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University of Colorado, Boulder, CO 80809-0429, USA

ROGER OHAYON

Office National D’'Etudes et de Recherches Aérospatiales
BP 72, 92822 Chatillon, France

ABSTRACT

A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in
a rigid or flexible container by the method of canonical decomposition applied to a modified form
of the wave equation in the displacement potential. The general principle is specialized to a mixed
two-field principle that contains the fluid displacement potential and pressure as independent fields.
This principle contains a free parameter a. Semidiscrete finite-element equations of motion based on
this principle are displayed and applied to the transient response and [ree-vibrations of the coupled
fluid-structure problem. It is shown that a particular setting of a yields a rich set of formulations
that can be customized to fit physical and computational requirements. The variational principle is
then extended to handle slosh motions in a uniform gravity field, and used to derived semidiscrete
equations of motion that account for such eflects.

1. INTRODUCTION

An elastic container (the structure) is totally or partly filled with a compressible liquid or gas (the
fluid). The fluid structure system is initially in static equilibrium in a steady body force field such
as gravity or centrifugal forces. We consider small departures from equilibrium that result in forced
or free vibratory motions. To analyze these motions the fluid is treated as a linear acoustic fluid,
i.e., compressible but irrotational and inviscid. The purpose of the present work is

1. To derive variational equations of motion based on a mixed variational principle for the fluid
subsystem.

2. To obtain semidiscrete equations of motion following spatial discretization of the coupled prob-
lem by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of canoni-
cal equations advocated by Oden and Reddy [13] for mechanical applications. The most general
dynamical principle derived in this paper contains three primary variables: pressure-momentum
vector, dilatation-velocity vector, and displacement potential.
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The general principle is specialized to a two-field functional of Reissner type thal has pressure
and displacement potential as primary variables, as well as a free coeflicient o that parametrizes
the application of the divergence theorem. The coupled variational equations are then discretized
by the finite element method, and semidiscrete equations for a rigid container established. Linkage
with the structure is then made to establish coupled semidiscrete equations of motion for a flexible
container. By appropriate selection of the coefficient a a continuum of finite element formulations
results. One particular setting yields a rich sct of symmetric and unsymmetric formulations for
the transient and free-vibrations elastoacoustic problems. From this sct sclections can be made to
satisfy various physical and computational criteria. The implications of these selections as regards
efficiency and numerical stability are discussed.

The variational formulation is then extented to cover slosh motions in a uniform gravity field.
It is shown that the surface slosh equations may be incorporated as Galerkin terms in several
forms, and that one of these forms merges naturally with the mixed variational principle to form
an augmented functional. Semidiscretization of this functional produces finite clement equations of
motions that may be used for a rigid or flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This volume is
assumed to be simply connected. The fluid boundary S consists generally of two portions

S : S4US,. (1)

S, is the interface with the container at which the normal displacement d,, is prescribed (or found as
part of the coupled fluid-structure problem) whereas S,, is the “[ree surface” at which the pressure
p is prescribed (or found as part of the “fluid slosh” problem). If the fluid is fully enclosed by the
container, as is necessarily the case for a gas, then S, is missing and § = Su. The domain is referred
to a Cartesian coordinate system (z1, z2, z3) grouped in vector X.

The fluid is under a body force field b which is assumed to be the gradicut of a time independent
potential 8(x), i.e. b = V3. All displacements are taken to be infinitesimal and thus the fluid
density p may be taken as invariant.

We consider three states or configurations: ortginal, from which displacements, pressures and
forces are measured, current, where the fluid is in dynamic equilibrium at timne ¢, and reference, which
is obtained in the static equilibrium limit of slow motions. Transient motions are the dillerence
between current and reference states. It should be noted that in many situations the original
conﬁguratidh is not physically attainable. Table 1 summarizes the notation used in relation to these
states.

2.1 Field Equations

The governing equations of the acoustic fluid are the momentum, state and continuity equations.
They are stated below for the current configuration, and specialized to the reference configuration
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Table 1 Notation for Fluid States

Quantiiics ' Domain  Original Refercnce  Current Transient

Displﬁceinents |4 o d° df d=dt-d°
.0 . . .t .0

Velocities % 0 d ¢ d=4 -d

Boundary displacements* S 0 d? dl d, =d: —d?

Displacement potential 14 0 ¥° Yt v =9t —y¢°

Pressures (+ if compressive) 1’4 0 p° pt p=p'-p°

Body forces |4 0 b=V bL=Vg

Density | 4 i) P P

% Positive along outward normal

later. The momentum (balance) equation expresses Newton’s second law for a fluid particle:

pd' = —Vpt+b=-Vp'+Vp 2)

The continuity equation may be combined with the linearized equation of state to produce the
constitutive equation that expresses the small compressibility of a liquid:

pt = -KVdf= —pc?va’, (3)

where K is the bulk modulus and ¢ = \/K/p the fluid sound speed. Il the fluid is incompressible,
K,c — oo. This relation is also applicable to nonlinear elastic fluids such as gases undergoing
small excursions from the reference state, if the constitutive equation is lincarized there so that

K = po(dp/dp)o-
The boundary conditions are

dt =dt on Sy pt=p* on S, (1)

n n

where tf,“ is either prescribed or comes from the solution of an auxiliary problem as iurﬂuid—structure
interaction, and p may be either prescribed or a function of d,, and b, as in the surface-wave (“slosh™)
problem.

2.2 Integral Abbreviations

In the sequel the following abbreviations for the volume and surface integrals are used:

(v & /V fav, lols % [5 gdS,  lols, = [ gdS, elc. (5)
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That is, domain-subscripted parentheses (square brackets) are used to abbreviate volume (surface)
integrals. Abbreviations for function innerproducts are illustrated by

R t‘ ll
(rg)v. & /v fedv,  Urglvwe & / /v fedvdt,  [falsoe / /s fgdSdt, elc.
Q [¢] d (6)

3. THE DISPLACEMENT POTENTIAL

8.1 The Reference State
Taking the curl of both sides of (2) yields
curld’ = 0. (7)
The general integral of this equation for a simply connected domain is
dt =Vy'+a+bt, (8)
where Yt = ¥t(x,t) is the displacement potential, a = a(x) and b = b(x) are time-independent
vector functions, and t denotes the time. If accelerationless motions (for example, rigid body
motions) are precluded by the boundary conditions, a and b vanish. Replacing da‘ = Vit into the
momentum equation (2) we get
Vpt=—pVy'+ V5, (9)
which spatially integrated gives
pt=—-p¥t+8+C(Y), (10)
where the scalar C(t) is not spatially dependent. Next integrate the constitutive equation (3) over
V and apply the divergence theorem to vad:

(') + (pc?VdY)y = (p')v + lpc’ds]s =0. (11)

Inserting pt from (10) into the above equation furnishes a condition on C(t), which gives

2 - 2 _—
o) = ~E(als + L@ - 5B = -5 ldlls 0¥t -, (12)

where v = (1), is the fluid volume and 7 = (f)v /v denotes the volume average of a function f
defined over V. Substituting C(t) into (10) we get
t Tt _ 7t = _ el e
pt = —p(#* = 59 + (6~ B) - -lal]s. (13)
In the static limit of very slow motions, the inertia terms may be neglected and we recover the

reference solution
0 = P32 0
r =(ﬂ—ﬁ)_—v—[dn S (ll)
For an incompressible fluid {d,]s = 0 but ¢ — o0; thus it would be incorrect to conclude that

PP =p0- B. A counterexample to this effect is provided in {14].
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8.2 Transtent Motions

Subtracting the constitutive relations at the current and geference states we get
p= —pc?Vip = pe’s, (15)

where s = —Vi\b is called, following Lamb [10], the condensation. Subtracting (14) from (13) yiclds

p=—p¥ ~ ) - gf,i[dn]s- (16)

On equating (15) and (16) we get modified forms of the wave equation that account for 1ncan
boundary surface motions:

<

¥ -

c?

s=Vip= +%[d,,]s, or (V2 — V) .- (17)

The second form follows from —vs = [dn]s, which is a consequence of the divergence theorem. TFor
an incompressible fluid, ¢ — co and [dn]s = 0, and from the first of (17) we recover the Laplace
equation V3¢ = 0.

8.8 Adjusting the Displacement Potential

If the transient displacement potential is modified by a function of time:

v =19+ P(t), (18)

where ¥ is the potential of (8)-(17), we may chose P(t) so that ¢2¢ = V2 = -5 for any t. Then
we obtain the classical wave equation

2
2%y = v, or (gt—z - c’v’) P =0. (19)

In the sequel it is assumed that this adjustment has been made. If so, C(t) vanishes and (16)

reduces to
p=—py. (20)

4. MIXED VARIATIONAL PRINCIPLES

4.1 Canonical Decomposition

In this section we derive multifield variational principles for the fluid domain following the canonical
decomposition method advocated by Oden and Reddy [13]. This method is applicable to sclf-adjoint
boundary value problems (BVP) of the form

Au=f inD (21)



where u is the unknown function, f the data, A a symmetric linear operator, and D the domain of
existence of the solution. For time-dependent problems D is the tensor product of the time domain
(typically O to t) and the volume V. To apply this method, the operator A is factored as

Au=W*EWu =/, (22)

where T and E are linear operators in V and W* is the adjoint of T. This is called a canonical
decomposition. This decomposition may be represented as the operator composition sequence

Wu=ce, Ee=o, W' =/, (23)

where ¢ and o denote intermediate field variables in D. The three equations (23) are called the kine-
matic, constitutive and balance equations, respectively, in mechanical applications. The canonical
representation of boundary conditions on the surface S = S, U S, is

Bsug=g on Sy, Biog=h on §,. (21)

where Bs and B} are surface operators, ¢ and h denote boundary dala, and ug = ~ysu and
os = I'go are extensions of u and o to the boundary S. The extension operators vs and b¢ often
involve normal derivatives.

4.2 The Wave Equation

The classical wave equation {19) is not a good basis for the canonical decomposition (22). Its
principal drawback is that the pressure field does not appear naturally as an intermediate variable
in (23). A more convenient form for our purposes is obtained by taking the Laplacian of both sides
of (19), and multiplying through by the density p:

12
pV3 (P - 2Viy) =0, whence A = pV? (% - c2V2) , =0 (25)

A suitable canonical decomposition is A = W*EW, where

o0
v
w:{'_‘?g}, E=p[(l) cog] w*:[_ivg7 vﬁ]:—wT, (26)

in which i = /—1. Boldface symbols are used for W and E because these are 4 x 1 and 4 x 4
matrices, respectively. The operator product sequence (23) becomes

.v‘ . _V. . ‘ .
cmwo [ )= [2]. emme= [LIRR] =[] womsmioseren
(27)

The intermediate ficlds e and ¢ are 4 x 1 column vectors. These vectors are partitioned into their
temporal and spatial derivative subvectors for convenience in subsequent manipulations. Note thal
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the transient pressure p appears naturally as the spatial component of 0. The temporal components
of e and o are the complex velocity 1v and complex specific momentum i1, respectively.

" The boundary portions S, and S, of (24) are relabeled Sgq and Sy, respectively, to match the
notation (1). Boundary and initial conditions may be stated as

By(x,t) = g(x,t) on Su, B*o(x,t) = h(x,t) on 5y,
d(x,to) = do(x) or m(x,to) = mo(x),  d(x,t:) =d(x) or m(x,t;) = m(x).

(28)

Here B and B* are time-independent 4 x 1 and 1 x 4 vectors, respectively, related to the canonical
Bs and B} operators of (24) by B = Bs7s and B* = B§T's, where 75 (a scalar) and T's (2 4 x4
matrix) are boundary extension operators for ¢ and o, respectively. Comparison with (4) and the
use of Green’s function reveals that

d

BI::—B}:[() 0 0 1}, gT=‘0 0 0 Jn], ‘75:5-;, rs =I, h=-—ﬁ. (29)

4.8 Three Field Principle

The most general variational principle for the canonical decomposition (26) allows the three fields:
¥, e, and o, to be varied independently. The principle may be stated as §L(¢,e,0) = 0, where the
functional L is [13]

L(u,e,a) = LV +LS = ‘%(Ee,e)v xt+(asw¢—v)v Xt —'(fy'f’)sz + (GS’Dw_g)S,‘Xt —(hs lbs)srxu

(30)
where Ly and Lg collect volume and surface terms, respectively. On inserling (27-29) into (30) we
get ‘

Lv = }(Ee,e}vxt + (0, Wy — ey xt = / ‘ / Hp(—vrv £ -m (Vg -v) - (Vi + s)] dv dt,
to v *

= _[" 3y _3y
Ls =(0s,By — g8)saxt — (h,¥s)s,xt = /:o \i/s,‘ p(a —d,)dS -{-/ P35 dS] dt.

Sp

(31)
The term (f,¥)v x: vanishes and does not contribute to Ly .
4.4 Two Field Principles

A two field principle of Reissner type can be derived from the functional I, by enforcing the inverse
constitutive equations e = E~'o a priori. The resulting principle, which allows ¥ and o to be
varied simultaneously, is 6 R(¥, ¢) = 0, where

R(y,0) =Ry +Rs = —%(E—l”aa)th‘l'("'W'p)th_(fs'l’)"xt4'(”S:D¢’_g)5‘.‘xt" (B, ¥s) s, xt-
o (32)



where Rg = Ls and

0 2
Ry(¢,0) = —%(E—la, o)y xe + (0, Wy xe = / / (%mrm - _p_2 — Ty - ;;V2¢) dV dt.
R to v [ 2pc
. (33)
The specific momentum disappears as an independent field if we enforce m = pVY a priori,
whereupon the functional 2 becomes a function of ¥ and p only and the volume term contracts to

ty . . 2
Ry (¥,p) = /£ /V (— Lp(V)TVY - é;pc—g - pvzw) dv dt. (34)

To check R = Ry (¥,p) + Rs we form its first variation®

o= (59 ), - (r 9008) P 580
_ 3y v

- [P B p’éb_i: S, xt + [a—n B J"’Jp] Sgxt B (pVJ),&VtI))V :»

Setting §R = 0 provides the field equations, boundary and initial conditions.

4.5 Parametrization

A one parameter family of variational principles can be obtained by transforming all or part of
the last term in (34), vz pV24, by the divergence theorem (Green’s first. formula for the Laplace
operator)

/ pV2pdV + / (V)T VpdV = / 29 4s = / 2% s 4 / p2¥ s, (36)
v v s an S on Sy an
Let 0 < a < 1 be the portion of that term to be transformed. Insert pV2y = apV2i+ (1 - a)pV2yP

in (35) and apply (36) to apV2y to get

¢y 2 V
. g 2y 2y
Rav = [0 [/; (%p(v‘p)TVﬁ—-%p—cz--!-a(vtp)TVp—(l—a)pV’,p) dV—a/s" p—a—; dS—a/srpg'; dS] dat.
(37)

* The variation of the kinetic energy integral term may be expressed in two dillerent ways,

6(pV¢;T,V$)VX¢ = (pV’!Z,&\b)VXI - [p%w:,b'!,"]sx! * (pV!l".5V¢) "‘n’

n to

31

§(pVIT, V), = (V0 00)  + [138.54] - (557909),

depending on whether integration by parts is performed first in time or space, respectively. The first
form, which provides physically significant initial conditions, is used in constructing (35).

to
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Finally, replace the Laplacian T2y left over in (37) by c"J; to arrive at the parametrized two-ficld
functionalt

o " . . \
R0(¢|p) = RaV + RS = / [¢/V (— %P(V‘!/))va - %.:;‘:2' + “(Vll’)Tvl’ - (] - H)g) dV

to c
oYy 5 . .oy
+ /;‘p[(l - a)-a—n - dn] ds + /s'(p - rxp)é;l-dS] dt.
(38)

The highest spatial derivative index for both primary variables ¢ and p is 1, except ila=0,in
which case it is only 0 for p . The two interesting limit cases are of course a = 0 and a = 1, for
which

Ro(¥,p) = [:. [/V (—%P(V'{")vaﬁ—%f;—?f-) dV+/s p(%’f:——&") dS+/S ﬁ%% dS} dt, (39)
Ri(¥,7) =/: [/V (—%p(V¢)TV¢—§%+(V¢)Tvp) dV—/SdpJu dS—/S’(p——ﬁ)-g—:/% dS] dt.
(10)

5. FINITE ELEMENT DISCRETIZATION

5.1 Discretization of It,

In the following we derive semidiscrete finite-element equations of motion based on the It functional
(38). The volume V is subdivided into fluid finite elements. Over each fluid element the state is
represented by the primary variables ¢ and p, which are defined as functions of position in the usual
shape-function interpolation procedure. The finite element interpolation in V' may be expressed as

¥(x,1) = Ny(x) ®(t),  p(x,t) = Np(x) p(t), (1)

where ¥ and p are computational column vectors that contain nodal values of ¢ and p, respectively,
and Ny and N,, are corresponding row-vector arrays of dimmensionless shape functions. The specified
displacement over S, is interpolated by

d.(x.t) = nTd(x,t) = n”TN,4(x)d, = NT,(x)d, (42)

where n is the external-normal unit vector on Syq, Nu contains the displacement shape functions of
the enclosing container, N, are these shape {unctions projected on the outward normal n on S,

tHa#1,6R.,=0isa restricled variational principle because the substitution V¢ = ¢~ 23 holds ouly
at the exact solution.



and d contains nodal displacement values. For now the container displaceincuts will be assurned to
be prescribed, hence the superposed tilde.

In the following three Sections (5-8) we shall assume that the prescribed-pressure boundary con-
ditions are ezactly satisfied by the finite element interpolation, i.e. p = p on Sp. If so the S,
integral of R, simplifies to

0
- 2)ioe dS, (13)

which vanishes for a = 1. Inserting (41)-(42) into the functional (38) with the simnplified S, integral
(43) yields the semidiscrete quadratic form

N 1 T AT ~
Ra(¥,p) = —1p¥ H\Il—-i;pTGp+aTTFp+(l—-a)[‘I’TVp—\IJ Dp»f\Ile‘,,]—pTT d, (14)

where

H=/ VNI VN, dV = HT, F=/ VNTVNy dV, G=/ ¢"2NTN,dV = G7,
\'4 \'4 v

~T
D= /; ¢2NIN,dV, V= [ (VaNy)'N,dS, T = NTN,. dS, fy= L $V, N, dS.

Se Sd
(45)
The integration with respect to time is dropped as it has no effect on the variation process described
below.

5.2 Continusty Requirements

The interelement continuity requirements of the shape functions of ¥ and p depend on the index of
the highest spatial derivatives that appears in R,. If a # 0, this index is 1 for both ¥ and p and
consequently C? continuity is required. It is then natural to take the same shape functions for both

variables:
N\b = Np (46)

with both vectors ¥ and p of equal dimension and evaluated at the same nodes. Then some of the
matrices in (45) coalesce as

H=F, G=D=D". (47)

The case a = 0 is exceptional in that no spatial derivatives of p appear. One can then chose C™!
(discontinuous) pressure shape functions; for example, constant over cach Nuid element. If this is
done, obviously

because ¥ must be C® continuous. Furthermore the d'!mens'xons of p and ¥ will not be generally

the same.
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5.8 Singularity of H

For later use, we note that matrix H (as well as T i different from H) before the application of any
es,s_ential boundary conditions at fluid nodes, is singular because

He=10 (19)

where e denotes the vector of all ones. This follows from (45) and expresses the fact that a constant
potential generates no pressures or displacements.

6. TRANSIENT RESPONSE EQUATIONS

6.1 The Rigid-Container Equations of Motion

Since R, contains time derivatives of of order up to 2 in @, the appropriate Euler-Lagrange varia-
tional equation is

dRs 3 dRg 22_‘”3«)6 R,

5v “aiay Tarow ) T T (50

6Ra = ( ap

which applied to (44) yields

[pH\ia +oFp—(l-a)Dp+(1—a)Vp+(1- a)r.,.] 5% =0,
[-p7'Gp+oFT® - (1-a)DTE + (1 - VT -1 d|sp =0.

These equations can be presented in partitioned matrix form as

-0 S —(IBQ)D]{g}’”[JO" —piGJ{:}:{—(]i}g)fw}' 2)

where J = (1 — a)V + oF.
6.2 The Flexible-Container Equations of Motion

If the fluid is enclosed in a flexible container, the boundary displacements d are no longer prescribed
on Sy but must be incorporated in the problem by including them on the left hand side of the
equations of motion. In the sequel, vector d collects all structural node displacements, of which dis
a subset on Sy. Matrix ’1", suitably expanded with zeros to make it conform to d, becomes T. We
shall only consider here the case in which the container is modelled as a linear undamped structure
for which the standard mass/stiffness semidiscrete equation of motion is

Md + Kd =f,+ Tp, (53)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, Tp is the
pressure force on the structure, and f, is the externally applied force on the structure. Note that K

11



in general must account for container prestress effects through the geometric stiffness. Combining
(52) and (53) we get the coupled system )

™M 0 0 d K 0 -T d #
0 pH ~1-a)D|JFs+| 0 O J @y ={-(1-a)y ¢-
0 —-(1-aD7 0 P -7 3T —p7'G]| |p 0

If a=0,
M 0 ©

d K o -T d fa
o pH D}{¥}+] O O v @ =14 —f4 .
o DT o P T vT —p-'G| |p 0

There is little than can be done beyond this point, as the shape functions for p and ¢ will be
generally different. Although the pressure may be constant over eacli element, no condensation of
p is possible in the dynamic case.

Ha=1,
M o0 o0](d K o -T d f.,l
0 pH © &+| O 0 F Ty=40,. (56)
o 0 © P -1T FT -p~!G P 0]

Note that all these systems, (54) through (56), are symmetric.
6.8 Identical Shape Functions

Further progress in the case a =1 can be made if we assume, as discussed in §5.2, that the shape
functions for p and ¥ coincide. Taking then (47) into account, (51) simplifies to

M 0 © d K o -T d £
0 pH ©|{ ¥ +| O 0 H gvi={0}. (57)
0O 0 © P -tT H -p7'G P 0

The second matrix equation gives pH‘i’ + Hp = 0. Since H is nonnegative definite we must have
p=—pV. (58)

This is the discrete analog of the continuous relation (20) for the dynamic overpressure. For future
use let us note that if the container is rigid, (57) reduces to

_,-'Gp+H¥ =G¥ +HT =174 (59)

6.4 Unsymmetric Eliminalton

If (58) is used to eliminate the pressure vector from (57) we obtain

{8 5 ale)={5) o
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Conversely, eliminating the displacement potential vector gives

M o0]fd K -T}[d)_[fu
R IHE IR @
Unlike previous systems, both (60) and (61) are unsymmetric. Thus the straightforward elimination

of a field variable, be it p or ¥, causes symmetry to be lost. These forms will be called unsymmetric
two-field forms, or U2 for short. System (60) reduces to (59) if the container is rigid.

7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7.1 S8 Forms

Starting from (57) and (58) it is possible to derive three more symmetric forms that are formally
equivalent. One is obtained by differentiating the last matrix equation twice in time, transforming
the first equation via (57), and finally including (57) premultiplied by p~ LG as third matrix equation:

M T © d K o © d If,x
pTT —pH G|{® }+|0 0O O ¥y=10 (62)
0 G O p 0 0 p7'Gj P 10

Another one is obtained by integrating the first matrix equation of (57) twice in time, using (58) to
eliminate the pressure, and including Kd — Kd = 0 as trivial equation:

o o o](d -M_ —T -K Id -1,
0 G O &S+ |-pTT pH O Toh=13 0 (63)
0 0 K d -K 0 0 ld 0

where superposed stars denote integration with respect to t. Finally, differentiating the first matrix
equation of (63) twice in time, moving pTTd to the left, and including Md — Md = 0 as trivial
equation, we get

o o -M](d M o o](4d 1 0
0 pG —pTT ¢Y+|0 pH O ¥i=q0 (G1)
-M -pT -K d 0 0 0 dJ —f,

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric three ficld forms,
or S3 forms for short. It should be noted that there is no symmetric S3 forin with a state vector

consisting of d, p and d.
7.2 S2 Forms

Each of the S3 forms has a statically condensable matrix equation that allows one field to be
eliminated. For example, the last matrix equation of (57) is ~1Td + H¥ - p~!'Gp = 0 which
can be solved for the pressure vector p if G is nonsingular. Assuming that all malrix inverses
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indicated below exist (more will be said about this later), the condensalion process yields four
two-field symmetric forms:

M o]fdl K+ pTG !TT pTG™'H] [a) _ [l (65)

0 pH| | ® pHG™!'TT pHG 'H||® [ 0]’ S

M+ pTH™!'TT TH™'G d + K 0 d) _ [ (66)
GH™'TT p~1GH™IG | | b o p-'cllpf 10/’ '

pG 0] [® A+ ATTMIT pTTMTK) ¥ [pTT - f -
[o K]{d}+[ PKM™IT vk V(T Uk M @D
MK-'M JPMEK"!T ay (M olfdl__[M]g-y (68)7

p)TTK™'M pG+pPTTK™'T| | ¥ o pH|\® [T [T o+

These will be called symmetric two-field forms, or S2 forms for brevity. The condensation process
reduces the number of degrees of freedom but is detrimental to matrix sparsity. The last property
may be recovered to some extent by taking advantage of factored forms of the malrices affected by
the inverses; for example

K+ pTG T pTG'H] _[1 T}[K O I o (69)
pHG™'TT pHG™'H| [0 H||O oG TT HY” "

Expressions for the matrices in (66)-(68) are given in [3].
7.8 Advantages and Restrictions

The eight symmetric forms (S3 and S2), plus the two unsymunetric forms (U2}, represent ten
formulations of the R;-based fluid-structure interaction problem for the identical-shape-function
case. Although formally equivalent, they may have different behavior in terms of numerical stability
and computational efficiency. The following items may affect the choice among the various fornis.

Matriz sparseness retention. Matrices G and M are often diagonal. The S2 forms that involve G™!
and K~!, whether in direct or factored form, are (other things being equal) preferable to the others.

Existence of inverses. If the fluid does not have a [rce surface, I1 is singular on account of (19), and
Q2

consequently (65) does not exist. If the container has some unsuppressed rigid body modes, K is
singular and consequently {€8) does not exist.

Applied force processing. Forms (63) and (67) require that the applied structural forces, £y, be inle-
grated twice in time before being used. Both S2 forms (67) and (68) require additional matrix-vector
operations on the force vectors. These disadvantages, however, disappear in the frec-vibrations case
discussed in §8.

Fzplicit versus implicit time integration. If M and G are diagonal, both unsymmetric forms (60)
and (61) are attractive for explicit time integration because the leftmost coeflicient matrices are

14



Table 2 Limit Conditions

Limit condition Matriz Recommended
ezpression form(s)

Incompressible fluid (¢ — o) G —0 (60), (61), (62), (66)

Cavitating fluid (¢ — 0) G —» o0 (57),(65)
Stiff container K- oo (64),(68)
Hyperlight container M0 (64), (68)

upper and lower triangular, respectively. Thercfore equations may be solved directly in a forward
or backward direction without prior factorization. No symmetric form exhibits a similar property.

Physical limst conditions. Those collected in Table 2 are of interest in the applications. Recom-
mended forms, if applicable (restrictions are analyzed in §7.3), are preferable because of numerical
stability or suitability for pcrtﬁrbation analysis. Of all conditions listed in Table 2 the incompress-
ible fluid case is of central importance. There must be a free surface S, else the contained fluid
would behave as a rigid body. Consequently H is nonsingular. Setting G =0 in (66) we obtain the

so-called added mass equations 3
M.d + Kd =1, (70)

where M, is the added mass of the coupled system:
M, =M + pTH'TT, (71)

Preservation of structural rigid body motions. This is discussed in more detail in §8.5 in conjunction
with the free-vibration eigenproblem. Suffices to say that forms (63)-(64) and (67)-(68) do not gen-
erally preserve such motions and are inappropiate for treating unsupported structures (for examnple,
liquid tanks in orbit).

Presence of constant potential mode (CPM). This is covered in detail in §8.6. If the fluid is totally
enclosed by the container so that there is no free surface, forins (57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard substitutions
d=uevt, ®¥=q, p= re/vt, fu=0, (72)

where j = v/—1 and w is the circular frequency, into the transient response equations. Thus we
obtain ten algebraic eigenproblems, eight symmetric and two unsyminetric, which are displayed
below. General properties of these eigensystems are summarized in the Appendix. In the following
eigenproblem statements, subscript m is a mode index. The following cigenvector relations should
be noted:

L34

Tm = -pw,z"qm, u,,= w;;zum ((.d,,, l‘ 0) . (73)
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For the unsymmetric forms given in §8.3 one must distinguish between left and right eigenvectors.
Supercript R is applied to right eigenvectors wherever necessary; otherwise left cigenvectors arc

assumed.
8.1 S8 Forms '
M 0 Uy K 0 -T W
wilo pH 0|{q. =] 0 O ) § | Q. (> (74)
o O O I'yn -T H -p7'G
[ M pT 0 U K 0 0 1 Uy
w2, pTT —-pH G q., =10 0 0 Uy (0 (75)
| 0 G ©O© Tm 0 0 p7'G| {rm
0 @ O U,n -M T ~K] W
w?n 0 G 0 Qe = —pTT p}I o Qi N (76)
[0 0 K] lun K o0 0 | lu,
0 0 -M U, M 0 O ,,
W2l 0o pG —pTT am =10 pH O Qn p. (17)
M -pT -K | liu, o o of (W,
8.2 S2 Forms
., [M © u,, K + pTG™'TT pTG™'H] [,
w = -1 T ~-1 , (78)
mi 0 pH a,. pHG™'T pPHGT'IT O
2 M4, FH-'TT  THY'G | fu.) _[X 0 |[uw (79)
m GH 1T pIGH™IG |\t [0 »7'G]lTm ’ ‘
L2 [eG o q, | _ [pH+ A2TTM™!IT pTTM 'K ] [ (80)
mio Kl{u pKM™!T KM 'K O
mwm 1
wg MK—lM pMK—lT Uy _ M 0 1, (81)
m | TR ™M oG +,?TTK T la, [0 Pl Lan ]
8.8 U2 Forms

M PT U,n . K 0 Uy
2y gt alh *
a3 gm0 w ) 2
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8.4 Computational Considerations

The considerations of §7.3 apply for the most part to these ten eigensystems. Iowever, matrix
- symmetry is more important in free vibrations than in the transient response problem. This is
" because eigensolution extraction methods that take advantage of sparsity are more highly developed
for the symmetric eigenproblem than for its unsymmetric counterpart. For an up-to-date exposition
of those methods see Parlett {17].

The presence of zero eigenfrequencies (w, =0 roots) may cause scrious numerical difliculties
in some eigensystem formulations. Two sources of such roots may be distinguished: rigid body
structural modes, and the constant-potential mode.

8.5 Rigid-Body Structural Modes

If the container is not fully supported, Ku, = 0 for structural rigid body eigenmodes u,. 1M 11
is nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well as the two U2
eigensystems, preserve such modes. To verify this assertion, substitute

U, =1U,, Qq,= ~H '1Ty,, 1. =0, (84)

into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If H is singular, form (79), which
contains H™!, does not exist, whereas (74) preserves the modes if there exist q, modes such that
Hq, + Tu, = 0. Eigensystems (76)-(77) and (80) do not generally preserve rigid-body modes,
whereas (81), which contains K1, does not exist.

8.6 Constant Potential Mode and Spectrum Contamination

Suppose the container is supported so K is nonsingular but the enclosed fluid has no pressure-
specified surface S,. If so H is singular because of (19). Both U2 eigensystems then possess an
w = 0 root which conventionally will be assigned modal index 0. This root is associated with the
following left/right eigenvectors

Eigensystem (82): u =0, qu=e, ul = K™ ' Te, all = e, (85)
Eigensystem (83): uo =K !Te, ro=c¢, ul =0, rl =e, (86)
This statement is readily verified by taking the Rayleigh quotients (A.12). The cigenpairs (85-86) are
collectively called constant potential mode or CPM. The existence and computational implications
of this mode have been discussed by Geradin et. al. [7]. The mathematical interpretation of (85) is
“dual” to that of a structural rigid-body mode. Under a rigid-body motion the displacements are
nonzero but the strains vanish. Under the CPM the potential is nonzero but all fluid displacements
and dynamic pressures vanish. But unlike rigid-body modes, the CPM has ne physical significance:
it is spurious.
According to the eigenfunction theory summarized in the Appendix, all non-CI'M modes (vys
qQ,,., T'm) of (82) and (83) for m # 0, w,n # 0 satisfy the bi-orthogonality conditions

M 0 Uy 7
(0 eT) [pTT G] { Tin } = eT(pTT“m -+ Gl',,,) = ()‘ (8‘)
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T
(eTTTK™! eT) [1\‘-)4 Pz ] {:"‘} =el (TTK'IM_Um 4+ pTTK 'Tq,, + Gq,,) = 0. (88)
”e

As regards the symmetric forms, eigensystems (74) and (78) are adversely afTected by the singularity
of H and should not be used. This is because substituting the CPM left cigenvector (85) into either
one, with r,, = 0 for (74), produces a Rayleigh quotient for w of the form 0/0. This means that
both coefRcient matrices have a common null space (the CPM) and every w is an eigenvalue. Such
an eigenproblem is called defective (see Appendix). If one attempts to numerically solve “untreated”
defective eigenproblems, nonsensical results can be expected because the whole spectrum is likely
to be contaminated.

9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration ficld may exhibit sur-
face waves, informally called *slosh” motions. From an applications standpoint the most important
acceleration fields are gravity and rotational motion, the latter being of interest in rotating tanks.
In this section we shall be content with formulating-slosh effects in a uniforin gravity field. More
general fields, including time-dependent body forces, may be variationally treated by the method
of canonical decomposition of the non-homogeneous wave equation, but that general method will
not be followed here as it is not necessary for the gravity case.

The fluid volume V is in equilibrium in the reference state discussed in §3.1 under the time-
invariant body force per unit of volume b = V3, where f is a potential field. As noted above we
restrict developments here to a gravity field of strength g uniform in space and time. The boundary
Sp is then the equilibrium free surface normal to the gravity field. The axes (z1, 22, T3) are sclected
so that g acts along the —z3 = —2 axis. Hence § = —pgz + B, where B is an arbitrary constant. If
we chose B so that g vanishes at the free surface z = 2o, then

= —pg(z — 20). (89)

In the so-called hydrostatic approzimation for small-amplitude gravity waves [9] sloshing is consid-
ered equivalent to a free surface pressure
oy

p=p+pgds=p+pgn, where n= dy = 3- on Sy (90)

Here p as before denotes the prescribed part of the pressure (for example, atmospheric pressure) and
n is called the elevation of the liquid with respect to the equilibrium free surface. This approximation
assumes that the displacements are infinitesimal and that the z-acceleration of the slosh motion is
negligible.

9.1 Variational Principle

For the variational derivation of 4slosh equations” it is advantageous to chose the elevation 1 as an
independently varied field. This choice simplifies the reduction to surface unknowns as well as the
treatment of more complex interface conditions such as capillary cflects.
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To incorporate slosh effects into the mixed variational principles based on the functionals studied
in §4, it is convenient to follow a Galerkin technique by adding weighted forms of (88) to their first
variation. The following combinations may be considered: ’

ay

e 22) (22_ ) ( e _) (22_ )
i(p P "9"’53,; S':L- T nén 5’ +i{p-P pan.ﬁan 5ri 3n n,6p s’
P > w) ( P ) (a‘b )
—f - - - bl 4 Y g X _pé
i(p P pqn,Sp)s’ + (6n "'6613 5, +(p—5—pgnbp . g, ~ Mo .’ (91)
_s_ W _ ) ( e ) (3_'1: _ éﬂ)
i(p P pav,Jn)s'ﬁ:(an n,0p 5, +{p-p—pgnbn S’i In "'60n

Of these the first expression, with signs — and +, offers two advantages: (1) it is derivable from
a functional, and (2) it combines naturally with the S, integral in the first variation (35). Of the
“base” parametrized functional R, the most computationally advantageous choice is again a = 1.
The expanded functional (10), denoted as Ry, in the sequel, is

4 - . - a
Ri,(p,¥,n) = Riv — / [/s pd, dS + [ (p—9- pgn)g'g + $pgn? dS] dt. (92)
4

to »
where R,y is the volume integral of (40). Note that setting n = O reslores It;.
9.2 Finite Element Discretization

In addition to the assumptions (41), (42) and (46) we interpolate n as

n= Nun on S]n (93)

where column vector f contains ng fluid elevations at nodes on Sy, and row vector N, contains the
corresponding elevation shape functions. The semidiscrete quadratic form for (92), again excinding
the time integral, is

T __ - 1 ~T =~
Ri,(¥,p,n) = —3p¥ HY - g;pTGpﬁLpT (H-Q,,)®-pTT d+pgn"(Q,+¥—351- 71y,
(04
where

Q"+=L NTUNydS, Q.+ =/

’ s

NTVN, ds, s=/; NIN, dS =87, fy =L VN b
’ e :

(95)
The + subscripts in Q, 4 and Q,,, convey that the nonzero, “surface” portion ol these malrices is
augmented with zeros to conform to vectors ¥ and p. To display this structure, ¥, p and related
matrices are partitioned as -

v, . , 0 i, I,
W-—-{‘I’u}’ P={§ })’ Qq+=[Qn 0]; Q,,+= [Qo’ 0], = [II“ Illm.]‘ (96)

v
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where ¥, contains potentials at n,y nodes of elements connected to S, and p, contains n,, pressures

on S,. The dimensions of Q,, and Q,, are ny X nyy. In general n, < nyy (in fact, about one half).

Also typically n, << ny = np as the latter pertain to a volume mesh. If 5 is interpolated by the
. same surface functions as p, i.e. N, =N, on 5, then

Qq=QP=QI Qq+=[Q 0], Qp+= [3 g]' (97)

9.8 The Rigid Container

The following equations of motion for the rigid but mobile container are obtained on rendering (94)
stationary:

pH W 0 H-QY, QI fy

00
0 00 p r+|H-Qy -—p'G 0 p r=8%"a;- (98)
0 0 0] {peh Q.+ 0 -5 pan 0

Assuming G and S to be nonsingular and identical p and 5 shape functions so that (97) hols, the
nodal pressures and elevations may be statically condensed from (98) thus producing the single
matrix equation

JHW + (P + Ry ¥ =Ty + p(H - Q,, )G 'T" 4, (99)

where

Tg—1

Ry =Q,S57'Qu = [Q So Q g] = [% g] =RT, P=pH-Q[,)G (II-Q,)= rT.
(100)

The rank of R4 and R is the same as that of S, that is, n,. For most real liquids, acoustic and

slosh motions take place in very different time scales. This is the basis for the common assumption

in slosh analysis that the fluid is incompressible, 1.e. ¢ — 00, G —-0and R — oco. If G — 0 the

response of the above system tends is forced to occur in the displacement-potential subspace deflined

by the second matrix equation of (98):

(H-Q,,)¥ =Td (101)

For simplicity let us assume that the container is not only rigid but molionless, Lthat is, d=0. The
incompressible-fluid equations become

Hu Hav i’o R O ‘I’J - f'/’
"[H.T.. Hw]{@.,Ho o]{w..}'{o}’ (102)

subject to the constraint (H - Q,,+)W —= 0. Subvector ¥, may be statically condensed from these
two relations, which may be combined as the system

)t () e
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where ) are Lagrangian multiplicrs (in fact, the pressures at nodes of ¥,), and

H,= H,, - anH;‘,‘Hu“ Q. = [(g] . (104)
Ifd#0 the force term in (103) must be appropriately modified.
9.4 The Flexible Container

For a flexible container the equations of motion accounting for fluid compressibility are

M 0 0O d K 0 —TT 2. d fq
o 0 00 P -tT H-Q,, -»'G 0 P 0
o 0 0O pgfl 0 Q.+ 0 -S PN 0

Eliminating n and p by static condensation yields
M olfal _[K. -Y][al_[f
{3 -[A R{e) 1R (109

K,=K+ TG 'TT, Y= pTGH(H - Q,y)- (107)

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a subspace reduction
procedure similar to that used in §9.3 can be invoked.

where

9.5 Slosh Vibrations

Algebraic eigenproblems to investigate slosh vibrations may be constructed following esscentially
the same techniques as in §8, and reduced to S, node elevations and pressures. We illustrate
the reduction technique for the incompressible fluid held in a motionless rigid container. The
eigenproblem associated with (103), suppressing the modal index m for simplicity, may be written

) o g} =lala ™7 1) (9

where q, and ry, are the modal amplitudes of ¥, and Ay, respectively. The last matrix equation
in (98) provides Q¥, = Sn, or Qq, = Sz, where z is the vector of modal amplitudes of 1, t.e.
n = ze’**. Using these relations we can transform the eigenproblem (108) to

o -l T

Cc=QH;'QT (110)

and r, are Lagrange-multiplier modal amplitudes at nodes of n. This generalized symmetric cigen-
system of order 2ny, provides n, solutions to the slosh eigenproblem. A similar technique may be
followed for the flexible container case. This finite element reduction-to-surface technique provides
an alternative to boundary integral methods [1,8].

in which
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10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in Muid-structure transient-response
and vibration analysis as they provide the basis for effective numerical computations. For some
recent .applications see [2,6,7,9,12,14] and references therein. The preceding treatment unifies a
number of previous continuum-based and algebraic statements [3,4,5,9,11,12,14-16] of the coupled
problem. It may be further extended in the following directions:

(1) The inhomogeneous wave equation ¢2V2y — ¥ = f, [ # 0, when the body force field b(x,t)
is time-dependent and V2b # 0. Additional forcing terms appear in the equations of motion.
These are of interest for slosh of fluids in rotating containers.

(2) Retaining the specific mormentum m as independent field in functional (33).
(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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Appendix A: TIIE GENERALIZED ALGEBRAIC EICENPROBLEM

Some facts about the algebraic eigenproblem are collected here for convenient reference. These facls are
relevant to the study of the free vibrations of the coupled fluid-structure systemn.

A.1 The Siandard Unsymmetric Eigenproblem

The standard eigenproblem for a real unsymmetric square matrix A may be stated as
Ax; = \;x;, (A.])

where ); the eigenvalues {(which may be complex), and X; the corresponding right eigenvectors normalized
to unit length. The eigenproblem for the transposed matrix is

ATy‘- = A.’y.'. (A.Z)

This problem has the same eigenvalues but in general the eigenvectors y, will be different. The y, are called
left eigenvectors of A because they satisfy the problem yTA = X;y;; this in turn explains the qualifier
‘right’ applied to x;. The system of left and right eigenvectors of A satisfies bi-orthogonality relations:

r, _ [0 ii#],
y"x)_{p', ifi=j. (A'S)

This p; is called the condition mumber of A; with respect to the eigenproblem (A.1); it is always less or equal
than 1 in absolute value, and may be zero in pathological cases. (The closer to 1, the better conditioned A;

is.)

Premultiplying (A.1) by y; and assuming that u: # 0 yields
M =yTAxi/pi = xT ATy /i, (A1)

which is the Rayleigh quotient for unsymmetric matrices. If pi = 0 and y7Ax = 0, (A.5) takes the
undetermined form 0/0 so every A; is an eigenvalue. In such a case the eigenproblem (A.1) is said to be
defective.

A.2 The Standard Symmetric Problem

If A is symmetric then x; =y;, pi = 1 and (A.3) reduce to the usual orthogonality condilions

ro _ [0 ifi#], :
x.X,—{l ifi=7, (A.5)

whereas (A.4) becomes the usual Rayleigh quotient for a unit length vector:

A = xT Ax;. (A.6)
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A.8 The Generalized Unsymmetric Eigenproblem

The generalized unsymmetric eigenproblem is
Ax; = A;Bx;, (A.T)
where A and B a.ré imsymmetri'c real matrices. Assuming that B! exists, this problem can be reduced to

the standard problem _
Cx; = AiXi, (A.8)

in which C = B-'A. The transposed problem is
CTs; = ATB Ts; = Aisi. (A9)

Defining BTy, = 5:, (A.9) can be transformed to
ATy, =BTy, (A.10)

The bi-orthogonality conditions (A.3) become

T, _ T _uTpTe = [© if i #73,
six;=y; Bx;=x; B y,-—{m ii=7. (A.11)

The Rayleigh quotient (A.4) generalizes to

T T
yiAx; yi Ax;
Ai = = == . A2

yTBx; B (A.12)

Asin §A.1, if (A.12) takes on the form 0/0 for some 1, every A; is an eigenvalue and the cigenproblem (A.T)
is said to be defective; mathematically, A and DB share a common null space. A defective eigenprohlem
cannot be solved numerically by conventional root-extraction methods because the 0/0 roots contaminate
the entire spectrum.

A.{ The Generalized Symmetric Eigenproblem

If both A and B are symmetric, )
xi=y, #=B7y. (A.13)

and we recover the usual orthonormality conditions
T 0 ifi#j,
TBx: = _ .
x; Bx; {P-' iz g, (A.14)

In mechanical vibration problems for which D is the mass matrix, p; is called the generalized mass. Finally,
(A.12) reduces to the usual Rayleigh quotient

xT Ax;

A = .
x7T Bx;

(A.15)
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