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In spite of the rapid advent of computer technology over the past several decades, in
order to be able to deal accurately with the complex flow problems, therc is a need for
continuous improvement of computational efficiency. With the large number of grid points
normally required for practically relevant flows, iterative methods are often used. However,
it is well known that for a SOR type of method performed on a single-grid (SG) system, the
number of iterations required typically increases in proportion to the number of grid points.
Since the CPU time on a per iteration basis scales with the number of grid points, the grid
resolution typically required for satisfactorily solving an incompressible recirculating flow
problem would need substantial computational time even on supercomputers. In order to
reduce this difficulty associated with the SG solution procedure, the pultgrid (MG)
technique has been identified as a very useful means for improving the convergence rate of
iterative methods.

The multigrid technique, originally developed for the efficient solution of linear, elliptic
differential equations, has been used in the field of computational fluid dynamics with
incrcasing popularity.  Successes have been reported for both compressible and
incompressible flows. However, it is not until more recently that attempts have been
reported, with varying degrees of success, on the application to incompressible recirculating
flows with primitive variables. Substantial differences exist between the basic numerical
algorithms embodied in those studies, notably the way the pressure field is obtained, the
choice of the convection scheme, and the design of the grid layout for the velocity and
pressure variables. Generally speaking, two methods have been developed for obtaining the
solution field, namely, the decoupled method, and the coupled method. In the decoupled
method, a two-level iterative procedure is usually employed; one is the outer iteration
needed to progressively update different partial differential equations, and the other is the
inner iteration devised to solve the system of linear algebrai¢ equations resulting from the
discretization procedures of each partial differential equation with other variables remaining
unchanged. Within the outer iteration, for a two-dimensional flow with u, v, and p as the
dependent variables for example, a cyclic outer iterative procedure is designed to
sequentially solve, say, the linearized x-momentum equation first, the linearized y-
momentum equation fext, and the pressure (correction) equation last. After sweeping
through all three equations to obtain partially converged solutions, the x-momentum
cquation is again invoked to initiate a new cycle, until all three equations are satisfactorily
solved. Within the inner iteration, say, the x-momentum equation is discretized and
linearized, and the resulting set of linear equations is then solved by an iterative procedure
such as the LSOR method till the prescribed number of iterations or the convergence
criterion has been reached. For a decoupled algorithm, the treatment of coupling among
the dependent variables, such as velocity and pressure, is critical to the overall convergence.
Hence, the performance of this type of method depends on such factors as the Reynolds
number and the distribution and skewness of the grid in sensitive manners.

In contrast, a coupled metbod, which solves the velocity vector and the scalar variables

at a point, line, or plane simultaneously, usually shows robust performance with respect to
parameters such as the Reynolds number. In the context of Cartesian coordinates, the
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coupled method is also found to be relatively insensitive to the number of the grid points
employed. With the use of curvilinear coordinates, however, the situation is not as
favorable, since, depending on the characteristics of the grid skewness, one either has to
treat the cross-derivative terms explicitly as source term or solve equations whose coefficient
matrix is no longer sparse. Furthermore, from the viewpoint of developing generic
computational capabilities for flows involving different physical mechanisms such as
turbulence, heat transfer, combustion, and phase change, it is preferable that one does not
have to redo the algorithm for a different mumber of partial differential equations. In this
regard, the decoupled method has a clear advantage since it can haadle a different number
of equations in more a flexible manner. It is with this motivation that in the present work
a multigrid method in curvilinear coordinates is developed in conjunction with a basic flow
solver reported in Refs [1,2], which utilizes a decoupled algorithm to solve incompressible
recirculating flow problems.

A full multigrid /full approximation storage (FMG/FAS) algorithm is utilized to solve
the incompressible recirculating flow problems in complex geometries. The algorithm is
implemented in conjunction with a pressure-correction/staggered-grid type of technique
using the curvilinear coordinates. In order to illustrate the performance of the method, two
flow configurations, one a square cavity driven by a sliding top wall and the other a chanpel
with multiple bumps are used as the test problems. Comparisons are made between the
performances of the multigrid and single-grid methods, measured by the number of fine grid
iterations, equivalent work units, and CPU time. Besides demonstrating that the multigrid
method can yield substantial speed-up with wide variations in Reynolds mumber, grid
distributions, and geometry, issues such as the convergence characteristics at different grid
levels, the choice of convection schemes, and the effectiveness of the basic iterative
smoothers are studied. An adaptive grid scheme is also combined with the multigrid
procedure to explore the effects of grid resolution on the multigrid convergence rate as well
as the numerical accuracy. A full account of the technique developed along with illustrative
results can be found in Ref [3]. Two figures shown here give a depiction of the grid cycle
adopted and a sample of the comparison of the relative performance of the method
developed.
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Fig. 1 A full multigrid (FMG) procedure with fixed V-cycles
M = 5 grid levels.
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Fig. 2 Comparison of convergence rates between multigrid and single-grid
solvers on 81x81 grid with SIP as smoother for cavity flow with
(a) Re =100, (b) Re = 1000, and second-order upwind convection

scheme.
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