising from both types of oxo radicals.

For CHF₂CH₂O we expect the reaction with O₂ as the most likely pathway of its subsequent removal, viz.

\[CHF₂CH₂O + O₂ \rightarrow CHF₂CHO + HO₂ \quad \Delta H_R = -29 \text{ kcal/mol} \]

The alternative C-C-bond fission

\[CHF₂CH₂O \rightarrow CHF₂ + CH₂O \quad \Delta H_R = +11 \text{ kcal/mol} \]

is sufficiently endothermic to be safely discarded. The product, difluoro-ace-taldehyde, will readily oxidize to yield CO₂ and CF₂O as final products, viz.

\[CHF₂CHO \rightarrow OX \rightarrow CHF₂C(O)O \]
\[CHF₂C(O)O \rightarrow CHF₂ + CO₂ \]
\[CHF₂ + O₂ \rightarrow CHF₂O₂ \]
\[CHF₂O₂ + NO \rightarrow CHF₂O + NO₂ \]
\[CHF₂O + O₂ \rightarrow CF₂O + HO₂ \]
The oxi-radical formed in channel (b) on the hand is expected to undergo rapid C-C-bond fission, viz.

\[\text{CH}_3\text{CF}_2\text{O} \rightarrow \text{CH}_3 + \text{CF}_2\text{O} \quad \Delta H_R = -24 \text{ kcal/mol} \]

eventually leading to CO\(_2\) + CF\(_2\)O, the same products as expected from CHF\(_2\)CH\(_2\)O. As a consequence the relative Initiation rate (\(\alpha\)- or \(\beta\)-H -atom abstraction) does not modify the main product distribution. It will influence, however, products such as pernitrates and hydroperoxides.

Summary of expected products from CHF\(_2\)CH\(_3\):

- Carbonyl compounds: CHF\(_2\)CHO, CF\(_2\)O,
- Other products: CHF\(_2\)CH\(_2\)O\(_2\)NO\(_2\), CHF\(_2\)CH\(_2\)OOH,
 - CH\(_3\)CF\(_2\)O\(_2\)NO\(_2\), CH\(_3\)CF\(_2\)OOH,
 - CHF\(_2\)C(O)O\(_2\)NO\(_2\), CHF\(_2\)O\(_2\)NO\(_2\) (from the oxidation of CHF\(_2\)CHO)
 - CHF\(_2\)OOH (from the oxidation of CHF\(_2\)CHO)

4. SUMMARY AND RECOMMENDATIONS

- The mechanisms of the tropospheric degradation of HCFC's such as 22 and 142b suggest that their chlorine content will be released essentially instantaneous with the initial attack of the HCFC by OH. For HCFC 124 this release is prevented due to competitive C-C bond fission.

- HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously. The second chlorine atom may be stored in relatively long-lived species such as CF\(_3\)CCIO or CCIFO.

- The photochemistry of compounds such as CF\(_3\)CCIO and CCIFO should be investigated in order to assess their potential for chlorine release in the stratosphere.

- The effect of Cl atom release on the chemistry of the troposphere should be assessed.

- The experimental data base is too weak to allow firmer assessment of the degradation mechanism of HCFC’s and HFC’s. A large uncertainty arises for the reactions of the oxi radicals. Even the thermodynamic data base is too speculative to draw more substantiated conclusions. It is absolutely essential to initiate direct experimental studies in order to validate these assessments.
APPENDIX TABLE: Summary of standard enthalpies of formation used in the present evaluation: (in units of kcal/mol). Calculated quantities are underlined.

<table>
<thead>
<tr>
<th>Radicals</th>
<th>Carboxyl compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>CH₂O</td>
</tr>
<tr>
<td>Cl</td>
<td>CHFO</td>
</tr>
<tr>
<td>HO₂</td>
<td>CF₂O</td>
</tr>
<tr>
<td>CH₃</td>
<td>CFCl₂</td>
</tr>
<tr>
<td>CHF₂</td>
<td>CCl₂O</td>
</tr>
<tr>
<td>CF₃</td>
<td>CF₃CHO</td>
</tr>
<tr>
<td>CF₂Cl</td>
<td>CFCl₂CHO</td>
</tr>
<tr>
<td>CFCl₂</td>
<td>CF₂ClCHO</td>
</tr>
<tr>
<td>CCl₃</td>
<td>CF₃CFO</td>
</tr>
<tr>
<td>CF₃ClO</td>
<td>CF₃ClCHO</td>
</tr>
<tr>
<td>CF₂ClO</td>
<td>CF₂Cl₂O</td>
</tr>
<tr>
<td>CFCI₂O</td>
<td>CF₃CF₂O</td>
</tr>
<tr>
<td>CH₂O</td>
<td>CHFO</td>
</tr>
<tr>
<td>CHFO</td>
<td>CF₂O</td>
</tr>
<tr>
<td>CF₂O</td>
<td>CF₃CHO</td>
</tr>
<tr>
<td>CF₂ClO</td>
<td>CF₂Cl₂CHO</td>
</tr>
<tr>
<td>CFCl₂O</td>
<td>CF₃ClCHO</td>
</tr>
<tr>
<td>CH₃CF₂O</td>
<td>CF₃CFO</td>
</tr>
<tr>
<td>CF₃CF₂O</td>
<td>CF₃ClCHO</td>
</tr>
<tr>
<td>CF₂Cl₂O</td>
<td>CF₂Cl₂O</td>
</tr>
<tr>
<td>CFCI₂O</td>
<td>CF₃CF₂O</td>
</tr>
<tr>
<td>CHF₂CHO</td>
<td>CF₂Cl₂CHO</td>
</tr>
<tr>
<td>CF₃CFCIO</td>
<td>CF₃CFO</td>
</tr>
<tr>
<td>CF₃CCl₂O</td>
<td>CF₃CFCIO</td>
</tr>
<tr>
<td>CF₃CH₂O</td>
<td>CF₃CCl₂O</td>
</tr>
<tr>
<td>CFCl₂Ch₂O</td>
<td>CF₃CH₂O</td>
</tr>
</tbody>
</table>

- a) Benson, 1976
- b) McMillen and Golden, 1982
- c) Calculated from bond additivity rules (Benson, 1976) using \([\text{C-(F)}(O)] \sim [\text{C-(F)}₂(C)]= -158.4\) and a correction for the oxo group of \([O -(C)]= +13.6\) as derived from \(\Delta H_f (\text{CH}_2\text{O}) = [\text{C-(H)}(O)] + [O -(C)]= 3.5\)
- d) Batt. 1977
- e) Calculated using \([\text{C-(F)}₂(CI)(O)] \sim (\text{C-(F)}₂(CI)(C)]= -106.3\) (Benson, 1976)
- f) MNDO-calculation from Rayez et al., 1987
- g) Calculated from \(\Delta H_f (\text{CF}_₂\text{ClO})\) using a correction for F/Cl-exchange as derived from \(\Delta H_f's\) for substituted CX₃ radicals
- h) Calculated using \([\text{C-(F)}₂(C)]= -158.4, [\text{C-(F)}₂(C)(O)] \sim [\text{C-(F)}₂(C)₂]= -97\) (Benson, 1976) and a correction for the oxo group of \([O -(C)]= +14.3\) as derived from \(\Delta H_f (\text{C}_2\text{H}_₂\text{O}) = -4\) and the corresponding group contributions.
- i) Calculated as for h) and with \([\text{C-(H)}(F)(O)] = -49\) (Benson, 1976)
- j) Calculated according to h) with group contributions from Benson, 1976
- k) JANAF Tables, 1979
- l) Calculated from \([\text{C-(C)}(\text{F})₂\text{Cl}]) = -102\) and a correction for substitution of Cl by H according to Benson, 1976 and \([\text{CO-(C)}(\text{H})] = -26.9\)
- m) Calculated as for l) and by applying a correction for F exchange by Cl
- n) Calculated from \([\text{C-(C)}(\text{O})\text{Cl}]) = -158\) (Benson, 1976) and \([\text{CO-(C)}(\text{F})] = -77\), where the latter was obtained from \([\text{CO-(C)}(\text{Cl})]\) (see o.) and a correction for Cl/F exchange.
- o) Calculated from \([\text{C-(C)}(\text{O})\text{Cl}]) = -158\) (Benson, 1976) and \([\text{CO-(C)}(\text{Cl})] = -40\), where the latter was obtained from the experimental \(\Delta H_f\) for \(\text{CH}_3\text{COCl (-60.5 (Pritchard and Skinner, 1950)) and [C-(C)}(\text{Cl})] = -20.7\) (Benson, 1976)
VII. LIQUID PHASE PROCESSES

Possible Atmospheric Lifetimes and Chemical Reaction Mechanisms for Selected HCFCs, HFCs, CH₃CCl₃, and their Degradation Products Against Dissolution and/or Degradation in Seawater and Cloudwater

Paul H. Wine

and

W. L. Chameides
Georgia Tech Research Institute and School of Geophysical Sciences
Georgia Institute of Technology
Atlanta, GA 30332
AQUATIC MECHANISMS

EXECUTIVE SUMMARY

The rates at which eight potential alternative HCFCs and HFCs and methyl chloroform (CH$_3$CCl$_3$) can be removed from the atmosphere by dissolution and reaction in the oceans and in cloudwater have been estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the aqueous phase. The HCFCs and HFCs considered are CHCl$_2$CF$_3$ (HCFC-123), CFC$_1$_2CH$_3$ (HCFC-141b), CF$_2$ClCH$_3$ (HCFC-142b), CHF$_2$Cl (HCFC-22), CHFClCF$_3$ (HCFC-124), CH$_2$FCF$_3$ (HFC-134a), CHF$_2$CH$_3$ (HFC-152a), and CHF$_2$CF$_3$ (HFC-125).

Cloudwater is found to be of no importance as an atmospheric sink for any of the above compounds. Best-estimate lifetimes for all eight HCFCs and HFCs toward removal in the oceans are greater than 77 years, with only HCFC-22, HCFC-123, and HCFC-141b having lifetimes shorter than 200 years. The most reactive of the nine species considered toward removal in the oceans is methyl chloroform with a best-estimate lifetime of 42 years and a minimum reasonable lifetime of 22 years. Important removal mechanisms for methyl chloroform, HCFC-22, HCFC-123, and HCFC-141b in seawater are hydrolysis and reaction with hydrated electrons. Improved hydrolysis kinetics data and Henry's law solubility data for methyl chloroform, HCFC-22, HCFC-123, and HCFC-141b would help to reduce the uncertainties in the aqueous phase removal rates of these species, as would improved estimates of the hydrated electron concentration in seawater.

Gas phase degradation products of the eight HCFCs and HFCs include a large variety of halo-substituted carbonyls, acids, peroxyacids, hydroperoxides, alcohols, nitrates, peroxynitrates, and peroxyacetyl nitrates. Although handicapped by the total absence of Henry's law solubility data for any of the compounds of interest and the limited availability of relevant kinetic data, an assessment of the rates and mechanisms of aqueous phase removal of the gas phase degradation products has been carried out.

The species X$_2$CO, HXCO, CH$_3$CXO, CF$_3$OH, CX$_3$OONO$_2$, and ROOH (X = F or Cl, R = halo-substituted methyl or acetyl) are all expected to be removed from the atmosphere on time scales limited by transport to cloudy regions or the marine boundary layer (i.e. about 1 month); aqueous phase reactions of these species result in the formation of chloride, fluoride, and carbon dioxide, as well as formic, acetic, and oxalic acids. The species CX$_2$CXO, CX$_2$CX$_2$OOH, CX$_2$CX$_2$OONO$_2$, CX$_3$C(O)OONO$_2$, and CX$_3$C(O)OOH are also expected to be removed from the atmosphere rapidly, and their aqueous phase reactions result in the formation of halo-substituted acetates, CX$_3$C(O)O$^-$. The species CX$_3$C(O)OH are very acidic and, as a result, are highly soluble in cloudwater. These acids are expected to be rapidly removed from the atmosphere by rainout. However, the aqueous phase species CX$_3$C(O)O$^-$ are expected to be resistant to chemical degradation. Trichloroacetate can thermally decompose on a time scale of 2-10 years to yield carbon dioxide and chloroform. In fresh water, the reaction of CCl$_3$C(O)O$^-$ with the hydrated electron is also expected to occur on a time scale of a few years. The species CFC$_1$C(O)O$^-$, CF$_2$ClC(O)O$^-$, and CF$_3$C(O)O$^-$ may have very long aqueous phase lifetimes. The longest lived species, CF$_3$C(O)O$^-$, could have a lifetime in natural waters as long as several hundred years. Processes which could possibly degrade CF$_3$C(O)O$^-$ on shorter time scales than suggested above, but whose rates cannot be estimated with any degree of confidence at this time, include oxidation by photochemically generated valence band holes in semiconductor particles and hydrolysis catalyzed by enzymes.
AQUATIC MECHANISMS

in microorganisms and plants; further research aimed at characterizing these processes is needed.

One possible gas phase degradation product about which very little is known is CF₃ONO₂. This compound has never been observed, and may be thermally unstable. If CF₃ONO₂ is thermally stable, then it may have a long lifetime toward aqueous phase removal. Henry’s law solubility data and hydrolysis kinetics data for CF₃ONO₂ are needed before its aqueous phase removal rate can be assessed with any degree of confidence.