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In spiteof the rapid advent of computer technology over the past severaldecades,in

order to be able to deal accuratelywith the complex flow problems, there isa need for

continuous improvement of computationalefficiency.With the largenumber ofgridpoints

normally requiredforpracticallyrelevantflows,iterativemethods are oftenused. However,

it is well known that for a SOR type of method performed on a single-grid (SG) system, the

number of iterations required typically increases in proportion to the number of grid points.

Since the CPU time on a per iteration basis scales with the number of grid po/nts, the grid

resolutiontypicallyrequired for satisfactorilysolvingan incompress'blerecirculatingflow

problem would need substantial computational time even on supercomputers. In order to
redu_ this di_culty associated with the $G solution procedure, the multigrid (MG)
technique has been identified as a very useful means for improving the convergence rate of
iterative methods.

The multlgrid technique, orig/nally developed for the effident solution of linear, elliptic

differential equations, has been used in the field of computational fluid dynamics with

increasing popularity. Successes have been reported for both compressible and
incompressible flows. However, it is not until more recendy that attempts have been

reported, with varying degrees of success, on the application to incompressible reeirculating
flows with primitive variables. Substantial differences exist between the basic numerical

algorithms embodied in those studies, notably the way the pressure field is obtained, the
choice of the convection scheme, and the design of the grid layout for the velocity and

press, are variable, s. GeneraUy speaking two methods have been developed for obtaining the

solution field, namely, the decoupled method, and the coupled method. In the decoupled

method, a two-level iterative procedure is usually employed; one is the outer iteration

needed to progressively update different pardal differential equations, and tbe other is the

inner iteration devised to solve the system of linear algebraic equations resulting from the

discretizati0n procedures of each partial differential equation with other variables remaining
unchanged. Within the outer iteration, for a two-dimensional flow with u, v, and p as the

dependent variables for example, a cyclic outer iterative procedure is designed to

sequentially solve, say, the Iinearized x-momentum equation fast, the linearized y-

momentum equation next, and the pressure (correction) equation last. After sweeping
through all three equations to obtain partially converged solutions, the x-momentum

equation is again invoked to initiate a new cycle, until all three equat/ons are satisfactorily

solved. Within the inner iteration, say, the x-momentum equation is discretized and

linearized, and the resulting set of linear equations is then solved by an iteratlve procedure

such as the LSOR method till the prescribed number of iterations or the convergence

criterion has been reached. For a decoupled algorithm, the treatment of coupling among

the dependent variables, such as velocity and pressure, is critical to the overall convergence.
Hence, the performance of thistype of me_od depends on such factorsas the Reynolds

number and the distributionand skewness of the gridin sensitivemanners.

In contrast, a coupled method, which solves the velocity vector and the scalar variables
at a point, line, or plane simultaneously, usually shows robust performance with respect to

parameters such as the Reynolds number. In the context of Cartesian coordinates, the
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coupled method is also found to be relatively insensitive to the number of the grid points

employed. With the use of curvilinear coordinates, howevar, the situation is not as

favorable, since, depending on the characteristics of the grid skewness, one either has to

treat the cross-derivative terms explidfly as source term or solve equations whose cocffldcnt
matrix is no longer sparse.. Furthermore, from the viewpoint of developing generic

computational capabilities for flows involving different physical mechanisms such as
turbulence, heat transfer, combustion, and phase change, it is preferable that one does not

have to redo the algorithm for a different number of partial differential equations. In this
regard, the decoupled method has a clear advantage since it can handle a different number

of equations in more a flexible manner. It is with this motivation that in the present work

a multigrid method in curvilinear coordinates is developed in conjunction with a basic flow
solver reported in Refs [1,2], which utilizes a decoupled algorithm to solve incompressible

recirculating flow problems.

A fullmultigfid/_all_proxJmation storage(FMG/FAS) algorithmisutilizedto solve

the incompressiblerecitculatingflow problems in complex geometries. Tne algoritl,.mis

implemented in conjunction with a pressure-correction/staggered-grid type of technique
using the curvilinear coordinates. In order to illustrate the performance of the method, two

flow configurations, one a square cavity driven by a sliding top wall and the other a channel

with multiple bumps are used as the test problems. Comparisons are made between the
performances of the multigrid and single-grid methods, measured by the number of free grid

iterations, equivalent work units, and CPU time. Besides demonstrating that the multigrid

method can yield substantialspeed-up with wide variationsin Reynolds number, grid

distn_butions,and geometry, is.ruessuch as the convergence characteristicsat differentgrid

levels, the choice of convection schemes, and the effectiveness of the basic iterative

smoothers are studied. An adaptive grid scheme is also combined with the multigrid

procedure to explore the effects of grid resolution on the muldgr/d convergence rate as well

as the numerical accuracy. A full account of the technique developed along with illustrative

remits can be found in Ref [3]. Two figures shown here give a depiction of the grid cycle

adopted and a sample of the comparison of the relative performance of the method

developed.
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Fig. 1 A full multigrid (FMG) procedure with fixed V-cycles
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Fig. 2 Comparison of convergence rates between multigrid and single-grid

solvers on 81x81 grid with SIP as smoother for cavity flow with

(a) Re = 100, (b) Re = 1000, and second-order upend convection
sc_elrne.
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